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Abstract

A propagation process on a finite undirected graph G = (V,E) with starting set S ⊂ V is a
sequence of sets S0 = S ⊂ S1 ⊂ . . . ⊂ Sr, where Si ⊂ V , and for each i > 0, Si is obtained from
Si−1 by adding to it a vertex v ∈ V −Si−1 such that there exists a vertex u ∈ Si−1 adjacent to v so
that all neighbors of u besides v are in Si−1. S is covering if there is such a sequence ending with
Sr = V . The propagation number pn(G) of G is the minimum possible cardinality of a covering
set S ⊂ V . The study of this parameter is motivated by the investigation of quantum networks,
influence in social networks and power dominating sets. We establish an algebraic lower bound
for the propagation number of a graph, and apply it to show that the propagation number of the
d-cube is 2d−1. This settles a conjecture of Aazami. The propagation numbers of other Cayley
graphs of the group Zd

2 are determined as well.

1 Introduction

A propagation process on a finite undirected graph G = (V,E) with starting set S ⊂ V is a sequence
of sets S0 = S ⊂ S1 ⊂ . . . ⊂ Sr, where Si ⊂ V , and for each i > 0, Si is obtained from Si−1 by
adding to it a vertex v ∈ V − Si−1 such that there exists a vertex u ∈ Si−1 adjacent to v so that all
neighbors of u besides v are in Si−1. S is covering if there is such a sequence ending with Sr = V .
The propagation number pn(G) of G is the minimum possible cardinality of a covering set S ⊂ V .

The investigation of the propagation numbers of graphs is motivated by related questions in the
study of quantum networks, power dominating sets and influence in social networks, see, for example,
[2], [5], [4], [3], [1] and their references. Aazami (see [1]) conjectured that the propagation number
of the d-cube Qd is 2d−1. The d cube is the graph whose vertices are all binary vectors of length d,
where two are adjacent iff they differ in exactly one coordinate. It is easy to see that pn(Qd) ≤ 2d−1,
indeed, the set S consisting of all vertices whose first coordinate is 0 is covering. Aazami showed
that equality holds for all d ≤ 5 and that in general the propagation number of any graph is at least
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as large as its path-width, implying that for the d-cube, pn(Qd) ≥ Ω( 2d
√

d
). Here we prove a general

result that supplies a lower bound for the propagation number of a graph, and apply it to prove
this conjecture. The proof illustrates nicely the power of tools from linear algebra in the study of
extremal problems, and provides the propagation numbers of other graphs as well.

2 The main results

Given a graph G = (V,E), we say that a matrix A = (auv)u,v∈V over a field F represents G if for
every uv ∈ E auv 6= 0, for every distinct u, v with uv 6∈ E, auv = 0, and the diagonal elements auu

are arbitrary. Let r(A) denote the rank of A over F . We prove the following.

Theorem 2.1 Let G = (V,E) be a graph, let F be a field, and suppose that A represents G over F .
Then pn(G) ≥ |V | − r(A).

Theorem 2.2 Let Ad be the adjacency matrix of the d-cube Qd, and let I be the identity matrix
of order 2d. Then, for every even d, the rank of Ad over GF (2) is 2d−1, and for every odd d, the
rank of I + Ad over GF (2) is 2d−1. Moreover, both Ad and I + Ad represent Qd over any field, and
therefore pn(Qd) = 2d−1 for every d.

The last theorem is a special case of a more general result. For a subset T of nonzero elements of the
group Zd

2 , the Cayley Graph C = C(Zd
2 , T ) is the graph whose vertices are all elements of Zd

2 where
two such elements are adjacent iff their sum (which is also their difference) is in T . This is clearly a
|T |-regular graph. In case T is the set of all d unit vectors, the corresponding Cayley graph is Qd.

Theorem 2.3 Let C = C(Zd
2 , T ) be the Cayley graph of Zd

2 with respect to T ⊂ Zd
2 , let A be the

adjacency matrix of C, and let I be the identity matrix of order 2d. If |T | is even, then the rank of
A over GF (2) is at most 2d−1, and if |T | is odd then the rank of I + A over GF (2) is at most 2d−1.
Therefore, the propagation number of C is at least 2d − 2d−1 = 2d−1.

As we briefly discuss at the end of the note, the last theorem can be used to identify a large class of
Cayley graphs of Zd

2 , all having propagation number exactly 2d−1.

3 Proofs

Proof of Theorem 2.1: Let S ⊂ V be covering, and let S = S0 ⊂ S1 ⊂ · · · ⊂ Sr = V be a
propagation process with starting set S. We have to prove that |S| ≥ |V | − r(A). Consider the
following system of homogeneous linear equations in the set x = (xv)v∈V of |V | variables over the
field F :

Ax = 0 and xs = 0 for every s ∈ S
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We claim that the only solution of this system is the trivial solution xv = 0 for all v. Indeed, by the
definition of the system, for each such solution x, xv = 0 for all v ∈ S = S0. Assume, by induction,
that xu = 0 for all u ∈ Si−1. The propagation process then implies that if v is the unique element
of Si − Si−1 then there is a homogeneous equation in our system (given by the row indexed by u in
Ax = 0, where u ∈ Si−1 is the neighbor of v that caused its insertion to Si) in which the coefficient
of xv is nonzero and all other variables are zero, implying that xv = 0 as well. Since S is covering,
the assertion of the claim follows. As the system has only the trivial solution it follows that the
rank of its defining matrix is at least the number of variables, implying that r(A) + |S| ≥ |V | and
completing the proof. 2

Proof of Theorem 2.2: Let U denote the set of all vertices of Qd represented by binary vectors
whose first coordinate is zero, and let U ′ be the set of all other vertices. For each u ∈ U , let u′ be
the vertex obtained from u by changing the first coordinate of u from 0 to 1. Suppose, first, that
d is even. We show that the set of all rows of Ad corresponding to vertices of U forms a basis to
the row-space of Ad. Indeed, the submatrix of Ad whose rows are indexed by the elements of U and
whose columns are indexed by those of U ′ is the identity matrix of order 2d−1. Thus these rows
are linearly independent. We next show that they span all other rows. Let u′ ∈ U ′ be an arbitrary
vertex of U ′, and let u, u′2, u

′
3, . . . , u

′
d be its neighbors in Qd, where u ∈ U , and for i ≥ 2, u′i ∈ U ′ is

the vertex obtained from u′ by flipping its ith coordinate. It is not difficult to check that the row of
u′ is equal (over GF (2)) to the sum of the d − 1 rows of the vertices u2, u3, . . . , ud, where ui is the
vertex obtained from u′i by changing the first coordinate from 1 to 0.

The case of odd d is similar. Here, too, the set of rows of all vertices u ∈ U forms a basis for
I + Ad, where here the row corresponding to a vertex u′ ∈ U ′ is the sum (over GF (2)) of the rows
corresponding to the vertices u, u2, u3, . . . , ud, using the same notation as before. By Theorem 2.1
it follows that pn(Qd) ≥ 2d − 2d−1 = 2d−1, and as we have already noted that pn(Qd) ≤ 2d−1, the
desired equality holds. This completes the proof. An alternative one is given in the proof of the next
theorem. 2

Proof of Theorem 2.3: Suppose, first, that |T | is even. We show that in this case every two (not
necessarily distinct) rows of A are orthogonal (over GF (2)), that is, A2 = 0. Thus, the row-space of
A is self-orthogonal, and its dimension is at most half its length, as needed. We proceed with the
proof of this (simple) fact. Every row is orthogonal to itself, as it has |T | one entries, and |T | is even.
The inner product between two distinct rows corresponding to the vertices u and v is the number of
common neighbors of u and v. This is exactly the number of ordered pairs (t, t′) of distinct elements
of T so that u + t = v + t′ (as each such pair corresponds to the common neighbor u + t = v + t′.)
However, the number of such pairs is even, since if (t, t′) is such a pair, so is (t′, t). This completes
the proof for even |T |. For odd |T | the proof is similar, where in this case the rows of I + A are
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orthogonal. 2

Remarks:

• Since the adjacency matrix Ad of Qd has zeros on the diagonal, and its rank over GF (2) for
even d is 2d−1, our proof actually supplies the tight 2d−1 lower bound for even d, even if we
consider a more general propagation process in which an uncovered vertex v ∈ V − Si−1 can
join Si−1 to form Si if there is a vertex u ∈ V (not necessarily in Si−1) which is adjacent to v

and all its neighbors but v are in Si−1. A similar comment applies to any Cayley graph of Zd
2

whose degree is even.

• Theorem 2.3 can be used to produce many examples of graphs on 2d vertices with propagation
number exactly 2d−1. In particular, if T is a subset of nonzero elements of Zd

2 , and there is a
nonzero element x ∈ Zd

2 so that there is a unique element t ∈ T whose inner product with x

(over GF (2)) is 1, then the corresponding Cayley graph G satisfies pn(G) = 2d−1. Indeed, the
set S of all vectors y ∈ Zd

2 whose inner product with x is 0, is covering.
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