- Claim:

Suppose we have an alphabet Σ that is well ordered. Then the corresponding multiset path order is also well ordered.

- Proof:
we know that is WQO. So we need to prove it's total. By induction:
- Let $f\left(s_{1}, \ldots, s_{n}\right), g\left(t_{1}, \ldots, t_{m}\right)$ be 2 trees. By induction we can assume that the subtrees s_{i}, t_{j} are totally ordered.
- If $g\left(t_{1}, \ldots, t_{m}\right) \leq s_{i}$ for some $i \Rightarrow t<s$
- If $f\left(s_{1}, \ldots, s_{n}\right) \leq \mathrm{t}_{\mathrm{j}}$ for some $j \Rightarrow s<t$
- Else by induction hypothesis we know that:
- $g\left(t_{1}, \ldots, t_{m}\right)>s_{i}$ for all i, and
- $f\left(s_{1}, \ldots, s_{n}\right)>\mathrm{t}_{\mathrm{j}}$ for all j
- So $f>g \Rightarrow s>t$ and $g>f \Rightarrow t>s$
- What about $f=g$?

Also by induction hypothesis:

- $\left\{s_{1}, \ldots, s_{n}\right\} \leq\left\{t_{1}, \ldots, t_{m}\right\}$ or

$$
\left\{t_{1}, \ldots, t_{m}\right\} \leq\left\{s_{1}, \ldots, s_{n}\right\}
$$

- So either:
- $f\left(s_{1}, \ldots, s_{n}\right) \leq g\left(t_{1}, \ldots, t_{m}\right)$ or
- $g\left(t_{1}, \ldots, t_{m}\right) \leq f\left(s_{1}, \ldots, s_{n}\right)$
- So given a well ordered alphabet (Σ), we can ask what is the corresponding well order of the multiset path order (relevant to Σ)

The ordinal Γ_{0}

- Defining ordinals using fix points:
- Suppose $C \subset \omega_{1}$ is close and unbound (club)
- $C=\left\{\alpha_{\gamma} \mid \gamma<\omega_{1}\right\}$ an enumeration of C
- $C^{\prime}=\left\{\gamma \mid \alpha_{\gamma}=\gamma\right\}$ - all fixed points of C
- Fact: C club $\Rightarrow C^{\prime}$ is also club !!
- $\Rightarrow C^{\prime \prime} \supseteq C^{\prime \prime \prime} \supseteq \ldots \supseteq C^{n}$ also club !!
- At limit ordinal we intersect: $C^{\omega}=\cap_{n<\omega} C^{n}$ - club.
- Formally we define:
- $C^{0}=C . \quad C^{\alpha+1}=\left(C^{\alpha}\right)^{\prime} . \quad C^{\alpha}=\bigcap_{\beta<\alpha} C^{\beta}$
- For all $\alpha<\omega_{1}$ we define the function $\varphi^{\alpha}: \omega_{1} \rightarrow \omega_{1}$ as the enumeration function of the club C^{α}.
So $\varphi^{\alpha}(\beta)$ is the β element of the set C^{α}.
- Is there α such that $\min C^{\alpha}=\alpha$?! YES!
Actually $\left\{\alpha \mid \min C^{\alpha}=\alpha\right\}$ is also a club !!
- To define Γ_{0} we start with

$$
C=C^{0}=\left\{\omega^{\alpha} \mid \alpha<\omega_{1}\right\}=\left\{1, \omega, \omega^{2}, \ldots .\right\}
$$

- $\operatorname{So} \varphi^{0}(\alpha)=\omega^{\alpha}$
- $C^{1}=\left\{\alpha \mid \omega^{\alpha}=\alpha\right\}=\left\{\epsilon_{0}, \epsilon_{1}, \ldots ..\right\}$ - the epsilon numbers
- $\varphi^{1}(\alpha)=\epsilon_{\alpha}$
- What is the first element of C^{2} ?
- $\epsilon_{0}, \epsilon_{\epsilon_{0}}, \epsilon_{\epsilon_{\epsilon_{0}}}, \ldots=\zeta_{0}$
- Γ_{0} is the first ordinal such that

$$
\min C^{\Gamma_{0}}=\Gamma_{0}
$$

- Now we proceed to understand the connection between Γ_{0} and multiset path order
- Back to multiset path order. Suppose we have an alphabet with a single element. What will be the corresponding tree order ?
- Instead of a single tree consider a (finite) multiset of trees:
- empty tree \Rightarrow ordinal 0
-

(singleton tree) \Rightarrow ordinal 1
\bullet

(n singletons) \Rightarrow ordinal n
\Rightarrow the ordinal ω

\Rightarrow the ordinal $\omega^{2}=\omega^{1+1}$

- Define function $\psi:\{M S$ trees $\} \rightarrow$ ordinals
- For multiset $\left\{t_{1}, \ldots, t_{n}\right\}$ we define:
- $\psi\left(\left\{t_{1}, \ldots, t_{n}\right)\right\}=\psi\left(t_{1}\right)+\cdots+\psi\left(t_{n}\right)$
- For a tree $\mathrm{t}=f\left(t_{1}, \ldots, t_{n}\right)$ we define:
- $\psi(t)=\omega^{\psi\left(t_{1}\right)+\psi\left(t_{2}\right)+\cdots+\psi\left(t_{n}\right)}=\omega^{\psi\left(\left\{t_{1} \ldots t_{n}\right\}\right)}$
- the sum in descending order
- Example:

- $\omega^{\omega^{\omega^{2}}+1}+\omega^{\omega}+\omega^{1}$
- Can represent each ordinal $<\epsilon_{0}$ that way.
- So when the alphabet is $\{0\}$ the trees with multiset path order go up to ϵ_{0}.
- What happen with $\Sigma=\{0,1\}$?
- Definitely a singleton labeled with 1 is above all trees with only label $0 \Rightarrow \epsilon_{0}$
- (1) $\Rightarrow \epsilon_{0}$
- (1) (1) $\Rightarrow \epsilon_{0} \cdot 2+\omega+2$
- (1) (1) ... (1) $\Rightarrow \epsilon_{0} \cdot n$
- This must be $\epsilon_{0} \cdot \omega$.
- But applying the function $\psi\left(\epsilon_{0}\right)$ we get :

$$
\psi\left(\epsilon_{0}\right)=\omega^{\epsilon_{o}}=\epsilon_{0}
$$

- So we need a fix here. For $\epsilon_{\alpha}+n$ ordinals we define: $\psi\left(\epsilon_{\alpha}+n\right)=\omega^{\epsilon_{\alpha}+n+1}$
- So: $\Rightarrow \omega^{\epsilon_{0}+1}=\epsilon_{0} \cdot \omega$
- Using all trees with 1 only as leafs we can reach up to ϵ_{1}
- $1 \Rightarrow \epsilon_{1}$
- $1 \Rightarrow \epsilon_{2}$
- (1) $\Rightarrow \epsilon_{\epsilon_{0}}$
- We can define φ for trees like:

- As $\psi(T)=\epsilon_{\psi\left(T_{1}\right)+\cdots \psi\left(T_{n}\right)}$
- Back to the function φ^{α} we defined before.
- For trees with root labeled 0 the function ψ is (almost) the same as φ^{0}.
- For trees with root labeled 1 the function ψ is the same as φ^{1}.
- So it's tempting to define the following mapping:
- $\psi:$

$$
\Rightarrow \varphi^{\alpha}\left(\psi\left(T_{1}\right)+\cdots+\psi\left(T_{n}\right)\right)
$$

- But then we have problems in all fixed points where $\varphi^{\alpha}(\beta)=\beta$. So we need a fix. Define:
- $\psi(\alpha, \beta)=\left\{\begin{array}{cl}\varphi^{\alpha}\left(\beta^{\prime}+n+1\right) & \text { if } \beta=\beta^{\prime}+n \text { for } \varphi^{\alpha}\left(\beta^{\prime}\right)=\beta^{\prime} \\ \varphi^{\alpha}(\beta) & \text { else }\end{array}\right.$
- Consider the tree: $\alpha\left(T_{1}, \ldots, T_{n}\right)$

- Define

$$
\Theta\left(\alpha\left(T_{1}, \ldots, T_{n}\right)\right)=\psi\left(\alpha, \Theta\left(T_{1}\right)+\cdots+\Theta\left(T_{n}\right)\right)
$$

- Define also for multiset of trees:
- $\Theta\left(\left\{T_{1}, \ldots, T_{n}\right\}\right)=\Theta\left(T_{1}\right)+\cdots+\Theta\left(T_{2}\right)$
- Consider the Θ as function from (MS of) labeled trees, labeled by ordinals up to Γ_{0}
- So: $\Theta: M S(T R E E) \rightarrow$ Ordinals
- The following holds:

1. $\Theta: M S(T R E E) \rightarrow \Gamma_{0}$
2. Θ is one to one
3. Θ i onto Γ_{0}
4. Θ is order preserving

1. $\Theta: M S(T R E E) \rightarrow \Gamma_{0}$

This follows from the fact that:
For every $\alpha, \beta<\Gamma_{0}$
$\Rightarrow \quad \alpha+\beta<\Gamma_{0}$ and $\varphi^{\alpha}(\beta)<\Gamma_{0}$
2. $\boldsymbol{\Theta}$ is onto $\Gamma_{\mathbf{0}}$

To prove that, we need the following theorem (recursive definition for ordinal up to Γ_{0}):
For every $\gamma<\Gamma_{0}$ either:

1. $\gamma=0$
2. $\gamma=\alpha+\beta$ for some $\alpha, \beta<\gamma, \quad \alpha \leq \beta$
3. $\gamma=\varphi^{\alpha}(\beta)$ for some $\alpha, \beta<\gamma$

- Take $\gamma<\Gamma_{0}$.
- $\gamma=\alpha+\beta$.By induction we have MS for α and MS for β. Unify them to single MS
- More interesting is $\gamma=\varphi^{\alpha}(\beta)$.

We'll see that there is a single tree T such
that: $\Theta(T)=\gamma$
If we weren't have to fix ψ it would work flawlessly. But:

$$
\psi(\alpha, \beta)=\left\{\begin{array}{cl}
\varphi^{\alpha}\left(\beta^{\prime}+n+1\right) & \text { if } \beta=\beta^{\prime}+n \text { for } \varphi^{\alpha}\left(\beta^{\prime}\right)=\beta^{\prime} \\
\varphi^{\alpha}(\beta) & \text { else }
\end{array}\right.
$$

- Break to cases.

$$
\beta=\beta^{\prime}+n(\text { possibly } n=0)
$$

1. Simple: $\varphi^{\alpha}\left(\beta^{\prime}\right) \neq \beta^{\prime} \Rightarrow \Psi(\alpha, \beta)=\gamma$
2. $\varphi^{\alpha}\left(\beta^{\prime}\right)=\beta^{\prime}$ and $n>0 \Rightarrow \Psi(\alpha, \beta-1)=\gamma$
3. $\varphi^{\alpha}\left(\beta^{\prime}\right)=\beta^{\prime}$ and $n=0$ (so $\beta=\beta^{\prime}$)

Take $\delta^{\prime}=\min \left\{\delta \mid \varphi^{\delta}(\beta) \neq \beta\right\}$
So we must have $\tau \neq \beta$ such that $\varphi^{\delta^{\prime}}(\tau)=\beta$ (β is a fix point of clubs C^{δ} for $\delta<\delta^{\prime}$).

$$
\Rightarrow \Psi\left(\delta^{\prime}, \tau\right)=\beta=\gamma
$$

$\Rightarrow \Theta$ is onto Γ_{0}

- To prove the order preserving we need to use the following facts about the φ^{α} functions.
- $\beta^{\prime}<\beta^{\prime \prime} \Rightarrow \varphi^{\alpha}\left(\beta^{\prime}\right)<\varphi^{\alpha}\left(\beta^{\prime \prime}\right)$
- $\varphi^{\alpha^{\prime}}\left(\beta^{\prime}\right)<\varphi^{\alpha^{\prime \prime}}\left(\beta^{\prime \prime}\right)$ iff

1. $\alpha^{\prime}=\alpha^{\prime \prime}$ and $\beta^{\prime}<\beta^{\prime \prime}$
2. $\alpha^{\prime}<\alpha^{\prime \prime}$ and $\beta^{\prime}<\varphi^{\alpha^{\prime \prime}}\left(\beta^{\prime \prime}\right)$
3. $\alpha^{\prime}>\alpha^{\prime \prime}$ and $\varphi^{\alpha^{\prime}}\left(\beta^{\prime}\right)<\beta^{\prime \prime}$

- Using them it's easy to prove analog proposition about ψ :
a) $\Psi(\alpha, \beta)>\beta$
b) $\beta^{\prime}<\beta^{\prime \prime} \Rightarrow \Psi\left(\alpha, \beta^{\prime}\right)<\Psi\left(\alpha, \beta^{\prime \prime}\right)$
c) $\alpha^{\prime}<\alpha^{\prime \prime}, \beta^{\prime}<\Psi\left(\alpha^{\prime}, \beta^{\prime \prime}\right) \Rightarrow \Psi\left(\alpha^{\prime}, \beta^{\prime}\right)<\Psi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)$
- (a) implies that: for each tree $T=\alpha\left(T_{1} \ldots T_{n}\right)$

- $\Theta(T)>\Theta\left(T_{i}\right)$
- (b) implies that:

- $\Rightarrow \quad \Theta(S)<\Theta(T)$
- (c) implies that:

$<$

- $\alpha<\beta$ and $\Theta\left(S_{i}\right)<\Theta(T)$
- $\Rightarrow \Theta(S)<\Theta(T)$
- So Θ is order preserving, hence also 1:1.

Ordinal notation for $\gamma<\boldsymbol{\Gamma}_{\mathbf{0}}$

We saw the recursive definition for ordinal up to Γ_{0} :
For every $\gamma<\Gamma_{0}$ either:

1. $\gamma=0$
2. $\gamma=\alpha+\beta$ for some $\alpha, \beta<\gamma, \quad \alpha \leq \beta$
3. $\gamma=\varphi^{\alpha}(\beta)$ for some $\alpha, \beta<\gamma$

- Since always $\alpha, \beta<\gamma$ for each γ we get a corresponding MS of trees. The labels in the nodes, are also MS of trees (recursively).
- Example:
- $\zeta_{\epsilon_{\omega^{2}}} \Rightarrow$

Lexicographic path order

- Same as we proved with multiset, if the alphabet \sum is well ordered, than also the trees compared with lexicographic order are well ordered.
- To analyze it we need to go farther after Γ_{0} ordinal.
- We saw the Veblen hierarchy:
- $\varphi(\alpha, \beta)=\varphi^{\alpha}(\beta)$.
- We can try to define more fixed point by adding another argument:
- $\varphi(0, \alpha, \beta)=\varphi(\alpha, \beta)$
- $\varphi(1,0, \tau)$ is the τ-th fixed point of the functions $\xi \rightarrow \varphi(\xi, 0)$
- $\operatorname{So} \varphi(1,0,0)=\Gamma_{0}, \varphi(1,0, \tau)=\Gamma_{\tau}$
- $\varphi(1,1, \tau)$ enumerates the fixed points of $\varphi(1,0, \tau)$ (that is of $\xi \rightarrow \Gamma_{\xi}$)
- $\varphi(2,0, \tau)$ enumerates the fixed points of $\varphi(1, \tau, 0)$
- The major property we had in Veblen functions that we used to prove order preserving was:

$$
\begin{aligned}
& \alpha^{\prime}<\alpha^{\prime \prime} \text { and } \beta^{\prime}<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right) \Rightarrow \varphi\left(\alpha^{\prime}, \beta^{\prime}\right)<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right) \\
& \alpha^{\prime}=\alpha^{\prime \prime} \text { and } \beta^{\prime}<\beta^{\prime \prime} \Rightarrow \varphi\left(\alpha^{\prime}, \beta^{\prime}\right)<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right) \\
& \Rightarrow \text { first argument is more dominant }
\end{aligned}
$$

- A similar property can be proved for Veblen function with 3 arguments:

$$
\begin{gathered}
\alpha^{\prime}<\alpha^{\prime \prime}, \beta^{\prime}<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right), \gamma^{\prime}<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right) \Rightarrow \\
\varphi\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right)
\end{gathered}
$$

Also:

$$
\begin{gathered}
\alpha^{\prime}=\alpha^{\prime \prime}, \beta^{\prime}<\beta^{\prime \prime}, \gamma^{\prime}<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right) \Rightarrow \\
\varphi\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right)
\end{gathered}
$$

- And

$$
\begin{gathered}
\alpha^{\prime}=\alpha^{\prime \prime}, \beta^{\prime}=\beta^{\prime \prime}, \gamma^{\prime}<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right) \Rightarrow \\
\varphi\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)<\varphi\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right)
\end{gathered}
$$

- The last property fits exactly to the lexicographic order for trees, where each node has (at most) 2 child's

$$
\Rightarrow \quad \varphi\left(\alpha, T_{1}, T_{2}\right)
$$

(need some fixing for fix point cases, as we did with multiset)

- We can go on and on and define recursively veblen functions for n arguments.
- Such a φ with $n+1$ arguments bring us to an ordinal large enough to contain the trees with node up to n Childs, while the node themself can be labeled (recursively) with such trees.

