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A mismatch

I Sequential consistency (a.k.a. “interleaving semantics") is
the standard memory model for reasoning about
concurrent programs.

I In the presence of data races, SC is invalidated by
hardware implementations and compiler optimizations.



Examples of weak behaviors

Store buffering
Initially x = y = 0.

x := 1
print y

y := 1
print x

This program can print 00 (observed on x86/Power/ARM).
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More examples of weak behaviors

Independent reads, independent writes
Initially, x = y = 0.

x := 1 y := 1 print x
print y

print y
print x

Both threads can print 10 (observed on Power/ARM).

Common sub-expression elimination
Initially, x = y = 0.

x := 1
y := 1

print x
print y
print x

⇒

t := x
print t
print y
print t

This program can print 010 (observed with GCC compiler).
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Weak memory models provide formal sound semantics for
realistic high-performance concurrency.



The C11 release/acquire memory model

I A program  a set of graphs (called: executions).
I An execution is consistent if it can be augmented with relations:

I reads-from: associates each read with a corresponding write
such that happens-before = (prog-order ∪ reads-from)+ is irreflexive.

I modification-order: total order on all writes to the same location

such that none of the following occur:
Wx

Wx

Wx Wx

Rx

Example (Store buffering)

x = y = 0
x := 1
a := y

y := 1
b := x

[x = y = 0]

Wx , 1

Ry , vy

Wy , 1

Rx , vx

Wa, vy Wb, vx

[x = y = 0]

Wx , 1

Ry , 1

Wy , 1

Rx , 1

Wa, 1 Wb, 1

[x = y = 0]
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Message passing

m = x = 0

m := 42
x := 1

while x = 0 do
skip

a := m

[x = m = 0]

Wm, 42

Wx , 1

Rx , 1

Rm, 42

Wa, 42
Consistent

[x = m = 0]

Wm, 42

Wx , 1

Rx , 1

Rm, 0

Wa, 0
Inconsistent
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Our work

Goals:
I Verify concurrent programs under WM.
I Investigate what program logics are sound under WM.

This paper:
I We show that Owicki-Gries is unsound for WM

(even without ghost variables and atomic blocks).
I We identify a simple weakening of OG that is sound for
the release/acquire memory model.

I We demonstrate that this simple program logic is useful:
I Verification of a simple RCU (read-copy-update)

synchronization mechanism with release/acquire accesses.



Owicki-Gries method (1976)

OG = Hoare logic + rule for parallel composition

{P1} c1 {Q1} {P2} c2 {Q2}
the two proofs are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Non-interference

R ∧ P ` R{u/x} for every:
I assertion R in one proof outline
I assignment x := u with precondition P
in the other proof outline

...{
P

}
x := u

...

...{
R

}
...



Example SB: store buffering

{
a 6= 0

}{
a 6= 0

}
x := 1{
x 6= 0

}
a := y{
x 6= 0

}

{
>

}
y := 1{
y 6= 0

}
b := x{
y 6= 0 ∧ (a 6= 0 ∨ b = x)

}{
a 6= 0 ∨ b 6= 0

}

R ∧ P ` R{y/a}

Standard OG is unsound under weak memory!
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Stronger non-interference condition

{P1} c1 {Q1} {P2} c2 {Q2}
the two proofs are non-interfering

{P1 ∧ P2} c1 ‖ c2 {Q1 ∧ Q2}

Strong non-interference

R ∧ P ` R{v/x} for every:
I assertion R in one proof outline
I assignment x := u with precondition

P in the other proof outline
I value v such that P ∧ R ′ ∧ u = v is
satisfiable for some R ′ above R

...{
P

}
x := u

...

...{
R ′

}
...{
R

}
...



Example: message passing

{
x = 0

}{
>

}
m := 42{
m = 42

}
x := 1{
>

}

{
x 6= 0 → m = 42

}
while x = 0 do skip{
m = 42

}
a := m{
a = 42

}{
a = 42

}



Example: read-read coherence (CoRR2)

{
x = a = b = c = d = 0

}
{

x 6= 1 ∧
a 6= 1

}
x := 1{
>

}
{

x 6= 2 ∧
c 6= 2

}
x := 2{
>

}

{
>

}
a := x{
>

}
b := x

a 6= 1 ∨
b 6= 2 ∨
x = 2



{
>

}
c := x{
>

}
d := x

c 6= 2 ∨
d 6= 1 ∨
x = 1

{
a 6= 1 ∨ b 6= 2 ∨ c 6= 2 ∨ d 6= 1

}
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Soundness

Challenges in a weak memory setting:
I No intuitive operational semantics
I No notion of global state

What does soundness exactly mean?



Visible states
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σ = {x 7→ 1, y 7→ 1, a 7→ 0, b 7→ 0} is visible at 〈p, q〉
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Meaning of Hoare triples

Triple validity
{P} c {Q} is valid if every state visible at the terminal edge of
some consistent execution in W(P); JcK satisfies Q.

Main steps in soundness proof:
I Study properties of visibility under the RA model.
I Show that edges of consistent executions can be
annotated with the assertions from the OG derivation such
that every state visible at an edge satisfies its annotation.



Main visibility lemma (simplified)

Lemma
If a state σ becomes visible at 〈a, b〉 when adding a parallel
node c : Wx v , then some x -variant of σ is visible both at
〈a, b〉 before adding c , and at every incoming edge to c .

a

b

c : Wx , v

σ

σ′

σ′
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Related work

Separation logics for C11:
I Relaxed separation logic (Vafeiadis & Narayan, OOPSLA’13)
I GPS (Turon et al., OOPSLA’14)

Other program logics:
I Rely/guarantee for TSO (Ridge, VSTTE’10)
I Verifying TSO programs (Jacobs, 2014)
I iCAP-TSO (Sieczkowski et al., ESOP’15)
I Coherent causal memory (Cohen, coRR 2014)



Conclusion

Summary of contributions:
I Owicki-Gries is unsound for WM.
I Stronger non-interference condition gives soundness for RA.
I Very basic auxiliary variables can be used (“ghost values”).
I Rely/guarantee-style presentation of OG, that avoids
non-modularity.

I This program logic is fairly useful and allows some automation.

Further work:
I Improve automation, apply to bigger examples
I Support more ghost variables
I Investigate completeness
I Revisit the separation logics for weak memory

Thank you!
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Rely/guarantee-style presentation of OG

OG judgments
R; G 
 {P} {c} {Q}

I R = {R11C1, . . . ,Rn1Cn} (“stable” assertions)
I G = {{P1}x1 := u1, . . . ,{Pn}xn := un} (guarded
assignments)

Stability
R1C is stable under {P}x := y if R ∧ P ` R[vy/x ] whenever
C ∧ P ∧ y = vy is satisfiable.

Non-interference
R1; G1 and R2; G2 are non-interfering if every R1C ∈ Ri is
stable under every {P}c ∈ Gj for i 6= j .



Some derivation rules

Example (Basic assignment rule)

P ` Q[y/x ]
{P1P,Q1(P ∨ Q)}; {{P}x := y} 
 {P} x := y {Q}

Example (Parallel composition rule)
R1; G1 
 {P1} c1 {Q1} R2; G2 
 {P2} c2 {Q2}

Q1 ∧ Q2 ` Q R1; G1 and R2; G2 are non-interfering
R1 ∪ R2 ∪ {Q1(RR

1 ∨ RR
2 ∨ Q)}; G1 ∪ G2 
 {P1 ∧ P2} c1 ‖ c2 {Q}


