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1. INTRODUCTION

Many times in mathematical and applied logic one faces a new proof system. At first
it usually has no evident semantics. For example, intuitionistic logic was initially for-
mulated only as a calculus, and semantics for it were proposed much later. The same
applies to the first modal logics. The lack of semantics makes it very difficult to under-
stand the logic induced by a new proof system. Most importantly, an effective sound
semantics for a given proof system is useful to obtain “negative” results, namely that
some conclusion cannot be derived in the proof system from a given set of assumptions.

The main goal of this paper is to uniformly obtain useful semantics for a (new or
existing) given proof system. Obviously, it would be too ambitious to deal with the
huge variety of possible proof systems. Here we focus on a family of Gentzen-type
sequent systems, which turns out to be well-behaved for our purposes, and is also
sufficiently wide to include a variety of important existing calculi. We call the sequent
systems of this family basic systems. Generally, basic systems are multiple-conclusion
propositional sequent calculi that include all of Gentzen’s original structural rules (in
fact, for the aspects of proof systems discussed in this paper, every such calculus that
we know is equivalent to a basic system, see Remark 3.6 for further clarifications).
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2.2 O. Lahav and A. Avron

Various sequent calculi that seem to have completely different natures belong to the
family of basic systems. For example, this includes standard sequent calculi for modal
logics, as well as the usual multiple-conclusion systems for intuitionistic logic, its dual,
and bi-intuitionistic logic.

On the semantic side, we consider a generalization of Kripke-style semantics for
modal and intuitionistic logic, and show that each basic system induces some sets of
(generalized) Kripke valuations for which it is strongly sound and complete. In fact, we
provide a uniform method to obtain these sets of Kripke valuations. In many important
cases, the usual well-known soundness and completeness theorems for known calculi
are simple corollaries of this general method (see e.g., Example 4.33).

An important property of the Kripke valuations semantics introduced in this paper
is the fact that it is not necessarily truth-functional. Thus, the proposed semantics
belongs to the framework of non-deterministic semantics, where the truth-value of a
compound formula may not be uniquely determined by the truth-values of its subfor-
mulas (see [Avron and Zamansky 2011]). Relaxing the truth-functionality principle is
a major key for providing semantics for every basic system (see e.g., Example 4.41). In
fact, it is also necessary for the modularity of the proposed method. By allowing non
truth-functional valuations, we are able to separately analyse the semantic effect of
each component of the syntactic machinery (each derivation rule, and in fact, also each
ingredient of a rule). The full semantics of the calculus is then obtained by joining the
semantic effects of all of its components.

An illuminating contribution of a semantic study of proof systems is the ability
to provide semantic proofs (or refutations) of important proof-theoretic properties.
In many cases these proofs are much simpler and easier to verify than their proof-
theoretic counterparts. This is the topic of the second part of this paper, where we
extend the semantics and use its extension to provide semantic characterizations
for three important proof-theoretic properties: generalized analyticity, (strong) cut-
admissibility, and axiom-expansion. We demonstrate in a variety of examples how
these characterizations can be applied to prove that a given basic system either enjoys
or lacks each of these properties. For some well-known sequent systems this provides
new simple semantic proofs of known proof-theoretic properties.

The structure of this paper is as follows. After providing some preliminaries and
notations in Section 2, Section 3 is dedicated to precisely define the family of basic
systems, and to provide examples of some known proof systems that can be presented
in this framework. The semantic framework is presented in Section 4, where we also
present the method to obtain semantics for a given basic system. Examples of applica-
tions of this method are provided in Section 4.1. Section 5 presents semantic charac-
terizations for proof-theoretic properties of basic systems.

Related Works

The present paper substantially extends the family of calculi studied in our previous
works (see e.g., [Avron and Zamansky 2011],[Avron 2007]). In particular, here we do
not require the derivation rules to be “canonical”. The price to pay is of course that the
proposed semantics is more complicated, and is not always effective. Related works of
different type are those that were devoted to characterize cut-free sequent systems. For
example, a semantic characterization of cut-admissibility was the subject of [Ciabat-
toni and Terui 2006]. There, however, the authors consider substructural systems, and
use phase semantics, which is significantly more abstract and complex than Kripke-
style semantics.

Finally, we note that a preliminary short version of this paper is included in [Avron
and Lahav 2011]. Besides the addition of full proofs, we significantly generalized the
semantic framework of [Avron and Lahav 2011] in order to obtain stronger soundness
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and completeness results, and uniformly handle arbitrary proof-specifications (see Sec-
tion 5.2).

2. PRELIMINARIES

In what follows L is a an arbitrary propositional language, and wff; stands for its set
of formulas. Without loss of generality, we assume that at; = {p1,p2,...} is the set of
atomic formulas of £. Given a unary connective ¢ and a set I" of formulas, we denote
the set {0y | ¢ € T'} by oI".

In this paper we only consider two-sided fully-structural sequent systems, and so a
signed formula is defined to be an expression of the form T:¢ or F:¢) where v € wff,,
and a sequent is defined to be a finite set of signed formulas.

We shall usually employ the usual sequent notation I' = A, where I" and A
are (possibly empty) finite sets of formulas. I' = A is interpreted as the se-
quent {F:t) | € T} U{T:) | b € A}.' We also employ the standard abbreviations, e.g.,
I, = ¢ instead of ' U {¢} = {¢'}, and ' = instead of T" = (.

Definition 2.1. A substitution is a function o : wffx — wffz, such that
a(o(1,...,,)) = o(o(¥),...,0(,)) for every n-ary connective ¢ of L. A substi-
tution is extended to signed formulas, sequents, etc. in the obvious way.

3. BASIC SYSTEMS

In this section we precisely define the family of basic systems. For doing so, we de-
fine the general structure of derivation rules that are allowed to appear in basic sys-
tems. Rules of this structure will be called basic rules. Two key ideas are applied in
this definition. First, we explicitly differentiate between a rule and its applications.
Derivations in a certain proof system consist of applications of rules, and the rules
themselves are just succinct formulations of their sets of applications. Rules are often
given as schemas involving meta-variables for formulas and sets of formulas. However,
we shall use a less standard formulation, that will later allow to isolate the semantic
effect of the different ingredients of each rule. Second, in the formulation of the rules,
we differentiate between two parts of their applications, namely the context part and
the non-context part (see [Troelstra and Schwichtenberg 1996]). The non-context part
is obtained by instantiating a rigid structure that is given in the rule. In turn, the
structure of the context part is determined using context-relations. This structure is
less restrictive, as the number of context formulas is completely free. Next we turn to
the formal definitions.

Definition 3.1. A context-relation is a finite binary relation on the set of signed for-
mulas. Given a context-relation 7, we denote by 7 the binary relation between signed
formulas 7 = {(o(«),0(B)) | o is a substitution, and {(«, 8) € 7}. A w-instance is a pair
of sequents (s1,ss) for which there exist (not necessarily distinct) signed formulas
ai,...,ap, and Bi,..., 3, such that s; = {a1,...,a,}, s2 ={f1,-.., 0.}, and o;73; for
every 1 <i < n.

Definition 3.2. The context-relation 7 is the relation {(F:p1, F:p1), (T:p1, T:p1)}.
By definition, ampg iff & = 8, and mp-instances are the pairs of the form (s, s).
Definition 3.3.

10ur signs should not be confused with those usually used in tableau calculi, where T-signed formulas

correspond to the formulas on the left side of the sequent, and F-signed formulas correspond to those on the
right side.
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(1) A basic premise is an ordered pair of the form (s, 7), where s is a sequent and 7 is
a context-relation.

(2) A basic rule is an expression of the form S/C, where S is a finite set of basic
premises, and C is a sequent. C is called the conclusion of the rule. To improve
readability, we usually drop the set braces of the set of premises.

(3) An application of the basic rule (s1,m1),...,(sn, m)/C is any inference step of the
following form:

o(s1)Uer ... o(sp)Ucy

o(C)Ucdiu...ud,

where o is a substitution, and (¢;,c) is a m;-instance for every 1 < i < n. The
sequents o(s1) Ucy,...,0(s,) Uc, are called the premises of the application, while
o(CYUcy U...Ud, is called the conclusion of the application.

Note that the language of the proof system (the one used in its proofs) is also used
in the formulation of the basic rules of the system. In particular, meta-variables are
not needed. Roughly speaking, applications of some rule are obtained by applying a
substitution on the premises s1, ..., s, and the conclusion C of the rule, and (optionally)
adding context-formulas according to the context-relations.

Table I provides some examples of basic rules and the forms of their applications.
The names given to the rules in this table will be used below.

Definition 3.4. A basic system is a set of basic rules in which (cut), (id), and the two
weakening rules, (W =) and (= W), are all included. We denote by T¢ all other rules
of a basic system G, and by Il the set of context-relations appearing in the basic rules
of G (in particular, since (cut) is always included, 7y € Il for every basic system G).

Definition 3.5. A proof in a basic system G of a sequent s from a set S of sequents
is a list? of sequents ending with s, such that every sequent in the list is either an
element of S, or a conclusion of some application of some rule of G, provided that all
premises of this application appear before. We shall write S -g s if such a proof exists.

Remark 3.6. For our purposes, we find it most convenient to define sequents us-
ing sets, so that the structural rules of contraction and exchange are built-in. One can
choose to work with lists (as in the original work of Gentzen) or with multisets, and ex-
plicitly include contraction and exchange in the definition of a basic system. Obviously,
this would not affect the derivability relation. In fact, for all aspects of basic systems
studied in this paper (semantics, cut-admissibility, analyticity, etc.) this choice is im-
material, since any result in one formulation trivially holds in the other. Of course,
this might not be the case when studying other (structural) properties (like e.g. in
[Dyckhoff 1992]). Similarly, we formulated basic rules as multiplicative rules (context-
independent in the terms of [Troelstra and Schwichtenberg 1996]), rather than addi-
tive (context-sharing) rules. Clearly, in the presence of all structural rules, the multi-
plicative version and the additive one are interderivable. Again, this decision does not
affect any property we study below.

3.1. Examples of Basic Systems

The above notion of a basic rule is sufficiently general, so that many known sequent
systems for various propositional logics can be easily presented in the framework of
basic systems. In this section, we list some of these sequent systems, and present their

2Similarly, one can use trees or DAGs.
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Table I. Basic Rules Examples

Name Basic Rule Application
(id) 0/p1 = p1 » =
T, = A1 T2=1,A
(cut) (p1 = ,m0), (= p1,7m0)/0
I'1,T2 = A1,A2
'=A
(W =) (0, m0)/p1 = —_—
Iy=A
r=A
(=Ww) (0, m0)/ = p1 _—
I'=y,A
ry=A
(1) (p1 =, m0)/0p1 = —_—
r,oy=A
or' =y
(S4) (= p1,7)/ = Op1 where 7 = {(F:Op1,F:0Op1)} —_—
or' = 0y
Iy, 02 =9
(K4) (= p1,7)/ = Op1 where m = {(Fip1, F:Op1), (F:Op1,F:Op1)}
ory, ol = 0y
P =
(Do) (p1 =,0)/0p1 = —_—
Oy =
I'=>
(D) (0, 7))/ = where w = {(F:p1,F:0Op1)}
or =
Fl :>’LZJ,A1 FQ,QDZ>A2
(O=) (= p1,m0), (P2 = ,m0)/p1 D P2 =
F'i,To, 9 D= A1, A
[ =¢,A Tap=
(D=0) (= p1,m0), (P2 = ,7)/p1 D p2 = where m = {(F:p1,Fip1)}
I'i,To, vy Dp=>A
Y1 D@1y, Yn D on, Y = @
(=D2*) | (p1 = p2,m)/ = p1 D p2 where m = {(F:p1 D p2,F:p1 D p2)}
7/)1 39017---71% DCPWL:>¢D<P

formulation as basic systems. In the sequel, we will return to some of these basic sys-
tems, provide a semantics for them, and use it to study their proof-theoretic properties.

Note: This paper deals only with propositional logics. Henceforth, when we mention a
known Gentzen-type system, we refer only to its propositional part.

Example 3.7 (LK). The most important example of a multiple-conclusion sequent
system is of-course Gentzen’s system LK for classical logic [Gentzen 1964]. This sys-
tem can be straightforwardly presented as a basic system (which we denote by LK),
in which the only context-relation is 7y (see Definition 3.2). The rules in Ty are all
“well-behaved”, as they introduce exactly one connective on exactly one side of a se-
quent. Each rule is either a right introduction rule or a left introduction rule associ-
ated with some connective. For example, the rules for implication are (O=>) (see Table
I) and (=D), which is the basic rule (p; = pa,m)/ = p1 D p2. Applications of (=D)
allow to infer I' = ¢ D ¢, A from I",¢) = ¢, A. Similarly, the rules for conjunction are
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the following rules:

(A=) (p1,p2= ,7m0)/P1 Ap2 = (= NA) (= p1,m0), (= p2,m0)/ = p1Ap2
Applications of these rules have the form:
Ly,p=A Mi=v,A1 Te= ¢, Ay

n=) —mm— (= A)
F,?ﬁ/\(p@A Fl,F2:>w/\<p,A1,A2

The relation i is the usual consequence relation of classical logic between sets of
sequents and sequents.

Remark 3.8. The family of canonical systems (of which LK is just an important
example) was defined and studied in [Avron and Lev 2005]. The sequent systems of
this family are all “well-behaved”. In particular, they allow context formulas on both
sides of the sequent. Clearly, every canonical system can be presented as a basic system
G where Ilg = {mo}.

Example 3.9 (LJ). The most famous sequent system for intuitionistic logic is of-
course Gentzen’s LJ [Gentzen 1964]. This system manipulates single-conclusion se-
quents, and thus it does not fall in our framework. However, there is an equivalent
multiple-conclusion system, called LJ’ in [Takeuti 1975]. This system is naturally pre-
sented as a basic system, which we call LJ. In addition to 7y, LJ uses another context-
relation, 7, which is the relation {(F:p;,F:p1)}, so that m-instances are all pairs of
the form (I' = ,I" = ). The rules of LJ are the same rules of LK, except for (=D), in
which 7. is used instead of 7y.2 This rule has now the form (p; = po, Tint)/ = p1 D po,
and its applications allow to infer sequents of the form I' = ¢ D ¢ from I', ¢ = ¢ (note
that right context-formulas are forbidden).

Example 3.10 (BLJ). Bi-intuitionistic logic is the extension of intuitionistic logic
with a binary connective dual to implication (denoted here by <) (see e.g., [Goré and
Postniece 2010]). A sequent system for this logic (see [Pinto and Uustalu 2009]) can
be presented as the basic system, which we call BLJ, obtained from LJ by adding the
following rules for <:

(==) (p1 = p2,7ma)/p1 < P2 = (==<) (=p1,m),(P2=,m)/ = p1 <p2

where 74 is the relation {(T:p;,T:p1)}. m4-instances are all pairs of the form
(= A, = A). Applications of these rules have the forms:

wﬁ%A F1:>1/),A1 F2780:>A2
(<) LTEE ey
Y<p=A [T =9 <9,A1,A

Example 3.11 (PLJ). Sequent systems for several families of paraconsistent logics
are defined and studied in [Avron 2007]. All of these sequent systems belong to the
family of basic systems. For example, we present the system PLJ({(= - D)}) from
[Avron 2007] as a basic system, which we call PLJ. PLJ is obtained from LJ by adding
the following rules (the language of LJ is augmented with a unary connective —):

(=) (pr=,m)/ = 11 (=-D2) (= p1,m), (= —p2,m)/ = —(p1 Dp2)

3Similar modification is needed in the right introduction rule of negation. However, here we take the lan-
guage of LJ to consist of A,V, D and 1, and — is defined by ¢ D L.
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Applications of these rules have the forms:

F71/)jA FliwaAl F2:>_'<)07A2
(=) ———— (=-2)
F:>_\¢7A Fl,].—‘2:>_|('1/1399),A1,A2

Example 3.12 (Systems for Modal Logics). Ordinary sequent systems for modal
logics are surveyed in [Wansing 2002] and [Poggiolesi 2010]. All of them belong to
the family of basic systems. As examples we present as basic systems six of them (used
later to demonstrate certain semantic phenomena). For this purpose, we use the rules
(K), (B) and (S5) (in addition to some of the rules presented in Table I). These three
rules all have the form ( = p;,7)/ = Op;, where 7 is as follows:

(K) 7= {(F:ipp,F:Op1)}
(B) m={(F:p1,F:Opy), (T:Opy, Tep1) }
(S5) = {(F:0Opy,F:Opq), (T:Opy, T:Op1) }

Applications of these rules have the form:

=y B I'= ¢, 0A o' = ¢, 0A

oI = Oy ar = Oy, A or = Oy, 0A
Based on LK, six basic systems are defined as follows:
K=LK + (K) K4 =LK + (K4) KD =K+ (D)
KB =LK + (B) S4 =LK+ (54) + (T) S5 =LK + (S5) + (T)

Note that these systems are used for a language in which O is the only primitive modal
operator and (v is defined as —O-1). For a language with two dual primitive modal
operators, one should modify some of the context-relations in the rules for O, and add
dual rules for . For example, for the logic S4 the following four schemas are used:

oo = ¢, 0A L= A or, ¢ = OA =, A
Or = 0y, OA [Oyp=A or, Oy = OA = 0y, A

Example 3.13 (GL). The logic GL (the modal logic of provability, see [Verbrugge
2010]) is obtained by adding the axiom O(Ov D ¢) D O to the usual Hilbert system
for the modal logic K. In addition, GL has a well-known sequent system (see e.g.,
[Leivant 1981; Sambin and Valentini 1982; Avron 1984]), that can be presented as a
basic system, which we call GL. GL is obtained from LK by adding (GL) — the basic
rule (Op; = py,7)/ = Opy, where 7 = {(F:py, F:Opy), (F:Opy, F:Op;) }. Applications of
(GL) allow to infer sequents of the form OT'y, OT'y = Ot from I'y, OTy, Ot = 4.

Example 3.14 (IS5). Sequent systems for intuitionistic modal logics provide an in-
teresting source of examples to be studied in the framework of basic systems, as they
naturally employ more than one (non-trivial) context-relation. For example, the sys-
tem G3 from [Ono 1977] can be presented as the basic system obtained from LJ by
adding the rules (S5) and (7') (mentioned above) (the language of LJ is augmented
with a unary connective O). In the sequel, we refer to this basic system as IS5.

Example 3.15. In [Lavendhomme and Lucas 2000] several sequent calculi for
weak modal logics are introduced. All of them belong to the family of basic sys-
tems. For example, the first system from [Lavendhomme and Lucas 2000] (called
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M seq there), is the basic system obtained from LK by adding (M) — the basic rule
(p1 = p2,0)/0p; = Ops. Its applications allow to infer sequents of the form Oy = Oy
from ¢ = .

Example 3.16. Several sequent systems for logics of strict implication are provided
in [Ishigaki and Kashima 2008], and can be presented as basic systems. For example,
GS4! (from [Ishigaki and Kashima 2008]) is equivalent to the basic system, obtained
from LK by replacing the rule (= D) with the rule (=>*) (see Table I).*

Example 3.17 (GP). Primal logic was defined and studied in [Beklemishev and
Gurevich 2012]. As explained there, this logic is used in the context of the access con-
trol language DKAL. We consider here primal logic with disjunction and quotations,
and present the sequent system G P from [Beklemishev and Gurevich 2012] as a basic
system, that we call GP. The language of the system GP consists of the classical con-
nectives A,V, L, T, a binary connective —, and a set of unary connectives denoted by
g said and ¢ implied for every ¢ in some set Q. The rules of this system are the rules
of LK for A,V, L, T, and the following rules for the other connectives (for every ¢ € Q):

(==) (= p1,m0),(p2 = ,m0)/pP1 — p2 = (=—) (=p2m)/ =p1—p
(Saidy) (= p1,7)/ = gsaidp; (Implied,) (= p1, )/ = q implied p;

where 77 = {(F:p;,F:q said p1)}, and 7} = 77U {(F:p;, F:q implied p;)} for every q € Q.
Applications of these rules have the form:

(55) I =¢,A1 o= A () I'=p A
F17F27¢_>SD:>A17A2 F:>¢_>907A
I'= A=
(Saidy) L4 (Implied,) v
qsaid ' = ¢ said ¢ qsaid I',q implied A = ¢ implied ¥

4. KRIPKE-STYLE SEMANTICS FOR BASIC SYSTEMS

In this section we introduce a method for providing Kripke-style semantics for any
given basic system. In fact, we show how to uniformly recognize classes of “Kripke val-
uations” for which a given basic system is sound and complete. Note that we consider
here proofs from a set of assumptions (or “non-logical axioms”), and so we actually ob-
tain strong soundness and completeness. We begin with a general notion of a (Kripke)
valuation, and the consequence relation associated with a given set of such valuations.

Definition 4.1. A (Kripke) valuation is a function v from the Cartesian product of
some set W, (of “worlds”) and wff. to {T,F} (i.e., v : W, X wffy — {T,F}).

Signed formulas and sequents are interpreted as follows:
Definition 4.2. Let v be a valuation.

(1) A signed formula X:¢ (for X € {T,F}) is true in some w € W, with respect to v
(denoted by: w E? X:) if v(w, ) = X.

(2) A sequent s is true in w € W, with respect to v (denoted by: w =¥ s) if w =¥ « for
some « € S.

4Note that GS4! includes also a less standard rule (denoted by (— K!) in [Ishigaki and Kashima 2008])
that cannot be presented as one basic rule. However, one can show that it is redundant in GS47.
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(3) A sequent s is true in W C W, with respect to v (denoted by: W =¥ s) if w =¥ s for
every w € W.

(4) v is a model of:
(a) a sequent s (denoted by: =¥ s) if W, ¥ s.
(b) a set S of sequents (denoted by: =" S) if ¥ s for every s € S.

The consequence relation induced by a set M of valuations is defined as follows:

Definition 4.3. A sequent s follows from a set S of sequents with respect to a set M
of valuations (denoted by:® S s s) if for every v € M, =¥ s whenever = S.

Next we turn to identify sets of valuations for which a given basic system G is sound
and complete. Here the idea is that each syntactic ingredient of G imposes a certain
constraint on valuations. Taking all of these constraints together, we get a set of valu-
ations for which G is sound and complete. The exact constraints are formulated below.

First, we associate with each context-relation = of G a binary (“accessibility”) rela-
tion on W, and enforce certain conditions on the associated accessibility relations.

Definition 4.4. Given a set W, a (G, W)-coupling is a function assigning a binary
relation on W to every 7 € Ilg.

Definition 4.5. Let v be a valuation.

(1) Given a context-relation =, R’ denotes the binary relation on W, defined by:
wy RYwo iff for every signed formulas o and g, if a7 and we ¥ « then wy Y 5.

(2) Let G be a basic system, and let 7 € Ilg. v respects 7 for a (G, W,)-coupling R, if
R(m) C RY.

Example 4.6. Let G be a basic system and v be a valuation. Consider the context-
relation 7. By definition, amof iff a = 8. Thus w; R} w. iff for every signed formula o
such that ws =" a, we have w; =" a. Equivalently, w; R}, ws iff v(wy, ) = v(ws, ) for
every 1 € wffz. Thus v respects m for a (G, W, )-coupling R iff for every wy, ws € W,
such that wyR(mg)ws, we have that v(wi,¥) = v(ws,¥) for every ¢ € wffr.

Notation 4.7. Given a valuation v, we denote by Id, the identity relation on W,,. Fol-
lowing Example 4.6, observe that Id, C R for every valuation v, and that v respects
mo for R if R(mp) = Id,.

Example 4.8. Let G be a basic system and v be a valuation. Suppose that
m = {(F:p1,F:p;)} appears in IIg (as happens in LJ for example). Here, a7g iff
a = =F for some ¢ € wffr. Thus wy R2w, iff for every signed formula « of the
form F:¢), if wy EY «, then w; EY «. Equivalently, wi R2ws iff v(ws, 1) = F implies
that v(wq,¢) = F for every ¢ € wff.. It follows that v respects = for a (G, W, )-coupling
R iff for every wy,ws € W, such that w;R(n)ws, we have that v(wq,1) = T implies
v(wy, ) = T for every ¢ € wffz. This is the persistence (or monotonicity) condition
used in intuitionistic Kripke semantics.

Example 4.9. Let G be a basic system and v be a valuation. Suppose that
m = {(F:p1,F:Op;)} appears in Il (as happens in K for example). Here, a7 iff a = F:¢
and § = F:0¢ for some ¢ € wffs. Thus wi R2ws iff wy EY Fi¢p implies wy Y F:O¢
for every formula . Equivalently, w; R2w, iff for every ¢ € wffz, if v(wy,0¢) = T
then v(wsy, ) = T. It follows that v respects 7 for a (G, W,)-coupling R iff for every
wy,wo € W, such that w,R(7)wy, we have that v(w;,0¢) = T implies v(ws, ) = T for
every ¢ € wff.. Roughly speaking, this provides “one half” of the usual semantics of O.

5We reserve the symbol |= for the satisfaction relation, and use I- for consequence relations.
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Example 4.10. Let G be a basic system and v be a valuation. Suppose that 7 =
appears in Il (this context-relation is used in the rule (M), see Example 3.15). Since
there do not exist signed formulas «, 8 such that o3, wRZw trivially holds for every
w,u € W,. Thus RY = W, x W, and v trivially respects = for every (G, W, )-coupling.

Next we formulate the effect of the basic rules appearing in a basic system.

Notation 4.11. Given a set W, a binary relation R C W x W, and an element w € W,
we denote the set {u € W | wRu} by R[w].

Definition 4.12. Letr = (s1,m),...,{sn, T, )/C be a basic rule of a basic system G. A
valuation v respects r for a (G, W, )-coupling R, if the following condition holds for every
w € W, and substitution o: if R(m;)[w] Y o(s;) for every 1 < i < n, then w =" ¢(C).

Example 4.13. Suppose that a basic system G contains a rule r of the form
(= p1,m)/ = Opp (such a rule appears in various basic systems for modal logics pre-
sented in Section 3.1). A valuation v respects r for a (G, W, )-coupling R iff for every
w € W, and substitution o: if ®(7)[w] EY o( = p1), then w E* o( = Op;). Hence v
respects r for R iff for every w € W,, and formula v: if v(u, 1)) = T for every u € R(7)[w],
then v(w,39) = T. Roughly speaking, this provides the “other half” of the usual se-
mantics of O (see Example 4.9).

Example 4.14. Suppose that a basic system G contains a rule r of the form
(= p1,7), (p2 = ,7)/p1 D p2 = (arule of this form appears in LK and LJ with 7 = ).
A valuation v respects r for a (G, W, )-coupling R iff for every w € W,, and substitution
o: if R(7)[w] EY o( = p1) and R(7)[w] EY o(p2 = ), then w =¥ o(p; D p2 = ). Hence v
respects r for R iff for every w € W, and two formulas ¢, p: if v(u,v) = Tand v(u, p) = F
for every u € R(r)[w], then v(w, ) D ¢) = F.

Example 4.15. Suppose that a basic system G contains a rule r of the form
(p1 = p2, ™)/ = p1 D pa (for example, a rule of this form appears in LK with = = o,
and in LJ with 7= = ;). A valuation v respects r for a (G, W, )-coupling R iff for every
w € W, and substitution o: if R(7)[w] Y o(p1 = p2), then w =¥ o( = p1 D p2). Equiv-
alently, v respects r for  iff for every w € W, and two formulas v, ¢: if v(u, ) = F or
v(u, ) =T for every u € R(m)[w], then v(w, ¢ D ¢) =T.

Example 4.16. Suppose that a basic system G contains a rule r of the form ((), ) /0
(for example, this is the form of the rule (D), see Table I). Applications of this rule
allow to infer a sequent s’ from a sequent s whenever (s, s’) is a w-instance. A valu-
ation v respects r for a (G, W,)-coupling R iff for every w € W, and substitution o:
if ®(m)[w] EY 0, then w =" () (note that () = 0 for every substitution o). Since the
empty sequent is not true in any world, this condition would hold iff for every world
w there exists some u € R(7)[w]. In other words, v respects this rule for ¢ iff ®(r) is a
serial relation.

Now we identify a set of valuations for which a given basic system is sound and
complete, and state our first soundness and completeness theorem. We omit its proof,
since in Section 5.2 we prove a generalization of this result (see Remark 5.18).

Definition 4.17. Let G be a basic system, and v be a valuation.

(1) v respects G for a (G, W,)-coupling R, if it respects for R every 7 € llg and r € Y.
(2) v is called G-legal if it respects G for some (G, W, )-coupling.

THEOREM 4.18. Let G be a basic system, and let M be the set of all G-legal valua-
tions. Then -g=tn. In other words: there exists a proof in G of a sequent s from a set
S of sequents, iff every G-legal valuation which is a model of S, is also a model of s.
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Remark 4.19. To show that applications of some basic rule r are sound (i.e., that if
a valuation v is a model of the premises of an application of r then it is also a model
of its conclusion), we use the fact that G-legal valuations respect » and every context-
relation 7 occurring in the premises of r for R. Note that we do not require that v
respects for R the predetermined structural rules (id), (cut), (W =), and (= W): their
soundness is a priori guaranteed for every valuation.

In order to obtain a very general soundness result, we chose above the set M to be as
large as possible. On the other hand, a stronger completeness result can be obtained
by considering a smaller set of valuations:

Definition 4.20. Given a basic system G and a valuation v, g denotes the (G, W,)-
coupling defined by R (7o) = Id,, and R (7) = RY for every other 7 € Ilg.

Definition 4.21. Let G be a basic system. A valuation v is called strongly G-legal if
it respects for RN, every r € T.

Remark 4.22. Following Example 4.6, every valuation v respects m for R . In addi-
tion, every valuation v obviously respects every other 7 € Il for R. Thus, a strongly
G-legal valuation is G-legal.

Definition 4.23. A valuation v is called differentiated if R, = Id,.

Remark 4.24. Following Example 4.6, a valuation v is differentiated iff w; = w-
whenever v(wy, 1) = v(ws, ) for every ¢ € wffz. The name of this property is taken
from [Chagrov and Zakharyaschev 1997].

THEOREM 4.25. Let G be a basic system, and let M be the set of all strongly G-legal
differentiated valuations. Then Fg=tn1. In other words: there exists a proof in G of a
sequent s from a set S of sequents, iff every strongly G-legal differentiated valuation
which is a model of S, is also a model of s.

Again, the proof is omitted since we prove a more general result in Section 5.2 (see
Remark 5.18). The two last theorems are combined in the following corollary, that
provides an “interval” of possible semantics for a given basic system.

COROLLARY 4.26. Let G be a basic system. Then, -g=F for every set M of G-legal
valuations containing all strongly G-legal differentiated valuations.

Corollary 4.26 provides a general soundness and completeness result applicable to
every basic system G. Its exact content depends on the choice of set of valuations M.
M should meet two conditions: first, it should contain only G-legal valuations; and
second, it should contain all strongly G-legal differentiated valuations. This easily
entails various different soundness and completeness theorems for different families of
basic systems. Indeed, using the structure of the context-relations in Ilg, it is possible
to recognize some properties common to all strongly G-legal differentiated valuations,
and derive specific soundness and completeness results with respect to the set of all G-
legal valuations satisfying these properties. The following proposition is particularly
useful for this purpose.

Notation 4.27. Given a signed formula of the form F:¢), we denote by F:¢ the signed
formula T:4). Similarly, T:i) denotes the signed formula F:.

PROPOSITION 4.28. Let v be a valuation, and m, 7o, w3 be context-relations.
@) ;]S%I;fppcos]%)that 73 = M Uma. Then R}, = R} N R . In particular, if 71 C 7 then
T — T
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(2) Suppose that 75 C 7 o 7.5 Then Ry o Ry C RY.Inparticular, if 71 C 7 o7 then
RY  is a transitive relation.

(3) Suppose that Bia whenever amf. Then RY C (RY))™'. In particular, (Q if amf
implies By and vice-versa, then RY = (R% )™, and (ii) if a3 implies fma and
vice-versa, then R} is a symmetric relation.

PROOF.

(1) Suppose first that uR? w. By definition, this means that for every signed formulas
a, B, if a3 and w =Y « then u =Y §. Since 1 C 73, this implies that for every
signed formulas o, 3, if am 8 and w =" o then v =¥ . Hence, uR} w. Similarly,
uR} w. For the converse, suppose that uR, w and uR} w. By definition, this means
that for every signed formulas «, 8, if a7 8 or a3, and w =Y « then « =Y . Since
73 C m U 7o, this implies that for every signed formulas «, 3, if amf and w =¥ «
then u =" . Hence, uR} w.

(2) Let w,u € W, such that wRY o R? u. Then there exists = € W,, such that wR? =
and zR] u. We show that wR}_u. Let «, 3 be signed formulas, such that ar34, and
u =Y a. Therefore, there exists a signed formula ~ such that a7, and v, (. Since
zRY u, we have z =" v. Since wRY 2, we have w =¥ j3.

(3) Let wRY u. We show that uR} w. Let o, 8 be signed formulas, such that am 3 and
w EY «. This implies that S a. Now, since w = «, we have that w ¥ @. Since
wR? u, we have u [~£¥ 3. This entails that u =" 5. O

The following soundness and completeness results are easily obtained using Propo-
sition 4.28:

COROLLARY 4.29. Let G be a basic system, and suppose © = 7 o 7 for some 7 € Ilg.
Let M be the set of all valuations v for which there exists a (G, W, )-coupling R such
that R(r) is a transitive relation, and v respects G for R. Then, -g=Fnr.

ProOOF. Clearly, M is a set of G-legal valuations. By Corollary 4.26 it suffices to
show that M contains all strongly G-legal valuations. Let v be such a valuation. Then
v respects G for R¢. By Proposition 4.28 (Item 2), R (7) = RY is transitive. It follows
thatve M. O

COROLLARY 4.30. Let G be a basic system, and suppose that for some 7 € Ilg, 7
includes only pairs of the form {(«, o). Let M be the set of all valuations v for which there
exists a (G, W,)-coupling R such that R(r) is a reflexive relation, and v respects G for
R. Then, Fg=Fwm.

PROOF. Clearly, M is a set of G-legal valuations. By Corollary 4.26 it suffices to
show that M contains all strongly G-legal valuations. Let v be such a valuation. Then
v respects G for Rg;. Proposition 4.28 (Item 1) entails that R} C R?. Since Id, C R} ,
R& (m) = RY is reflexive. It follows that v € M. O

4.1. Examples of Semantics for Basic Systems

Corollary 4.26 is a central result of this paper. We devote this section to provide various
examples of its consequences, by applying it to some of the basic systems presented
in Section 3.1. In particular, many fundamental strong soundness and completeness
theorems for known logics and systems are easily obtained as special cases.”

6Given two relations R, S C A2, aR o Sb if there exists some ¢ € A such that aRc and ¢Sb.
"Everywhere in this paper we use the terms “strong soundness” and “strong completeness” in their general
sense. Thus a sequent system G is strongly complete for a semantics Sem (i.e. a set of “models”), if S g s
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Example 4.31 (LK). Let Mk be the set of valuations that respect the usual truth-
tables of the classical connectives in each world (e.g., v(w,v D ¢) =T iff v(w,¢)) = F
or v(w,¢) = T). Corollary 4.26 entails that LK is strongly sound and complete with
respect to the set Mk. To see this, we prove that v € Mk iff v is strongly LK-legal.
It follows that Mk is a set of LK-legal valuations containing all strongly LK-legal
differentiated valuations (and so Frx=Fm, . ):

(=) Let v € Mrk. We show that v respects LK for R} . Following Example 4.6,
since R}k (mo) = Id,, v respects my for R} . We claim that v respects for R}
every r € Trk. We show it for the rules of O. The other rules are treated simi-
larly. Following Example 4.14 and since R} i (7o) = Id,, v respects (O=-) for R}
if v(w,4¥ D ¢) = F whenever v(w,9) = T and v(w, ) = F. Following Example
4.15, v respects (=D) for RN}k if v(w, ¥ D ¢) = T whenever either v(w, ) =F or
v(w, ) = T. Obviously, these two requirements hold since v respects the truth-
table of D in each world.

(<) Let v be a strongly LK-legal valuation. We claim that v respects the usual
truth-tables of the classical connectives in each world. Again, we show it only
for D. Since v is strongly LK-legal, v respects for Ry, every r € Tpk. Fol-
lowing Example 4.14, since v respects (D=) for R}, and R} (m) = Id,,
v(w, ¥ D ) =F whenever v(w,¢) =T and v(w, p) = F. Similarly, following Ex-
ample 4.15, since v respects (=D) for R}y, v(w,¥ D ¢) =T whenever either
v(w,¥) =F or v(w,p) = T. Together, we have that v respects the truth-table of
D in each world.

Remark 4.32. It is easy to see that in any basic system G like LK, in which
IIg = {mo}, it suffices to consider only valuations consisting of a single world. This
leads to the usual two-valued semantics of LK.

Example 4.33 (LJ). Using Corollary 4.26, we obtain a strongly sound and complete
semantics for LJ, which is practically identical to the usual Kripke semantics for in-
tuitionistic logic. For this purpose, let Mp,j be the set of valuations v that respect the
usual truth-tables of A, Vv, L in each world, and in addition there exists a partial order
< on W, satisfying the following conditions:

(persistence) If v(w,) =T then v(u, ) = T for every u €< [w].
(implication) v(w,¥ D ¢) =T iff v(u,¥) = F or v(u,p) = T for every u €< [w].

We show that (1) Mypj is a set of LJ-legal valuations, and (2) My, contains all strongly
LJ-legal differentiated valuations. Corollary 4.26 implies then that Fry=Fwm, ;.

(1) Let v € MLy, and let < be a partial order on W, satisfying (persistence) and (impli-
cation). Recall that Iy = {mo, mint}. Choose R to be the (LJ, W,)-coupling assign-
ing Id, to m, and < to m,;. Clearly, v respects my for . By Example 4.8, condition
(persistence) ensures that v respects m;,; for . It is straightforward to show that v
respects for R every r € Ty,5. For example, (implication) above immediately implies
that v respects (=D) (see Example 4.15) for %.

(2) Let v be a strongly LJ-legal differentiated valuation. Similarly to Example 4.31, it
is easy to show that v respects the usual truth-tables of A,V, L in each world. We
show that R}  is a partial order satisfying (persistence) and (implication). Since
Tint € Tint © Tint, Proposition 4.28 (Item 2) entails that R} is transitive. Next, note
that m,« C mo, hence, by Proposition 4.28 (Item 1), R} C R. ; since Id, C R}

R

whenever every model of S in Sem is also a model of s. We note that in the context of modal logics there
are related notions of “Kripke completeness”. These are particular instances of the general notion we use, in
which Sem is fully determined by classes of Kripke frames (but such a frame is not an element of Sem).
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Ry is reflexive. To see that R} is anti-symmetric, suppose that w;R. w, and
wo Ry wi. This implies that v(wy, ) = v(ws, ) for every ¥ € wff,. Since v 1s differ-
entiated, w; = ws. It remains to show that (persistence) and (implication) hold for
Ry . Following Example 4.8, since v respects i, for }7 ;, condition (persistence)
holds. By Example 4.14, since v respects (D=-) for R}, we have that for every
w € W, if v(w,¢) = T and v(w,p) = F then v(w,y D ¢) = F. By Example 4.15,
since v respects (D=) for R} ;, we have that for every w € W,, if v(u,¢) = F or
v(u,p) = T for every u € R} [w], then v(w,? D ¢) = T. These two facts together
with (persistence) establish (implication).

Now, what happens if we simply apply Theorem 4.18 for LJ (perhaps without knowing
about the usual Kripke semantics for intuitionistic logic)? In this case, we obtain that
LJ is strongly sound and complete for the set of LJ-legal valuations. This set can be
defined exactly like My, without restricting < to be a partial order. Thus, we obtain a
semantics which is less restrictive than the previous one. On the other hand, we can
apply Theorem 4.25 to obtain that LJ is strongly sound and complete for the set of
strongly LJ-legal differentiated valuations. This set is a subset of My obtained by
imposing also the converse of (persistence) (if v(w, 1) = T implies v(u, ) = T for every
1, then w < u). Here we obtain a more restrictive semantics than the usual one.

Example 4.34 (BLJ). Using Corollary 4.26, we obtain a strongly sound and com-
plete semantics for BLJ, which is practically the usual Kripke semantics for bi-
intuitionistic logic. For this purpose, let MLy be the set of all valuations v satisfying
the conditions from Example 4.33, and the following additional condition:

(exclusion)  v(w,¥ < ) = Fiff v(u,9) =F or v(u,p) = T for every u € W, such that
w > U.

The semantics induced by Mgy is practically identical to the usual Kripke semantics
of bi-intuitionistic logic (see e.g., [Goré and Postniece 2010]). Now, Mgy, is a set of
BLJ-legal valuations, that contains all strongly BLJ-legal differentiated valuations,
and so Corollary 4.26 implies that Fpry=Fmg. ;. This is shown similarly as for LJ.
In particular, the rules of < correspond to (exclusion), and Proposition 4.28 (Item 3)
entails that in strongly BLJ-legal valuations R? L= (Re_ )~ (since aryf iff Brin).

Tint

Example 4.35 (PLJ). Using Corollary 4.26, PLJ is sound and complete with re-
spect to the set M of valuations v satisfying the conditions from Example 4.33, and the
following two conditions concerning —:

—Ifv(w, ) = F then v(w, =) = T.
—Ifv(w, ) = T and v(w, ~¢) = T then v(w, = (¢ D)) = T.

To see this it suffices to show that M is a set of PLJ-legal valuations containing all
strongly PLJ-legal differentiated valuations. This is done straightforwardly. Clearly,
this semantics is non-deterministic, as the truth-values of ¢ in every world may not
determine the truth-values of —1). For example, in a valuation with a single world w, if
v(w,p1) = T, then v(w, —p;) can be either T or F. Note that this semantics is different
from the (three-valued) semantics given in [Avron 2007] for this system.

Remark 4.36. A similar study for simpler sequent systems for paraconsistent logics
(based on LK, rather than on LJ) leads to a non-deterministic two-valued semantics,
known also as a bivaluation semantics (see e.g., [Carnielli et al. 2007]).

Example 4.37 (K). The usual Kripke semantics of the modal logic K can be de-
scribed using the set Mk of valuations defined as follows: v € My iff v respects the
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usual truth-tables of the classical connectives in each world, and there exists a binary
relation R on W, such that the following condition holds:

(necessity) v(w,0y) =T iff v(u,v) = T for every u € R[w].

Now Corollary 4.26 implies that Fx=Fn, . To see this, we prove that Mk is a set of
K-legal valuations that contains all strongly K-legal valuations:

(1) Let v € Mk, and let R be a relation on W, satisfying (necessity). Choose R to be the
(K, W,)-coupling assigning Id, to 7o, and R to 7. Following Examples 4.6 and 4.9,
v respects mp and 7 for R. It remains to show that v respects for R the rules in Tk.
We show it here for (K). The other rules are treated as in Example 4.31. Following
Example 4.13, it suffices to see that for every w € W, and formula ¢: if v(u,¢) =T
for every u € R[w], then v(w, O¢) = T. This follows from the definition of M.

(2) Let v be a strongly K-legal valuation. Similarly to Example 4.31, it is easy to show
that v respects the usual truth-tables of the classical connectives in each world.
We claim that R? is a relation satisfying (necessity). To see this, note that since
v respects (K) for R}, we have that, if v(u,?) = T for every v € RZ[w], then
v(w,O%) = T. The converse is obtained from the fact that (by definition) wy R%w,
iff v(wo, 1) = F implies v(wq, Oy) = F for every ¢ € wffr.

Example 4.38 (Systems for modal logics). The usual Kripke semantics of the
modal logics K4, KD, KB, S4 and S5 can be described using the following variations
on the set Mk (from Example 4.37):

— M4 is defined as M with the addition that R is transitive.

— Mk is defined as My with the addition that R is serial.

— Mkp is defined as Mk with the addition that R is symmetric.

— Mgy, is defined as Mk with the addition that R is reflexive and transitive.
— Mgs is defined as Mk with the addition that R is an equivalence relation.

For every G € {K4,KD,KB, S4,S5}, Corollary 4.26 implies that Fg=Fn.. Indeed,
we prove that in each of these cases Mg is a set of G-legal valuations that contains
all strongly G-legal valuations. Let G € {K4, KD, KB} (the proofs for S4 and S5 are
similar and left for the reader).

(1) Let v € Mg, and R be a relation on W, satisfying (necessity) and the required
additional condition of Mg (transitivity, seriality, or symmetry). Choose R to be
the (G, W, )-coupling assigning Id, to mg, and R to 7. We show that v is G-legal:
K4 As in Example 4.37, v respects 7o, and every » € T4 for R. It remains to

show that R C R (and so v respects = for i). Suppose that w; Rw,. Let « and
B be signed formulas such that a7 and ws " «. The structure of 7 ensures
that either « = F:¢) and 5 = F:0¢ for some formula v, or « = F:0O% and
B = F:0¢ for some formula 1. In the first case, (necessity) directly implies
that w; Y 8. Suppose now that a = F:0¢ and § = F:0¢ for some formula
. Since we EY « (i.e., v(we, Oy) = F), (necessity) entails that w =¥ F:¢ (i.e.,
v(w,¥) = F) for some w € R[ws|. The transitivity of R then ensures that
w1 Rw. Again (necessity) implies that w; =¥ F:0O¢. It follows that w; RZws.

KD As in Example 4.37, v respects mo, 7, and every r € Tkp \ {(D)} for R. In
addition, following Example 4.16, the seriality of R ensures that v respects
(D) for R. Therefore v is KD-legal.

KB As in Example 4.37, v respects mg, and every r € Tkgp for R. It remains to
show that R C R? (and so v respects 7 for ). Suppose that w; Rw,. Let «
and § be signed formulas such that a7 and ws ¥ a. The structure of =
ensures that either o = F:¢) and g = F:0O¢ for some formula ¢, or o« = T:0¢
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and 8 = T:1) for some formula v. In the first case, (necessity) directly implies
that w; Y 8. Suppose now that « = T:0¢ and 8 = T:¢) for some formula
1. Since wy EY « (i.e., v(we, d9Y) = T), (necessity) entails w =" § for every
w € R[ws]. The symmetry of R ensures that we Rw;, and so w; ¥ 5. It follows
that wlewg.
(2) Let v be a strongly G-legal valuation. Similarly to Example 4.37, one shows that

v € Mg. In addition:

K4 Since 7 C 7 o 7, Proposition 4.28 (Item 2) entails that RY is transitive.

KD Since v respects (D) for R}, RY is serial (see Example 4.16).

KB Since ang iff f7a, Proposition 4.28 (Item 3) entails that RY is symmetric.

Example 4.39 (GL). Semantically, the modal logic GL is characterized by the set
of modal Kripke frames whose accessibility relation is transitive and conversely well-
founded. However, GL is not strongly complete with respect to models built on this
set of frames (indeed, compactness fails for the logic induced by this semantics, see
[Verbrugge 2010]). Using our method, starting from the basic system GL, we obtain a
(different) strongly sound and complete semantics for GL. Indeed, by Corollary 4.26,
GL is (strongly) sound and complete with respect to the set Mgy, of valuations, de-
fined similarly to Mk (see Example 4.37), with two additional requirements: (1) R is
transitive; (2) If v(u, ) = F for some v € R[w], then there is some v’ € R[w], such that
v(uv',v) = F and v(v/,0¢) = T. To see this we prove that Mgy, is a set of GL-legal
valuations that contains all strongly GL-legal valuations:

(1) Let v € Mg, and let R be a transitive relation on W, satisfying (necessity) and
condition (2) above. Choose % to be the (GL, W, )-coupling assigning Id, to 7o, and
R to . Similarly to Example 4.38, one can prove that R C RY (using the transitiv-
ity of R), and so v respects 7 for R. It remains to show that v respects for ® the rules
in Tgr. We show it here for (GL). The other rules are treated as in Example 4.31.
Let w € W, and let o be a substitution. Suppose that R (7)[w] E ¢(Op; = p1). We
show that w ¥ o( = Op;). Assume otherwise. Then v(w,Oc(p;)) = F. Thus (ne-
cessity) implies that there exists some u € R[w], such that v(u,o(p1)) = F. By con-
dition (2), there is some v’ € R[w], such that v(v/,0(p1)) = F and v(v/, Do (p1)) = T.
Clearly, v’ [~£” o(Opy = p1). But, since R(7) = R, this contradicts the fact that
R(m)[w] = o(Op1 = p1).

(2) Let v be a strongly GL-legal valuation. Similarly to Example 4.31, it is possible
to show that v respects the usual truth-tables of the classical connectives in each
world. It remains to show that there exists a transitive relation R on W, satis-
fying (necessity) and condition (2) above. We show that RY has this property (its
transitivity is proved exactly as in Example 4.38):

(a) Since v respects (GL) for R, we have that, if v(u,¢) = T for every u € RZ[w],
then v(w, O%y) = T. The converse holds since v respects 7 for Rg; .

(b) We prove that RY satisfies condition (2) above. Suppose for contradiction that
there exist some ¢ € wff; and w € W,, such that v(u, ) = F for some u € R?[w],
and there does not exist v’ € RZ[w], such that v(v/,v) = F and v(v/,0¢) = T.
It follows that R(7)[w] =¥ Oy = ¢. Since v respects (GL) for R, v(w,Oy) = T.
But, this contradicts (necessity).

Remark 4.40. Note that while the semantics provided above is strongly sound and
complete for GL, it is not clear whether it is useful (in particular, whether it leads to a
decision procedure). We leave this question to a future work.

Example 4.41 (GP). Using Corollary 4.26, we obtain a strongly sound and com-
plete semantics for GP, which is practically identical to the semantics presented in
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[Beklemishev and Gurevich 2012]. For this purpose, let M be the set of valuations v
that respect the usual truth-tables of A, V, L, T in each world, and satisfy the following
conditions:

(1) If v(w,v) =T and v(w, p) = F then v(w, ¢ — @) = F.
(2) If v(w, p) = T then v(w, Y — @) =T.
(3) For every ¢ € @, there exist binary relations on W,, S? and 19, satisfying the fol-
lowing conditions:
(a) I7 C S1.
(b) v(w,q said ¢) = T iff v(u,¢) = T for every u € S w].
(c) v(w,q implied ) = T iff v(u, ) = T for every u € I?[w]

Clearly, this semantics is non-deterministic, as the truth-values of ¢ and ¢ in ev-
ery world may not determine the truth-value of v — (. As in previous examples, it
is straightforward to show that M is a set of GP-legal valuations, that contains all
strongly GP-legal valuations (in particular, the fact that in all strongly GP-legal val-
uations R(7]) C R(r?) for every ¢ € Q follows from Proposition 4.28).

Example 4.42 (1S5). Using Corollary 4.26, we obtain a strongly sound and complete
Kripke semantics for IS5. For this purpose, let M be the set of valuations v satisfying
the conditions from Example 4.33, and in addition, there exists an equivalence relation
~, such that v(w,0vy) = T iff v(u, 1)) = T for every u €~[w]. (Note that if v € M, then
for every w,u € W,, we have that, if w < v and v(w’,9) = T for every v’ €~[w], then
v(u',9) = T for every u’ €~[u].) As in previous examples, it is straightforward to show
that M is a set of IS5-legal valuations, that contains all strongly IS5-legal valuations.
Interestingly, the Kripke semantics presented in [Ono 1977] is not identical to this
one. In particular, in our semantics ~ should be an equivalence relation, and no direct
conditions bind < and ~.

5. SEMANTIC CHARACTERIZATIONS OF PROOF-THEORETIC PROPERTIES

In this section we extend the results of the previous part in order to provide semantic
characterizations of three important proof-theoretic properties of basic systems. We
begin with precise definitions of these properties.

5.1. Analyticity, Cut-admissibility, and Axiom-Expansion

5.1.1. Analyticity. Analyticity is perhaps the most important property of fully-
structural propositional proof systems, as it usually implies its consistency and de-
cidability. Roughly speaking, a sequent system is analytic if whenever a sequent s is
provable in it from a set of assumptions, then s can be proven using only the syntactic
material available within the assumptions and the sequent s. Now, there is more than
one way to precisely define the “material available within some sequent”. Usually, it
is taken to consist of all subformulas occurring in the sequent, and then analyticity is
just another name for the global subformula property (i.e., if there exists a proof of s
from S, then there exists such a proof using only subformulas of the formulas in S and
s). However, it is also possible (and sometimes necessary, see Example 5.52) to con-
sider analyticity based on different relations defining the “material available within
sequents”. While these substitutes might be weaker than the global subformula prop-
erty, they may still suffice to imply consistency and decidability of a proof system. Next
we define a generalized analyticity property, based on an arbitrary partial order.

Notation 5.1. Given a signed formula a, we denote by frm[a] the (ordinary) formula
appearing in «. frm is extended to sets of signed formulas and to sets of sets of signed
formulas in the obvious way. In addition, given a set £ of formulas, a formula v (re-
spectively, sequent s) is called an E-formula (£-sequent) if i) € £ (frm[s] C ).
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Notation 5.2. Let < be a partial order on wff;. For every formula ¢, we denote by
1=[4)] the set {¢ € wffz | ¢ < ¢}. This notation is extended to sets of formulas, sequents,
and sets of sequents in the obvious way (e.g., for a sequent s, |=[s] = |<[frm[s]]).

Definition 5.3. Let < be a partial order on wff-. A basic system G is <-analytic if
S kg s implies that there is a proof in G of s from S consisting of |<[S U {s}]-formulas
only.

Notation 5.4. We denote by sub the subformula relation between formulas. In the
case of sub, we simply write sub[ - ] instead of |*“’[ - |. Note that sub-analyticity is equiv-
alent to the global subformula property.

The following are three major consequences of analyticity.

PROPOSITION 5.5 (CONSISTENCY). Let G be basic system, which is <-analytic for
some partial order <. Assume that the basic rule (/0 is not in G. Then, t/q 0.

PROOF. Assume that g (). Since G is <-analytic, there exists a proof of the empty
sequent using no formulas at all. The only way to have this is using the rule §/0. O

PROPOSITION 5.6 (CONSERVATIVITY). Let G1 and Go be basic systems in lan-
guages L1 and Lo (respectively). Assume that Lo is an extension of L1 by some set of
connectives, and that Go is obtained from Gy by adding to the latter rules involving
connectives in Lo \ L1. (i.e., at least one connective in Lo \ L1 appears in any appli-
cation of a rule from Gz \ Gy). Let < be a partial order on wff;,, such that wff;, is
closed under <. If Gy is <-analytic, then Gs is a conservative extension of Gy (i.e., if
frm[S U {s}] C wffz, then Stq, siff Sta, -

PROOF. Obviously, S g, simplies S Fg, s. For the converse, assume that S g, s.
Since G is <-analytic, there exists a proof in G of s from S consisting of |<[S U {s}]-
formulas only. Since frm[S U {s}] C wffz,, and wff., is closed under <, this is also a
proofin G, andso Stg, s. O

PROPOSITION 5.7 (DECIDABILITY). Let G be a finite basic system (i.e., G consists
of a finite number of basic rules).® Suppose that G is <-analytic for some partial or-
der <. Furthermore, assume that < is safe, i.e.,, |=[p] is finite for every ¢ € wffs, and
Ao € wffz.1=[p] is computable. Then, given a finite set S of sequents and a sequent s, it
is decidable whether S g s or not.

PRrROOF. Exhaustive proof-search is possible. Since G is <-analytic, S g s iff there
exists a proof in G of s from S consisting of | =[S U {s}]-sequents only. Since < is safe,
one can construct the (finite) set S’ of all | =[S U {s}]-sequents. Clearly, S ¢ s iff there
exists a proof in G of s from S of length lower or equal to |S’|, consisting only of se-
quents from S’. Thus one can construct all possible candidates. The fact that G is finite
entails that it is possible to check whether a certain candidate is indeed a proof in G
of sfrom S. O

5.1.2. Strong Cut-Admissibility. While analyticity of a proof system suffices for many
desirable properties, cut-admissibility is traditionally preferred. Cut-admissibility is
sometimes required to obtain space-complexity bounds on proof-search in basic sys-
tems (see e.g., [Beklemishev and Gurevich 2012]). Since we deal with proofs from ar-
bitrary sets of assumptions (not necessarily the empty one), we consider a stronger
property, called strong cut-admissibility in [Avron 1993]:

8In fact, it suffices to assume that G is verifiable, i.e., that given sequents s1,...,s, and a sequent c, it is
decidable whether c can be inferred from si, ..., s, by applying one of the rules of G.
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Definition 5.8. A basic system G enjoys strong cut-admissibility if S Fg s implies
that there exists a proof in G of s from S, in which only frm[S]-formulas serve as cut
formulas (a formula ¢ serve as a cut-formula in some proof, if the proof contains an
application of (cut) in which o(p;) = ¥).

Usual cut-admissibility (whenever there exists a proof of a sequent s in G, then there
exists a cut-free proof in G of s) is weaker than strong cut-admissibility (obtained by
choosing S = ). Note that if all rules in a basic system (except for (cut)) admit the
local subformula property (the premises of every application consist of subformulas of
formulas occurring in the conclusion of the application), then strong cut-admissibility
implies sub-analyticity.

5.1.3. Axiom-Expansion. Roughly speaking, axiom-expansion means that non-atomic
applications of (id) (deriving sequents of the form ¢ = ¢ where ¢ is compound)
are redundant. This property is sometimes considered crucial when designing “well-
behaved” sequent systems. Following [Ciabattoni and Terui 2006], we define this prop-
erty for a given connective as follows:

Definition 5.9. An n-ary connective ¢ admits axiom-expansion in a basic system G
if there exists a cut-free proof of o(p1,...,pn) = ¢(p1,...,pn) in G, in which only atomic
applications of (id) are used (applications in which o(p;) € atr).

Clearly, if ¢ admits axiom-expansion in G, then there exists a cut-free proof in G
of every sequent of the form o(v1,...,v¢,) = o(¢1,...,¥,) from 1 = ¥1,..., 0, = ¥,
without any applications of (id). If every connective admits axiom-expansion in G, then
all non-atomic applications of (id) are redundant.

5.2. Proof-Specifications and Their Semantics

By definition, proofs in basic systems allow all applications of (cut) and (id). Moreover,
any formula of the language can appear in proofs, regardless of the assumptions and
the proven sequent. However, each of the proof-theoretic properties defined in Sec-
tion 5.1 deals with restricted proofs, in which either some formulas are not allowed to
appear (as in <-analyticity), or some applications of (cut) and (id) are forbidden (as
in strong cut-admissibility and axiom-expansion). To uniformly handle these kinds of
restricted proofs, we introduce the following notion of a proof-specification.

Definition 5.10. A proof-specification is a triple of sets of formulas (£,C, A). Given a
proof-specification p = (£,C, A), a proof P in a basic system G is called a p-proof if (i)
it contains only £-sequents; (i7) o(p1) € C for every application of (cut) in P; and (4i7)
o(p1) € A for every application of (id) in P. We write S 7, s if there exists a p-proof in
G of s from S.

Remark 5.11. Note that by definition:

(1) F¢ is a special case of -, obtained by choosing p = (wffz, wffz, wifz).

(2) g C Fé whenever p = (£,C, A), p' = (&', C', AYand E CE,CCC, AC A

(3) SHg sforp=(E,C,A) Iff {s' € S| frm[s'] C &} }—’(’TJ/ s where p' = (£,CNEANE).

(4) St sforp=(E,C,A) Iff SU{yp = | € A} HG s where p' = (£,C, ().
PROPOSITION 5.12 (DECIDABILITY). Let G be a finite basic system (see Proposition

5.7). Let C and A be decidable sets of formulas. Given a finite set S of sequents, a sequent
s, and a finite set £ of formulas, it is decidable whether S F{ s or not, for p = (£,C, A).

PRrROOF. By exhaustive proof-search (see the proof of Proposition 5.7). O
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The notion of a proof-specification provides alternative formulations of the three
properties introduced in Section 5.1:

PROPOSITION 5.13. Let G be a basic system.
(1) Let < be a partial order on wffy. G is <-analytic if S Fq s implies S F¢ s for

(2) G enjoys strong cut-admissibility if S F& s for p = (wffz, frm[S], wffz) whenever
S |_G S.

(3) An n-ary connective o admits axiom-expansion in G if
FPG <>(pla s 7pn) = 0(p17 s 7pn) for p= <wﬁﬁ7®7 at£>'

Next we generalize the semantics of Section 4, to obtain an adequate semantics
in the presence of arbitrary proof-specifications. The generalized semantics naturally
leads to semantic characterizations of the three proof-theoretic properties. It is based
on the following notion of a quasi-valuation.

Definition 5.14. A quasi-valuation is a function v from the Cartesian product of
some set W, and some set D, C wff. to 2{T-F} (ie., v : W, x D, — 2{T.F}),

Quasi-valuations are different from valuations in two respects. First, while valua-
tions are total (defined for every formula), a quasi-valuation v assigns truth-values
only to formulas in a specific domain D,. To handle proof-specifications that allow only
formulas from some set £ to appear in proofs, we will use D,, = £. Second, the assigned
truth-values in quasi-valuations are subsets of {T,F}, rather than elements of {T,F}
that are used in valuations. This is the key for providing sound and complete seman-
tics for proofs matching some proof-specification, in which (cut) and (id) are restricted.

Signed formulas and sequents are interpreted as follows:
Definition 5.15. Let v be a quasi-valuation.

(1) A signed formula X:¢) (for X € {T,F}) is true in some w € W, with respect to v
(denoted by: w ¥ X)) if ¢ € D, and X € v(w, ¥).

(2) A sequent s is true in w € W, with respect to v (denoted by: w " s) if w ¥ « for
some « € s.

(3) A sequent s is true in W C W, with respect to v (denoted by: W =¥ s) if w =¥ s for
every w € W.

(4) v is a model of:
(a) a sequent s (denoted by: =¥ s) if s is a D,-sequent and W,, = s.
(b) a set S of sequents (denoted by: =¥ S) if =V s for every D,-sequent s € S.

The differences between the previous definition and the corresponding definition for
valuations (Definition 4.2) are: (i) here we have X € v(w,) instead of v(w,?) = X;
(it) we added the requirement that s is a D,-sequent in Item 4a; and (¢i:) only D,-
sequents are considered in Item 4b. Note that a quasi-valuation can only be a model
of sequents consisting solely of formulas in its domain. However, it can be a model of a
set of sequents containing formulas which are not in its domain.

Using the previous definition, the consequence relation (between sets of sequents
and sequents) induced by a set of quasi-valuations is defined exactly like the conse-
quence relation induced by a set of valuations (see Definition 4.3).

We can now explain how proof-specifications, in which (cut) and (id) are restricted,
are handled using subsets of {T,F} as truth-values. Consider first (cut). Ignoring the
context formulas, (cut) allows to infer the empty sequent from two sequents of the
form ¢ = and = 1. Semantically, this means that F:¢) and T:y) cannot be both “true”
at the same time. However, if cut is not allowed on some formula ¢, then nothing
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in the proof system disallows this possibility. In this case, for completeness, we need
some mechanism that will make both F:¢) and T:¢ “true”. Here we do this by choosing
v(w,4) = {T,F}. The same applies to (id), which allows to infer ¢) = 1) for any formula
1. Semantically, this means that either F:¢) or T:¢) should be always “true”. Again, if
the use of ¢y = 1 is forbidden, it should be possible that both F:¢) and T:¢) are not
“true”. Here we do this by choosing v(w, 1) = (). Clearly, the use of {T,F} and () should
be limited according to the given proof-specification. When cut is allowed on some
formula ¢ (¢ € C), the value {T, F} should be forbidden for ¢. Similarly, when ¢) = ¢ is
allowed to be used (¢ € A), the value () should be forbidden for . Next we formulate
these requirements.

Definition 5.16. Let p = (£,C,.A) be a proof-specification. A quasi-valuation v is
called a p-quasi-valuation if D, = &, v(w, ) # {T,F} for every w € W,, and ¢ € C, and
v(w, ) # () for every w € W, and ¢ € A.

Remark 5.17. Obviously, an (£,C, A)-quasi-valuation is also an (£,(C’, A’)-quasi-
valuation for every C’ C C and A’ C A.

Remark 5.18. Note that in a (wff, wffz, wffz)-quasi-valuation, the only allowed
truth-values are the singletons {T} and {F}. In addition, the domain of these quasi-
valuations is wjf.. Clearly, such quasi-valuations are practically valuations (see Defi-
nition 4.1). For this reason, we say that quasi-valuations generalize valuations. More-
over, the results about valuations of Section 4 are all obtained by applying the corre-
sponding results of this section with (wff., wffr, wffz)-quasi-valuations.

All definitions concerning valuations are straightforwardly generalized for quasi-
valuations. To assist the reader, we provide these generalizations, and some examples.

Definition 5.19. Let v be a quasi-valuation, and 7 be a context-relation. R? denotes
the binary relation on W, defined as follows: w; R?w- iff for every signed D,-formulas
a and 8, if a7 and wy EY o then wy Y 8.

Example 5.20. Let v be a quasi-valuation. Like in Example 4.6, it is easy to see that
wy RY wy iff v(ws, ) C v(wi,)) for every ¢ € D,. In addition, for 7 = {(F:p1,F:Opy)},
we have wy RYws iff F € v(ws, ) implies F € v(w;, Oy) whenever ¢ € D, and Oy € D,,.

The following proposition concerning the relations induced by context-relations in
quasi-valuations generalizes Proposition 4.28. Its proof'is similar and left to the reader.

PROPOSITION 5.21. Let v be a quasi-valuation, and m, 7o, w3 be context-relations.
1) }S’{upposfg that 3 = m Uma. Then R = R, N R} . In particular, if 71 C 72 then
v C v
T —_ mT1°
(6] Su;)pose that for every signed D,-formulas «, f3, if a3 then there exists v € D,
such that amy and ym23. Then R;, o Ry C RY.. In particular, if for every signed
D,-formulas «, 3, am 3 implies that there exists v € D, such that am vy and vm [,

then R} is a transitive relation.

(3) Assumethat visa (€, wffc, wifz)-quasi-valuation for some set £ of formulas. Suppose
that fma whenever am,f. Then RY C (RY)~'. In particular, (i) if am 3 implies
Boa and vice-versa, then RY = (R2 )™, and (ii) if am 3 implies fma and vice-
versa, then R} is a symmetric relation.

Definition 5.22. Let G be a basic system, v be a quasi-valuation, and R be a
(G, W,)-coupling.

— Let m € Ilg. v respects 7 for a ® if R(7) C RY.
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—ULet r = (s1,m1),...,(sn,m)/C be a basic rule of G. v respects r for R
if the following condition holds for every w € W, and substitution o: if
frm[o(s1)U...Ua(s,)Uo(C)] C D, and R(m;)[w] E? o(s;) for every 1 < i < n,
then w =¥ o(C).

Example 5.23. Suppose that a basic system G contains a rule r of the form
(=p1,m)/ = 0Op;. A quasi-valuation v respects r for a (G,W,)-coupling R
iff for every w € W, and substitution o: if frm[oc(= p;)Uo(= Op;)] C D,, and
R(m)[w] EY o( = p1), then w Y o( = Op;). Hence, we obtain that v respects r for R iff
for every w € W, and formula +: if {1),0¢} C D,, and T € v(u, ) for every u € R(r)[w],
then T € v(w, Ov).

G-legal quasi-valuations are defined exactly like G-legal valuations (see Definition
4.17). Next, we prove the following strong soundness theorem:

THEOREM 5.24 (STRONG SOUNDNESS). Let G be a basic system, and p be a proof-
specification. Let M be the set of all G-legal p-quasi-valuations. Then H¢, Chy.

For the proof we use the following simple lemmas.

LEMMA 5.25. Let v be a quasi-valuation, let w € W, and let s, and sy be two
sequents. Then, w =" s1 U sq iff either w =Y s1 or w =Y so.

LEMMA 5.26. Let (s,s’) be a w-instance of some context-relation w. Let v be a quasi-
valuation, and let w € W,. Suppose that u =¥ s for some v € R2[w]. Then either
frm[s']| € Dy, or w =V §'.

PROOF. Suppose that frm[s'] C D,, we show that w =" s'. Since u =¥ s, we have
u Y « for some « € s. Since (s, s’) is a w-instance, there exists § € s’ such that a7 f.
Note that frm[a] € D, (because u " o) and frm[g] € D, (because frm[s'] C D,). Then
since wRYu, w =¥ B . It follows that w =¥ s'. O

PROOF OF THEOREM 5.24. Assume that S -, s where p = (£,C, A). Thus there
exists a p-proof P in G of s from S. We prove that S -y s. Let v € M. Then, v respects
G for some (G, W, )-coupling R. Suppose that = S. Using induction on the length of
P, we show that =¥ s’ for every sequent s’ appearing in P. It then follows that =" s.
Note first that since v is a p-quasi-valuation, D, = £, and so every sequent in P is a
D,-sequent. Thus it suffices to prove that for every sequent s’ appearing in P, we have
W, = s'. This trivially holds for the sequents of S that appear in P. We show that the
property of being true in W, is preserved by applications of the rules of G. Consider
such an application in P, and assume that for every premise s’ of this application we
have W, =Y s’. We show that its conclusion is also true in W,,. Let w € W,.

(1) Suppose that ¢ = 1 is derived using (id). In this case, ¢ € A. Since v is a p-quasi-
valuation, v(w, 1) # 0. This easily implies that w =¥ ¢ = .

(2) Suppose that I'y,T's; = A1, As is derived from I',v = A; and I'y; = ¢, A, using
(cut). In this case, ¢ € C. Since v is a p-quasi-valuation, v(w, ¢) # {T, F}. This easily
implies that either w [£¥ ¥ = or w [£Y= 4. Since w ¥ I'1,v = Ay, Lemma 5.25
entails that either w =Y I'y = A; or w =Y ¢ =. Similarly, either w ¥ 'y = A,
or w Y= 1. This entails that either w =" 'y = A; or w Y I's = As. Therefore
Lemma 5.25 entails that w Y T'1, T2 = Aq, A.

(3) Suppose that I' = 9, A is derived using from I' = A, using (= W) (dealing with
(W =) is similar). Since w =¥ I' = A, Lemma 5.25 entails that w =" T' = ¢, A.

(4) Suppose that o(C)Ud; U... U, is derived from o(s;)Uecy,...,o(s,) Uc, using
a rule r € YTg, where r = (s1,m1),...,(sp,m)/C. Thus (¢;,c}) is a m;-instance

for every 1 < i < n. Now, if w EY ¢ for some 1 < i < n, then by
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Lemma 5.25, w =Y o(C)U | U...Uc,, and we are done. Assume otherwise. We
show that R(m;)[w] EY o(s;) for every 1 < i < n. Let 1 < i < n, and let
u € R(m;)[w]. Since v respects m; for N, we have that wR} u. Now, since (c;, c}) is
a m;-instance, Lemma 5.26 entails that u [’ ¢;. By Lemma 5.25 (since we as-
sumed that v =Y o(s;) U¢;), u EY o(s;). Finally, since v respects r for R, and since
frm[o(s1)U...Uo(s,) Uo(C)] C D,, we have w ¥ ¢(C). Again by Lemma 5.25,
wEYe(C)UdqU...Ud,. O

An interesting possible application of the last theorem is for providing relatively
simple semantic arguments for the failure of certain proof-theoretic properties. Thus
we can easily obtain semantic proofs of theorems which say that there does not exist
a proof of certain sequents without using cuts on certain formulas. Indeed, if one finds
a G-legal (wffz, wffr \ €, wffz)-quasi-valuation which is a model of S but not a model
of s, then the last theorem implies that some £-formula is serving as a cut-formula
in every proof in G of s from S. The same applies to the set of formulas allowed
to appear in proofs, and to the allowed applications of the identity axiom (choosing
(wffe \ &, wffe, wifz) and (wffr, wife, wffz \ £) as proof-specifications). Note that proving
facts of this kind using proof-theoretic methods is sometimes very challenging! Next
we provide some examples of such applications.

Example 5.27. Let s be the sequent p; = p2,p1 D (p1 < p2). We show that
Vary s for p= (wffz,0, wffz) (i.e., there does not exist a proof of s in BLJ without
cuts). By Theorem 5.24, it suffices to find a BLJ-legal p-quasi-valuation which is not a
model of s. Let v be a p-quasi-valuation, where W, = {w;, w2}, and v(w,v) = {T,F}
for every w € W, and ¢ except for: v(wy,p1) = v(wa,p1) = v(wa,p2) = {T}, and
v(wy, p2) = v(wi,p1 D (p1 < p2)) = v(wa,p1 < p2) = {F}. Let N be the (BLJ, {w;y,ws})-
coupling defined by R(mp) = {(w2,w2)}, R(mint) = {{w1,w2)}, and R(mq) = 0. One can
straightforwardly verify that v respects BLJ for R, and clearly, =¥ s. However, it is
easy to verify that every valuation in Mg,y (see Example 4.34) is a model of s, and so
Fgrgy s. This provides a semantic demonstration of the fact that BLJ does not enjoy
cut-admissibility (the sequent s is a simplified version of the one used in [Pinto and
Uustalu 2009] to syntactically prove this fact).

Example 5.28. It is well-known that S5 does not enjoy cut-admissibility.
We provide a semantic demonstration of this fact. Let s be the sequent
= p;,0-0p;. It is easy to see that s is provable in S5 (using a cut on
Op1), Let p= (wfc,{p1,0-0p:1}, wffz). We show that t/5, s (and so, in particu-
lar, there does exist a cut-free proof of s in S5). Define W, = {w;,wy}, and
v(w,v) = {T,F} for every w € W, and ¢ except for: v(wa,p1) = v(ws, Op1) = {T}, and
v(wy,p1) = v(wy, 0-0py) = v(wg, 7Opy) = v(we, O-0p;) = {F}. Clearly, v is a p-quasi-
valuation and [~” s. We show that v is S5-legal. Let ® be the (S5, {w;, w2 })-coupling de-
fined by R(mg) = {{wa, ws)} and R(w) = {(w1, ws), (wa, ws)}. One can straightforwardly
verify that v respects S5 for R. For example:

— v respects 7 for R since the following two conditions are met: (1) if wR(7)u and
T € v(u, 0v) then T € v(w, 0vY); (2) if wR(7)u and F € v(u, O¢) then F € v(w, O).
— v respects (55) for R since the following condition is met: if T € v(u,) for every

u € R(m)[w], then T € v(w, OvY).
— v respects (T') for R since the following condition is met: if F € v(u,1) for every
u € R(mo)[w], then F € v(w, OY).

Example 5.29. PLJ does not enjoy the global subformula property. This is
shown in [Avron 2007], by proving that the sequent s== p;,p2 D —(p2 D p1)
is provable, but every proof of it must include a formula that does not occur

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ?.



?:24 O. Lahav and A. Avron

in subls]. Using Theorem 5.24, we can provide a semantic demonstration of

this fact. Let p = (subls], wffz, wffz). Consider the p-quasi-valuation v, where
Wy = {w1, w2}, v(wi,p1) = v(wi, p2) = v(w1, ~(p2 D p1)) = v(w1, p2 O ~(p2 D p1)) = {F},
v(wi,p2 D p1) = {T}, v(wz, =(p2 D p1)) = v(wz,p2 D =(p2 D p1)) = {F}, and

v(wa, p1) = v(wa,p2) = v(we,p2 D p1) = {T}. Let R be the (PLJ,{w;,ws})-coupling
defined by R(mg) = Id, and R(mint) = {{(w1, w1), (wa, wa), (wi,ws)}. It is straightforward
to show that v respects PLJ for &, and so it is a PLJ-legal p-quasi-valuation. Clearly,
KU s. By Theorem 5.24, t/%,; ; s. In other words, there does not exist a proof of s in PLJ
consisting solely of sub[s]-sequents.

Example 5.30. Let s be the sequent p; — ps = p1 — p2. We show that s is not
cut-free provable in GP using atomic applications of (id) only. In other words, we show
that t/&p s for p = (wffz, 0, atz). This implies that — does not admit axiom-expansion
in GP. Using Theorem 5.24, it suffices to provide a GP-legal p-quasi-valuation v, such
that £ s. Let W, = {wo}, v(wo, p) = {F} for every atomic formula p, v(wg, p; — p2) = 0,
and v(wg, ) = {T,F} for every other formula . Clearly, v is a p-quasi-valuation, and
Y s. It is easy to verify that v is GP-legal (take R(m) = Id, and R(7) = 0 for every
other context-relation).

Next we turn to completeness. As we did for valuations, we obtain a stronger com-
pleteness result by considering strongly G-legal differentiated quasi-valuations. The
coupling RY, strongly G-legal quasi-valuations and differentiated quasi-valuations are
defined exactly as for usual valuations (see Definitions 4.20,4.21, and 4.23).

THEOREM 5.31 (STRONG COMPLETENESS). Let G be a basic system, and p be
a proof-specification. Let M be the set of all strongly G-legal differentiated p-quasi-
valuations. Then FyCHE.

The proof of this theorem is given below. Taken together, the last two theorems lead
to the following corollary.

COROLLARY 5.32 (STRONG SOUNDNESS AND COMPLETENESS). Let G be a basic
system, and p be a proof-specification. Then, -2, =\ for every set M of G-legal p-quasi-
valuations containing all strongly G-legal differentiated p-quasi-valuations.

Semantic characterizations of <-analyticity, strong cut-elimination, and axiom-
expansion easily follow from the last corollary. This is the topic of Section 5.3. To end
this section, we prove a useful property of differentiated p-quasi-valuations:

PROPOSITION 5.33. Let v be a differentiated p-quasi-valuation, where p = (£,C, A).

(1) If v(w,v) = v(u, ) for every ¢ € £ then w = w.
(2) |W,| < 21EnenAl . glentnAl+encnA| . 4lencrAl

PROOF. Item 2 directly follows from Item 1 by counting the number of possible func-
tions from & to 2¢T-F} that can be used in a p-quasi-valuation (see Definition 5.16). For
1, suppose that v(w,?) = v(u,?) for every ¢ € £. It follows that wRY u. Since v is
differentiated, R, = Id,,and sow =u. O

Together with Corollary 5.32, the last proposition makes it possible to have a se-
mantic decision procedure for the problem described in Proposition 5.12. Given a finite
set S of sequents, a sequent s, and a finite set £ of formulas, it is possible (under the
assumptions of Proposition 5.12) to check all functions of the form v : W x & — 2{T-F},
where |W| is bounded according to the last proposition. Corollary 5.32 and the last
proposition entail that S /¢, s iff one of these functions is a strongly G-legal p-quasi-
valuation, which is a model of S but not of s. In this case the semantics is effective,
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leading to a counter-model search procedure. Consequently, we obtain a semantic de-
cision procedure for <-analytic finite basic systems, provided < is safe (see Proposition
5.7, and compare with the syntactic procedure described in its proof). Indeed, in this
case S g s f S H§ s for p = ({S[S U {s}], whfz, wifc).

Remark 5.34. Semantics for sequent systems without cut or identity-axiom was
studied in some previous works. Following [Schiitte 1960], [Girard 1987] studied
the cut-free fragment of LK, and provided semantics for this fragment using (non-
deterministic) three-valued valuations. Together with better understanding of the se-
mantic role of the cut rule, this three-valued semantics was applied for proving several
generalizations of the cut-elimination theorem (such as Takeuti’s conjecture). Later,
the axiom-free fragment of LK was studied in [H6sli and Jager 1994]. As noted there,
axiom-free systems play an important role in the proof-theoretic analysis of logic pro-
gramming and in connection with the so called negation as failure. Hosli and Jéger
provided a dual (non-deterministic) three-valued valuation semantics for axiom-free
derivability in LK. The current work generalizes [Girard 1987] and [Hosli and Jéiger
1994] in two main aspects:?

(1) Our results apply to the much broader family of basic systems, of which LK is just
a particular example. For the cut-free and the axiom-free fragments of LK, the
semantics that we obtain is practically identical to the one suggested in [Girard
1987] and [Hosli and Jager 1994].

(2) The notion of proof-specification makes it possible to allow cuts and identity
axioms on some formulas, and disallow it on others. In contrast, in terms
of proof-specifications [Girard 1987] and [Ho6sli and Jéager 1994] only handle
p = (wffz, 0, wffz) and p = (wffz, wffz, D) (respectively). In fact, from the presenta-
tion in [Hosli and Jéager 1994], it is unclear whether the two dual kinds of three-
valued valuation semantics can be combined. From our results, it follows that such
a combination is obtained using four-valued non-deterministic semantics.

5.2.1. A Proof of the Strong Completeness Theorem. We prove Theorem 5.31. For the
rest of this section, let G be an arbitrary basic system, p = (£,C,.A) be some proof-
specification, and S be a set of sequents.

Definition 5.35. A (G,S,p)-maximal set is a (possibly infinite) set of signed &-
formulas ; such that S I/ s for every sequent s C p, but for every signed £-formula
aéu, there exists a sequent s C p such that S -2, s U {a}.

LEMMA 5.36. Let i be a set of signed E-formulas. If S t/¢ s for every sequent s C p,
then there exists a (G, S, p)-maximal set ' such that  C 1.

PROOF. Let a1, as ... be an enumeration of all signed £-formulas which are not in
1. We recursively define a sequence of sets of signed formulas, {1 }¥=5°. Let po = p.
For k > 1, let pj, = pu—1 iff there exists a sequent s C ;1 such that S+ sU {ax}.
Otherwise, let j, = pp—1 U {ay}. Finally, let 1/ = U~ 1. It is easy to verify that p/
has all required properties. O

Definition 5.37. The (G, S, p)-canonical quasi-valuation is defined by:

— W, is the set of all (G, S, p)-maximal sets.
— D, =&andv(u,y) ={X € {T,F} | X:p¢u} for every p € W, and ¢ € £.

91t should be mentioned, however, that [Girard 1987] and [Hosli and Jéger 1994] handled also the usual
quantifiers of LK, while we only investigate propositional logics, leaving the more complicated first-order
case (and beyond) to a future work.
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LEMMA 5.38. The (G, S, p)-canonical quasi-valuation is a p-quasi-valuation.

PROOF. Let v be the (G, S, p)-canonical quasi-valuation. By definition D, = £. It
remains to prove that the following conditions hold for every p € W,:

(1) If ¢ € C then v(u, ) # {T,F}. To see this, it suffices to prove that if vy € £ N C then
F:1) € por T:p € u. Assume by way of contradiction that F:¢¢u and T:y & for some
¢ € ENC. It follows that there exist sequents s, so C p such that S Fg s U {F:¢)}
and S Y, s, U{T:}. Since ¢ € C, a (legal) application of (cut) yields S g s1 U sa.
But this contradicts the properties of p.

(2) If ¢y € Athen v(u, 1)) # 0. To see this, it suffices to prove that ¢ € £N A implies that
F:pp or T . Note that if v € £ N A then v = v is a (legal) application of (id),
and so S Fg, ¢ = 4. Since p is a (G, S, p)-maximal set, it follows that either F:¢)¢pu

or T:v¢u. O

Definition 5.39. Let 7 be a context-relation. RE denotes the binary relation between
sets of signed £-formulas defined as follows: RSy iff for every signed £-formulas «, 3,
if a7 and 8 € pu then a € p/'.

LEMMA 5.40. Let v be the (G, S, p)-canonical quasi-valuation. The following hold:

(1) For every signed E-formula o and € Wy u EY «iff adp.
(2) R = RY for every context-relation , and R% = Id,.
3) For every E-sequent s and p € W:
(@ sZ piff p =" s.
(b) If there exists a sequent s' C p such that St sU s, then p =Y s.
(c) For every context-relation =, if RE[u] =Y s, then there exists a T-instance {(c,c')
such that ¢ C pand St sUc
(4) For every sequent s: =" s iff St s

PRrOOF.

(1) Suppose that o = X:¢) where X € {T,F}. Then, X € v(u, ) iff agu. Equivalently,
wEY aiff adp.

(2) For every context-relation 7, RS = RY follows from Item 1 (see Definitions 5.19 and
5.39). To see that RS = d,, note that amf iff a = B. By Definition 5.39, HRWO W

iff for every signed &- formula a, a € p implies that o € y/. Equivalently, RS i iff

w C ol Therefore obv10usly, uRg u for every fu € W,. For the converse, we show
that 1f u, ' € W, and p C g/, then 1 = p'. Assume (by way of contradiction) that
@ C p' and there exists a € p/ \ p. Since p is a (G, S, p)-maximal set, there exists
a sequent s C 1 such that S+, sU {a}. But, s U {a} C 4/, and this contradicts the
fact that S /g, s for every s C 1.
(3) (a) Easily follows from Item 1.
(b) Assume that there exists a sequent s’ C x such that S sUs'. Since p is a
(G, S, p)-maximal set, s Z u. Therefore, Item 3a entails that u =" s
(c) Assume that there does not exist a 7-instance (c,¢/) such
that ¢ C p and SHLsUc. We show that RE[n] #°  s. Let
p* =A{a|frmla] € £Eand 38 € p.awf}. Because of the presence of (= W)
and (W =), our assumption implies that there does not exist s’ C s U p* such
that S Fg ¢'. Since frm[sUp*] C &, Lemma 5.36 entails that there exists a
(G, S, p)-maximal set p/, such that s U p* C 1. Item 3a entails that p/ £V s. By
definition, u Ry’ Hence, RE[u] £V s.
(4) Note first that if frm[s] Z £, then by definition, ¥ s and S I/ s. Assume now that
frm[s] C £. One direction easily follows from Item 3b. For the converse, assume that
S t/& s. We show that [~ s. Because of the presence of (= W) and (W =), there
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does not exist s’ C s such that S+{ s'. By Lemma 5.36, there exists a (G, S, p)-
maximal set u € W, such that s C . Item 3a entails that i =¥ s. Hence, ¥ s. DO

LEMMA 5.41. The (G,S, p)-canonical quasi-valuation is strongly G-legal.

PROOF. Let v be the (G, S, p)-canonical quasi-valuation. We show that v respects
every r € Yq for R%. Let » = (s1,m1),...,(Sn,m)/C be a rule in Tq. Let p € W,,
and let o be a substitution. Suppose that frm[o(s1) U...Uo(s,) Uc(C)] C &, and that
P& (mi)[u] =Y o(s;) for every 1 < i < n. We prove that ;1 =" ¢(C). By Lemma 5.40
(Item 2), R (m;) = RE, for every 1 < i < n. Thus Lemma 5.40 (Item 3c) entails that for
every 1 < i < n, there exists a n-instance (¢;, ¢}) such that ¢, C pand SFg o(s;) Uc.
Now we can use these proofs, and the rule r to obtain S +g o(C) Uy U...Ud,, where
i U...Ud, C p. Lemma 5.40 (Item 3b) entails that u ¥ o(C). O

PROOF OF THEOREM 5.31. Assume that S Fn s, where M is the set of all
strongly G-legal differentiated p-quasi-valuations. Let v be the (G,S, p)-canonical
quasi-valuation. By Lemmas 5.38, 5.40 (Item 2), and 5.41, v € M. Since obviously
S kg ¢ for every E-sequent s’ € S, Lemma 5.40 (Item 4) implies that =¥ s’ for every
such s’. By definition, we have =" S, and so =¥ s. Finally, Lemma 5.40 (Item 4) implies
that S+ 5. O

5.3. Semantic Characterizations of Analyticity, Cut-admissibility, and Axiom-Expansion

In this section we use Corollary 5.32 to derive semantic characterizations of the three
proof-theoretic properties of basic systems discussed in Section 5.1. We will use the
following new notion:

Definition 5.42. An instance of a quasi-valuation v is a valuation v’ such that
Wy =W, and v'(w, ) € v(w, ) for every w € W, and ¢ € D,,.

The following proposition immediately follows from the definitions.

PROPOSITION 5.43. Let v be a (£,C, A)-quasi-valuation, and let v be an instance

of v. Then, for every D,-sequent s: if ):”/ s then =Y s. In addition, if frm[s] C C, the
converse holds as well.

The following characterization of analyticity follows from the previous results.

COROLLARY 5.44 (CHARACTERIZATION OF ANALYTICITY). Let < be a partial or-
der on wffr. A basic system G is <-analytic iff for every finite S and s, S ba, s implies
S Fm, s where M is the set of all G-legal valuations, and M is the set of all strongly
G-legal differentiated (|=[S U {s}], wff:, wffc)-quasi-valuations.

PROOF. Suppose that G is <-analytic. Assume that S Fy;, s for some finite
set S of sequents and sequent s. By Theorem 4.18, S F¢ s, and so § +g s for
p = (IS[SU{s}], wffc, wffc). By Theorem 5.24, S Fy, s.

For the converse, suppose that S g s. Obviously, there exists a finite subset S’ C S
such that S’ kg s. By Theorem 4.18, S’ 1, s, and so our assumption entails that
S’ Fm, s. By Theorem 5.31, 8" +¢, s for p = ( é[S U {s}], wifz, wffz). Thus S % s for the
same p. O

The above characterization might be quite complicated to be used in practice. There-
fore, we now present a simpler semantic criterion, that turns out to be useful for many
basic systems.

COROLLARY 5.45. Let G be a basic system, and < be a partial order on wff:, such
that | =[] is finite for every ¢ € wffc. Suppose that for every finite set £ of formulas
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closed under < (i.e., |S[€] C &), every strongly G-legal differentiated (€, wffc, wffc)-
quasi-valuation has a G-legal instance. Then G is <-analytic.

PROOF. We use Corollary 5.44. Let S be a finite set of sequents, s be a single se-
quent, and £ = |S[S U {s}] (¢ is finite and closed under <). Let M, be the set of all G-
legal valuations, and M5 be the set of all strongly G-legal differentiated (£, wff, wffc)-
quasi-valuations. Assume that S Fy;, s. We prove that S Fyg, s. Let v € My, and
suppose that =Y S. Our assumption entails that there exists a G-legal instance v’ of v.

Thus v’ € M;. By Proposition 5.43, since frm[S] C £, we have =" S. Since S b, s, we
have ="' s. Proposition 5.43 entails that =" 5. O

Remark 5.46. In previous papers (see e.g., [Avron and Zamansky 2011]) analytic-
ity was defined as an extension property, according to which every partial valuation,
whose domain is closed under subformulas, can be extended to a total valuation. Note
that an instance of an (&, wff,, wff)-quasi-valuation v is actually an extension of v to a
full valuation. Thus, the last corollary establishes a connection between this semantic
notion of analyticity and the proof-theoretic analyticity defined in this paper. It shows
that in our context this extension property is sufficient for sub-analyticity.

Before turning to some applications of the criterion above, we present a characteri-
zation of strong cut-admissibility. Its proof is similar to the proof of Corollary 5.44.

COROLLARY 5.47 (CHARACTERIZATION OF STRONG CUT-ADMISSIBILITY). A ba-
sic system G enjoys strong cut-admissibility iff for every finite S and s, S b\, s implies
S Fm, s where M is the set of all G-legal valuations, and M is the set of all strongly
G-legal differentiated (wff., frm[S], wffz)-quasi-valuations.

Like in the case of analyticity, we provide a simpler sufficient criterion:

COROLLARY 5.48. Let G be a basic system. Suppose that for every finite set £ of
formulas, every strongly G-legal differentiated (wff., &, wffr)-quasi-valuation has a G-
legal instance. Then G enjoys strong cut-admissibility.

PROOF. We use Corollary 5.47. Let S be a finite set of sequents, s be a single se-
quent, and &£ = frm[S] (€ is finite). Let M; and M, be like in Corollary 5.47. Assume
that S Fag, s. We prove that S v, s. Let v € M. Suppose that =¥ S. Our assumption
entails that there exists a G-legal instance v of v. Thus v" € M;. By Proposition 5.43,
since frm[S] C £, we have |="" S. Since S 1, s, we have = s. Proposition 5.43 entails
that =V s. O

Next we apply the previous semantic criteria to prove analyticity and/or strong cut-
admissibility for some of the basic systems defined in Section 3.1.

Example 5.49 (LK). We prove that LK enjoys strong cut-admissibility (conse-
quently, it has the global subformula property). Using Corollary 5.48, it suffices to
show that for every finite set £ C wff,, every strongly LK-legal (wff., £, wffz)-quasi-
valuation has an LK-legal instance. Let £ be a finite set of formulas, and v be a
strongly LK-legal (wff., £, wffz)-quasi-valuation. We recursively construct an instance
of v, v/ : W, x wffy — {T,F}. For every w € W, and for every atomic formula p,
v'(w,p) = X if v(w,p) = {X}, and otherwise v'(w,p) = T (say). Now suppose that
v/ (w, ) and v'(w, ) were defined, define v'(w,® D ¢) as follows (similar definitions
for the other connectives): if v(w,¥ D ¢) = {X} then v'(w,? D ¢) = X, and otherwise
v'(w, D ¢) = T iff either v'(w,y) = F or v'(w,¢) = T. Clearly, v’ is an instance of
v. Based on the fact that v is a strongly LK-legal (wff., &, wffz)-quasi-valuation, it is
immediate to prove that v € Mk (see Example 4.31). It follows that v’ is LK-legal.
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Example 5.50 (LJ). We use Corollary 5.48 to show that LJ enjoys strong cut-
admissibility. Let £ be a finite set of formulas, and v be a strongly LJ-legal dif-
ferentiated (wff., &, wffc)-quasi-valuation. We recursively construct an instance of v,
v W, x wffe = {T,F}. For every w € W, and for every atomic formula p, v'(w,p) = X
if v(w,p) = {X}, and otherwise v'(w, p) = T (say). Now suppose that v'(w, ¢) and v'(w, ¢)
were defined for every w € W,:

—v'(w, ¥ D ) is defined as follows: if v(w, ¥ D ¢) = {X} then v/(w, ¥ D ¢) = X. Other-
wise v'(w, ) D p) = T iff for every u € R} [w], either v'(u,1)) = F or v'(u, p) = T.

— ' (w, ¥ Ap) is defined as follows: if v(w, ¥ A @) = {X} then v/ (w, ¥ A p) = X. Otherwise
v (w, A ) =T iff ' (w, 1) = T and v'(w, ) = T. Similar definitions are used for the
other connectives of LJ.

Clearly, v’ is an instance of v. Based on the fact that v is a strongly LJ-legal

(wffz, €, wffc)-quasi-valuation, it is easy to prove that v’ respects LJ for £ ; (and so
it is strongly LJ-legal).

Example 5.51 (BLJ). While BLJ does not enjoy cut-admissibility (see Exam-
ple 5.27), we use Corollary 5.45 to show that it still has the global subformula
property. This answers a question raised in [Pinto and Uustalu 2009].1° Let &
be a finite set of formulas closed under subformulas, and v be a strongly BLJ-
legal differentiated (&, wff., wff;)-quasi-valuation. A construction of an instance of v,
v Wy, x wffe — {T,F}, is done as in Example 5.50 with the following addition:

If v(w, v < ) = {X} then v'(w,¥ < ¢) = X. Otherwise v'(w, 1) < ¢) = F iff
v'(u,1)) = F or v'(u, p) = T for every u € R [w].

Clearly, v’ is an instance of v. Based on the facts that v is a strongly BLJ-legal
(&, wffr, wffz)-quasi-valuation, and that £ is closed under subformulas, it is straight-
forward to prove that v’ respects BLJ for #%; ;.

Example 5.52 (PLJ). PLJ does not enjoy the global subformula property (see Ex-
ample 5.29). As a substitute, a weaker property is proved for this system in [Avron
2007] (called the n-subformula property). Roughly speaking, this property means that
whenever a sequent s is provable, there also exists a proof of s that includes only
formulas from sub[s] and some of their negations. To be more precise, it is equiva-
lent to nsub-analyticity, where nsub is the transitive closure of the union of the rela-
tion sub and {(—, = (Y o ¥)), (mp, = (Y o ¥)) | ¥, € wffr,o € {A,V,D}}. Note that nsub
is safe, and so nsub-analyticity suffices to establish decidability (see Proposition 5.7).
Next, we prove nsub-analyticity for PLJ using the semantic criterion in Corollary
5.45. Let £ be a finite set of formulas closed under nsub, and v be a strongly PLJ-
legal differentiated (£, wff, wffz)-quasi-valuation. A construction of an instance of v,
v W, x wffp — {T,F}, is done as in Example 5.50 with the following addition:
v (w, ) = X if v(w, 1)) = {X}, and v'(w, =) = T otherwise. Clearly, v’ is an instance
of v. Based on the fact that v is a strongly PLJ-legal (£, wff., wff)-quasi-valuation, we
show that v’ is PLJ-legal, since it respects PLJ for R}, ;. To see that v’ respects 7in; for
Rp 1y, it suffices to note that for every ¢ € wff., if v'(w, ) = T then v/(u,¢) = T for every
u € R(mint)[w]. We claim that v’ respects every r € Tpry for 1%y ;. We demonstrate it
here only for the rule (= — D). Thus we show that if v/(w, 1) = T and v'(w, =) = T then
v'(w,=(¥ D ¢)) = T. Assume that v'(w, ~(¢) D ¢)) = F. Our construction then ensures
that =(» D ) € &, and v(w,~(v O ¢)) = F as well. Since {1, ~¢} C [™“[=() D ¢)]

10Note that other systems for this logic, that enjoy cut-admissibility, were devised in [Goré and Postniece
2010] and [Pinto and Uustalu 2009]. However, these systems do not employ the standard notion of a sequent
used in Gentzen-type systems, but more complicated data-structures.
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and £ is closed under nsub, we have that {¢), ~¢} C &. Since v respects (= — D) for
Ry, either v(w,v) = {F} or v(w,—-p) = {F}. By our construction, v'(w,%) = F or
v (w, ~p) = F.H

Example 5.53 (K, K4, KD, S4). Each of the four basic systems K, K4, KD, and
S4 admits the semantic criterion given in Corollary 5.48 (and so they all enjoy strong
cut-admissibility). To see this, let G be any one of these systems (here IIg = {m, 7}
where 7 depends on G). Let £ be a finite set of formulas, and v be a strongly G-legal
differentiated (wff, €, wffz)-quasi-valuation. An instance of v, v' : W, x wffz — {T,F},
is constructed as in Example 5.49 with the following addition: v'(w,0%y) = X if
v(w,09) = {X}, and otherwise v'(w,0y) = T iff v'(u,?y) =T for every u € RZ[|w].
Clearly, v’ is an instance of v. Using the fact that v is a strongly G-legal (wffr, &, wffr)-
quasi-valuation, it is easy to show that v’ respects G for Rg.

Example 5.54 (KB, S5). While KB and S5 do not enjoy cut-admissibility (for S5,
see Example 5.28), Corollary 5.45 can be used to show that they still have the global
subformula property. We demonstrate it here for KB. Let £ be a finite set of formulas
closed under subformulas, and v be a strongly G-legal differentiated (&, wff, wffc)-
quasi-valuation. A construction of an instance of v, v' : W, x wffy — {T,F}, is done
exactly as in Example 5.53. We show that v’ is indeed a KB-legal valuation, as it
respects KB for R . To see that o’ respects m for Ry, we show that R2 C RY.
Suppose that wi R ws. Note that by Proposition 5.21 (Item 3), we have that wyRYw,

(because of the structure of = in KB). We prove that w, R? w,. Let o and 3 be signed
formulas such that o775 and ws =¥ «. The structure of = ensures that there exists
some ¢ € wffy such that either @« = F:¢) and 8 = F:0¢, or « = T:0¢ and 8 = T:. If
O¢y € £ then a and 3 are £-formulas (since £ is closed under subformulas). In this case,
since wy R2 w9, we have that wy =¥ 3, and we are done. Otherwise, for every w € W,
v (w,0¢) = T iff v'(u,y) =T for every u € RY[w]. Now, if &« = F:) and 8 = F:0¢, then
wy =Y «a directly entails that w; ¥ 8. Otherwise, o = T:09 and 8 = T:4). It follows that
v'(u, 1) = T for every u € RZ[ws]. Since weRZw1, wy =Y B in this case as well. Finally,
we claim that v’ respects every r € Tkp for R 5. We show it here only for the rule
(= 0). Following Example 4.13, we should prove that for every w € W, and formula
W if v'(u, ) = T for every u € RZ[w], then v'(w,0¢) = T. Let w € W,,, and ¢ € wff,.
Suppose that v'(u,¢) = T for every v € RZ[w]. If Oy € &, then the construction of v’
directly entails that v/(w, Ov) = T. Otherwise, ¢ € £ as well, and the construction of v’
entails that v(u, ) = {T} for every u € R2[w]. Since v is strongly KB-legal, it respects
(= 0O) for R}5. Thus we have that T € v(w,0v) (see Example 5.23). It then follows
that v'(w,0v) = T.

Example 5.55 (GP). Using the semantic criterion of Corollary 5.48, it is easy to see
that GP enjoys strong cut-admissibility (and so it has the global subformula property).
The construction of a GP-legal instance for every strongly GP-legal differentiated
(wffz, €, wffc)-quasi-valuation is done as for LK (see Example 5.49), with straightfor-
ward modifications for ¢ said and ¢ implied. In addition we replace the {T,F} values
assigned to formulas of the form ¢ — ¢ by the value assigned to ¢ in each world.

Example 5.56 (IS5). IS5 does not enjoy cut-admissibility, since the sequent
O(Op1 Vpa) = Opy, (Opy DL) DL is provable, but not cut-free provable (see [Ono 1977]).
Using Theorem 5.24, one can semantically verify that there is no cut-free proof for
this sequent, by constructing an IS5-legal (wff, 0, wffz)-quasi-valuation which is not a

11The same construction proves a stronger claim, namely that PLJ is <-analytic, where < is the transitive
closure of the union of the relation sub and {{—¢, ~(¢» D ¢)) | ¥, ¢ € wffc}.
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model of this sequent. In addition, the condition for sub-analyticity given in Corollary
5.45 does not hold for IS5. Since this condition is only proven to be sufficient, it does
not mean that IS5 is not sub-analytic, and this question remains open.

Finally, Corollary 5.32 also naturally leads to the following semantic characteriza-
tion of axiom-expansion.

COROLLARY 5.57 (CHARACTERIZATION OF AXIOM-EXPANSION). An n-ary con-
nective ¢ admits axiom-expansion in a basic system G iff every strongly G-legal
(wffz, 0, atr)-quasi-valuation is a (wffz, 0, ate U {o(p1, - . ., pn) })-quasi-valuation.

PROOF. We prove one direction. The converse is similar. Assume that <
admits axiom-expansion in G. By definition, g o(p1,...,pn) = o(p1,...,pn) for
p = (wffz, 0, atc). Corollary 5.32 entails that every strongly G-legal p-quasi-valuation
is a model of o(p1,...,pn) = <(p1,...,pn). It follows that in every strongly G-legal p-
quasi-valuation v, v(w, o(p1, ..., pn)) # 0 for every w € W,. Thus, every strongly G-legal
p-quasi-valuation is a (wff¢, 0, atz U {o(p1,- .., pn)})-quasi-valuation. 0O

Example 5.58 (LK and LJ). Using the semantic criterion given in Corollary 5.57,
it is straightforward to prove that every connective of LK (respectively, LJ) admits
axiom-expansion in LK (LJ). We do it here for D. Let v be a strongly LK-legal (LJ-
legal) (wffr, 0, atz)-quasi-valuation. We show that v(w,p; D ps) # 0 for every w € W,
and so v is a (wff¢, 0, atc U {p1 D p2})-quasi-valuation:

LK Since v respects (D=) for R].x and R} x (7o) = Id,,, we have that F € v(w, p1 D p2)
whenever T € v(w,p1) and F € v(w,p2). Since v respects (=D) for R} and
R} k(m0) = Id,, we have that T € v(w, p1 D p2) whenever either F € v(w,p;) or
T € v(w,p2). Note that since v is a (wff, 0, ats)-quasi-valuation, F € v(w,p;) or
T € v(w,p1), and similarly F € v(w,ps2) or T € v(w,ps). Together, it follows that
v(w,p1 D p2) # O for every w € W,,.

LJ  Suppose that T¢v(w,p; D ps) for some w € W,,. Since v respects (D=) for R} ;,
F&v(u,p1) and T¢v(u,ps) for some u € R} ;(mine)[w]. Since v is a (wffz, 0, atr)-
quasi-valuation, v(u, p1) # @ and v(u, p2) # 0. This entails that v(u, p;) = {T} and
v(u,p2) = {F}. Since v respects (D=-) for R} ; and R} ;(m) = Id,, we have that
F € v(u,p1 D p2). Since v respects i for RY 5, F € v(w,p1 D p2) as well.

6. CONCLUSIONS AND FURTHER RESEARCH TOPICS

This paper is a part of an on-going project aiming to get a unified semantic theory and
understanding of Gentzen-type systems and their proof-theoretic properties. Consider-
ing the broad family of basic systems, we substantially extended the scope of previous
papers (like, e.g., [Avron and Lev 2005]). Many well-known sequent systems that seem
unrelated can now be studied in a general framework. This framework provides (po-
tentially, non-deterministic) Kripke-style semantics for these sequent systems. In turn,
the semantics can be extended and used to derive important proof-theoretic properties
of the sequent systems. We believe that the results of this paper provide useful tools,
that may be applied whenever a (new) fully-structural propositional sequent system is
encountered.

On the other hand, it should be admitted that the high generality we aim to is also
a source of a certain weakness. Unlike the previous works that considered narrower
families of sequent systems (e.g., [Avron and Lev 2005], [Avron and Lahav 2010]),
the current paper does not provide decidable criteria for proof-theoretic properties. In
fact, the given semantic characterizations might not be easy to apply. For example, the
system GL (see Example 3.13) has the global subformula property and enjoys strong
cut-admissibility (this can be shown, e.g., by a straightforward generalization of the
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proof in [Avron 1984]), but it is still not clear how to obtain these facts using our gen-
eral semantic characterizations. In addition, the Kripke valuations semantics obtained
for arbitrary basic systems might not be effective (i.e., it might not naturally lead to a
semantic decision procedure). Indeed, the semantic tools are intended to complement
the usual proof-theoretic ones, rather than replace them.

Several extensions of the current work seem interesting:

Single-Conclusion. The current work deals only with multiple-conclusion systems.
It can be useful to derive similar results for single-conclusion systems. For canoni-
cal single-conclusion systems, this was done in [Avron and Lahav 2010]. It should
be interesting to check whether every single-conclusion system in this framework
has an equivalent multiple-conclusion system.

Hypersequents. Hypersequent systems make it possible to deal with more logics.
For example, hypersequent structural rules can be used to bound the width of some
accessibility relations (see [Ciabattoni and Ferrari 2001]). General formulations of
hypersequent rules and their semantic effect deserves further work.

Many-Sided Sequents. Many-sided sequents, rather than the two-sided sequents
that we considered, are particularly useful for finite-valued logics. We believe that
it should be straightforward to extend our results for many-sided sequent systems.
First-Order Logics. Extending the framework for general first-order systems is an
important goal for a future work.

Substructural Systems. Many important logics have only substructural sequent
systems (in particular, contraction-free or weakening-free calculi), that can not
be treated in our framework. We believe that dealing with substructural systems
would be much more difficult, as the current semantic framework would not be
expressive enough.
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