• Claim:

Suppose we have an alphabet Σ that is well ordered. Then the corresponding multiset path order is also well ordered.

• Proof:

we know that is WQO. So we need to prove it's total. By induction:

Let f(s₁,...,s_n), g(t₁,...,t_m) be 2 trees. By induction we can assume that the subtrees s_i, t_j are totally ordered.

- If $g(t_1, ..., t_m) \le s_i$ for some $i \Rightarrow t < s$
- If $f(s_1, ..., s_n) \le t_j$ for some $j \Rightarrow s < t$
- Else by induction hypothesis we know that:
 - $g(t_1, \dots, t_m) > s_i$ for all i, and

•
$$f(s_1, \dots, s_n) > t_j$$
 for all j

- So $f > g \Rightarrow s > t$ and $g > f \Rightarrow t > s$
- What about f = g? Also by induction hypothesis:

•
$$\{s_1, \dots, s_n\} \le \{t_1, \dots, t_m\}$$
 or $\{t_1, \dots, t_m\} \le \{s_1, \dots, s_n\}$

- So either:
- $f(s_1, \ldots, s_n) \leq g(t_1, \ldots, t_m)$ or
- $g(t_1, ..., t_m) \le f(s_1, ..., s_n)$
- So given a well ordered alphabet (Σ), we can ask what is the corresponding well order of the multiset path order (relevant to Σ)

The ordinal Γ_0

- Defining ordinals using fix points:
 - Suppose $C \subset \omega_1$ is close and unbound (club)
 - $C = \{ \alpha_{\gamma} \mid \gamma < \omega_1 \}$ an enumeration of C
 - $C' = \{\gamma \mid \alpha_{\gamma} = \gamma\}$ all fixed points of C
 - Fact: C club \Rightarrow C' is also club !!
 - \Rightarrow C'' \supseteq C''' \supseteq ... \supseteq Cⁿ also club !!
 - At limit ordinal we intersect: $C^{\omega} = \bigcap_{n < \omega} C^n$ - club.

- Formally we define:
- $C^0 = C$. $C^{\alpha+1} = (C^{\alpha})'$. $C^{\alpha} = \bigcap_{\beta < \alpha} C^{\beta}$
- For all $\alpha < \omega_1$ we define the function $\varphi^{\alpha}: \omega_1 \to \omega_1$ as the enumeration function of the club C^{α} .

So $\varphi^{\alpha}(\beta)$ is the β element of the set C^{α} .

Is there α such that min C^α = α ?!
 YES !
 Actually {α | min C^α = α} is also a club !!

- To define Γ_0 we start with $C = C^0 = \{\omega^{\alpha} | \alpha < \omega_1\} = \{1, \omega, \omega^2, \dots\}$
- So $\varphi^0(\alpha) = \omega^{\alpha}$
- $C^1 = \{\alpha | \omega^{\alpha} = \alpha\} = \{\epsilon_0, \epsilon_1,\}$ the epsilon numbers
- $\varphi^1(\alpha) = \epsilon_{\alpha}$
- What is the first element of C^2 ?

•
$$\epsilon_0, \epsilon_{\epsilon_0}, \epsilon_{\epsilon_0}, \ldots = \zeta_0$$

• Γ_0 is the first ordinal such that min $C^{\Gamma_0} = \Gamma_0$

• Now we proceed to understand the connection between Γ_0 and multiset path order

- Back to multiset path order. Suppose we have an alphabet with a single element. What will be the corresponding tree order ?
- Instead of a single tree consider a (finite) multiset of trees:
- empty tree \Rightarrow ordinal 0
- (singleton tree) \Rightarrow ordinal 1
- • ordinal n (n singletons) \Rightarrow ordinal n
 - \Rightarrow the ordinal ω

• \Rightarrow the ordinal $\omega^2 = \omega^{1+1}$

- Define function ψ : {*MS* trees} \rightarrow ordinals
- For multiset $\{t_1, \dots, t_n\}$ we define:
- $\psi(\{t_1, ..., t_n)\} = \psi(t_1) + \dots + \psi(t_n)$
- For a tree $t = f(t_1, ..., t_n)$ we define:
- $\psi(t) = \omega^{\psi(t_1) + \psi(t_2) + \dots + \psi(t_n)} = \omega^{\psi(\{t_1 \dots t_n\})}$
- the sum in descending order

• Example:

- $\omega^{\omega^{\omega^2}+1} + \omega^{\omega} + \omega^1$
- Can represent each ordinal $< \epsilon_0$ that way.

- So when the alphabet is {0} the trees with multiset path order go up to ε₀.
- What happen with $\Sigma = \{0,1\}$?
- Definitely a singleton labeled with 1 is above all trees with only label $0 \Rightarrow \epsilon_0$

• This must be $\epsilon_0 \cdot \omega$.

- But applying the function $\psi(\epsilon_0)$ we get : $\psi(\epsilon_0) = \omega^{\epsilon_0} = \epsilon_0$
- So we need a fix here. For $\epsilon_{\alpha} + n$ ordinals we define: $\psi (\epsilon_{\alpha} + n) = \omega^{\epsilon_{\alpha} + n + 1}$
- So: \bullet $\Rightarrow \omega^{\epsilon_0 + 1} = \epsilon_0 \cdot \omega$

- Using all trees with 1 only as leafs we can reach up to ϵ_1
- $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$

• We can define φ for trees like:

• As $\psi(T) = \epsilon_{\psi(T_1) + \cdots + \psi(T_n)}$

- Back to the function φ^{α} we defined before.
- For trees with root labeled 0 the function ψ is (almost) the same as φ^0 .
- For trees with root labeled 1 the function ψ is the same as $\varphi^1.$
- So it's tempting to define the following mapping:

• But then we have problems in all fixed points where $\varphi^{\alpha}(\beta) = \beta$. So we need a fix. Define:

•
$$\psi(\alpha,\beta) = \begin{cases} \varphi^{\alpha}(\beta'+n+1) & \text{if } \beta = \beta'+n \text{ for } \varphi^{\alpha}(\beta') = \beta' \\ \varphi^{\alpha}(\beta) & \text{else} \end{cases}$$

• Consider the tree: $\alpha(T_1, ..., T_n)$

- Define $\Theta(\alpha(T_1, \dots, T_n)) = \psi(\alpha, \Theta(T_1) + \dots + \Theta(T_n))$
- Define also for multiset of trees:
- $\Theta(\{T_1, \dots, T_n\}) = \Theta(T_1) + \dots + \Theta(T_2)$

- Consider the Θ as function from (MS of) labeled trees, labeled by ordinals up to Γ_0
- So: Θ : $MS(TREE) \rightarrow O$ rdinals
- The following holds:
 - 1. $\Theta: MS(TREE) \rightarrow \Gamma_0$
 - 2. Θ is one to one
 - 3. Θ is onto Γ_0
 - 4. Θ is order preserving

1. Θ : $MS(TREE) \rightarrow \Gamma_0$ This follows from the fact that: For every $\alpha, \beta < \Gamma_0$ $\Rightarrow \alpha + \beta < \Gamma_0$ and $\varphi^{\alpha}(\beta) < \Gamma_0$

2. Θ is onto Γ_0

To prove that, we need the following theorem (recursive definition for ordinal up to Γ_0):

For every $\gamma < \Gamma_0$ either:

1.
$$\gamma = 0$$

2. $\gamma = \alpha + \beta$ for some $\alpha, \beta < \gamma, \alpha \le \beta$
3. $\gamma = \varphi^{\alpha}(\beta)$ for some $\alpha, \beta < \gamma$

- Take $\gamma < \Gamma_0$.
- $\gamma = \alpha + \beta$.By induction we have MS for α and MS for β . Unify them to single MS
- More interesting is $\gamma = \varphi^{\alpha}(\beta)$. We'll see that there is a single tree T such that: $\Theta(T) = \gamma$

If we weren't have to fix ψ it would work flawlessly. But:

$$\psi(\alpha,\beta) = \begin{cases} \varphi^{\alpha}(\beta'+n+1) & \text{if } \beta = \beta'+n \text{ for } \varphi^{\alpha}(\beta') = \beta' \\ \varphi^{\alpha}(\beta) & \text{else} \end{cases}$$

Break to cases.

 $\beta = \beta' + n \text{ (possibly } n = 0\text{)}$ 1. Simple: $\varphi^{\alpha}(\beta') \neq \beta' \Rightarrow \Psi(\alpha, \beta) = \gamma$ 2. $\varphi^{\alpha}(\beta') = \beta' \text{ and } n > 0 \Rightarrow \Psi(\alpha, \beta - 1) = \gamma$ 3. $\varphi^{\alpha}(\beta') = \beta' \text{ and } n = 0 \text{ (so } \beta = \beta')$ Take $\delta' = \min\{\delta | \varphi^{\delta}(\beta) \neq \beta\}$

So we must have $\tau \neq \beta$ such that $\varphi^{\delta'}(\tau) = \beta$ (β is a fix point of clubs C^{δ} for $\delta < \delta'$).

$$\Rightarrow \Psi(\delta', \tau) = \beta = \gamma$$

$$\Rightarrow \Theta \text{ is onto } \Gamma_0$$

• To prove the order preserving we need to use the following facts about the φ^{α} functions.

•
$$\beta' < \beta'' \Rightarrow \varphi^{\alpha}(\beta') < \varphi^{\alpha}(\beta'')$$

•
$$\varphi^{\alpha'}(\beta') < \varphi^{\alpha''}(\beta'')$$
 iff
1. $\alpha' = \alpha''$ and $\beta' < \beta''$
2. $\alpha' < \alpha''$ and $\beta' < \varphi^{\alpha''}(\beta'')$
3. $\alpha' > \alpha''$ and $\varphi^{\alpha'}(\beta') < \beta''$

• Using them it's easy to prove analog proposition about ψ :

a)
$$\Psi(\alpha,\beta) > \beta$$

- b) $\beta' < \beta'' \Rightarrow \Psi(\alpha, \beta') < \Psi(\alpha, \beta'')$
- $c) \ \alpha' < \alpha'', \ \beta' < \Psi(\alpha', \beta'') \ \Rightarrow \ \Psi(\alpha', \beta') < \Psi(\alpha'', \beta'')$
- (a) implies that: for each tree $T = \alpha(T_1 \dots T_n)$

• $\Theta(T) > \Theta(T_i)$

• (b) implies that:

<

• $\Rightarrow \quad \Theta(S) < \Theta(T)$

• (c) implies that:

- $\alpha < \beta$ and $\Theta(S_i) < \Theta(T)$
- $\Rightarrow \Theta(S) < \Theta(T)$
- So Θ is order preserving, hence also 1:1.

Ordinal notation for $\gamma < \Gamma_0$

We saw the recursive definition for ordinal up to Γ_0 :

For every $\gamma < \Gamma_0$ either:

1.
$$\gamma = 0$$

- *2.* $\gamma = \alpha + \beta$ for some $\alpha, \beta < \gamma, \ \alpha \leq \beta$
- *3.* $\gamma = \varphi^{\alpha}(\beta)$ for some $\alpha, \beta < \gamma$
- Since always α, β < γ for each γ we get a corresponding MS of trees. The labels in the nodes, are also MS of trees (recursively).

Lexicographic path order

- Same as we proved with multiset, if the alphabet Σ is well ordered, than also the trees compared with lexicographic order are well ordered.
- To analyze it we need to go farther after Γ_0 ordinal.

- We saw the Veblen hierarchy:
- $\varphi(\alpha,\beta) = \varphi^{\alpha}(\beta).$
- We can try to define more fixed point by adding another argument:
- $\varphi(0,\alpha,\beta) = \varphi(\alpha,\beta)$
- $\varphi(1,0,\tau)$ is the τ -th fixed point of the functions $\xi \rightarrow \varphi(\xi,0)$
- So $\varphi(1,0,0) = \Gamma_0$, $\varphi(1,0,\tau) = \Gamma_\tau$
- $\varphi(1,1,\tau)$ enumerates the fixed points of $\varphi(1,0,\tau)$ (that is of $\xi \to \Gamma_{\xi}$)
- $\varphi(2,0,\tau)$ enumerates the fixed points of $\varphi(1,\tau,0)$

 The major property we had in Veblen functions that we used to prove order preserving was:

 $\alpha' < \alpha'' \text{ and } \beta' < \varphi(\alpha'', \beta'') \quad \Rightarrow \varphi(\alpha', \beta') < \varphi(\alpha'', \beta'')$

$$\alpha' = \alpha'' \text{ and } \beta' < \beta'' \Rightarrow \varphi(\alpha', \beta') < \varphi(\alpha'', \beta'')$$

 \Rightarrow first argument is more dominant

• A similar property can be proved for Veblen function with 3 arguments:

Also:

$$\begin{aligned} \alpha' &= \alpha'' \ , \ \beta' < \beta'' \ , \gamma' < \varphi(\alpha'', \beta'', \gamma'') \Rightarrow \\ \varphi(\alpha', \beta', \gamma') < \varphi(\alpha'', \beta'', \gamma'') \end{aligned}$$

• And

$$\begin{aligned} \alpha' &= \alpha'' \ , \ \beta' &= \beta'' \ , \gamma' < \varphi(\alpha'', \beta'', \gamma'') \Rightarrow \\ \varphi(\alpha', \beta', \gamma') < \varphi(\alpha'', \beta'', \gamma'') \end{aligned}$$

 The last property fits exactly to the lexicographic order for trees, where each node has (at most) 2 child's

 $\Rightarrow \qquad \varphi(\alpha, T_1, T_2)$ (need some fixing for fix point cases, as we did with multiset)

- We can go on and on and define recursively veblen functions for *n* arguments.
- Such a φ with n + 1 arguments bring us to an ordinal large enough to contain the trees with node up to n Childs, while the node themself can be labeled (recursively) with such trees.