
Reprinted from 1. Symbolic Computation (1987) 3, 69-116

Termination of Rewriting

NACHUM DERSHOWITZ

1. Sr mbolic Computation (1 987) 3. 69-116

Termination of Rewritingt

NACHUM DERSHOWITZ
Department of Computer Science.

Uni"ersity of Illinois at Urbana-Champaign.
Urbana. Illinois 61801. U.S.A.

TIlls sun.'ey describes methods for proving that S)'5tetnS of rewrite rules are terminating
programs. We illustrate the usc: in tenninatio n proofs of various kinds of ordcnngs on tenns,
including polynomial interpretations and path orderings. The effect of restrictions. such as
linearity. on the fonn of rules is also considered. In general. however. tennination is an
undecidable property of rewrite systems.

1. IDlrociucliOD

A rewrite (term-rewriting) system !11 over a set of terms :T is a (finite) set of rewrite rules.
each of the form {- r. where I and r are terms containing variables ranging over :7. and
such that r only contains variables also in I. A rule 1- r applies to a term c in :T if a
subterm s of c matches the left-hand side { with some substitution (f of terms in :T for
variables appearing in 1 (i.e. s = l(f). The rule is applied by replacing the subterm s in c
with the corresponding right-hand side r(f of the rule. within which the same substitution
(J of terms for va riables has been made. We write or just c=-u. to indicate that the
term 1 in 5" rewrites in this way to the term u in ff by a single application of some rule in

A derivalion is a sequence of rewrites; if t=-··· =-u in zero or more steps. abbreviated
c=-o u. then we say that u is derivable from c; if no rule can be applied to t. we say that c is
irreducible; when an irreducible term u is derivable from t we say that u is a normal form of
c. See Huet & Oppcn (1980), o.nhowitz (1982b). and o.nhowitz & Jouannaud (1987)
for surveys of term-rewriting and its applications.

There are five basic properties of rewrite systems that are of interest:

(t) terminacion- no infinite derivations are possible;
(2) determinism-cach term has at most one normal form:
(3) soundness-terms are only rewritten to equal terms.
(4) compleceness-cqual terms have the same normal form:
(5) correctness-all normal forms satisfy given desiderata.

Depending on the purpose. various combinations of these properties are needed. Th is
survey is devoted to a discussion of the first aspect, namely termination. generally a
prerequisite for demonstrating other properties. Two related concepts, only briefly
discussed, are "quasi-termination" and ··normalisation". A quasi-terminating rewrite

t The preparation of this paper was supported in part by the National Science Foundation under Granl
OCR 85- 13417. This is a revised version of an invited paper. presented at the First International Confcrrnc:e on
Rewriting Techniques and Applications (Dijon. France. May 1985).

0747-7171 /87{010069+48 S03.00{O 10 1987 Academk Press Inc. (London) ltd.

-0 \:achum DershowllZ

system is one for which only a finite number of different terms are derivable from anv
given term. A normalising system is one for which every term has at least one
form.

Consider. for example. a simple system. consisting of three rules:

white. red -+ red. white
blue. red -+ red. blue (0)

blue, white -+ white. blue.

This program plays the "Dutch National Flag" game: given a sequence of marbles.
coloured red. white. or blue and placed side by side in no particular order. they are
rearranged so that all red ones are on the left. all blue ones are on the right. and all white
ones are in the middle. The first rule. for example. states that if anywhere in the series
there is an adjacent pair of marbles. the left one white and the right one red, then they
may be exchanged so that the red marble is on the left and the white one is on the right. It
is not hard to prove that. regardless of the initial arrangement of marbles. applying the
above rules in any order always results in a sequence of correctly arranged marbles. As we
will see, a termination proof can be based on the ordering: blue is greater than white and
white is greater than red. Each rule replaces two marbles: the one on the left with
"greater" colour is exchanged with the "smaller" one to its right.

The following system (for disjunctive normal form) illustrates some of the difficulties
that may be encountered when attempting to determine if, and why, a rewrite system
terminates:

--=t-+=t
- (=t + P) -+ - =t X - P
- (=t X P) -+ - =t + - P

=t X (P + /) -+ (=t X P) + (=t X /)

(P+/) x =t -+ (fi x =t)+(y x =t).

(1)

The first rule eliminates double negations; the second and third rules apply DeMorgan's
laws to push negations into sums and products; the last two apply the distributivity of
times over plus. It is not obvious that. this system terminates, since some derivations
decrease the length of a term, e.g.

-(0 x (-1 + -1»:::>·· ·:::>-0+(1 xl),
while others, e.g.

-(Ox (1 + 1):::> .. ·:::>«(-0 X -O)+(-Ox -1»+«-1 x -0)+(-1 x-I)))
increase it. Furthermore, applying a rule at a subterm not only affects the structure of
that subterm (perhaps duplicating parts of it), but that of its superterms as well. Any
proof of termination must take into consideration the many different possible rewrite
sequences generated by the non-deterministic choice of rules and subterms. For a lively
discussion of simple tasks that are difficult to show terminating, see Gardner (1983).

Various methods for proving termination of rewrite systems have been suggested,
including Gom (1967), Iturriaga (1967), Knuth & Bendix (1970), Manna & Ness (1970),
Gom (1973), Lankford (1975a, b, 1977). Lipton & Snyder (1977), Plaisted (1978a, b),
Dershowitz & Manna (1979), Lankford (1979), Kamin & Levy (1980), Pettorossi (1981),
Dershowitz (1982a), Jouannaud et al. (1982), Dershowitz et al. (1983), Lescanne (1984),
Jouannaud & Munoz (1984), Kapur et al. (1985), Bachmair & Plaisted (1985), Bachmair

Termmation of Rewntmg -1

& Dershowitz (1986), and Rusinowitch (1987). Termination is. in general. an undecidable
property of rewrite systems (see, for example. Huet & Lankford (1978». as it is known to
be for non-deterministic Markov systems on strings (see. for example. Tourlakis (1984».

In the next section we present a proof of the undecidability of termination. In section 3
we show how well-founded orderings. in general. and polynomial interpretations, in
particular. are used in termination proofs. In section 4 simplification orderings are defined
and their use illustrated: similar methods are described in section 5 for using quasi-
orderings to prove termination or quasi-termination. Section 6 discusses multiset
orderings. Then, in section 7, we present various path orderings based on an underlying
operator "precedence". This is followed in the last two sections with methods for
determining when rewriting "modulo" a congruence is terminating, when a rewrite
system is normalising, and when systems of restricted form are terminating. Examples are
provided throughout; proofs are generally omitted.

2. Non-termination

Given a (countable) set of function symbols .?F, we consider the set of all terms
constructed from symbols in §. Function symbols in may be varyadic, i.e. have
variable arity, in which case, whenever f is a function symbol and t 1 , ••• , tlf (n 2: 0) are
terms in the term f(t1' ... , tlf) is also in Or a function symbol f may be
restricted to a fixed arity, in which casef(t1"'" only iffis ofarity n. Function
symbols with arity zero are referred to as constants. We use Y for when is
arbitrary. A rewrite rule is an ordered pair 1- r of free (first-order) terms, i.e. the terms I
and r are constructed from function symbols in and rule variables from some
(countable) set "Y. A rewrite system is a (finite or infinite) set ofrewrite rules. (Terms in Y
might also contain "term" variables, but for the purposes of this paper, these are usually
treated as constants.)

DEFINITION 1. A rewrite system is terminating for a set of terms Y if there exists no
infinite (endless) sequence of terms tiEY such that t1 =>t2 =>t3 =>· A system is non-
terminating if there exists any such infinite derivation.

This is the same-for finite saying that there are only a finite number of
derivations issuing from any given initial term t l' Terminating systems are variously
called finitely terminating, uniformly terminating, strongly terminating, and noetherian.
Unless indicated otherwise, when we speak of termination, we mean with respect to all
terms constructed from a given set of (fixed or variable arity) function symbols §. Rules of
a terminating system are called reductions.

EXAMPLE. A trivial example of a terminating system is

EXAMPLE. An equally trivial example of a non-terminating system is

EXAMPLE. A less trivial example (of what?) is

- (-

(2)
o

(3)
o

(4)
o

72 "-.achum DershowIlz

THEOREM I. It is undecidable whether a rewrite system is terminating, even if it has only two
rules.

PROOF Turing machines can be simulated by rewrite systems: given any Turing machine
. If. there exists a two-rule system RI(such that RI(terminates for all initial terms if. and
only if. .It halts for all input tapes. Since it is undecidable (not even semi-decidable) if a
Turing machine halts uniformly, it is also undecidable if rewrite systems terminate.

Each state symbol and tape symbol of the machine will be a constant in the system.
Additionally. we need three function symbols: a binary operator (which we will denote by
Juxtaposition and which associates to the right), a unary operator c (an erase operator),
and a ternary operator C. t The binary operator is used to construct a finite non-empty
tape segment from individual constants representing tape symbols, with an additional
constant D denoting the end of the segment. Corresponding to a machine in state q with
non-blank left portion of the tape a 1 a2 •.• am (from the left end until the symbol
preceding the read head) and right portion hl b2 ••. b" (from the symbol being scanned to
the end), is the term

C(am ··• a2 a 10, qb 1 b2 '" b"O, machine),

where machine is a term encoding transitions as subterms of the form

sqa s' a' q' s" a"

signifying "if the machine is in state q reading the symbol a and the symbol immediately
to the left of a is s. then replace the tape segment sa with s' a's" a", position the head on s".
and go into state q'''. One or two of the tape symbols in s' a' s" a" will be extra, and will be
represented by the term c(#); as we will see, these terms can be eliminated from the tape
by one of the rewrite rules. Thus, for each left-moving instruction of the form "if in state q
reading a, write a". move left. and go into state q' ", there are subterms of the form

sqa o(#)o(#)q'sa"

for every tape symbol s. as well as an extra subterm of the form

Oqa Oc(#)q' # a"

(where # is the blank symbol) to handle the left end of the tape. For each right-moving
instruction of the form "if in state q reading a, write a', move right, and go into state q' ".
there are subterms of the form

sqa sa'q'c(#) c(#)

for every tape symbol s. as well as extra subterm of the form

sqO sa' q' c(#)0

when a is the blank symbol # (to handle the right end of the tape). Each such transition
term ti is embedded in an erase operator Q, so that the machine can (non-
deterministically) skip over it. and the term machine is just the concatenation
c(t 1)c(t 2) ... C(tk) of all transition terms.

+ Cf. Bergstra and Tucker (1980). where it is shown that six "hidden" functions suffice for the specification of
computable data types.

T of ... ntmg .'

The rewrite system R f(consists of exactly two rules:

C(:ti .. a{3p. c(:ta{3:t'{3'a''Y.''{3''}r) -+ C({3':t'i .. a':t"{3"p. machine)

where the primed and unprimed Greek letters are all variables. The first rule erases
transitions from the machine description until an applicable one is at the head. at which
time the second rule can be applied to simulate a move. The first rule also erases extra
tape symbols introduced by the fixed-format transitions. (Though there are derivations
that erase all applicable transitions and therefore do not correspond to a machine
computation. they all terminate.) Clearly, if the machine .jt does not terminate for some
input tape. then the system R((does not terminate for the corresponding input term.

Note that no rewrite step can increase the number of occurrences of the operator C in a
term. Thus. the only way for Rf(not to terminate is for one of the occurrences of C to be
rewritten infinitely often by the second rule-in a manner corresponding to an infinite
computation of, It. c

An alternative proof of undecidability of termination is given in Huet & Lankford
(1978): see section 9. The number of rules in that proof depends on the number of
machine transitions. t

Though termination of a rewrite system means that all (infinitely many) possible
derivations are finite, one need only consider derivations that begin with certain terms:

LEMMA I. A rewrite system is terminating (for all terms) if, and only if, it terminates for all
instances of its left-hand sides.

By an instance of a left-hand side I we mean a term la with terms substituted for the
variables of I. The point is that there must be an infinite derivation with some rule
application at the root (outermost) symbol, if there is an infinite derivation at all. (This
lemma is implicit in Dershowitz (1982a) and elsewhere.)

Certainly, if a derivation repeats a term, the system is non-terminating; we call this
"cycling":

2. A derivation t 1 => t 2 => ... => tj => ... => tk => ... cycles if tj = tk for some j < k.
A rewrite system cycles if it has a cycling derivation.

(The previous lemma is given in Guttag et al. (1983) for cycling systems; a stronger
version appears in Klop (1980).) Cycling is a special case of "looping":

DEFINITION 3. A derivation t 1 => t2 => ... => tj=>· .. => tk => ... loops if tj is a (not necessarily
proper) subterm of tk for some j < k. A rewrite system loops if it has a looping derivation.

It is also obvious that looping systems do not terminate. But a system need not be
looping to be non-terminating.

t Cf. the above theorem with Lipton & Snyder (1977), which asserts, sans proof. that three rules suffice for
undecidability.

EXA\fPLE. System (4) is non-looping. but has the following infinite derivation. be2:innin2:
wIth an instance of its left-hand side - (Y.. + j3):

- ((- - 0 -+- 1) + 1) =:> (- - (- - 0 1) + 1) + 1
=:> (-((- - - -0+ 1)+ 1)+ 1)+ 1
=:>((- -(- - - -0+ l)-t-l)+ 1)+ 1)+ 1
=:>

To characterise non-termination. therefore. a notion weaker than looping is needed.
Viewing terms as ordered trees suggests the following definition:

DEFl:SITION 4. The homeomorphic embedding relation r::: on a set Y of terms is defined
recursively as follows:

if either

Si r::: t for some i = I, m
)r

f = g and Sij tj for all j = L ... , n,

where '" <ill ;:S;m.

Thus, this relation embodies a notion of "syntactic simplicity": S r::: t (equivalently.
t sr if t may be obtained from s by deletion of selected function symbols and operands.
If t is embedded in s, but s =1= t, then we write s C> t. For example,

«(- -(- - - -0+ 1)+ 1)+ 1)+ 1)+ 1 C> - -(0+ 1).

THEOREM 2 (Kruskal, 1954, 1960). If is a finite set of function symbols, then any infinite
sequence t 1 , t2 , ••• of terms in the set of terms over contains two terms tj and
tk (j < k) such that tj tk·

F or a finite set of fixed-arity function symbols, this result is due to Higman (1952); a
more general result will be proved in section 7.

This notion of embedding provides a necessary condition for non-termination:

DEFl:SITION 5. A derivation t 1 =:> t 2 =:> •.• =:> tj =:> •.. =:> tk =:> . •. is self-embedding if tj tk for
some j < k. A rewrite system is self-embedding if it allows a self-embedding derivation.

THEOREM 3 (Dershowitz, 1982a). If a finite rewrite system is non-terminating, then it is self-
embedding.

PROOF. If a system R does not terminate, then, by definition, there exists at least one
infinite derivation t 1 =:> t2 => Since there can be only a finite number of function
symbols appearing in the derivation (those in t 1 and in R), by the previous theorem, tj tk
for some j < k. [J

To show termination, it follows from Theorem 3 that one need only prove the system to
be non-self-embedding. The converse, however, does not hold: self-embedding does not
imply non-termination.

Tennmation of Rewriting -S

EXAMPLE. The rewrite system
f(f(cx)) f(g(f(cx)))

is both self-embedding and terminating. C

Unfortunately. even this sufficient condition for termination is undecidable:

(5)

THEOREM 4 (Plaisted. 1985). It is undecidable whether a (finite) rewrite system is self-
embedding.

Of course. self-embedding is semi-decidable: just search through all derivations until an
embedding is discovered. (This fact is exploited in Plaisted, 1986.) It is similarly
undecidable if a system cycles or loops. (For details, see Plaisted. 1985.)

Termination, which is what we have considered up to now. demands that all
derivations be finite. For non-deterministic programs-which most rewrite systems are-
there is a weaker notion that is also of interest:

6. A rewrite system (jl is normalising for a set of terms Y. if every term t E Y
has a normal form.

A normalising system is also called weakly-terminating. Like termination, normalisation
is an undecidable property (see section 9).

EXAMPLE. Let f and 9 be unary function symbols and b a constant. The one-rule system

f(g(cx.)) g(g(f(f(cx.)))) (6)

is not even normalising; witness the termf(f(g(b))) which has no normal form. 0

3. Termination

To express proofs of termination, we need the following concepts: a partially-ordered set
(51: >-) consists of a set [/ and a transitive and irreflexive binary relation >- defined on
elements of [/. t As usual, s t means that either s>- t or s = t, s -< t means the same as
t >- s. and s::; t means t s. A partially ordered set is said to be totally ordered if for any
two distinct elements sand t of 51: either s>- t or t >- s. For example, both the set of
integers and the set of natural numbers are totally ordered by the "greater-than" relation
>. The set of all subsets of the integers is partially ordered by the "proper subset"
relation <;:. An extension of a partial ordering >- on [/ is a partial ordering >-' also on [/
such that s >- t implies s ';> t for all s, t E [/; a restriction of >- is a partial ordering';> on [/
such that s >-' t implies s >- t for all s, t E 51: Partial orderings of sets of elements can be used
to induce a partial ordering of tuples of component elements: an n-tuple (s l' S2' ...• sn) in
(Yr, >-1) x ([/2' >-2) x ... x (Y", >-n) is lexicographically greater than another such tuple
(t l' t 2' ... , tn) if Si >-i Ii for some i (1 :5; i:5; n), while Sj = tj for all j < i. In the same manner.
a partial ordering >- on a set [/ induces a lexicographic ordering >-' on the set [/* of
finite sequences (words) over [/; in this case, a sequence is greater than all of its prefixes.

A partially ordered set (51: >-) is said to be well-founded if there are no infinite (strictly)

t Asymmetry of such a strict partial ordering follows from transitivity and irreflexivity.

descending sequences 5 1 >52 >53 >'" of elements of Y'. Thus. the natural numbers
under there "natural" ordering> are well-founded. since no sequence of natural numbers
can descend beyond O. But > is not a well-founded ordering of all the integers. since. for
example. - I > -:2 > - 3 > . .. is an infinite descending sequence. Nor is > a well-
founded ordering of the (positive) rationals or reals. Clearly. any restriction of a well-
founded ordering IS also well-founded. If (Y't. >-1) and (Y'2' >2) are two well-founded sets.
then their leXicographically ordered cross-product (9"1 x Y'z, >1.2) is also well-founded.
Similarly. a lexicographic ordering of tuples of any fixed length is well-founded. if the
orderings of the components are. For example. the tuple (2.5. 1. 6) is greater than
(2.4.9.8) in the well-founded lexicographic ordering > 4- of quadruples of naturally
ordered natural numbers: the lexicographic ordering >* of unbounded-length sequences of
natural numbers is not well-founded. (See. e.g .. Manna. 1974.)

The notion of well-founded ness suggests the following straightforward method of
proving termination:

THEORB1 5 (Manna & Ness. 1969). A rewrite system over a set of terms Y is terminating
ij: and only if: there exists a well-founded ordering >- over Y such that

t => cAU implies t > u
for all terms t and u in .Y

That is. terminates if its rewrite relation => is contained in a well-founded ordering
>. (This theorem holds equally well for finite and infinite systems; the proofs in Manna
& Ness. 1969 and Lankford. 1975a presuppose finite

EXAMPLE. System (0) terminates, since the lexicographic ordering of tuples of colours
(with blue> white> red) is well-founded and the tuple of colours corresponding to a
sequence of marbles is reduced with each rule application. By the nature of the
lexicographic ordering, one need only consider the change in the leftmost of the two
affected components: if it was white before, then it is red after; if it was blue before. then it
is either red or white after. 0

The following reformulation of Theorem 5 (see Kamin & Levy, 1980) takes advantage
of the structure of terms:

COROLLARY. A rewrite system over a set of terms Y is terminating, if and only if. there
exists a well-founded ordering >- over Y such that

I>-r
for each rule 1- r in and for any substitution of terms in Y for the variables of the rule.
and such that

t=>cAuand t>-u implyf(···t···»f(···u···)
for all terms in .Y

EXAMPLE. The system
f(f(:L» - f(g(f(:L») (5)

is terminating, since the number of adjacent!,s is reduced with each application. Note
that counting the number of adjacencies makes g(f(f(a))) > f(a), though
f(g(j(j(a»))) 1> f(j(a». But. since g(j(j(a») =4>*f(a) , this corollary can apply. c

Tennmation of Rewntmg

The problem with using the above results lies in the need to consider an infinite number
of possible rewrites t => U in termination proofs. To avoid that, we can make use of a
definition of monotonicity:

7. A partial ordering >- over a set of terms .Y is monotonic (with respect to
term structure) if it possesses the replacement property,

t >- u implies f(... t ...) >- f(... u ...),
for all terms in f.

In other words, reducing a subterm, reduces any superterm containing it. This suggests
the following means of proving termination:

THEOREM 6 (Lankford, 1977). A rewrite system lA over a set of terms .Y is terminating if.
and only if. there exists a monotonic well-founded ordering >- over .Y such that

I>-r

for each rule 1- r in lA and for any substitution of terms in .Y for the r:ariables of the rule.

Note that the ordering >- is defined on the set Y of ground (i.e. closed) terms, without
variables; the theorem requires that 1>- r for all (ground) substitutions that yield terms in
f. Together with mono tonicity, this "local" condition on rules ensures that t>- u
whenever t rewrites to u for terms t and u in !/, but requires some means of testing
inequality for all substitutions. An alternative is to speak of an ordering of free terms,
containing variables, while insisting that the ordering be stable with respect to
substitutions, i.e. that if t >- u, then ta>- ua for all substitutions a for variables in t and u.
Then one need only require that 1>- r for each rule in some monotonic, stable, and well-
founded ordering >- on free terms. As we will see, it is sometimes possible to "lift" a
ground ordering on !7 to an ordering of free terms, so that 1>- r in the lifted ordering
guarantees that in fact la>- ra in the base ordering for all ground substitutions a.

EXAMPLE. The system
f(g(:I.)) -+ g(f(:I.)) (7)

terminates. To see this, consider the following stable, well-founded, monotonic ordering
on free monadic terms (constructed from the unary symbols f and g, constants, and
variables): terms are incomparable if one has a variable not in the other. Otherwise, a
term s is greater than a term t if s is longer than t, or if they have the same number of
symbols, but the root (outermost) symbol of s isfwhile that of tis g, or if they are of the
same length and their root symbols are identical, but the operand in s is (recursively)
greater than the operand in t. The above rule is clearly a reduction vis-a-vis this ordering.
This is an example of the ordering used in Knuth & Bendix (1970); see section 5. 0

It is frequently convenient to separate a well-founded ordering of terms into two parts:
a termination function r that maps terms in Y(!#,) to a set "If" and a "standard" well-
founded ordering >- on that 'if:

DEFINITION 8. A termination function r from a set of terms Y(/F) to a partially-ordered set
(1Y, >-) is composed of a set of functions h: "If"" -+ "If'", one for each function symbol f

-8 :--;achum Dershowltz

and arity n. and is defined by
!(j(t 1•···• tn)) =h(r(tJ, !(in»

for every term f(t l' .. " tn) in Y. and for which

x >- x' implies h(' .. x ...) >-h(' .. x' ...)
for all x. x' in 'If" and f in y;.

In other words. a termination function is a monotonic morphism from the free
.:F-algebra fey;) to an Y;-algebra 'Jf/ that is well-founded under >-. With this definition.
we have the following refinement of the previous theorem:

THEOREM 7 (Lankford, 1975a). A rewrite system over a set of terms fey;) is terminating
if. and onl y if, there exists a well-founded set (JII, >-) and termination function
r: fey;) -- 'If'. such that

!(la) >- r(ra)
for each rule 1-- r in and for any substitution a of ground terms in fey;) for the rariables
of the rule,

The "if" direction of this theorem, and the preceding two, underlies most of the early
termination proofs (e.g, Gom, 1967; Iturriaga, 1967; Knuth & Bendix, 1970; Manna &
Ness, 1970). The "only if" direction is also straightforward (let >- be the derivation
relation itself); a proof for finite appears in Lankford (1975a).

The use of monotonic polynomial interpretations was developed in Lankford (1975a.
1979), Using this method, an integer polynomial F(X1' ... , x,,) of degree n is associated
with each n-ary function symbol f. The choice of coefficients must ensure monotonicity
and that terms are mapped into non-negative integers only. as is, for example, the case
when all coefficients are positive. Then each rule must be shown to be reducing; that is.
for each rule 1-- r, the polynomial r(l) - r(r) must be positive for non-negative
interpretations of rule variables. Linear interpretations were used in Knuth & Bendix
(1970); linear and quadratic ones were used in Manna & Ness (1970), who also illustrate
how the coefficients of linear interpretations can be chosen by solving the desired
inequalities; a number of other examples of polynomial interpretations may be found in
Dershowitz & Manna (1979); the method in Iturriaga (1967) is based on exponential
interpretations. An implementation of the polynomial method was incorporated in the
theorem-prover described in Ballantyne & Lankford (1975); recent work on automating
polynomial proofs is reported in Ben-Cherifa & Lescanne (1986).

EXAMPLE. Let Y consist of all terms constructed from the constants 0 and 1 and the
binary function symbols + and x. To show that the system

:t x (P + y) -- (:t X P) + (:t X y)
(P+y) x:t -- (P x :t)+(, x:t)
(:x + f3) + / -- ex + (P + y)

over Y terminates, we use the following polynomial interpretation:

r(:x x f3) = r(:x) . rep)
r(:x+p) = 2r(:t)+ r(p)

reO) = 2
r(l) = 2.

(8)

Termmation of Rewntmg -9

V nder this interpretation. each rule is a reduction. For each of the first two rules. we have

r(l) = r(ex)' r(f3 + t') = 2r(ex)' r(f3) + r(ex)' + r(ex)
r(r) = 2r(et)· r(f3) + r(ex)' rei') + 1.

Since constants are given the interpretation 2. we must have r(ex) > 1 for all terms et. For
the third rule. we have

r(l) = 2r(et+f3)+rC')+ 1 = 4r(et)+2r(f3)+r(i')+3
r(r) = 2r(ex) + 2r(f3) + rC-) + 2.

Since r(et) is non-negative. this is a reduction. 0

Note that. for termination proofs, constants (and hence terms) can be assigned
arbitrarily large values; thus, it suffices to show that r(l) - r(r) is eventually positive. This
suggests the following recursive test, due to Lankford (1976): let p be a polynomial in
variables Xl' X z,"" XII' It is eventually positive. if all its coefficients are positive. or if
n 2 1 and its n first partial derivatives op/ox l , cp/ox 2 , ... , CP/CXII are eventually positive.

EXAMPLE. Consider the following system (for symbolic differentiation with respect to x):+

Dxx-l
Dxa-O

Dx(et + 13) - Dx ex + Dxf3
Dx(et x 13) - 13 x Dx:l. +:1. x Dxf3
Dx(:I. - 13) - Dx:l. - Dxf3

Dx(-ex) - -Dx:l.

(
:I.) DxOl Dxf3

Dx Ii -T-:l.x{F

Dx Ol
DAln Ol) --;-

Dx(OlfJ) - 13 x OlfJ - 1 x DxOl + OlfJ x (In :I.) x Dxf3,

(9)

where a is any constant symbol other than x. Let the termination function r: Y - be
defined as follows:

r(:I. + 13) = r(:I.) + r(f3)
r(:I. - 13) = r(:I.) + r(f3)

r(OlfJ) = r(Ol) + r(f3)
r(- et) = r(:I.) + 1

r(Ol x 13) = r(Ol) + r(f3)
r(:I./f3) = r(Ol)+r(f3)

r(Dxex) = r(Ol)2
r(In ex) = r(Ol) + 1.

F or each of the nine rules 1- r, the value of r(l) is greater than that of r(r) when the
interpretation of the variables is sufficiently large. For example,

t This system is taken from Knuth (1973). p. 337. Proving termination of the first five of these rules was one
of the problems on a qualifying exam given at Carnegie-Mellon University in 1967.

80 :\achum Dershowltz

while

(
Dx:t Dxf3) 13 ' rT -:t x y = r(D,,:t)+r(

= r(:t)2 + r(f3f + r(:t) + 2r(f3) + r(2).
The polynomial

x2 + y2 +2xy-x2 _ y2 -x-2y-c

(with x for r(:t), or for r({3), and c for r(2» is eventually positive, since its two derivatives,
2y-1 and 2x-2, are. c

Integer polynomials cannot, however, suffice for termination proofs in general, since
that would place a super exponential bound on the length of computations; by the same
token, primitive recursive interpretations cannot suffice (as pointed out in StickeL 1976).

EXAMPLE. It seems that System (1) cannot be proved to terminate with any monotonic
polynomial interpretation (Dershowitz. 1983). t But termination can be proved using
exponentials (Filman, 1978), defining r: Y --.. N as follows:

r(:t + 13) = r(:t) + r(f3) + I
r(:t x 13) = r(:t)· r(f3)

where u is any constant. [J

r(-:t) = 2«:%)

r(u) = 2,

4. Simplification Orderings

In proving termination, one can use any ordering >- that is well-founded over all terms
that could appear in anyone derivation; the ordering need not be well-founded over all
terms in all derivations. We call an ordering >- for which >- Il=>* is well-founded for any
finite dl, well-founded for derivations, the advantage being that a derivation (for finite dl)
can only involve a finite number of function symbols. Thus, to apply Theorem 5. we need
only that >- be a well-founded ordering for derivations. In particular. Theorem 3 implies
the following:

LEMMA 2. A partial ordering >- is well-founded for derivations if it (has any extension that)
extends the embedding relation [>.

To apply the "local" method of Theorem 6, we also need >- to be monotonic. The
following definition describes monotonic extensions of [>:

DEFINITION 9 (Dershowitz, 1982a). A monotonic partial ordering >- is a simplification
ordering for a set of terms Y if it possesses the subterm property,

and the deletion property,
f(- .. t ...) >- t,

for all terms in .Y.
f(... t ...) >- f(.),

By iterating the subterm property, any term is also greater than any of the (not
necessarily immediate) subterms contained within it. The deletion condition asserts that

t This system was presented in Iturriaga (1967) without a proof of termination.

Termination of Rewriting 81

deleting subterms of a (variable arity) function symbol reduces the term in the ordering: if
the function symbols J have fixed arity, the deletion condition is superfluous.
(Simplification orderings for fixed-arity function symbols were investigated in Higman,
1952.) Together these conditions imply that "syntactically simpler"' terms are smaller in
the ordering. Hence:

THEOREM 8 (Dershowitz, 1982a). Any simplification ordering is a monotonic well-Jounded
ordering Jor derivations.

In the previous section, we observed the use of polynomial interpretations for
termination proofs. That method requires that terms be mapped onto the well-founded
non-negative integers. Using simplification orderings, on the other hand, allows those
methods to be extended to domains that are not themselves well-founded. For example,
one can associate a monotonic multivariate polynomial F(x 1 , ••• , XII) over the reals with
each n-ary function symbolJ(see Dershowitz, 1979). For any given choice of polynomials
F to provide a simplification ordering, we must have that

Xi> X; implies F(' .. Xi ...) > F(... X; ...)

and
F(' .. Xi' ..) > Xi

for all positions i and for all real-valued Xi'S.t For termination, we need

r(lO") > r(rO"),

for all rules I-+r and for all assignments 0" to the variables in I. Allowing the <s to take
on any real value is usually too strong a requirement; instead one may show that terms
always map into some subset S of the reals, i.e. Xl' ••. , XII in S implies F(Xl' ... , x,,) in S.
Then one need only show that the conditions hold for all X in S. In practice, S is usually
the subrange of X greater than some c. The above conditions are all decidable (albeit in
superexponential time), since they are logical combinations of multivariate polynomial
inequalities over the reals (Tarski, 1951; see Cohen (1969) for a much briefer decision
procedure and Collins (1975) for a more efficient one). Thus, the polynomial ordering can
be effectively "lifted" to terms containing rule variables (as first suggested for integer
polynomials in Lankford (1975a) for those cases where the interpretation is reducing for
all real values of the variables). It is similarly decidable if there exist polynomials (and a
suitable definition of S) of a given (maximum) degree that satisfy the conditions and
thereby prove termination. (The decision procedure, however, cannot point to the
appropriate polynomials.) For polynomials over the natural numbers, these conditions
are not decidable (see Lankford, 1979).

EXAMPLE. Consider the set of expressions .r constructed from some set of constants and
the single function symbol x and the system (for semigroups)

x fJ) x y - (l x (fJ x y). (10)

Terms t and u are compared by comparing their real value interpretations, r(t) and r(u).

t The methods of the next section allow the strict inequalities > in these two conditions to be replaced by
see Dershowitz (1982a).

One example of real polynomials that serve the purpose are:
-

r(':I.. x [3) ="' 2· r(':I..)+ r([3)
r(u) = 10- 6 •

for all constants u. This termination function r maps terms to positive reals and satisfies
the conditIOns on simplification orderings. It decreases for the subterm that the rule is
applied to: for any terms ':1... [3. and t'o

:(('Y.. x [3) x::) = 2r(':I..) + 'v 2r([3) + rC') > 'v 2:(:1) +"" 2r([3) + rC') = r(:x x ([3 x,,).
since r(':I..) > O. L

Most orderings used in conjunction with Theorem 6 to prove termination of rewrite
systems are simplification orderings. In fact:

THEOREM 9 (Dershowitz, 1982a). Any total monotonic ordering >- is well-founded for
derivations if. and only if. it is a simplification orderin,T.

In particular. polynomial interpretations must satisfy the subterm property. In general.
however, total monotonic orderings, and hence simplification orderings, cannot suffice for
termination proofs. +

EXAMPLE. Consider the terminating system!

f(a) - feb)
g(b) - g(a).

(11)

If an ordering > is total. then either a> b or b > a. If a> b, then we would also have
g(a) > g(b), and the second rule would not be a reduction; analogously, if b > a, the first
rule would not be. c::;

We have seen (Theorem 1) that termination is undecidable for two-rule systems: for
one-rule systems, the question of decidability is open. The following is known:

THEOREM 10 (Jouannaud & Kirchner, 1984). It is decidable whether a system of only one
rule reduces under any simplification ordering.

5. Quasi-orderings

This section describes methods for proving termination using quasi-orderings. A quasi-
ordered set (Y, consists of a set 51' and a transitive and reflexive binary relation
defined on elements of Y'. For example, the set of integers is quasi-ordered under the
relation "greater or congruent modulo 10". For any rewrite system Yt, the derivability
relation =-":1 is a quasi-ordering on Y. Given a quasi-ordering on a set Y', we define the
associated equivalence relation as both and -::S and (strict) partial ordering >- as
but not -::S. An extension of a quasi-ordering on 51' is a quasi-ordering also on 51'
such that s t implies t and s>- t implies s >-' t for all s. t E 51'; the relation is, in that

t Thus. the requirement that a total monotonic well-founded ordering also have the subtenn property (e.g. in
Brown (1975)) turns out to be redundant.

:; Given. for example. in Huet & Oppen (1980).

TermmatIon of Rewritmg 83

case. a restriction of :;;:". A quasi-ordering:;;:' on [/ is total if, for any two elements sand t
in Y. either s:;;:. t or else s)-t.

Note that the strict part)- of a quasi-ordering :;;:. is well-founded if, and only if, all
infinite quasi-descending sequences Sl:;;:' S2:;;:' S3:;;:' •.. of elements of [/ contain a pair
Sj:$ Sk for some j < k. We will refer to a quasi-ordering:;;:' as well-founded whenever its
strict part)- is. If :;;:. is well-founded, then from some point on, in any infinite quasi-
descending sequence. all elements are equivalent.

Suppose :;;:. and :;;:.' are two well-founded quasi-orderings on a set !7 of terms. and we
wish to combine them (lexicographically) to obtain a single well-founded quasi-ordering
:;;:." on !7 for use in termination proofs. That is, we define t:;;:''' u if either t)- u. or else t u
and t:;;:" u. In order for)-" to be a monotonic ordering, we not only need)- and)-' to be
monotonic. but also need to be a congruence. i.e. t u should imply
f(· .. t ...) .. u .. '). We have the following definition:

10. A quasi-ordering:;;:' over a set of terms !7 is monotonic if

t:;;:' u implies f(... t ...) :;;:'f(- .. u ...)
for all terms in !7.

Clearly, if:;;:' is monotonic, then the associated equivalence relation is a congruence;
hence a monotonic quasi-ordering is sometimes termed a "pre-congruence". The use of
pairs of monotonic polynomial interpretations in termination proofs is illustrated in
Manna & Ness (1970) and Lankford (1979); its implementation is described in Ben-
Cherifa & Lescanne (1986).

EXAMPLE. To prove termination of
eL x (13 + ,) - (eL X 13) + (eL x ,)
(13 + ,.) x eL - (eL X 13) + (eL x ,)
(:x x 13) x , - eL X (13 x ,)

(12)

over!7 we can use the following pair, rand r', of monotonic polynomial interpretations:

r(eL x 13) = r(:x) . r(f3) r'(eL x 13) = 2r'(eL) + r'(f3)
r(eL + 13) = r(CL) + r(f3) + 1 r'(:x + 13) = r'(CL) + r'(f3)

r(u) = 2 r'(u) = 2,
where u is any constant. The first two rules reduce under r; while the last reduces under r'.
Since the last rule preserves value under r, we can use the lexicographic combination of r
and r' to prove termination of the whole system. 0

Well-founded quasi-orderings can be used to prove termination in the following way:

THEOREM II. A rewrite system gp over a set of terms !7 is terminating if there exists a well-
founded quasi-ordering:;;:', which enjoys the subterm property,

f(· .. t ...):;;:. t,
such that

I)-r

for each rule 1- r in gp and for any substitution of terms in !7 for the variables of the rule.

.-
84 'achum DershowIlZ

and such that
t "u and t >.:: u imply f(- .. t ...) >'::f(- .. u ...)

tar all terms in .Y.

EXAMPLE. To prove that System (10) terminates, the following well-founded quasi-
ordering can be used: t>.:: u if the size itl of t (i.e, the number of function symbols in t) is
greater. or if t and u are products of equal size, but the size of the first multiplicand of t IS

at least as big as that of u. The subterm property certainly holds for this quasi-ordering.
The two sides of the rule have the same size, but the size 11: x f31 of the first multiplicand of
the left-hand side, I = (:x x f3) x y, is of necessity greater than the size l:xi of the first
multiplicand in the right-hand side, r = 1: X (f3 x t'); hence 1>- r. Since It I = lui whenever

we have 1: x t x'u, as well as t x:x u x 1:, whenever C

Recall that a derivation cycles if it repeats a term. That suggests a weaker notion than
termination:

II. A rewrite system & is quasi-terminating for a set of terms !7 if every
infinite derivation t 1 t 2 t 3 => . .. of terms in !7 cycles.

EXAMPLE. The following system quasi-terminates, as does any (finite) system that never
increases the size of terms:

(:x x f3) x y -+ :x x (f3 x y)
1: X f3 -+ f3 x 1:.

EXAMPLE. The following non-terminating systemt is, nonetheless, quasi-terminating:

f(a,b,:x)-+f(1:,1:,:x)
g(1:, f3) -+ :x
g(:x, f3) -+ f3.

(13)

c

(14)

To see this, notice that the depth of a term (i.e. the maximum nesting of function symbols)
in a derivation is bounded by the depth of the initial term. 0

Note that for finite systems &, a term can rewrite in a single step to only a finite
number of distinct terms. Thus:

LEMMA 3. A finite rewrite system & is quasi-terminating for a set of terms !7 if, and only if,
all its derivations contain only a finite number of distinct terms.

(An infinite system can have cycling derivations with an infinite number of distinct
terms.) Finite quasi-terminating systems are also globally finite in the sense of Huet
(1980), i.e. only a finite number of distinct terms are derivable from any given term. As
might be expected:

THEOREM 12 (Guttag et al., 1983). It is undecidable whether a (finite) rewrite system is
quasi-terminating.

t Borrowed from Toyama (1987).

,

Tenmnatlon of Rewriting 85

On the other hand. non-termination of any quasi-terminating system is clearly semi-
decidable. Also. termination of a finite quasi-terminating system for a giren input term is
decidable (construct all derivations initiated by that term until they terminate or cycle).

We call an equivalence relation that admits only finite equivalence classes chin. To
prove that a system is quasi-terminating. one can use quasi-orderings and thinness in the
following natural way:

THEORE\1 13. A rewrite system Jt over a set of terms Y is quasi-terminating if chere exists a
..... ell-Jounded quasi-ordering whose equivalence relation is thin. such that

t => .A U implies t u

Jor all terms t and u in !T.

These conditions on the quasi-ordering (viz. well-foundedness and thinness) are
satisfied if for every term t there is only a finite number of terms s such that c s (see
GobeL 1983).

A stronger notion than well-foundedness plays an important role in what follows:

DEFINITION 12 (Kruskal, 1960). A set // is well-quasi-ordered under a quasi-ordering if
every infinite sequence S1, S2, ... of elements of // contains a pair of elements Sj and St.

j < k, such that Sj::S Sk.

Well-quasi-ordered sets are said to have the finite basis property in Higman (1952) and
to be partially well-ordered in Rado (1954). For a survey of the history and applications of
well-quasi-orderings, see Kruskal (1972). Note that any finite set is well-quasi-ordered
under any quasi-ordering (including equality), and that a well-founded set is well-quasi-
ordered when it has only a finite number of pairwise incomparable elements. We have
seen already (Theorem 2) that the embedding relation is a well-quasi-ordering of the
set of terms !7(fF) for finite .?F.

Clearly, any extension of a well-quasi-ordering is also a well-quasi-ordering. Moreover.
if a quasi-ordering has only well-founded extensions, then it is a well-quasi-ordering; in
other words, a set // is well-quasi-ordered under;:: if, and only if, all its extensions (and
all of their restrictions) are well-founded. In particular, if > is a well-ordering (i.e. a total
well-founded ordering) of //, then // is well-quasi-ordered under (the reflexive closure
of ».

In general, whenever is a well-quasi-ordering, the equivalence relation must be
thin, because any infinite sequence of equivalent terms would have to include repetitions.
Furthermore, if is a well-quasi-ordering, then is well-founded. Hence, we have:

COROLLARY. A rewrite system {j/ over a set of terms !7 is quasi-terminating if there exists a
quasi-ordering such that its restriction is a well-quasi-ordering, and such that

t => oAU implies t u
for all terms t and u in !7.

In particular, we can-for finite {j/-use the well-quasi-ordered embedding relation
(Strictly speaking, ::::: is thin, in this case, only when it is restricted to terms appearing in
any single derivation.)

86 'achum DershowItz

EXAMPLE. Consider the one-rule system (for normalising conditionals). t

if(if(x. /3, i'). 6. e) -+ if(x. if(fJ. 6. e). ifCi', 6. e))
and the monotonic polynomial interpretation.

r(if(x. /3. i'» = r(x)' (r(/3) + r(i·)).

(15)

with constants assigned the value 2. The quasi-ordering ::::. where t?:: u if. and only if.
ret) r(u). contains the embedding relation and is thus a well-quasI-ordering. Since
r(li = r(r) for the rule, the above corollary establishes quasi-termination. c

Another way to establish thinness is the following:

THEOREM 14. If the strict part::> of a quasi-ordering:,:: on a set Y(ff) of terms orer a finite
set ff of function symbols enjoys the strict subterm property,

f(- .. t ...) ::> t,
enjoys the strict deletion property,

f(... t ...) ::> f(.. , ...),

and has the property that for any term t in Y(ff) the length of a strictly descending
sequence beginning with t is bounded, then the equivalence relation is thin.

Note that the partial ordering::> is well-founded, but not necessarily monotonic. This
is the essence of the method in Lipton & Snyder (1977), extended to allow varyadic
function symbols f

EXAMPLE. Consider the following system (for multiplication):

CL x (/3+y) -+ (y. x /3) + (CL x Y)
(/3+y) x Y. -+ (/3 x CL)+(Y x CL)

CLx1-+CL
lxCL-+y.
y.xO-O
Ox Y. -+ O.

(16)

Under the "natural" interpretation (+ as addition and x as multiplication. but all
constants as 2), terms map onto natural numbers (and hence the term ordering is of
order-type w), while satisfying the subterm property. Since, under this interpretation,
t:':: u whenever t==-u, the system quasi-terminates. 0

Another notion that has been investigated is fair termination (of quasi-terminating
systems), in which all infinite derivations must include an application of each rule that is
infinitely often applicable. See Porat & Francez (1985).

Given quasi-termination, the following method may be used to prove full termination:

THEOREM 15. A quasi-terminating rewrite system 9t over a set of terms Y is terminating if,
and only if, there exists a monotonic quasi-ordering:':: such that

I::> r
t Circulated by Boyer (1977).

1
F

Termination of Rewriting 8-

for each rule I r in Yi and for any substitution of terms in Y for the variables of the rule.

The ·'if' direction appears in Dershowitz (1982a); the "only-if" direction is trivial (let
:::;: be the derivability relation Thus, to prove termination one can first find an
appropriate quasi-ordering :::;: guaranteeing quasi-termination, and then find any
monotonic quasi-ordering :::;:' under which each rule is a reduction. t

EXAMPLE. A full proof of termination for quasi-terminating System (15) may be obtained
via the monotonic quasi-ordering :::;:', where t:::;:' u if, and only if, It I :$ lui. A term
"decreases" under this quasi-ordering with each application of the size-increasing rule. c

Using monotonicity, we can apply the corollary to Theorem 13 and also give a local
condition for quasi-termination:

THEOREM 16. A rewrite system gt over a set of terms Y is quasi-terminating if there exists a
monotonic quasi-ordering :::;:, such that the relation;::: is a well-quasi-ordering, and such that

I:::;: r
for each rule I r in gt and for any substitution of terms in Y for the variables of the rule.

EXAMPLE. System (16) can be shown to be quasi-terminating using the "natural"
interpretation of plus and times, which preserves the value of a term under rewriting, i.e.
r(l) = r(r), for the first two rules. By letting constants (including 0 and 1) have a value no
less than one, the quasi-ordering becomes a monotonic extension of the well-quasi-
ordered embedding relation r:::. 0

By combining monotonicity with additional properties, we can extend the results on
simplification orderings of the previous section:

DEFlNITION 13 (Dershowitz, 1982a). A monotonic quasi-ordering is a quasi-
simplification ordering for a set of terms Y if it possesses the sub term property,

f(· .. t· .. t,
and deletion property,

f(- .. t ...) ';,:;f(.),
for all terms in Y.

A quasi-simplification ordering for fixed-arity function symbols (without the deletion
property) is called a divisibility order in Higman (1952). This definition means that any
quasi-ordering';,:; which is a monotonic extension the embedding relation is a quasi-
simplification ordering. By Theorem 3, its strict part :> is well-founded for derivations.
Thus, as a corollary to Theorem 11, we get:

THEOREM 17 (Dershowitz, 1982a). A finite rewrite system gt over a set of terms Y is
terminating if there exists a quasi-simplification ordering ';,:; such that

l:>r
for each rule I r in gt and for any substitution of terms in Y for the variables of the rule.

t Lipton & Snyder (1977) and Guttag et al. (1983) use "increasing length" where any monotonic quasi-
ordering would do.

88 Dershowitz

Suppose we are given two quasi-orderings. one on a set of terms and the other on its set
of function symbols. They can be combined to form another ordering on terms:

14 (Knuth & Bendix. 1970; Dershowitz, 1982a). Let 2::F be a quasi-ordering
on a set Y of fixed-arity function symbols and 2::r a quasi-ordering of the set Y(ff) of
terms over .!F. The Knuth-Bendix ordering 2::kbo on Y(ff) is defined recursively as follows:

5 = /(51, ... , sm) 2::kbo g(ct, ... , c,,) = c
if

5 >r t,
or else

5 ::'::r t and />Fg,
or else

5 ::'::rt, /::'::Fg and (51" .. , 5m) 2::'kbo (t1" .. , t,,),

where 2::'kbo is the lexicographic ordering induced by 2::koo .

This generalises the ordering defined in Knuth & Bendix (1970) to any quasi-ordering
2::r ·

THEOREM 18 (Dershowitz, 1982a). is a quasi-simplification ordering on a set of
terms over a set ff of fixed-arity function symbols, such that f(... t ...) ::'::rt can hold only
when f is unary and maximal under the quasi-ordering of ff (i.e. 9 for all function
symbols 9 E ff), then >kbo is a simplification ordering on

The condition on the function symbol ordering ensures that >kOO possesses the
subterm property.

To prove termination via this method, ,one must find appropriate quasi-orderings 2::F
and 2::r for which I >kbo r for all rules 1- r in the given system. For example, the method
of Knuth & Bendix (1970) totally orders function symbols under an ordering >F' and
also assigns a positive integer weight to each constant and a non-negative integer weight
to each other function symbol, with 2::r comparing terms according to the sum of the
weights of their respective function symbols. Thus, the condition on 2::F requires that a
unary function symbol have zero weight only if it is the largest function symbol under >F'
Lankford (1979) replaces the linear weight function with monotonic polynomials having
non-negative integer coefficients. Since both these methods use total monotonic orderings,
by Theorem 9, the subterm condition is both necessary and sufficient for the orderings to
be well-founded; the integer requirements are not themselves necessary.

EXAMPLE. For System (10) we can use the Knuth-Bendix ordering taking to
be It I lui and to be equality. 0

EXAMPLE. This method applies also to the following system:

- + p) - - - - x - - - p (17)
x p) - - - - --p

with t 2::r u if, and only if, the number of occurrences of function symbols other than
minus in t is no less than in u, and minus is the largest function symbol under >F' 0

Termmation of Rewriting 89

6. Sequence Orderings

A quasi-ordering on a set Y induces a quasi-ordering on the set Y· of finite
sequences over Y in the following manner:

15. The embedding relation on a set y* of finite sequences over a set Y,
quasi-ordered by is defined as follows:

if
(S1' S2' ... , Sift) (t1' t 2,· .. , t,,)

Si j tj for allj = 1, ... , n,
where 1 :s;; i1 < i2 < ... < i,,:S;; m.

That this relation preserves well-quasi-orderedness is known as Higman's lemma:

LEMMA 4 (Higman, 1952). A set Y· of finite sequences over a set Y is well-quasi-ordered
under the embedding relation if, and only if, the set Y is well-quasi-ordered under the
quasi-ordering

PROOF (Nash-Williams1 1963). Suppose the theorem were false. Let the infinite sequence
l' = t 1 , t 2 , •••

of words (finite sequences) be a "minimal counterexample". That is, no element of this
counterexample can be embedded in a subsequent one, and for every i = 1,2, ... no
other counterexample begins with t 1, t2, ... , ti- 1 followed by a shorter word than t i. (The
Axiom of Choice is needed for such a construction.)

A counterexample cannot contain an infinite subsequence of elements, each of which is
a word of length one, since the set Y is itself well-quasi-ordered. So, 1 must contain an
infinite subsequence r of words of length greater one. Each of its elements ri can be
split into two strictly shorter, non-empty words and r'I. By minimality, the set of left
parts must be well-quasi-ordered by the embedding relation (or else t 1 , t 2 , ••• ,

t'-I' r'1' r'2' ... , where r'1 is the left part of t" would be a smaller counterexample than 1).
Similarly, the right parts must be well-quasi-ordered.

Now note that (by the infinite version of Ramsey's theorem) any infinite sequence
q1' q2' ... of elements of a well-quasi-ordered set (.92, must contain an infinite chain of
quasi-ascending elements qi, qi2 . .. (with 1:s;; il < i2 < ...). For suppose that a
chain qi, qi2 ... qi" could not be extended any further. Then the infinite remainder
qi" + l' qi" + 2' . .. would either contain an infinite chain or would also contain such an
unextendible finite chain. Thus, were there no infinite chain, there would be an infinite
number of unextendible finite chains. But the infinite sequence consisting of the final
elements of those chains must itself have a quasi-ordered pair, meaning that one of the
unextendible chains could, in fact, have been extended.

Thus, the fact that the left parts are well-quasi-ordered by means that there is an
infinite chain of embeddings :3::; :3::; Since the right parts are also well-quasi-
ordered, there must also be an embedding among r;', , But then l' would also
contain an embedding.

Since we have shown that there can be no counterexample, the theorem must hold. 0

Muitisets, or bags, are unordered sequences; they are like sets, but allow multiple
occurrences of identical elements. For example, the multiset {3, 3, 3,4,0, O} of natural

90 Dershowitz

numbers is identical to the multiset {O, 3, 3,0,4, 3}, but distinct from {3, 4, O}. A quasi-
ordering on any given set Y' induces a quasi-ordering ::e on the set .1t(Y') of finite
multlsets over Y':

16, For a set Y'.. quasi-ordered by the multiset ordering ::e on the set vlt(Y')
of finite multisets over Y' is defined recursively as follows:

if X = Y or if
X = {Xl' .. " xm} ::e {Yl, ... , Yn} = Y

and X-{xJ::eY-{YJ,

for some i = 1, ... , m andj = 1, ... , n, or

Xi >- Yj,' Yh' ... , Yj" and X - {xJ::e Y - {Yj,' Yh' ... , YjJ,

for some i = 1, ... , m and 1 5.jl <j2 < ... <jk 5. n (k 0).

(A multiset difference X -Z decreases the number of occurrences of each element in X
by its number of occurrences in Z.) Two multisets are equivalent under this quasi-
ordering if they are the same up to (permutation and) replacement of individual elements
with equivalent ones. In the induced strict partial ordering, M', for two finite
multisets M and M' over Y', if M' can be obtained from M by replacing one or more
elements in M by any (finite) number of elements taken from 9'; each of which is smaller
than one of the replaced elements.

In Dershowitz & Manna (1979) a strict multi set ordering is induced from a given
partial ordering >-. In that case, two multisets are equivalent only if they are equal as
multisets, i.e. have the same elements with the same multiplicities, but perhaps in a
different order. If M M' in the multiset extension of but M ¥= M', then M M' in the
strict multiset ordering. If >- is the empty relation, then is proper multi set
containment. If N is the set of natural numbers 0, 1,2, ... with the > ordering, then
under the corresponding multiset ordering» over N, the multiset {3, 3,4, O} is greater
than each of the multisets {3,4}, {3, 2, 2, 1, 1, 1,4, O}, and {3, 3, 3, 3, 2, 2}. In the first
case, two elements have been removed (i.e. replaced by zero elements); in the second case,
an occurrence of 3 has been by two occurrences of 2 and three occurrences of 1;
and in the third case, the element 4 has been replaced by two occurrences each of 3 and 2,
and'in addition the element 0 has been removed. (See also Smullyan, 1979.) Alternate
definitions of induced orderings on multisets are explored in Jouannaud & Lescanne
(1982) and Martin (1986).

EXAMPLE. To prove termination of System (17), we can use Theorem 17 and the quasi-
simplification ordering where t <: u if, and only if,

jtl+x lul+x and {Iexl+x: -ex in t} {Iexl+x : -ex in u}.

The multisets used here contain the value lexl+ x, by which we denote the number of
occurrences of symbols other than minus, for each operand ex of a minus sign; these
multisets are compared using the multiset ordering induced by for integers. It is easy to
see that this monotonic quasi-ordering satisfies the subterm property of quasi-
simplification orderings on fixed-arity terms. It remains to show that each rule reduces the
subterm it is applied to. For all three rules, the number of symbols other than minus is the
same on both sides. To see that

- -ex >- ex,

Tennination of Rewriting 91

note that there are two less elements in the multiset of numbers of symbols for the right-
hand side than for the left-hand side. To see that

- «(1. + {3) >- - - - (1. x - - - {3
-«(1. x {3)>- - - -(1.+ - - -{3,

note that the number of symbols other than minus in (1. + {3 (and (1. x {3) is greater than for
each of - -:t, -(1., (1., - -{3, -{3, and {3. 0

Multiset orderings are used in termination proofs (e.g. in Dershowitz & Manna, 1979;
Jefferson, 1980; Gardner, 1983) on account of the following:

THEOREM 19 (Dershowitz & Manna, 1979). A quasi-ordering on a set Y is well-founded
if, and only if, the induced multiset ordering on the set j(Y) of finite multisets over Y is
well-founded.

This result follows from Konig's lemma (see Dershowitz & Manna, 1979). Well-
founded multiset orderings have also been used for inductive proofs in Jouannaud &
Kirchner (1986) and Bachmair (1987). Note that, as a result of Higman's lemma, we
know that is a well-quasi-ordering if, and only if, is.

EXAMPLE. To prove termination of System (9), we use the simple path ordering of Plaisted
(l978a). Terms are mapped into multi sets of sequences of function symbols; sequences are
compared in the monadic path ordering >"'PO' In this ordering, sequences are compared
left-to-right. At each step, any function symbol (or constant) less than or equal to the
current one in the other sequence is discarded. Whichever sequence becomes a proper
subsequence of the other (or is finished first) is smaller. The monotonic termination
function used for the simple path ordering is

ret) = {(f1,f2, .. . ,f,Jlf1f2 ... It is a path in t},

where a path is a sequence of function symbols, starting with the root symbol and
taking subterms until an innermost, constant symbol fie is reached. For the function
symbol ordering, we take D to be greater than all else.t For example, consider the term

t = DxD,.{DxY x (y+DxDxx)),

or with the D's numbered for expository purposes,

t = D1DiD3 Y x (y+D4DSX)).
It has three paths:

ret) = {(D I , D2, x, D3, y), (D I , D2, x, +, y), (DI' D2, x, +, D4 , Ds, x)}.
Applying the rule

to t yields

t Gom (1973) uses a "stepped"' lexicographic ordering (under which longer sequences are always larger) to
prove tennination of differentiation. but without using multisets. that proof applies only when D's are not
nested.

92 DershowItz

(with the labelling of the D,;s retained). and accordingly:

r(u) = {(D I • +. x. +. y). (D I • +, x, +. D4 • Ds, x), (D1' +, x, D2• D3 , y).
(D 1• +. X. D3 , y). (D I • +. x, D2 , +. y). (D 1 , +. X. D2 , +. D4 , Ds. x)}.

We have r(t) »mpo r(u). since
(Dl' D2 , x, D3 , y) >mpo (D1' +, x. +, y)

(Dl' D2 , x, +, D4 , Ds, x) >mpo (D1 • +, x. +, D4 , Ds, x)
(D 1• D2 , x, D3 , y) >mpo (D1' +. x, D2 , D3 , y)
(D 1, D2 , x,D3 , Y) >mpo(D1 , +, x, D3 , Y)
(D1' D2• x, D3 , Y) >mpo (D1' +, x, D2 , +, y)

(D1' D2 , x, +, D4 , Ds, x) >mpo (D1' +, x, D2 , +, D4 , Ds, x).

This multiset ordering ::e is "incremental", in the sense that enlarging the quasi-
ordering <:- always enlarges the induced ordering ::e. Furthermore, as has been shown in
Jouannaud & Lescanne (1982), no other incremental, induced ordering of multisets
contains the multiset ordering for all :>. For other such orderings on multisets, see
Martin (1986). When :> is a total ordering, one may determine whether M M' by first
sorting the elements of both M and M' in non-ascending order (with respect to the
relation :» and then comparing the two sorted sequences lexicographically.+ For
example, to compare the multisets {3, 3. 4, O} and {3, 2, 1,2,0, 4}, one may compare the
sorted sequences (4,3,3,0) and (4,3,2,2, 1,0). Since (4,3,3,0) is lexicographically
greater than (4,3,2,2, 1,0), it follows that {3, 3,4, O} » {3, 2, 1,2,0, 4}. Jouannaud &
Lescanne (1982) describe one implementation of multiset orderings for the non-total case.

7. Term Orderings

In this section, we describe well-founded orderings on terms, mostly induced by a given
precedence ordering :> (or quasi-ordering <:-) on function symbols. These are called
syntactic orderings. We also describe semantic orderings, which are induced by a given
ordering :> (or quasi-ordering <:-) on terms. In general, we give definitions of quasi-
orderings on terms, with the intention of also defining the partial orderings obtained by
excluding equivalent terms.

A quasi-ordering <:- on a set §' of function symbols induces an embedding relation
on the set Y(§') of terms in the following manner:

DEFINITION 17. For any quasi-ordering <:- on a set :F, the homeomorphic embedding
relation on the set Y(7) of terms over 7 is defined recursively as follows: for two
terms, sand t,

if either
Si t for some i = 1, ... , m

or
/<:- g and Si} tj for all j = 1, ... , n,

where 1 i1 < i2 < ... < ill m.

t This is the ordering in Manna (1968).

•
Termination of Rewriting 93

Note that in the second case, the sequence of immediate subterms of t is embedded in
the immediate subterms of s.

The following is known as the "Tree theorem":

THEOREM 20 (Kruskal, 1954. 1960). A set ,y; of function symbols is well-quasi-ordered under
a quasi-ordering if, and only if, the set y(,y;) of terms over ,y; is well-quasi-ordered under
the embedding relation

The same result (for partial orders) was announced in Tarkowski (1960); it extends the
result in Higman (1952) for terms over function symbols of bounded arity. Many of the
results we have already cited are based on Theorem 2, which is a special case of this result
(the quasi-ordering being equality). The following non-constructive proof, due to Nash-
Williams (1963), follows the same pattern as the proof of Higman's lemma (Lemma 4):

PROOF (Nash-Williams, 1963). Suppose the theorem were false. Let the infinite sequence
1= t 1,t2 ,'"

of terms be a "minimal counterexample", measured by the size of the t i . By the
minimality hypothesis, the set of proper subterms of the ti must be well-quasi-ordered. or
else there would be a smaller counterexample

where Sl' S2, ... is a counterexample of proper subterms, such that Sl is a subterm of some
tl and all Si in the counterexample are subterms of one of t l , t l + 1'···. (None of
t 1, t 2 ,"', t l - 1, can embed in any of Sl' S2"", since that would mean that ti also embeds
in some ti , i < I ::; j.)

Since the set ,y; of function symbols is well-quasi-ordered by there must exist an
infinite subsequence r of 1, the root (outermost) symbols of which constitute a quasi-
ascending chain under ::5. (Recall that any infinite sequence of elements of a well-quasi-
ordered set must contain an infinite chain of quasi-ascending elements.) Since the set of
proper sub terms is well-quasi-ordered, it follows by Higman's lemma that the set of finite
sequences consisting of the immediate subterms of the elements in r is also well-quasi-
ordered. But then there would have to be an embedding in 1 itself, in which case it would
not be a counterexample. 0

A stronger notion than well-quasi-ordering, namely better-quasi-ordering (Nash-
Williams, 1965), is exploited in Nash-Williams (1965) and Laver (1978) for classes of
infinite trees. (A quasi-ordered set Q is said to be better-quasi-ordered if-in some sense-
the transfinite closure of Q under the power-set construction is well-quasi-ordered.)
Stronger results on trees can be obtained by limiting the contexts in which an embedding
may occur; see Ehrenfeucht et al. (1983) and Haussler (1985) for finite sequences, Puel
(1985) for fixed-arity terms, and Friedman (1982), Simpson (1985), Okada & Takeuti
(1986), and Okada (1986a) for finite terms (trees).t

The Tree theorem plays an important role in the proof of well-foundedness of the
following ordering:

t A weaker form of "embedding" (allowing edges to map into non-disjoint paths). and correspondingly
weaker results. appear as an exercise in Knuth (1973. p. 385). where it was suggested that embedding "may be
used to prove that certain algorithms must terminate". The analogue of the Tree Theorem for finite graphs with
this weaker embedding has been conjectured to hold in Nash-Williams (1965); it does not hold for
homeomorphic embeddini(Kruskal, 1954).

94 Dershowitz

18 (Dershowitz. 1982a). Let be a quasi-ordering on a set 7 of function
symbols. The recursiz:e path ordering on the set ,:1-(7) of terms over 7 is defined
recursively as follows:

if
Si <:rpo t for some i = 1. ... , m,

or
f>- 9 and s >-rpo tj for all j = L .. " n,

or

where 1::-rpo is the multiset ordering induced by <:rpo.

Two terms are equivalent under :::::rpo if they are the same up to equivalent function
symbols and permutatiz:e congruence (permutations of subterms), in which case they fall
completely under the last case of the definition. The above definition is similar to a
characterisation of the path of subterms ordering given in Plaisted (1978b). The idea is that
a term is decreased by replacing a subterm with any number of smaller (recursively)
subterms connected by any structure of function symbols smaller (in the precedence
ordering) than the root symbol of the replaced subterm. t

To determine, then, if a term s is strictly greater under >-rpo than a term t, the root
symbols of the two terms are compared first. If they are equivalent, then those
(immediate) subterms of t that do not have an equivalent counterpart in s must each be
smaller (recursively in the term ordering) than some unaccounted for sub term uf s.
Furthermore, there must be at least one subterm of s for which there is no equivalent
subterm of t. If the root symbol of s is greater than that of t, then s must be greater than
each subterm of t. In any case, if a subterm of s is greater than or equivalent to t, then s is
greater than t. For example, suppose x > + and a::::: d. We have

s = a x (b+c) >rpo(a x b)+(c x d) = t
under the corresponding recursive path ordering ;;;:rpo by the following line of reasoning:

s >rpo t since x > + and s >rpo a x b, ex d

s >rpoa X b since a = a and b+c >rpob

b+c >rpob since b;;;:rpob

s >rpocxd since a::::: d and b+c >rpoc

b . > +c >rpoc SInce c _rpoc.

It is easy to see that the recursive path ordering is monotonic and satisfies the sub term
and deletion properties of simplification orderings. (It is harder to show that it is a
transitive relation.) Hence:

THEOREM 21 (Dershowitz, 1982a). For any quasi-ordering ;;;:; on a set .fF of function
symbols, the recursive path ordering >-rpo on the set Y(.fF) of terms is a simplification
ordering.

t Thus, this ordering addresses the problem posed in Levy (1980). •

I

Termination of Rewnting 95

Using the recursive path ordering to prove the termination of rewrite systems
generalises the (exponential interpretation) method in Iturriaga (1967).t

EXAMPLE. We can use a recursive path ordering to prove termination of System (1). Let
the function symbols be ordered by - > x > +. Since this is a simplification ordering on
terms. by Theorem 8. we need only show that

- -:x >rpo:X

- (:x + 13) >rpo -:x x - 13
- (:x x 13) >rpo -:x + - 13

:x x (13 + Y) >rpo (:x x 13) + (:x x i')
(13 + i') x :x > r po (13 x :x) + (i' x :x)

for any terms :x. 13. and i'. The first inequality follows. for any :x, from the subterm
property of simplification orderings. By the definition of the recursive path ordering, to
show that - (:x + 13) >rpo (-:x) x (- 13) when - > x, we must show that -(:x + 13) >rpo -:x.
and -(:x+I3»rpo -13· Now, since the root symbols of -(:x +13), -:x, and -/3 are the
same, one must show that :x + 13 >rpo:X and :x + 13 >rpo 13· But this is true by the subterm
property. Thus, the second inequality holds. By an analogous argument, the third
inequality also holds. For the fourth inequality, since x > +, we must show that
{:x, 13 + i'} »rpo {:x, f3} and {:x, 13 + i'} »rpo {:x, y}. These two inequalities between multisets
hold, since the element 13 + y is greater than both 13 and i' with which it is replaced. The
same argument holds for the last inequality D

The recursive decomposition ordering ;;;:-rdo (defined in Lescanne (1982) and Plaisted
(1979) for the case when the precedence ;;;:- is total) "preprocesses" terms in an attempt to
improve the efficiency of computing precedence-based orderings. Suppose is total, and
let t denote the term t = , ... , tIl) with all subterms preprocessed and sorted according
to ;;;:-rdo' i.e. t = g(tit' ... , tjJ, where 0, ;;;:-rdo ... ;;;:-,dO tjn and U 1, ... , j,,) is a permutation of
(1, ... , n). Consider two preprocessed terms s = UU(SI' ... , sm)] and t = V[g(tl' tIl)]'
where f and g are the greatest function symbols in sand t, and u and v are the "contexts"
surrounding the leftmost (maximal) occurrences off and g in sand t, respectively. Then,

s >r40 t
if, and only if, the decomposition of s,

<f, (SI' ... , sm), u[O]),
is greater than the decomposition of t,

<g, (tl' ... , tIl)' v[O]),

where the three components are compared lexicographically, the symbols f and g
according to >, the subterms Si and tj lexicographically (using >rdo recursively), and the
contexts u and v recursively. In comparing contexts, the symbol 0 is considered to be
greater than any term not containing 0; in choosing greatest f and g, circles are ignored.
With this definition, the comparison of preprocessed terms is essentially lexicographic.
Sorting a list of sorted terms and building the decomposition are believed to be relatively
inexpensive (Dershowitz & Zaks, 1981; Lescanne & Steyaert, 1983). The definition of

t The cases where Iturriaga's method works are those for which the function symbols are partially ordered so
that the root (""virtual") symbols of the left-hand side of the rules are greater than any other function symbol.

96 Dershowitz

'"decomposition" can also be extended to the non-total case (Jouannaud et aL 1982:
Rusinowitch, 1987).

For example, suppose ° > - > x > + > L s = -(1 x (1 +0», and t = -1 + -(0 x O.
Their sorted terms are s = - «0 + 1) and t = - (0 xl) + - 1. The full decomposition of s is

(0,0, (-, « x, « +, (C, 1),0),1), C», 0»:
that of l is

(0, (), < -, « x, (0,1),0», (+, (0, < -, (1),0»,0»).
The first decomposition is greater. since (+, (0,1),0> is greater than just o.

The recursive decomposition ordering, as weB as the path of sub terms ordering of
Plaisted (1978b) and path ordering of Kapur & Sivakumar (1983), extend the recursive
path ordering somewhat when the ordering on function symbols is partial (see
Rusinowitch, 1987), but are all equivalent in the total case.t For example, the path of
subterms ordering makes

h(f(a),f(b» h(g(a, b), g(a, b»
but the two are incomparable under These orderings are also equivalent for

monadic terms; an efficient implementation of the monadic case is given in Lescanne
(1981).

We have seen examples of the use of the subterm property to establish inequalities
between free terms containing rule variables. In effect, these precedence orderings are
lifted to apply to free terms by considering variables as constants, unrelated to any other
symbol. This means that a non-variable term t is greater than a variable x if, and only if, t
contains an occurrence of x. For the recursive path ordering this idea was illustrated in
Dershowitz (1982a) and formalised in Huet & Oppen (1980); for the recursive
decomposition ordering this is done in Jouannaud et al. (1982); for the path of subterms
ordering, see Plaisted (1978b). As an example, we have >rpo x -fJ, where :l

and fJ are variables, since - is greater than x (under» and - fJ) is greater than
both - and - {3 (under >rpo). For - fJ) >rpo it must be that :l + fJ which
is true since Cl Cl.

These orderings are also incremental. That is, one can start with an empty precedence,
and add to it (and hence to the term ordering) only as necessary to satisfy given
inequalities between terms. How this may be done with the recursive decomposition
ordering is described in Jouannaud et ai. (1982); for the recursive path ordering, this is
done in Ait-Kaci (1985). When comparing two terms, the comparison may stop when two
decompositions have incomparable symbols, say f and g, as their first components. The
idea is to add f> 9 to the ordering at that point. (This method has been implemented
within the REVE system of Lescanne (1983); details may be found in Choque (1984) and
Detlefs & Forgaard (1985).) For instance, in order for Cl x (fJ+7) >rdo (Cl x x 7) to
hold, one needs x > +; if x > +, then for - (:l + {3) >rdo - Cl X - fJ to hold, it must be that
- > x . Determining if a precedence exists that makes two terms comparable under the
recursive path ordering is, however, NP-complete (Krishnamoorthy & Narendran, 1984).;

EXAMPLE. Consider the system§
{3) - f(g(Cl, {3»
{3) - {3). (18)

t These total orderings are known to suffice for termination proofs of all primitive recursive functions. in the
sense that every primitive recursive function can be computed by some system that reduces terms. for some total
precedence (Plaisted. 1978b).

Cf. the conjecture in Ait-Kaci (1985) that the given choice procedure does not require backtracking.
§ Based on an example in Bergstra & Klop (1983).

,
•

Termination of Rewntmg 97

The first rule suggests the precedence h > f and h >- g; the second rule. on the other hand.
requires 9 to be greater than h. We can. nevertheless. prove termination by letting
9 h > f and 9 >' h and using a lexicographic combination of >-,po and >',po. since

f3) f3). C

Note that, for all these precedence orderings, terms are totally ordered when function
symbols are. In that case. one can establish that '>,po f3). f3» (with
f'> g) by considering all three possible cases: '> f3, f3 and f3. Furthermore. given
a partial quasi-ordering >- of function symbols #, the following ordering could be used:

'> n ,>',po,
'" 'exte1lds;:=

total ;:='

where all possible total extensions >-' of the given precedence >- are considered. Only if
t ,>-',po u in the induced recursive path ordering for all total extensions. is t greater than u
in this ordering. (See Forgaard. 1984.) For example, h(f(a),j(b)) is greater than
h(g(a. b), g(a, b» in this ordering as long as f is greater than 9 in the given precedence.
Moreover. is greater than /3), /3» in the lifted version of this
ordering.

Another useful ordering is the following lexicographic variant:

DEFINITION 19 (Kamin & Levy, 1980). Let >- be a quasi-ordering on a set 7 of fixed-arity
function symbols. The lexicographic path ordering >-lpo on the set Y(7) of terms over 7
is defined recursively as follows:

if
s = f(s1' ... , SIll) >-lpog(t1' ... , t,,) = t

Si '>-lpo t for some i = 1, ... , m,
or

f'> 9 and s >-lpotj for allj = 1, ... , n,
or

fo::;; 9 and (S1"'" SIll) '>-*lpo(t 1,···, tn) and s>-/potj for allj= 2, ... , n,

where '>-*/po is the lexicographic ordering induced by '>-/po'

Two terms are equivalent in this quasi-ordering if they are the same up to equivalent
function symbols. This ordering generalises ideas in Dershowitz (l982a) on treating an
operand of a term as its function symbol. t

THEOREM 22 (Kamin & Levy, 1980). For any quasi-ordering '>- on a set 7 of fixed-arity
function symbols, the lexicographic path ordering '>/po on the set Y(7) of terms is a
simplification ordering.

EXAMPLE. To prove that System (15) terminates we use the lexicographic path ordering
=/po' i.e. the precedence quasi-ordering is just equality. The condition if /3, y) of the
left-hand side is greater (by the subterm property) than the condition of the right-hand
side. Thus, we need only show that the left-hand side is greater than the two operands,
if({3, b, e) and if("l, b, e). Again, {3, y) is greater than both {3 and y, and is also greater
than the remaining operands, band e. 0

t The same lexicographic path ordering has been described in Sakai (1984). but note that the recursive and
lexicographic path orderings are in fact incomparable. The suggestion in Pettorossi (1981) how one might
encode terms so that t >-lpoU if, and only if, r(t) >-,po r(u) contains errors.

98 '\;achum Dt:rshov.itz

The following system (for combinator C) can be shown to terminate with the
same lexicographic path ordering =/po:

(((C . :c) . f3) . ;:) . <5 --+ (:c . . « (:c . f3) . . J). (19)

The left subterm «C' :c) . f3). i' is greater than :c. i' (because the latter is embedded in the
former) and the whole left-hand side is greater than «:c' f3). "/). J (for the same
reason).+

The following system (for Ackermann's function) can easily be seen to
terminate with a lexicographic path ordering and precedence a > s:

a(O, f3) --+ s(f3)
a(s(:c), 0) --+ a(:c, s(O»

s(f3» --+ a(s(:c), f3».

The lexicographic aspect of the ordering is needed for the last rule, in particular.

(20)

The above orderings can be combined by allowing some function symbols to have their
operands compared lexicographically (left-to-right as above, or in any fixed order), while
others are compared using multisets (depending on what is called the "status" of a
symbol in Lescanne (1984». Multiset and lexicographic versions of the path orderings
have been implemented in REVE (Lescanne, 1984; Detlefs & Forgaard, 1985), RRL (Kapur
& Sivakumar, 1983) and FORMEL (Fages, 1984). In Kamin & Levy (1980), it is shown that
not only is a lexicographic ordering of operands possible, but any mapping * of a partial
ordering > to a partial ordering >* that satisfies

t> u implies f(- .. t ...) >*f(... u ...)

and depends on only a finite number of comparisons under> of smaller terms would
work as well.

Not only are the recursive and lexicographic path orderings simplification orderings,
but as long as the function symbols are well-founded, these orderings are, too:

THEOREM 23 (Dershowitz, 1982a). A quasi-ordering;;;: on a set of function symbols is
well-founded if, and only if, the induced recursive path ordering ;;;:rpo on the set of
terms over is well-founded.

THEOREM 24 (Kamin & Levy, 1980). A quast-ordering;;;: on a set of function symbols is
well-founded if, and only if: the induced lexicographic path ordering ;;;:lpo on the set of
terms over is well-founded, provided that equivalent symbols have the same fixed arity.

The following proof sketch for both results is typical of proofs of well-foundedness
based on well-quasi-orderedness. t

t This kind of proof is possible whenever a combinator has the non-ascending property described in Pettorossi
(1978.1981).

! The fact that the path of subterms ordering. recursive path ordering. recursive decomposition ordering. and
path ordering are all identical when the precedence is total means that this well-founded ness proof proves them
all to be well founded (Dershowitz. 1982a; Lescanne. 1982).

Tennination of Rewriting 99

PROOF. By Zorn's lemma, any given well-founded precedence ;c may be extended to a
total well-founded ordering :;;:: of function symbols, in which case :;;:: well-quasi-orders 7.
By the Tree theorem (Theorem 20), the embedding relation <: well-quasi-orders Y(.F).
The total ordering :;;::.po (:;;::/po) is well-founded, since it can be proved by induction that it
IS an extension of the well-quasi-ordering (with the added requirement of fixed arity
for equivalent function symbols in the lexicographic case). Since the recursive
(lexicographic) path ordering is incremental, :;;::.po (:;;::/po) is an extension of ;c,po (;c/po).
Hence. the latter is also well-founded. 0

In general, if a totally ordered set » of varyadic function symbols is of order type
;t. then the recursive path ordering on the set Y(.F) of terms is of order type cj>"(0), where
cj>0(f3) = 13, cj> 1 (13) = 8fJ (the 13th epsilon number), and cj>"(f3) is the 13th fixpoint of =
common to all cj>1l for ordinals J1 <:L (see Feferman, 1968). If one lets arbitrary terms serve
as operators (function symbols), then the recursive path ordering on the set of terms
constructed from operators built using instances of a single symbol 0 has as its order type
the least impredicative ordinal ro (see Veblen, 1908 and Schutte, 1965). This can be
shown with the following order-preserving mapping 1/1 (of Dershowitz, 1980) from Y({O})
onto ro defined by:

1/1(0) = 0

I/I(:L(pl' 132" .. , Pn» = cj>1j)(%) Ctl WIj)(fJil) +<5,

where L is the natural (i.e. commutative) sum of ordinals and <5 is 1 if I/I(;t) = 0, n = 1, and
1/1(131) is an epsilon number and is 0 otherwise. (The purpose of <5 is to ensure that
1/1 (0(13» = wlj)(fJ) + <5 > 1/1(13) even if 1/1(13) is an epsilon number.) That this mapping is order-
preserving follows from the fact (Feferman, 1968; Weyhrauch, 1978) that cj>"(p) > cj>"'(p') if,
and only if, :L =:L' and 13 > 13', or else :L>:L' and cP"(p) > 13', or else :L <:L' and 13 > cP"'(p').
The recursive and lexicographic path orderings are related to Ackermann's ordinal
notation, in which r O =A 2({0}, {O}) (see Ackermann, 1951). Combining the two
orderings into one, as described in Lescanne (1984), yields a more powerful ordering than
either alone. (See Okada, 1986b.)

The multiset ordering and simple path ordering (described in the previous section) may
be thought of as special cases of the recursive path ordering, in which the multiset
constructor { ... } is greater than other function symbols. The nested multiset ordering,
defined in Dershowitz & Manna (1979), is just a recursive path ordering on all terms
constructed from that one varyadic constructor symbol (and a well-founded set of smaller
constants). With just that one constructor (and no constants), its order type is 80.t
Gentzen (1938) used an ordering of this order type to show termination of his
"normalisation procedure"; two other interesting examples of 80 termination arguments
may be found in Kirby & Paris (1982) (see also Kent & Hodgson, 1986).

It is sometimes necessary to transform terms before comparing them in the recursive
path ordering. As long as the precedence for the function symbols of transformed terms is
well-founded, we know that the recursive path ordering will also be. But the transform r,
which acts as termination function, needs to satisfy the monotonicity condition

ret) >.po r(u) implies r(f(· .. t ... » >.po rU(... u ... »

t That the nested multiset ordering has the properties of simplification orderings was pointed out in Scherlis
(1980). For a "constructive" discussion of this ordering, see Paulson (1984).

100 '\achum Dershowltz

for Theorem 6 to apply. Depending on the particular T, this condition mav or mav not
hold. For instance, let Y denote the flattened version of a term t. For example, -

f(f(a, b), g(b, g(a, b» = f(a, b, g(b, a, b)),

with all nested occurrences of the symbols f and g stripped. With precedence f> g, we get,
on the one hand,

f(a, a) = f(a, a) >rpog(a, a) = g(a, a),
while, on the other, we have

f(f(a, a), a) = f(a, a, a) <rpof(g(a, a), a) = f(g(a, a), a).

The general use of rewrite systems as termination functions and the formulation of
abstract conditions for monotonicity are explored in Bachmair & Dershowitz (1986) and
Bellegarde & Lescanne (1987). See section 8.

Rather than transform terms, we can sometimes use the following "semantic" ordering:

DEFINITION 20 (Kamin & Levy, 1980; Plaisted, 1979). Let be a quasi-ordering on a set
Y of terms. The semantic path ordering on Y is defined recursively as follows:

if
s = f(Sl' ... , sm)'>-spog(t 1 , ••. , t,,) = t

Si t for some i = 1, < •• , m,
or

s>t and s>spotj for allj= 1, ... , n,
or

s::;:: t and {St, ... , sm} {tt, ... , t,,},

where is the multiset ordering induced by

This ordering is not in general monotonic, but we do have the following result, based
on Theorem 11:

THEOREM 25 (Kamin & Levy, 1980). A rewrite system Jt over a set Y of terms is
terminating if, and only if, there exists a well-founded quasi-ordering on Y such that

t implies f(... t . 0 •) f(... u ...)
for all terms in !7 and

I >spo r

for each rule 1- r in Jt and for any substitution of terms in Y for the variables of the rule.

Note the condition linking to it helps ensure that

t>spou and implyf(-··t"·»spofC··u···).

This condition is trivially satisfied by any quasi-ordering that simply compares root
symbols; in that case, the ordering >spo specialises to the recursive path ordering >-rpo'
One can similarly define a semantic version of the lexicographic path ordering, akin to the
Knuth-Bendix ordering, defined in section 5. Other variants of this ordering may be
possible; for details, see Kamin & Levy (1980).

EXAMPLE. No simplification ordering (and, in particular, no polynomial interpretation)
can be used to prove termination of the following system over Y({ +, x. O. I}):

TenmnatlOn of RewritIng lOl

:x X (fi + 1) -+ (:x x (fi + (1 x 0))) +:x
:xxl-+:x
:x+O-+:x
:x x 0 -+ O.

(21)

We can, however, use a semantic path ordering in which makes products greater than
other terms, and compares products based on the "natural" interpretation r of their right
multiplicands, where

r(:x x fi) = r(:x)' r(fi) 7:(0) = 0
r(:x+fi) = r(:x)+r(p) r(l) = 1.

Since r(p + 1) > r(p + (1 x 0», the first rule is reducing. Since applying a rule cannot affect
the value-under this interpretation-of any multiplicand, the system is terminating. c
EXAMPLE. The lexicographic path ordering cannot directly handle the following system:+

(:x . fi) . y -+ :x . (P . y)
(:x + P) . y -+ (:x . y) + (fi . y) (22)

y' (:x + f(P» -+ g(y, P) . (:x + a).

But termination can be proved using a semantic path ordering >-sPO' with any term of the
form y' (:x + f(fi) greater under >- than any other product; any product greater than any
other term; and products treated lexicographically (left-to-right). Note that no rule
application changes the value (under >-) of its superterms. Examining all cases shows that
each rule is a reduction, whatever the value of its products. D

8. Combined Systems

In this section we consider the termination of combinations of systems. First we
consider "rewriting modulo a congruence". By a congruence system $, we mean a (finite
or infinite) set of rules, such that if 1-+ r is a rule in $, then r=>·81 must also be a derivation
for $. (We shall assume that I and r have the same set of variables occurring within them.)
If Yt is a terminating system and $ is a (non-terminating) congruence system, we need
methods of proving that the combined system ;Jt u $ does not allow for a derivation with
an infinite number of applications of rules in Yt. We also consider conditions for
termination and normalisation of a system Yt u!/, containing all the rules of two
terminating, or normalising, systems, Yt and Y.

Proving termination of rewriting modulo a congruence is, in practice, considerably more
difficult than for plain rewrite systems. Given a congruence system $, we define the rewrite
relation Yt/$ over a set of terms .r as follows: t => A!8U if t =>·8 V => AW =>·su, for some terms v
and W in .r. The question then is: for given Yt and $, does there exist an infinite sequence
of terms t;E.r such that t1 =>AI8t2=>A!S"'? When $ is empty, this is simply the question
of termination of Yt. System (0) is an example of rewriting modulo associativity, the infix
comma obeying the axiom (:x, (P, y» = «:x, P), y).

EXAMPLE. Let I denote the following congruence system (idem potence):

t Abstracted from a problematic example in Bellegarde (1984).

102 '\achum DershowItz

For any non-empty the relation Jll cannot be terminating. since there would be an
infinite derivation 1 =>[l-+-/ => Jf I + r =>[(l + l) + r => Jf ••• for each 1- r E Ji. =

The congruence system AC. consisting of the associative and commutative axioms.

1(':/../({3. ;:)) - I(J(':/., {3), i')

1(7.. {3) - 1({3. 7.)

for each associative-commutative function symbol f is of particular importance. Since
addition and multiplication are themselves associative and commutative. monotomc
polynomial interpretations can be helpful. To provide an ordering for rewriting modulo
these axioms, an interpretation should preserve its value under associativity and
commutativity. Then if r(l) > r(r) for each rule, it would follow that ret) > r(u) whenever
t => Jt .K u. The interpretations, F(x, y) = xy and F(x, y) = x + y + 1, for example, preserve
value, whereas F(x, y) = xy + 1, though symmetric, does not preserve value under
associativity. In general, polynomials for associative-commutative symbols must either be
of the quadratic form

F(x, y) = axy+bx+by+b(b- l)/a (a =/; 0)

or of the linear form F(x, y) = x+ y+c (Ben-Cherifa & Lescanne, 1986; cf. Lankford,
1979). Since the degree of value-preserving polynomials is bounded (by two), it is
decidable (see section 4) whether there exists a polynomial interpretation r that preserves
value under associativity and commutativity, and which (eventually) is monotonic, has
the subterm property, and decreases for each rule. Though decidable, this is a very
restricted class of simplification orderings.

EXAMPLE. Consider the following system (for Boolean rings):t

7.X7.-':I.
:x+0-7.
':1.+':1.-0

(':I.+{3) x y - (':/. x y)+({3 x y).

(23)

One can use the following polynomial interpretation to prove termination of this system
modulo AC:

r(':/.+{3) = r(:x) + r({3) + 1
r(':/. x {3) = r(':I.) . r({3).

With constants assigned a sufficiently large value (> 1), all the necessary conditions are
fulfilled. D

Two terms u and v are equal in AC if, and only if, u and v are the same (up to
permutation of arguments of associative-commutative symbols), where 1 is the term t with
all associative-commutative symbols "flattened", and where the order of operands of I is
not significant. It is natural, therefore, to consider orderings on the set Y = {I: t E Y} of

t L'sed in Hsiang & Dershowitz (1983).

Termination of Rewriting [03

flattened tenns. For example, instead of the non-preserving interpretation F(x, y) = xy + 1
for an associative-commutative symbol f, one could interpret a varyadic f with
F(x l' ...• xn) = Xl xn + 1. when flattening results in n operands. To be useful. though,
any ordering on flattened tenns must satisfy the conditions of the following theorem:

THEOREM 26 (Dershowitz et aI., 1983). Let 91 be a rewrite system over some set Y of terms
and a set of associative-commutative symbols. The rewrite relation 91/ AC is terminating
if, and only if, there exists a well-founded ordering> on flattened terms in !I such that

l>r
for each rule I- r in 91 and for any substitution of terms in Y for the variables of the rule,
and

f(l, > fer,
for each rule I- r in 91 whose left-hand side I or right-hand side r has assoczatwe-
commutative root symbol fE or for which r is just a variable and for any substitution of
terms in Y for the variables of the rule andfor (a new variable, otherwise not occurring in
the rule), and such that

t U and I> u imply f(... I ...) > f(... u ...)
for all terms t and u in !i and f(... I ...) and f(... u ...) in !I.

EXAMPLE. The following system tenninates modulo associativity and commutativity of x
and +:

x (P+y) - x y). (24)

To prove tennination, we use a semantic path ordering on flattened tenns that takes the
arity of x into account. That. is, the more multiplicands, the greater the product, and all
products are greater than all sums. The left-hand side I is greater than the right-hand side

--- --- ---
r in this ordering. Furthennore, under this ordering, I x and 1+ e are greater than r x
and r+e, respectively. Since all the conditions of the theorem are satisfied, tennination is
assured. 0

As we saw in the previous section, flattening alone makes the recursive path ordering
non-monotonic. To overcome this, the ordering has been adapted (in a series of papers:
Dershowitz et al. (1983), Plaisted (1983), Bachmair (1984), Bachmair & Plaisted (1985),
Bachmair & Dershowitz (1986), Gnaedig (1986), and Gnaedig & Lescanne (1986)) to
handle associative-commutative symbols by flattening and transfonning tenns
(distributing large function symbols over small ones) before comparing them.

EXAMPLE. Consider System (23) modulo associativity and commutativity of x and + and
a recursive path ordering with precedence x > +. Flattening does not satisfy the
conditions in the above theorem, since P) x y x is not greater under >rpo than

x y)+(P x y)) x e. The system can be shown tenninating, however, by distributing
times over plus before comparing; see Bachmair & Dershowitz (1986). 0

We turn now to consider combinations of two tenninating rewrite relations:

DEFINITION 21. A rewrite relation 91 commutes over another relation [/ if whenever
there is an alternative derivation of the fonn v, for some w. A

104 "iachum Dershowitz

rewrite relation Jf quasi-commutes over another relation Y' if whenever t U v. there
is an alternative derivation of the form for some w.

Other investigations of properties of commuting relations include Newman (1942).
Rosen (1973), O'Donnell (1977). Huet & Levy (1979), Huet (1980), and Raoult &
Vuillemin (1980). With this notion. we can reduce termination of the union of Jf and Y' to
termination of each:

27 (Bachmair & Dershowitz, 1986). Let ?It and Y' be two rewrite relations over
some set Y of terms such that jp quasi-commutes over Y'. Then, the combined rewrite
relation jp u Y' is terminating if, and only if, jp and Y' both are.

This theorem applies equally well to rewriting modulo a congruence and to ordinary
rewriting.

EXAMPLE. Let AC contain associative and commutative axioms for both x and +. Let R
be

(7. + {3) x t - (7. X t) + ({3 x t) (23a)
and S be

(23b)

The rewrite relation RjAC quasi-commutes over S (and, therefore, over S/AC, too). If.
say,

(d x (a x a» x (d x a) x x (a x b+a x c),

then by the same token

(d x (a x a» x x «a x a) x b+(a x a) x x (a x b+a x c).

The rewrite relation SjAC terminates, since it shortens terms, and we saw above that
R/ AC (System (24» terminates. Hence, System (23) modulo AC also terminates. 0

For rewriting modulo a congruence, we also have the following related result:

THEOREM 28 (Jouannaud & Munoz, 1984). If a rewrite relation jp quasi-commutes over a
congruence relation t!, then the rewrite relation jpjt! is terminating if, and only if, jp is
terminating.

Some suggestions of how non-commuting jp and t! might be handled are given In
Jouannaud & Munoz (1984).

To show that two relations quasi-commute, we can make use of the following
properties:

22. A rewrite system is left-linear if no variable occurs more than once on the

TerminatIon ot" Rewriting l05

left-hand side of a rule: it is right-linear if no variable has more than one occurrence on
the right-hand side. A system is linear if it is both left- and right-linear.

DEFI:-';ITIO:-'; 23. A term ti overlaps a term t if u can be unified with (i.e. made the same as)
some non-variable subterm s of t by substituting terms for the variables in each (with the
variables of t and u considered disjoint). We say that there is no overlap between two
terms t and u if neither t overlaps u nor u overlaps t. A rewrite system is said to be non-
overlapping if there is no overlap among the left-hand sides of that is, no left-hand side
Ii overlaps a different left-hand side Ij and no left-hand side Ii overlaps a non-variable
proper subterm of itself.

Non-overlapping systems are called "non-ambiguous" in Huet & Levy (1979): they
have no "critical pairs" in the sense of Knuth & Bendix (1970).

EXAMPLE. The linear system
(ex x {3) x , -+ ex x ({3 x ,)

is overlapping since (ex x {3) x, is unifiable with ex x {3. The system

ex x ({3 + ,) -+ (ex x {3) + (ex x ,)
is left-linear. but not right-linear; the system

(ex x {3)+(ex x ,) -+ ex x (/3+,)

(10)

(24)

(25)

is right-linear, but not left-linear; both are non-overlapping. All three are terminating. c

In Raoult & Vuillemin (1980) (and in Rosen, 1973, for the ground case), it has been
shown that if and !/ are two left-linear systems and there is no overlap between their
left-hand si<ies, then whenever it is also the case that for some w.
Using that idea. we obtain the following corollary to Theorem 27:

THEOREM 29 (Bachmair & Dershowitz, 1986). Let and !/ be two rewrite systems OL'er
some set .?7 of terms. Suppose that is left-linear, !/ is right-linear, and there is no overlap
between left-hand sides of and right-hand sides of!/. Then, the combined system u!/ is
terminating if, and only if, and !/ both are.

This generalises the case exploited in Bidoit (1981).

EXAMPLE. The systems

and

ex x ({3 + ,) -+ (ex x {3) + (l1. X 'l)
({3 + ,) x ex -+ ({3 x ex) + (y x ex)

ex x 1-+ex
1 x ex -+ ex

:xxO-+O
OXl1.-+0

(16a)

(16b)

each terminate. The first is left-linear; the second has a constant on the right that does not
appear in the first. Therefore, their union terminates. D

106 DershowItz

Each of the three requirements of the above theorem is necessary, as evidenced by the
following examples of non-terminating systems:

EXAMPLE. The system
b-+a

f(et., et.) -+ f(a, b) (26)

has an infinite derivation f(a, a)=:.f(a, b)=:.f(a, a)=:.· ... Though each rule terminates.
the first rule is linear, and there is no forbidden overlap between the right-hand side of the
first and the left-hand side of the second, termination does not follow, since the second is
not left-linear (although it is right-linear). 0

EXAMPLE. The system
f(a, b, et.) -+ f(et., 'Y., 'Y.)

b-+a (27)

has an infinite derivationf(a, b, b)=:.f(b, b, b)=:.f(a, b, b)=:.· ... Each rule terminates, the
second is left-linear, and there is no forbidden overlap, but the first is not right-linear
(although it is left-linear). 0

EXAMPLE. The system
b -+ g(a)
a -+ g(b) (28)

has an infinite derivation b=:.g(a)=:.g(g(b»=:. . .. Each rule terminates and both are
linear, but (in either order) there is a forbidden overlap. 0

Note that, by definition, a variable right-hand side overlaps any left-hand side.t

EXAMPLE. Consider System (14), divided into two parts:

f(a, b, -+ 'Y., 'Y.)

g('Y., p) -+ 'Y.

p) -+ p.

(14a)

(14b)

Though (14a) is left-linear, (14b) is right-linear, and each part alone is terminating, the
combined system is non-terminating. This is because the right-hand sides of (14b) overlap
the left-hand side of (14a). 0

For related results on rewriting modulo a congruence, see Bachmair & Dershowitz
(1986). The use of commutation properties in establishing "fair termination" is
investigated in Porat & Francez (1986).

Recall that a system is normalising if every term rewrites to an irreducible term. To
prove that a system is normalising, one can choose a particular evaluation strategy and
only show that any term to which rules are applied is (eventually) reduced in some well-
founded ordering for those rewrites allowed by the chosen strategy. (The ordering need
not be monotonic.)

t The definition of "overlap" in Dershowitz (1981) and the examples in Bachmair & Dershowitz (1986) are
wrong on this account.

TermInaliOn of Rewriting 107

EXAMPLE. The following system t (cf. System (1» over f({ x, +, -,0, I}) does not
always terminate, but is normalising and its irreducible terms are in disjunctive normal
form:

- (ex + f3) -+ - -- - ex x - - - f3
- (ex x f3) -+ - - - ex + - - - f3

ex x (f3 + I) -+ (ex x f3) + (ex XI)
(f3 + I) x ex -+ (f3 x ex) + (i' x ex).

To see that it does not terminate, consider the (embedding) derivation

- -(0 x (0+ 1»=>- -«0 x 0)+(0 x I»=> -(- - -(0 x 0) x - - -(0 xl»)
=> .. ·=>-(-(OxO)x -(Ox 1»
=> ... => -« - - -0+ - - -0) x (- - -0+ - - -1»

(29)

=> ... => -« -0+ -0) x (-0+ -I»=> -« -0 x (-0+ -1»+(-0 x (-0+ -1»)
=> - - -(-0 x (-0+ -1» x - - -(-0 x (-0+ -I»=>' ...

Thus, beginning with a term of the form - -(ex x (C!+ f3», a term containing a subterm of
the same form is derived, and the process may continue ad infinitum.

On the other hand, any application of the second or third rule can be followed
immediately by two applications of the first rule, thus simulating a derivation of System
(1), which is terminating. Hence a normal form always exists. 0

To prove that the union of two normalising systems (it and g is also normalising, one
can choose to first compute an (it-normal form and only then apply!/. Then, if one can
show that applying g to an 9l-normal form results in an 9l-normal form, it would follow
that (it u g is normalising.

EXAMPLE. The non-terminating System (29) is normalising by the following line of
reasoning: the first three rules alone are terminating (they are System (17», as are the last
two (they are part of System (1». Since the first three rules eliminate all negations of non-
constant terms and the two distributivity rules cannot introduce other negations, the
whole system is normalising. 0

9. Restricted Systems
In this section, we consider how linearity and non-overlapping of rules make it possible

to restrict the derivations that must be considered when proving termination or non-
termination of a rewrite system. Non-deterministic Markov systems (i.e. semi-Thue
systems) are rewrite systems over words, consisting of monadic (hence, linear) terms.
Nevertheless:

THEOREM 30 (Huet & Lankford, 1978). It is undecidable whether a (finite) rewrite system is
terminating, even if it is non-overlapping and contains only monadic function symbols and
constants.

t From Dershowitz (1982a).

108 'achum Dershowltz

By the same token, we have:

31. It is undecidable whether a (finite) rewrite system is normalising, even if it is
nvn-orerlapping and contains only monadic function symbols and constants.

And:

32 (Guttag et al., 1983). It is undecidable whether a (finite) rewrite system is
quasi-terminating, el:en if it is non-overlapping and contains only monadic function symbols
and constants.

F or the purposes of this section, we need to distinguish between constants and term
variables appearing in derivations. If a variable appears, then the same rule can be
applied when the variable is replaced by any term. That is, if u[1:, ... , 1:] ... ,2],
for some contexts u and v occurrences within them of a variable 2, then
u[t, .. _, t] L-[t, . o. _, t] for any t E §: Two derivations are considered equal if they can be
obtained one from the other by only renaming variables.

Weare interested in the following restricted class of derivations:

DEFINITION 24 (Lankford & Musser, 1978). The set offorward closures for a given rewrite
system Jf may be inductively defined as follows: every rule I- r in Jf is a forward closure
I r. Let the derivations

and
d 1

be two forward closures. If Cm has a non-variable subterm s within some context u such
that s unifies with d1 via most general unifier a, then

c1 .. = ua[d1 a] a] ...

is also a forward closure.

This definition is related to the narrowing process, as defined in Slagle (1974) and
Hullot (1980). (Forward closures are referred to as "chains" in Lankford & Musser (1978)
and Dershowitz (1981).)

Consider the terminating system

(30)

The derivation

- « 1: + - f3) + -{') - (:x + - f3) + - -{' (- 1: + - - f3) + - - /
(- 'X + f3) + - - jI (- 'X + f3) + jI

is a forward closure for that system. All of its forward closures are of similar form; they
begin with the negation of a sum of either negated or unnegated variables and end with
such a sum. C

Termination of Rewriting 109

To determine if a right-linear system terminates, one need only consider its forward
closures:

THEOREM 33 (Dershowitz, 1981). A right-linear rewrite system is terminating if, and only if,
it has no infinite forward closures.

This is a stronger result than the related one-for quasi-terminating systems-given in
Guttag et al. (1983).

EXAMPLE. The self-embedding rewrite system

-+ (31)

is right-linear and has only one forward closure:

Since this forward closure is finite, the system must terminate. Recall that, bv Theorem 9.
no total monotonic ordering can prove termination of this system. 0

EXAMPLE. The forward closures of
-+ (32)

are all of the form

where i O. Since the system is right-linear and all its forward closures are finite, by the
above theorem, it must terminate for all inputs. 0

EXAMPLE. The forward closures of
-+ g(g(f(f(a.)))) (33)

include
f(g(g(=> g(g(f(f(g(ex))))) => g(g(f(g(g(f(f(=> • . . .

Thus, the system does not terminate. 0

EXAMPLE. Consider the linear System (30). Termination of its closures, and hence of the
system, can easily be proved using a multiset ordering on the sizes of all negated
subterms. 0

In general, though, a term-rewriting system need not terminate even if all its forward
closures do:

EXAMPLE. The non-right-linear and overlapping system

b-+a
(34)

has only finite forward closures. Nevertheless, the system does not terminate. To wit,

f(a, b, b)=>f(b, b, b)=>f(a, b, b)=>" .. o

110 'achum Dershowllz

For left-linear systems. we know the following:

THEOREM 34 (Dershowitz. 1981). A non-overlapping left-linear rewrite system is terminating
i/ and only i/ it has no infinite forward closures.

EXA\fPLE. None of the forward closures of the non-overlapping left-linear System (9) have
nested D symbols. (This can be shown by induction.) Thus. the finiteness of those forward
closures-and consequently the termination of the system-can be proved by considering
the multiset of the sizes of the arguments of the D's in a term. Any rule application is a
reduction under the multiset ordering » induced by the natural ordering > of positive
integers. C

In Guttag et al. (1983), the notion of closure is expanded so that derivations are also
extended if the last term Cm of a closure C 1 => ... => em unifies with a non-variable subterm
of the first term d 1 of a closure d 1 => ., =>d ll , as well as if a non-variable subterm of em
umfies with d l' These restricted derivations are called overlap closures. It is unknown if
there are non-terminating systems that do not have an infinite overlap closure.+

EXAMPLE. Left-linear System (34), though it has no infinite forward closure, does have the
following cycling overlap closure:

feb, b, b)=>f(a, b, b)=>f(b, b. b)=>

THEOREM 35 (Guttag et al., 1983). A quasi-terminating left-linear rewrite sJ'stem is
terminating if, and only if, it has no cycling overlap closures.

An advantage of using closures is that non-termination may be more easily detectable.
as the next theorem will demonstrate. First, we extend the definition of "looping":

DEFINITION 25. A derivation t 1 => t 2 => ... => tj => ... => tk => . " loops if some tk has a
sub term that is an instance of tj (with variables of the two terms considered distinct) for
some} < k.

Looping closures are indicative of a non-terminating system. Moreover:

THEOREM 36 (Dershowitz, 1981). A right-linear rewrite system with only ajinite number of
forward closures (beginning with different terms) is terminating if, and only if, it has no
looping forward closures.

(Recall that two closures are considered equal if they differ only in the names of their
variables.) A similar result is given in Dershowitz (1981) for non-overlapping left-linear
systems.

EXAMPLE. The non-terminating right-linear System (33) has a looping forward closure

f(g (g (':I.))) => 9 (g (f(f(g (':I.))))) => 9 (g (/(g (g (f(f(':I.))))))) =>

t The idea of decomposing proofs of termination. by looking at overlappings between rules (but ignoring the
difficulties caused by non-left-linear rules). appears in Pettorossi (1981).

112 "Iachum DershowItz

Bergstra. J. A .. Klop. J. W (1983). A process algebra jor the operatIOnal semantics oj static data flow networks.
Preprint IW 222 83. Centrum. Amsterdam. The :-.Ietherlands.

Bergstra. J. A .. Tucker. J V. (1980). Equational specifications jor computable data types' Six Izidden (unctions
sutjice and other sufficiencr bounds. Preprint IW 128, 80. Centrum. The

Bidoit. (1981). Cne methode de presentation de types abstraits: Applications. These de Troisieme CYcle.
Cniverslte de Paris-Sud. Orsay. France. .

Brown. T C. Jr. (1975). A structr.red design-method jor specialized prooj procedures. Ph.D. thesis. California
Institute of Technology, Pasadena. CA.

Choque. G. (1984). Calcul d'un ensemble complet d'incrementations minimales pour l'ordre recursifde dicGmposition.
Technical report. Centre de Recherche en Infonnatique de Nancy. Nancy. France.

Cohen. P. J. (1969). Decision procedures for real and p-adic fields. Comm. Pure Appl. Math. 22, 131-151
Collins. G. (1975). Quantifier elimination for real closed fields by cylindrical algebraic decomposition.

Proceedings oj the Second GI Conference on Automata Theory and Formal Languages. Kaiserslautern. West
Gennany. Springer Lec. Notes Compo Sci. 33, 134-183.

Dauchet.. Tison. S. (1985). Tree automata and decidability in ground tenn rewriting systems. Proceedings of
the Fifth International Conference on Fundamentals of Computation Theory. Cottbus. East Gennany.
Springer Lec. Notes Compo Sci. 199,80-89.

Dershowitz. N. (1979). A note on simplification orderings. In[Proc. Leu. 9, 212-215.
Dershowitz. :-.I. (1980). On representing ordinals up to roo Unpublished note. Department Computer Science.

University of lIIinois. Urbana. IL
Dershowitz. :-.I. (1981). Tennination of linear rewriting systems (Preliminary version). Proceedings oj the Eighth

EATCS International Colloquium on Automata, Languages and Programming, Acre. IsraeL Springer Lec .
. Votes Compo Sci. 1I5, 448-458.

Dershowitz, N. (I 982a). Orderings for tenn-rewriting systems. Theor. Compo Sci. 17,279-301. (Previous version
appeared in Proceedings oj the Symposium on Foundations oj Computer Science. San Juan, PR, pp 123-131
[October 1979].)

Dershowitz. N. (I 982b). Applications of the Knuth-Bendix completion procedure. Proceedings of the Seminaire
d'lnformatique Theorique, Paris. France. pp. 95-111.

Dershowitz. N. (1983). Well-founded orderings. Technical Report ATR-83(8478)-3. Infonnation Sciences
Research Office. The Aerospace Corporation, EI Segundo, CA.

Dershowitz, N" Hsiang, J .• Josephson, N. A., Plaisted, D. A. (1983). Associative-commutative rewriting.
Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West
Gennany. pp. 940-944.

Dershowitz, N., Jouannaud, J.-P. (1987). Rewrite systems. In: (Meyer, A., Nivat, M., Paterson, M., Perrin, D ..
eds.) Handbook of Theoretical Computer Science, North-Holland, Amsterdam. (In preparation.)

Dershowitz, N., Manna. Z. (1979) Proving tennination with multiset orderings. Commun. ACM 22,465-476.
(Also in Proceedings oj the International Colloquium on Automata. Languages and Programming, Graz.
pp. 188-202 [July 1979].)

Dershowitz. N .. Zaks, S. (1981). Applied tree enumerations. Proceedings of the Sixth Colloquium on Trees in
Algebra and Programming, Genoa, Italy. Springer Lec. Notes Compo Sci. 1I2, 180-193,

Detlefs, D., Forgaard. R. (1985). A procedure for automatically proving the tennination of a set of rewrite
rules. Proceedings of the First International Conference on Rewriting Techniques and Applications. Dijon,
France. Springer Lee Notes Compo Sci. 202, 255-270.

Ehrenfeucht. A .• Haussler, D., Rozenberg. G. (1983). On regularity of context-free languages. Theor. Compo Sci.
27,311-332.

Fages. F. (1984). Le systeme KB: manuel de reference: presentation et bibliographie. mise en (EUvre. Report
R.G.IO.84. Greco de Programmation. C.N.R.S., Bordeaux. France.

Fefennan. S. (1968). Systems of predicative analysis II: Representation of ordinals. l. Symb. Logic 33, 193-220.
Filman. R. (1978). Personal communication.
Forgaard. R. (1984). A program for generating and analyzing term rewriting systems. Report 343. Laboratory for

Computer Science. Massachusetts Institute of Technology. Cambridge. MA. (Master's thesis.)
Friedman. H. (1982). Beyond KruskaI's theorem I-Ill. Unpublished reports, Ohio State University, Columbus.

OH.
Gardner. M. (1983). Mathematical games: Tasks you cannot help finishing no matter how hard you try to block

finishing them. Sci. Am. 24, 12-21.
Gentzen. G. (1969). New version of the consistency proof for elementary number theory. In: (Szabo. M. E ..

ed.) Collected Papers of Gerhard Gent:en, pp. 252-286. Amsterdam: North-Holland. (Originally published

Gnaedig. I. (1986). Preuves de terminaison des systemes de reecriture associatiJs commutatiJs une methode fondee
sur la reecriture elle-meme. These de Troisieme Cycle. Universite de Nancy I. Nancy. France.

Gnaedig, I., Lescanne. P. (1986). Proving tennination of associative rewriting systems by rewriting. Proceedings
of the Eighth Conference on Automated Deduction. Oxford. England. Springer Lec. Notes Compo Sci. 230,
52-61.

Termination of Rewriting 113

Gobel. R. (1983). A completion procedure for globally finite term rewriting systems. Proceedings of an .VSF
Workshop on [he Rel1'ri[e Rule Laboratory, Schenectady. pp. 155-203. (Available as Report

General Electric Research and Development [April 1984].)
Gorn. S. (1967). Handling the growth by definition of mechanical languages. Proceedings of [he Spring Joint

Compu[er Conference. pp. 213-224.
Gorn. S. (1973). On the conclusive validation of symbol manipulation processes (How do YOU know it has to

1. Franklin Ins[. 296,499-518. .
Guttag. J. V .. Kapur. D .. Musser. D. R. (1983). On proving uniform termination and restricted termination of

rewriting systems. SIAM J. Comput. 12, 189-214.
Haussler. D. (1985). Another generalization of Higman's well quasi order result on a finitely generated free

monoid. Discrete Math. 57, 237-243.
Higman. G. (1952). Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (JJ 2, 326-336.
Hsiang, 1.. Dershowitz. N. (1983). Rewrite methods for clausal and non-clausal theorem proving. Proceedings

of the Tenth EATCS International Colloquium on Automata. Languages and Programming. Barcelona.
Spain. Springer Lec. Notes Compo Sci. 154, 331-346.

Huet. G. (1980). Confluent reductions: Abstract properties and applications to term rewriting systems. J. Assoc.
Compo Mach. 27, 797-821. (Previous version in Proceedings of the Symposium on Foundations of Computer
Science. Providence, RJ. pp. 30-45 [October 1977].)

Huet. G .• Lankford. D. S. (\ 978). On the uniform halting problem for term rewriting systems. Rapport Laboria
283. Institut de Recherche en Informatique et en Automatique, Le Chesnay. France.

Huet, G .. Levy. J.-J. (1979). Call by need computations in non-ambiguous linear term rewriting systems. Rapport
Laboria 359. Institut National de Recherche en Informatique et en Automatique. Le Chesnay. France.

Huet. G .. Oppen. D. C. (1980). Equations and rewrite rules: A survey. In (Book. R .. ed.) Formal Language
Theory: Perspectives and Open Problems. pp. 349-405. New York: Academic Press.

Hullot. J.-M. (1980). Canonical forms and unification. Proceedings of the Fifth Conference on Automated
Deduction. Les Arcs. France. pp. 318-334.

Iturriaga. R. (1967). Contributions to mechanical mathematics. Ph.D. thesis, Department of Computer Science.
Carnegie-Mellon University, Pittsburgh. PA.

Jefferson. D. R. (1980). Type reduction and program verification. Ph.D. thesis. Department of Computer Science.
Carnegie-Mellon University. Pittsburgh, PA.

Jouannaud, J.-P .. Kirchner, H. (1984). Construction d'un plus petit ordre de simplification. RAIRO Theor.
Inform. 18, 191-207.

Jouannaud. J.-P .. Kirchner. H. (1986). Completion of a set of rules modulo a set of equations. SIAM J.
Comput. 15, 1155-1194.

Jouannaud, J.-P., Lescanne. P. (1982). On multi set orderings. In! Proc. Lett. 15,57-63.
Jouannaud. J.-P., Lescanne. P., Reinig, F. (1982). Recursive decomposition ordering. Proceedings of the Second

IFIP Workshop on Formal Description of Programming Concepts. Garmisch-Partenkirchen, West Germany.
pp.331-348.

Jouannaud. J.-P .. Munoz, M. (1984). Termination of a set of rules modulo a set of equations. Proceedings of
the Seventh International Conference on Automated Deduction, Napa, CA. Springer Lec. Notes Compo
Sci. 170, 175-193.

Kamin, S., Levy. J.-J. (1980). Two generalizations of the recursive path ordering. Unpublished note, Department
of Computer Science, University of Illinois, Urbana, IL.

Kapur, D., Siva kumar, G. (1983). Experiments with and architecture of RRL, a rewrite rule laboratory.
Proceedings of an NSF Workshop on the Rewrite Rule Laboratory. Schenectady. NY. pp. 33-56. (Available
as Report 84GENOO8, General Electric Research and Development [April 1984].)

Kapur. D .. Narendran, P., Sivakumar, G. (1985). A path ordering for proving termination of term rewriting
systems. Proceedings of the Tenth Colloquium on Trees in Algebra and Programming, Berlin, West
Germany. Springer Lec. Notes Compo Sci. 185, 173-185.

Kent, C. F., Hodgson, B. R. (1986). Extensions of arithmetic for proving termination of computations. Report
86-10, Departement de Mathematiques, Universite Laval, Quebec, Quebec.

Kirby. L.. Paris, J. (1982). Accessible independence results for Peano arithmetic. Bull. London. Math. Soc. 14,
285-293.

Klop. J. W. (1980). Reduction cycles in combinatory logic. In: (Seldin, J. P .. Hendley. R., eds.) To H. B. Curry.
Essays on Combinatory Logic. Lambda Calculus and Formalism. pp. 193-214. New York: Academic
Press.

Knuth, D. E. (1973). Fundamental algorithms. In: The Art of Computer Programming. vol. 1. 2nd edn. Reading,
MA: Addison-Wesley.

Knuth, D. E., Bendix, P. B. (1970). Simple word problems in universal algebras. In: (Leech, J., ed.)
Computational Problems in Abstract Algebra. pp. 263-297. Oxford: Pergamon Press.

Krishnamoorthy, M. S., Narendran, P. (1984). A note on recursive path ordering. UnpUblished note, General
Electric Corporate Research and Development, Schenectady, NY.

Kruskal, J. B. (1954). The theory of well-partially-ordered sets. Ph.D. thesis, Princeton University, Princeton,
NJ.

114 '-"achum DershowItz

Kruskal. 1. B. (1960). Well-quasi-ordenng. the Tree theorem. and Vazsonyi's conjecture. Trans. Amer. Jfalh.
Soc 95,210-225.

Kruskal. 1. B. (1972). The theory of well-quasi-ordering: A frequently discovered concept. J. Comb. Theor. Ser.
A 13. 297-305.

Lankford. D S (1975a) Canonical algebraic simplijicalion in compulational logic. Memo ATP-25. AutomatIc
Theorem Proving Project. Cniversity of Texas. Austin. TX.

Lankford. D S (1975b). Canonical inference. Memo ATP-32. Automatic Theorem Proving ProJect. Universitv
of Texas. Austin. TX. -

Lankford. D S. f 1976). A finite termination algorithm. Internal memo. Southwestern L'niversity. Georgetown. TX.
Lankford. D. S. (1977). Some approaches to equality for compulalional logic: A survey and assessment. Memo

ATP-36. Automatic Theorem Proving Project. University of Texas. Austin. TX.
Lankford. D. S. (1979). On proving term rewriting systems are :Voetherian. Memo MTP-3. Mathematics

Department. Louisiana Tech. University. Ruston. LA. (Revised October 1979)
Lankford. D. S .. Musser. D. R. (1978). A finite termination criterion. Unpublished draft. Information Sciences

Institute. University of Southern California. Marina-<iel-Rey. CA.
Laver. R (1978). Better-quasi-orderings and a class of trees. In: (Rota, G.-C. ed.) Studies in Foundations and

Combinatorics. pp. 31-48. New York: Academic Press.
Levy. 1.-1. (1980). Problem 80-5. J. Algorithms 1. 108-109.
Lescanne. P. (1981). Two implementations of the recursive path ordering on monadic terms. Proceedings of the

.Vineteenth Allerton Conference on Communication. Control. and Computing. Monticello. IL. pp. 634-643.
Lescanne. P. (1982). Some properties of decomposition ordering. A simplification ordering to prove termination

of rewriting systems. RAIRO Theor. Inform. 16,331-347.
Lescanne. P. (1983). Computer experiments with the REVE term rewriting system generator. Proceedings of the

Tenth ACJf Symposium on Principles of Programming Languages. Austin. TX. pp. 99-108.
Lescanne. P. (1984). Uniform termination of term-rewriting systems: Recursive decomposition ordering with

status. Proceedings of the Ninth Colloquium on Trees in Algebra and Programming, pp. ! 81-194. Bordeaux.
France. Cambridge: Cambridge University Press.

Lescanne. P .. Steyaert. 1.-M. (1983). On the study of data structures: Binary tournaments with repeated keys.
Proceedings of the Tenth EATCS International Colloquium on Automata. Languages and Programming.
Barcelona. Spain. Springer Lec. Notes Compo Sci. 154,466-475.

Lipton, R., Snyder. L. (1977). On the halting of tree replacement systems. Proceedings of the Conference on
Theoretical Computer Science. University of Waterloo. Waterloo. Canada. pp. 43-46.

Manna, Z. (1968). Termination of algorithms. Ph.D. thesis. Department of Computer Science. Carnegie-Mellon
University, Pittsburgh. PA.

Manna. Z. (1974). Mathematical Theory of Computation. New York: McGraw-Hill.
Manna. Z .• Ness, S. (1969). Termination of Markov algorithms. Unpublished manuscript. Department of

Computer Science, Stanford University, Stanford, CA.
Manna, Z .. Ness, S. (1970). On the termination of Markov algorithms. Proceedings of the Third Hawaii

International Conference on System Science. Honolulu. HI, pp. 789-792.
Martin, U. (1986). Multiset Orderings. Technical Report UMCS-86-5-1, Department of Computer Science.

L'niversity of Manchester. Manchester. England.
Metivier, Y. (1983). About the rewriting systems produced by the Knuth-Bendix completion algorithm. In!

Proc. Lett. 16,31-34.
Metivier. Y. (1985). Calcul de longueurs de chaines de reecriture dans Ie monoide libre. Theor. Compo Sci. 35,

71-87.
C. St. 1. A. (1963). On well-quasi-ordering finite trees. Proc. Cambridge Phil. Soc. 59, 833-835.
C. St. J. A. (1965). On well-quasi-ordering infinite trees. Proc. Cambridge Phil. Soc. 61,

697-720.
M. H. A. (1942). On theories with a combinatorial definition of 'equivalence'. Ann. Jlath. 43,

223-243.
O·Donnell. M. J. (1977). Computing in systems described by equations. Springer Lec. Notes Compo Sci. 58.
Okada. M. (l986a). An extended Kruskal theorem with a restricted gap condition for the transfinilelJ'labeledfinile

trees. Cnpublished report. Department of Mathematics. University of Illinois, Urbana. IL.
Okada. M. (I 986b). Ackermann's ordering and its relationship with ordering systems of term rewriting theory.

Proceedings of the Twenty-fourth Allerton Conference on Communication. Control. and Computing.
Monticello, IL.

Okada, M., Takeuti, G. (1986). On the theory of quasi ordinal diagrams. In: (Simpson, S. G., ed.) Logic and
Combinatorics. Providence. RI: American Mathematical Society.

Paulson. L. C. (1984). Constructing recursion operations in intuitionistic type theory. Technical Report 57.
Computer Laboratory, University of Cambridge. Cambridge, UK.

Pettorossi. A. (1978). A property which guarantees termination in weak combinatory logic and subtree replacement
systems. Report R.78-23. Instituto di Automatica. Universita di Roma, Rome. Italy.

Pettorossi, A. (1981). Comparing and putting together recursive path orderings, simplification orderings and
non-ascending property for termination proofs of term rewriting systems. Proceedings of the Eighth

,
.,

;' S'.mbolic COmpWalLOfl (1987) -'. 10

Corrigendum

Termination of Rewritinl
NACHUM DERSHOWlTZ

J. Symbolic COmpUlQlio" (1987) 3, 69·116.

(1) The laslline on pap 78 should reid:

(2) The second senrace 011 PIP 80 sbould reid:

The polynomial

Z2 + y2 + 2zy _ z2 _,2 - Z - 2,-c

(with z for 't(a). y (or 't@).1DCi c (or't(2» is DO lea d.a

(assnmi"l dill z c). The JaIler is ewmuaUy paIiIiYe. siace ill two cIermIms. 2y - 2 and
2.r-2, are.

In general. the tal (or evemuaIly polynomials (I Mlkford. 1976) only helps
when there are no consams in me polynomial (Lac 1987).

(3) AIu:r me secaad sealalCe of sectica .. (pip 80). die foDowiDa sboaId .. been swed
explicidy.

(Acwally, ID ordaina over hed-arity tams is "well-founded for daiVlliaas" if. lad only if.
it is well·(ounded CMr term CICJMIucted !laD alllile """ber fUlic" symbalL)

•) Theorem 9 (page 82) should read:

THEORE.\i 9 (Dershowitz. 1982a). AllY lOtai mon.otonic orfUrillg Oil jr:ud-ariry Itnns is
founded/or fUrivatiollS if. and ollly if. it is a simplificatioll orfUrillg.

The essence of the "only-if" direction appears in Plaisted (l978a).

(5) The fifth sentence of the example on page 91 should read:

'Nhichever sequence becomes a proper subsequence of the other (or becomes smaller than a
subsequence of the cxher) is smaller.

(6) Definition 25 (page 110) as stated (adapced from Dershowitz. 1981) does not work (Pur-
dom. 1987). Instead. it should read:

DEFINI'IlON 25 (Purdom. 1987). A dcrivaUOII tl =0 t1 =0 ••• =0 Ij =0 ••• =0 It =0 ... [oops
if some instance of It has a subcam that is the same as a less ex' equally general insWlce of II
for some j < /c.

RetereDCfS

Dersbowitz. N. (1981). TermiDarion of linear rewriting syscems (Preliminary version).
Procetdillgs of tJw EighlJa EATCS IlIler'1UllioMl ColloquUmc 011 Automara.
LaltgJIIJgu a1I/J Progrtl1lflfti1tg. Acre. 1snIe1. SpriIIler Lee. Notes Compo Sci. 115.
4484S8.

Dersbowia. N. (1982D). Orderings for tam-rewriting systemS. Tlr4o,. Compo Sci. 17. 279-
301. (PreviouI venial appeared in Proueditals of tJw Symposium 011 FountJa-
tioILr ofCo"'Pl*' ScWlIU. San Juan. PR. pp. 123-131 [October 1979].)

Lankford. D. S. (1976). temriNuioll algorithm. Internal Memo. Southwestern Univere

sit)'. Oearge&lDWft, TIC.

Lescarme. P. (1987). Personal communication.

PlaiSUld. D. A.. (1978G). WeU-/o1IIIMd o,.rillls fo, proviIIg ce1'1ffiltlJtioll of systems of rewrite
,W. Report R-78-932. Depanment of Computer Science. University of Illinois.
Urbina. II-

Purdom. P. W., Jr. (1987). DeIectiq I..oopiDa SimpWicalioas. ProcftdUags of 1M SteOM
11IlmtIIIimtIJl COI'I/erDtU Oil RewritiIIg TtcMiques tJ1td ApplicatiollS. Bordeaux.
France. Sprillger Lee. Compo Sci. 256, 54-61.

