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Results from the rich and well-developed theory of well-quasi-ordering 
have often been rediscovered and republished. The purpose of this paper is to 
describe this intriguing subject. To illustrate the theory, here are two definitions 
and an elementary result. A partially ordered set is called well-partially-ordered 
if every subset has at least one, but only a finite number, of minimal elements. 
For sequences s and t, we define s < t if some subsequence of t majorizes s 
term by term. Then the space of all finite sequences over a well-partially-ordered 
set is itself well-partially-ordered. 

INTRODUCTION 

Results from the rich and well-developed theory of well-quasi-ordering 
have been rediscovered and published many times over the last 20 years 
(most recently by Haines [6] in this journal). The purpose of this paper is 
to describe this intriguing subject, so that future work will not needlessly 
repeat what is known, but can push forward into new areas. 

To illustrate the theory, here are two basic definitions and an elementary 
result (which is stronger than Haines’ theorem). A partially ordered set 
is called well-partially-ordered if every subset has at least one, but no more 
than a finite number, of minimal elements. For sequences s and t, we define 
s < t if some subsequence of t majorizes s term by term. Then according 
to the Finite Sequences Theorem, the space 9(X), of all finite sequences 
over a well-partially-ordered set X, is itself well-partially-ordered. (To 
get Haines’ result, specialize X to be finite set, with the partial order 
defined by equality). 

To indicate how highly developed the theory is, we briefly summarize 
one line of development here. (For details, see below. Note that, except for 
technical details, well-quasi-ordered is the same as well-partially-ordered.) 
In 1954 Richard Rado [29] showed that transfinite sequences, over a finite 
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set, of length wa, are well-quasi-ordered (wqo). In 1959 Erdiis and Rado [3] 
extended this result to somewhat longer sequences, and in 1965 Crispin 
Nash-Williams [25] proved it for sequences of any length. In 1968 E. C. 
Mimer [20] proved that transfinite sequences of a certain length over 
a well-ordered set are wqo. Later in 1968 Nash-Williams [27], using a con- 
cept he invented in 1965 [24], namely, “better-quasi-ordered” (bqo), and 
has proved a result which subsumes all those described above: transfinite 
sequences (of any length) over a bqo set are bqo. In 1969 Richard Laver 
[16, 171 made a considerable further extension to generalized transfinite 
“sequences” in which the index set is not well-ordered but is instead a 
countable union of scattered order types. And this is not the only direction 
in which the theory has moved. 

BACKGROUND 

A quasi-ordering (qo) means any reflexive, transitive relation. If, in 
addition, x < y < x implies x = y, then we have a partial-ordering (PO). 
At the casual level it is easier to work with po than qo, but in advanced 
work the reverse is true. Any qo generates a po on the equivalence classes 
(x = y if x < y < x). By means of this connection, all definitions and 
theorems for one domain can be translated into the other domain. When 
translating from po to qo it is necessary to add the word “non-equivalent” 
at various places, and to interpret < as implying non-equivalence. The 
following definitions of wqo all serve to define well-partial-order (wpo) 
as well, if we assume po to start with. 

A wqo is a qo in which (a) every strictly descending sequence is finite, 
and (b) every set of pairwise incomparable elements is finite. An equivalent 
definition of wqo, whose analogy with the concept of well-order justifies 
the name used, is a qo in which every non-empty set has at least one but 
no more than a finite number of (non-equivalent) minimal elements. 
Another equivalent definition is a qo in which every infinite sequence 
has an infinite ascending subsequence. Still other elegant definitions have 
been given. 

Many properties of wqo may be easily proved, such as: (1) if X wqo, 
then any subset of X and any homomorphic image of X is wqo; (2) wqo 
is preserved under finite unions and finite Cartesian products; and (3) X 
well-ordered implies X wqo. 

We shall use P’(X), the class of all sequences, (both finite and trans- 
finite), of elements from X. If Xis qo, define a relation on Y(X) as follows: 
s < t if there is a subsequence of t which majorizes s term by term. 
This relation is easily proved to be a qo. (If the ordering on X is a po, the 
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relation on Y(X) need not be a po, however. It is considerations like this 
which make qo more convenient to work with than PO.) Note that Y(X) 
directly extends g(X) with the same qo. 

We shall also use 9(X), the class of all subsets of X, with this qo: 
X, < X, if for every x1 in X1 there is an xZ in X, such that x1 < x2 . 

As a direct generalization of Y, 9,8, and many other operators which 
have appeared in the literature, suppose +Y = (U) is a class of sets. (Some- 
times each U may be assumed to be qo or have some other structure.) 
Suppose that certain functions f from U into a qo set are specified as 
acceptable. Then e(X) consists of all acceptable functions f: CJ -+ X for 
all U in %. Among conditions which have been used to specify acceptability 
are: (a) f is l-to-l, (b) f is finitary (that is, the range off contains only a 
finite number of non-equivalent elements), (c)fis a homomorphism (that is, 
f preserves <), and (d) the null condition (that is, all functions are 
acceptable). 

To define the order on e(X), suppose certain mappings between sets 
in @ are specified as proper. Suppose that the composition of two proper 
mappings is always proper, and that the identity map on every U is proper. 
Then it is easy to see that the following definition yields a qo: 

if there is a proper map p : 0; + UZ such that fi(u) < f,(p(u)) for all u 
in Ul . Most commonly, proper maps are all isomorphic embeddings: 
sometimes they are all mappings, or all homomorphisms. 

To realize Y and 9 in this framework, we let Y be a class of well- 
ordered sets containing at least one of every ordinality, and we let F be 
a similar class of finite well-ordered sets. We let all functions be acceptable, 
and we let isomorphic embeddings be proper. To realize 9, we let B be 
a class of (unstructured) sets having one of every cardinality. We let all 
l-to-l functions be acceptable, and we let all functions be proper. 

HISTORY 

A forerunner to the concept of well-quasi-ordering was invented by 
Georges Kurepa [14] in 1937. Writing in French, he defined a set to be 
“partiellement bien ordonnt5” (partially well ordered) if every linearly 
ordered subset is well-ordered. Though this poses no restriction on the size 
of a set of pairwise incomparable elements, as does well-partial-ordering, 
the size of such sets explicitly enters into his paper. Thus the relationship 
is close, even though Kurepa never uses quite the present concept. 
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Another forerunner to the concept of wqo occurs in a conjecture made 
by Andrew Vazsonyi, in the 1940’s I believe, and spread by Paul ErdGs. 
Vazsonyi conjectured that any infinite collection of finite trees must contain 
some pair of trees such that one is homeomorphically embeddable in the 
other. In view of the fact that a strictly descending sequence of trees must 
trivially be finite, this conjecture is easily equivalent to stating that the 
go of finite trees by homeomorphic embedding is a wqo. Since Vazsonyi 
never published his ideas, it is not clear how close he approached to the 
concept of wqo. Vazsonyi’s conjecture was subsequently proved by 
Kruskal [13] in 1954, and proved much more elegantly by Nash-Williams 
[21] in 1963. Independently, in 1960, a proof of the same theorem was 
announced by Tarkowski [30]. 

Still another forerunner to the concept of wqo occurs in a problem 
proposed by Paul ErdSs [2] in 1949. He starts with an infinite ascending 
sequence of positive interges. He supposes that any infinite subsequence 
must contain two integers such that one divides the other. His problem 
was to prove that the set of all (multiple) products (that is, the multi- 
plicative closure) of the given sequence has the same property as the 
original sequence. Using the qo based on divisibility, tthis comes to 
assuming that the given set of integers is wqo, and proving that the set 
of all products is also. (He indicates that this generalizes a well-known 
result by Dickson.) 

The first clear use of wqo appeared in two simultaneous though inde- 
pendent articles in 1952. Graham Higman 171, who calls it “the finite basis 
property,” gave the first significant development of the theory and obtained 
a proof of ErdGs’s problem. However, his paper places greater emphasis 
on exploiting the “finite basis property” to make a very nice generalization 
and simplification of work by Neumann [28] and others which used 
formal “power series” to embed group-algebras and similar structures in 
division rings. Incidentally, Higman refers to an unpublished manuscript 
of ErdGs and Rado which was probably an early version of [29] or of [4]. 

Simultaneously with Higman, Erdiis and Rado [4] published a solution 
to Erdos’s problem. In a final “note” they introduce the phrase “partially 
well ordered” and state without proof a result which says essentially that 
finite sets from a wpo set are wpo. They state that Higman and B. H. 
Neumann, independently of each other and of themselves, proved 
essentially that finite sequences from a wpo set are wpo. 

The next clear use of wqo is given in 1954 by Rado [29], who uses the 
phrase “partial well-ordering.” His main result, quoted above, was that 
finitary sequences of length < w2 over a wqo set are wqo. 

Another independent invention of wqo was made by Kruskal [I I] in 
1954. His stimulus was Vazsonyi’s conjecture, which he heard from Erdiis. 
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At a critical point in his development of a theory of wqo, a second chance 
meeting with Erdos led to his learning of Higman’s paper. This could be 
reinterpreted to yield a limited form of Vazsonyi’s conjecture, namely, 
the case in which the finite trees are limited to having degree < some 
fixed bound, Higman’s ideas provided the final clue needed to solve 
Vazsonyi’s conjecture in [13]. 

Still another independent invention of wqo was made in 1960 by Ernest 
Michael [19], who used the phrase “fairly well-ordered.” He proves some 
elementary properties, and refers to a minor topological application of 
his Proposition 1, part (4) by J. Ceder in Lemma 8.5 on page 121 of [l]. 

The last independent invention of wqo occurs in 1969 in the paper by 
Leonard Haines [6], who uses no phrase but simply refers to the fact that 
a set of pairwise incomparable objects must be finite. The objects for which 
the proves this are finite sequences over a finite set. 

Finally we mention some other published work which is related to wqo. 
In 1967, E. S. Wolk [31] defined the “partial ordinal” of a wpo set P to be 
the class of all wpo sets which are isomorphic to P. He developed a theory 
of partial ordinals, using the relation induced on them by the following 
relation on wpo sets: P < Q if P is isomorphic to a lower set in Q. (A 
lower set is defined to be a set such that qa in the set and ql < q2 implies 
q1 in the set.) 

In 1967, writing in French, Pierre Jullien [9] generalized the concept of 
an ordinal slightly to what he called a “surordinal.” He announced several 
results, among which is the statement that the class of “surordinaux” are 
wqo. The relation he uses differs from that of Wolk. (He uses “preorder” 
for qo, and introduces “prebelordre” for wqo.) He motivated these results 
by quoting Roland Fra’isse [5] as making several conjectures about linear 
order types which are “disperse&s” (English, “scattered”). Two of these con- 
jectures together,as he points out, come to the assertion that scattered order 
types are wqo. However the conjectures by Fra1ss.e must be signficantly 
altered to make them match the quotations by Jullien. In 1968, Jullien [lo] 
announced some results on the po set of words from a finite alphabet. 

Further papers by authors already mentioned, particularly Nash- 
Williams, appear in the references. 

PRESENT STATE 

The theory of wqo has a few culminating results of primary importance, 
though they do not of course subsume the whole subject. To state them, 
however, necessarily involves a somewhat complicated but very helpful 
and ingenious concept due to Nash-Williams, namely, better-quasi- 
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ordered (bqo). Bqo is stonger than wqo but weaker than well-ordered, and 
all “naturally occurring” wqo sets which are known are bqo. 

Laver [17] has given a good explanation of bqo, on which we draw. 
Recall that P(X) consists of all subsets of X, and consider X as part of 
Y(X) in the obvious way. We define P’*(X) for every ordinal a in the 
natural way, namely, .p~+l(X) = Y(P(X)), and Y’“(X) = the union over 
p < X of gO(X), for h a limit ordinal. Then as Laver points out, the Nash- 
Williams definition of X bqo is equivalent to assuming that P(X) is wqo, 
where Q is the smallest uncountable ordinal. 

If P’“(X) is not wqo, then there is an (ordinary) infinite sequence over 
P(X) which is nowhere ascending (that is, every term 4 every later term). 
Each term of the sequence is either an element of X, or a set of elements, 
or a set of sets, or so on transfinitely. For each term which is not at the 
very lowest level, it is possible to pick a sequence of its elements with 
certain properties; from the resulting structure, it is possible to repeat this 
process; and so on through o similar steps, until only elements at the very 
lowest level are present. The resulting structure is what the following 
definition rules out. 

To define bqo requires certain preliminaries. If A is any set having a 
binary relation R (not necessarily transitive), and iff : A -+ X is a function 
into a qo set X, then f is called good if there exist two elements a, and a2 
in A such that a,Ra, and f(a,) <f&J. To see how this relates to our 
previous concepts, suppose for the moment that A consists of the positive 
integers, with R being the usual relation <. Then a function f : A + X 
is an ordinary infinite sequence. It has been proved in several papers 
that X is wqo if and only if every infinite sequence over X (that is, every 
f: A -+ X) is good. 

Let A* consist of all finite, strictly ascending sequences of positive 
integers. (Certain subsets of A* are going to play the role of A above.) 
Define a binary relation Q on A * as follows: a Q b if and only if there is 
a (strictly ascending) sequence of integers i1 ,..., i,, , and an m < rz, such 
that a is iI ,..., i, and b is iz ,..., i, . Note that, for the subset of A* consisting 
of one-element sequences, 4 reduces to the ordinary relation <. 

A subset A of A* is called a block if every ordinary infinite, strictly 
ascending sequence of positive integers has an initial segment in A. X is 
called better-quasi-ordered (bqo) if, for every block A, all functions f: 
A -+ X are good. Since the one-element sequences form a block, it is clear 
that bqo implies wqo. Bqo is in fact a substantially stronger property than 
wqo, as we see from the following. 

Let J(X) consist of all ordinary infinite sequences over X. Obviously 
P(X) wqo implies P-i(X) wqo. It follows from Nash-Williams’ work 
that X bqo implies P(X) wqo (in fact bqo) for all finite 12. However, for 
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every finite n, Kruskal [ll] constructs a space J, such that P(Jn) is not 
wqo but P-l(JJ is wqo. Thus the property that P(X) is wqo actually 
has different strength for every n, and this infinite chain of distinct proper- 
ties is intermediate between X being wqo and X being bqo. 

We restate here more precisely a culminating result from Laver [17] 
which has already been referred to in the introduction. Let A4 be any 
linearly ordered set which is a countable union of “scattered” subsets 
Mi (that is, no Mi contains a subset isomorphic to the rationals). Let 
J!’ be the class of all such M, let all functions be acceptable, and let a map 
f : Ml --f M, be proper if it is an isomorphic embedding. Then Laver’s 
theorem asserts that, if X is bqo, A(X) is bqo also. 

This powerful result settles in a very strong way a conjecture by Fraisst 
[S], often described as equivalent to stating that & is wqo, which attracted 
considerable attention among set theorists in the 1950’s. Furthermore it 
subsumes an already powerful result by Nash-Williams [27] that X bqo 
implies P’(X) bqo, since well-ordered sets are scattered. 

Laver’s theorem does not, however, subsume a closely related result 
from Nash-Williams [25] that Yf(X), the space of finitary sequences over 
X, is wqo if X is wqo. 

Another culminating result by Nash-Williams is that the space Y of all 
trees (finite and infinite) is bqo, where the ordering is induced by homeo- 
morphic embedding. Actually, Laver has generalized Nash-Williams’ 
proof somewhat to get the result that X bqo implies Y(X) bqo (where the 
proper maps are homeomorphic embeddings, of course). These results 
subsume Kruskal’s result, which is that the space of finite trees is wqo, 
and proves more than his conjecture, which was that the space of all 
trees is wqo. 

The theorems involving bqo demonstrate a familiar but very important 
principle of combinatorics, namely, that it is sometimes easier to prove 
a stronger property by recursion than a weaker one. It is now clear, 
after the fact, that wqo was the wrong property to use in the necessary 
recursion, and that the stronger property of bqo is much easier to handle. 
The devising of bqo as the appropriate property to use in these theorems 
was a very significant part of Nash-Williams’ contribution. Of course, 
the fashioning of wqo was an earlier illustration of the same principle. 

THE FUTURE 

Last, it seems appropriate to mention the most important unsolved 
problem in this field. It was also conjectured by Vazsonyi that graphs of 
degree 3 are wqo. (This problem seems quite hard enough in the finite 
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case, so let us restrict this conjecture to finite graphs.) Despite several 
attacks, very little is known in this direction. Kruskal attempted to work 
with a restricted class of graphs of degree 3 called “ladders,” namely, those 
which can be laid out as two parallel paths, with edges connecting their 
vertices in some permutation. By distinguishing the two paths and the 
two ends of such graphs, they come into a l-to-l correspondence with 
permutations. However, Laver has shown by a simple (unpublished) 
counterexample that the permutations are not wqo. Unfortunately, this 
example does not work for the graph-theoretic situation. Nash-Williams on 
the other hand has generalized the concept of homeomorphic embedding 
to what he calls “immersions.” Essentially, this permits the paths into 
which distinct edges are mapped to cross each other at “unimportant” 
vertices. He conjectures that, under the qo defined by immersion, the class 
of all finite graphs is wqo. He points out that, for both graphs of degree 3 
and for trees, an immersion must be an embedding, so that his conjecture 
would subsume the wqo of both graphs of degree 3 and of trees. 

As an indication of what will not happen in the future, we mention that 
a mimeographed paper by Jenkyns and Nash-Williams [8] contains 
counterexamples to several attractive conjectures. 
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