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YE  OLDE  ARTYE  OLDE  ART

OF  TERMINATION  PROOFSOF  TERMINATION  PROOFS
• Examples will use a simple functional language
(h   k h th  i  t i t )(hence, we ask whether recursion terminates).

• All values will be natural numbers.

add(x,y) = 
if 0 h  if x=0 then y

else 1+add(x-1, y)

Argument: 1st parameter decreases in every call.
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A slightly harder one

add(x,y) = ( ,y)
if x=0 then y

else 1+add(y, x-1)else add(y, x )

Argument: 1st parameter decreases after two calls.
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GCD program
gcd(x,y) = 

if xd1 or x=y then xif xd1 or x=y then x
else if x<y then gcd(x, y-x)

else gcd(y  x y)else gcd(y, x-y)

Argument: larger of param’s decreases in every call.
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Ackermann’s function
ack(x,y) = 

if x=0 then y+1
else if y=0 

then ack(x-1, y)
else ack(x-1, ack(x, y-1))

Argument:Argument:

In every call, either x decreases or x stays  
put and y decreasesput and y decreases.

� the pair ¢x,y² decreases lexicographically.
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Summary
All these examples (and many others) are based 
on impossibility of infinite descenton impossibility of infinite descent

In every (hypothetical) chain of calls, 
s thi  is sh  t  d s  i d fi it l  something is shown to decrease indefinitely, 
which cannot really happen (because it’s taken 
from a well-founded order)from a well founded order).

Ingenuity is required either to define that 
“something” or to show the infinite descentsomething or to show the infinite descent
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N t  th  t  tiNote the two options:

• A (complex) combination of the data decreases A (complex) combination of the data decreases 
certainly in every step.
• (sum, pair of values…) ranking functionp

C bi ti s  t sid d  b t th  f f 

g

• Combinations are not considered, but the proof of 
descent may be more clever
• (consider two consecutive calls )(consider two consecutive calls…)

analysis of paths
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The SCT approachThe SCT approach
[Lee  Jones & B   POPL 2001][Lee, Jones & B,  POPL 2001]

subject programsubject program

initial analysisinitial analysis

 t f h

SCT is a purely 

a set of graphs

SCT tester p y
combinatorial problem.

SCT tester

“terminating!”
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Products of initial analysis
Control-Flow Graph:  possible transitions among 
“locations” in a programlocations  in a program.

f gg

F ti l mmi  t xt:Functional programming context:
functions, calls

Imperative context:
flow-points,  statements / basic blocks
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Size-Change Graph

What’s happening in a transition?

Consider call:  add(x,y) = …add(x-1,y)…

Information: 1st param decreases. 2nd unchanged.

x x old new

y y
means: old > new

old

means: old t new

new
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size-change graphs

x x
gcd(x,y) = …gcd(y,x-y)…

y y

ack(x,y) =… ack(x-1, ack(…))
x x

y y
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Analyzing SCT

Size-Change Graphs “sit” on arcs of the CFG

f gf g
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Multipaths
A multipath results of concatenating SCG’s along

 CFG tha CFG path.

Example: a loop of add (2nd ver ) looks like that:Example: a loop of add (2nd ver.) looks like that:

xx

y

x x x

y y y y

Size-Change Termination19



Threads
A thread is a (infinite) path in the multipath.

A thread is infinitely descending if it has 
infinitely many down-arcs.

x

infinitely many down arcs.

x

y

x x x

y y y y
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SCT condition

A CFG/SCG-set satisfies SCT if every 
infinite multipath contains an infinitely 
descending thread.

This criterion is a sufficient condition for 
program terminationprogram termination.

Assumptions:
Correct (safe) program representation
Well-founded data  (no infinite descent)
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An Example: ack

k( ) k( 1  k( ))
x x

ack(x,y) =… ack(x-1, ack(…))
y y

x x
ack(x,y) =… ack(x, y-1)

x

y

x

yy y
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Is SCT a decidable problem?

Proof #1:  reduction to a question on Büchi automata.

Proof #2: the Closure Algorithm.

h   h  l  l  f  

THM: the SCT problem is PSPACE-complete  

What is the complexity class of SCT ?

THM: the SCT problem is PSPACE complete. 

Upper bound: a variant of the Closure Algorithm

Hardness: reduction from a PSPACE-complete classic. 
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Some (Pre)History

LJB      POPL 2001LJB,     POPL 2001

Sagiv,   Logic Prog. Symp. 1991,

Lindenstrauss & Sagiv   ICLP 1997Lindenstrauss & Sagiv,  ICLP 1997,

Codish & Taboch,          JLP 1999

Dershowitz et al.,         AA 2001
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Size-Change Termination22

THM: SCT holds iff in the composition closure,

every idempotent graph has an in-situ down-arc.

The Closure Algorithm

x

y

x

y

in-situ down-arc
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An Example
p(m, n, r) = if r>0 then p(m, r-1, n) else

if n>0 then p(r, n-1, m) else m



The Contibution of [LJB2001]

creation of an abstraction boundaryy

subject programj p g

initial analysis

a set of graphs
SCT is a purely 
combinatorial problem.

SCT tester
¾solid theory

¾it’s not about Prolog
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The next decade

• Contributions byy
Avery, Bohr, Codish, Dershowitz, Fogarty, 
Heizmann  Giesl  Jones  Krauss   Lagoon  Lee  Heizmann, Giesl, Jones, Krauss,  Lagoon, Lee, 
Lindenstrauss, Manolios, Moyen, Podelski, 
Rybalchenko  Sagiv  Schneider-Kamp  Serebrenik   Rybalchenko, Sagiv, Schneider Kamp, Serebrenik,  
Sereni, Stuckey, Thiemann, Vardi, Vroon …
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The next decade

• Systems applying SCT

• Better understanding the theory, in 
particular in a larger context of termination particular in a larger context of termination 
analysis
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Semantics forSemantics for
Termination Analysisy

(e.g., Codish-Taboch 99 for Prolog)

STEP 1:S E  
A semantics [| � |]bin that maps a program into its 

(i fi it ) s t f “t siti s”(infinite) set of “transitions”
Program P is terminating iff there is no infinite g g
chain in [| P|]bin

STEP 2:  check it



Abstract Semantics forAbstract Semantics for
Termination Analysisy

STEP 1:
An abstraction that maps a program into a (finite) 
set P# of “abstract transitions” (an abstract (
program)
Abstract programs have a semantics that super-Abstract programs have a semantics that super-
approximates the semantics of the source program.
If P# is terminating then P is.

#STEP 2:  forget about P and study P# instead.



Abstract Programs forAbstract Programs for
Termination Analysisy

1. Define the abstract state space + .
A typical state: (f, x1 ,..., xn)

(add, 5, 4)

2 Choose a language for describing 2. Choose a language for describing 
transitions in +u+.



append(x,y) = 
  fcase x of

[] => y
h::t =>  h::append(t, y)

concrete state:   (append, [l,i,s,t], [a,n,o,t,h,e,r])

abstract  state:   (append, 4, 7)
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A language to describe A language to describe 
transitionstrans t ons

• Fix a logical theoryg y
• Fix a class of formulas for this theory

h  d f  l  that define relations over
x  x x’  x’x1 ,..., xn , x 1 ,..., x n

(state and new state)( )
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Size-Change Graphs
gcd(x,y) o gcd(y,x-y)

x xx

y

x

yy y

x > y’ � y � x’

ranking functions II33



The Size-Change Graph abstraction is based 
on the theory of well-ordered setson the theory of well ordered sets

and its transitions are conjunctions of atomic 
di t  fpredicates from:

x > y’x  y

x � y’

where x,y are any state variables.
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The Secret of Success

SCT is an abstraction which is useful, but
simple enough to get results.

Result #1:
A “size change program” terminates iff it A size-change program  terminates iff it 

satisfies the SCT condition.

So termination is decidable.
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Highlights of SCT theoryHighlights of SCT theory

• Analysis of complexity (PSPACE complete; 
time complexity 2O(nlog n) )time complexity 2O(n og n) ).

• 3 algorithms to decide termination (and then 
some more) 

• Each algorithm has a storyEach algorithm has a story

36 monotonicity constraints



Algorithm 1 (POPL 2001):

Reduction to a problem about Büchi automataReduction to a problem about Büchi automata.

Fogarty, Vardi (TACAS ‘09,’10) went from 
th  t  t d  th  ffi i  f l ith  there to study the efficiency of algorithms 
on such automata.

Algorithm 2 (POPL 2001): 

the Closure Algorithm.g
Podelski, Rybalchenko (LICS ‘04) formulated a 
general notion of “disjunctive transition g j
invariants” that justifies a whole class of 
similar algorithms.
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Algorithm 3 (CAV ‘09 - LMCS ‘10):

Generating a global ranking functionGenerating a global ranking function

= A combination of the variables that 
d  i  t itidecreases in every transition

So  with SCT   a pro ram terminates  So, with SCT,  a program terminates  �
a ranking function can be generated.
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More expressive abstractions
The Size-Change Graph abstraction: 

th  th  f ll d d tthe theory of well-ordered sets

atomic predicates from:atomic predicates from

x > y’

x � y’

A richer language allows for handling more programs
Size-Change Termination39
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More expressive abstractions
The Monotonicity Constraint abstraction: 

th  th  f ll d d tthe theory of well-ordered sets

atomic predicates from:atomic predicates from

x > y,  x � y,  x = y

where x,y range over all state variables.
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Monotonicity ConstraintsMonotonicity Constraints
x
y

x'
y'

x
y
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y'y
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w
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w'w w

 '  '

w w

y ! x'

y t y'

x d z'

z � z'y t y

w ! w'

z � z

z ! w
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Monotonicity Constraint theoryMonotonicity Constraint theory

• Broadly speaking – all the results from SCT 
theory have been successfully extendedtheory have been successfully extended.

• In particular, termination is decidable, and 
ranking functions can be automatically found.

Codish et al. ’05,  B. ‘09/’10
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• Order constraints over the integers
(instead f a well rdered set)(instead of a well-ordered set)

mid(x,y) = 
if x>=y then y x < x’ � y > y’

else mid(x+1, y-1) x < x’ � y > y’ � x � y

We still have decidability etc• We still have decidability etc.
and a little more (e.g., execution time bounds)
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