
Programming T.A. Standish
Languages Editor

Inductive Methods for
Proving Properties of
Programs
Zohar Manna, Stephen Ness, Jean Vuillemin
Stanford University

There are two main purposes in this paper: first,
clarification and extension of known results about
computation of recursive programs, with emphasis on
the difference between the theoretical and practical
approaches; second, presentation and examination of
various known methods for proving properties of
recursive programs. Discussed in detail are two powerful
inductive methods, computational induction and structural
induction, including examples of their applications.

Key Words and Phrases: recursive programs, least
fixedpoint, computational induction, structural induction

CR Categories: 4.2, 5.23, 5.24

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

The research reported here was supported by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
under Contract SD-183. This is a modified version of a paper
originally presented at the ACM Conference on Proving Asser-
tions about Programs, Las Cruces, New Mexico, January 1972.
Authors' addresses: Zohar Manna, Applied Mathematics Depart-
ment, The Weizmann Institute of Science, Rehovot, Israel; Stephen
Ness, Computer Science Department, Stanford University, Stan-
ford, CA 94305: Jean Vuillemin, I.R.I.A., Domaine de Volceau,
78-Roquencourt, France.

491

Introduction

Many different inductive methods have been used to
prove properties of programs. Well-known methods in-
clude, for example, recursion induction, structural in-
duction, inductive assertions, computat ional induction,
truncation induction, and fixedpoint induction. Our in-
tention in this paper is to introduce these methods to
as wide a class of readers as possible, illustrating their
power as practical techniques for proving properties
of recursive programs.

In Section I we give the theoretical background
necessary to understand the fixedpoint approach to
recursive programs (essentially following Scott, 1970
[16]), as well as the practical computat ional approach.
We emphasize that while existing inductive methods
prove properties of the "least fixedpoint function" of a
recursive program, in practice this function may differ
from the function computed by some common computa-
tion rules. We briefly suggest "fixedpoint" computat ion
rules which assure that the computed function is iden-
tical to the least fixedpoint. A brief informal exposition
of the fixedpoint theory was given by Manna and
Vuillemin, 1972 [8].

In Section II we examine computational induction
methods, i.e. methods in which the induction is based
on the steps of the computation. We first present the
extremely simple induction method introduced by Scott
(deBakker and Scott, 1969 [3]). Examples are presented
which introduce various applications of the method.
We also discuss another computat ional induction
method, truncation induction (Morris, 1971 [14]). A
related method, called fixedpoint induction, is described
in Park, 1969 [15].

We describe the structural induction method and its
application for proving properties of programs in Sec-
tion lII . This method was suggested explicitly by Bur-
stall, 1969 [1], although it was often used previously,
for example by McCarthy and Painter, 1967 [9], for
proving the correctness of a compiler and by Floyd,
1967 [4] for proving termination of flowchart programs.
Our intention in this section is to emphasize, by means of
appropriately chosen examples, that the choice of a
suitable partial ordering on the data structure and of a
suitable induction hypothesis leads to simple and clear
inductive proofs.

Although it can be shown that computat ional in-
duction and structural induction are essentially equiva-
lent, there are practical reasons for keeping both of them
in mind. Computat ional induction i s best suited for
proving the correctness and equivalence of programs,
and because of its simplicity it is particularly convenient
for machine implementation (Milner, 1972 [10, 11]). On
the other hand, termination of programs is usually more
convenient to show by structural induction.

We concentrate on these two methods because they
form a natural basis for future automatic program
verifiers. In particular, all other known verification tech-

Communications August 1973
of Volume 16
the ACM Number 8

niques can be justified rather directly by application of
these methods. Grief, 1972 [5], discussed briefly the
power of the different methods.

I. Recursive Programs

In this section, we introduce the fixedpoint theory
of partial functions and show its relation to recursive
programs and their computations.

The partial orderings on D + and (D X D) + are de-
scribed in the diagrams below, where each connecting
line indicates that the lower element is less defined than
the upper element. (Lines implied by transitivity or
reflexivity are not shown.) El

a b \ /
6 0

(a a) (a,b) (b,a) (b,b) '

2><21.
(a,co) (oa,a) (co,b) _(b,w)

Part ia l Funct ions
We wish to consider partial functions from a domain

Dt into a range D2, i.e. functions which may be unde-
fined for some arguments. For example, the quotient
function x /y , mapping R X R (pairs of real numbers)
into R, is usually considered to have no value if y = 0.
Partial functions arise naturally in connection with com-
putation, as a computing process may give results for
some arguments and run indefinitely for others. Par-
tial predicates are of course a special case, since a par-
tial predicate is a partial function mapping a domain
D1 into l true , fa lse} .

In developing a theory for handling partial func-
tions it is convenient to introduce the special element co
to represent the value undefined. We let D ÷ denote
D U {co}, assuming co ~ D by convention; when D is
the Cartesian product A, X - . . X A,,, we let D + be
A~ +)< • - - X A,~ +. Any partial f unc t ion fmapp ing Dt =
A x X • • • X A,, into D2 may then be considered as a total
function mapping Dt into D2+: if f is undefined for
(d ~ , . . . , d ,) E O , , we l e t f (d , , . . . , d,) beco.

Since we shall consider composit ions of partial func-
tions, we may need to compute functions with some
arguments being undefined. Thus we must extend every
function mapping Dt into D2 + to a function mapping
Dt + into D~+; such extensions are discussed in the next
section.

The Order ing C on the D o m a i n
To define appropriate extensions of partial func-

tions f rom D~ into D2 to total functions from D, + into
D + 2 , we first introduce the pariial ordering' c on every
extended domain D ÷. The partial ordering ___ is intended
to correspond to the notion "is less defined than or
equal to ," and accordingly we define it by letting co c d
and dc__ d for all d E D +. Note that distinct elements of
D are unrelated by ___ : for distinct a and b in D, neither
a ___ b nor b ___ a holds. I f D + is the Cartesian product
Ax + X " " • X A,~ +, we define (a t , . . . ,an) ~ (b t , . . . ,b~}
when a~ c b~ for each i, 1 < i < n.

Example 1. I f D = {a, b}, then D + = {a, b, co} and
(O X D)+ = {(co, w), (w, a), (a, co) , . . . , (a, b), (b, a), (b, b)}.

~A partial ordering is a binary relation which is reflexive
((Va)[a C a]), antisymmetric ((Va,b)[a C b A b C a ~ a is
identical to b]), and transitive ((Va,b,c)[a C b /~ b C c
a Cc]) . As usual, we write a C b ifa ~ b and a is not identical
to b, a ~ b if a CZ b does not hold, etc.

D + (D X D) + = D + X D +

M o n o t o n i c Funct ions
Any function f computed by a program has the

property that whenever the input x is less defined than
the input y, the o u t p u t f (x) is less defined t h a n f (y) .
We therefore require that the extended function f f rom
Dt + into D2 + be monotonic, i.e.

x ___ y impl iesf(x) C f (y) for all x,y ~ D~-.

We let (Dr + ---+ D~ +) denote the set of all monotonic
functions from D~ + into D + 2 •

I f f has only one argument, monotonicity requires
f (w) to be % with one exception: the constant function
f (x) = c for all x E D + is always monotonic. In the fol-
lowing we denote such a constant function just by c. I f f
has many arguments, i.e. Dt = At)< - - -)< A,,, it may
have many different monotonic extensions. A particu-
larly important extension of any function is called the
natural extension, defined by l e t t ingf (d t , . . . , d,~) be w
whenever at least one of the d~ is co. This corresponds in-
tuitively to the functions computed by programs which
must know all their inputs before beginning execution
(i.e. ALGOL "call by value").

Example 2.
(a) The identity function, mapping any x in D + into
itself, is obviously monotonic.
(b) The quotient function, mapping (x, y} into x /y ,
extended to a total function by letting x/O be w for any
x in R, becomes monotonic by the natural extension: let
x/co and ~o/y be co for any x and y in R +.
(c) The equality predicate mapping D X D into {true,
false} can be extended in the following particularly
interesting ways:

(i) The natural extension (weak equality), denoted
by = , yields the value co whenever at least one of its
arguments is w. The weak equality predicate is of
course monotonic.
(ii) Another extension (strong equality), denoted by
~-, yields the value true when both arguments are w
and false when exactly one argument is w; in other
words, x -= y if and only if x c y and y c x. The
strong equality predicate is not a monotonic mapping
f rom D + X D + into {true,false} +, since (c0, d) ___
(d, d} but (w ~ d) ~ (d ~ d) (i.e. false ~ true) for
d C D .

(d) The i f - then-e lse function, mapping {true,false}

492 Communications August 1973
of Volume 16
the ACM Number 8

X D X D into D, is defined for any a, b 6 D by letting

i f true then a else b = a,
i f false then a else b = b.

It can be extended to a monotonic function mapping
{ t r u e , f a l s e } + X D + X D + into D + by letting, for any
a, b C D +,

i f true then a else co = a,
i f false then co else b = b,
i f co then a else b = ,..

Note that this is not the natural extension of i f - t h e n -

e l s e . []

I.Ve shall assume all the functions of our examples to
be naturally extended, except for the constant functions
and the if-then-else function.

C o m p o s i t i o n o f F u n c t i o n s

An important operation on functions is composition,
which allows functions to be defined in terms of sim-
pler functions. If f is a function from Dj + to D~ + and g a
function from D, + into Da +, then the composition o f f
and g is the function from DI* into Da + defined by
g (f (x)) for every x in D~ ÷. It is easy to show that, i f f
and g are monotonic functions, so is their composition.

Example 3.
(a) The function f , given by

f(x) -~ i f x = 0 then 1 else x,

is defined by composition of the weak equality predi-
cate, the constant functions 0 and 1, the identity
function, and the i f - t h e n - e l s e function. Since all these
functions are monotonic, f is monotonic.
(b) The function f , given by

f(x) -~ i f x =- co then 0 else 1,

defined using the nonmonotonic predicate ~ , is not
monotonic, sincef(¢0) -- 0 and f (0) = 1 (i.e. o~ ___ 0,
butf(~0) ~ : f (0)) . []

Finally, we discuss an important corollary which
follows from properties of monotonic functions. Con-
sider functions f~ and f i , given by

f~ (x) -~ g(if p(x) then & (x) else &(x)), and

j~ (x) ~ i f p (x) then g (h~ (x)) else g (h~ (x)),

where p, g, h~, and h~ are monotonic. Then both./q and
f,_ are monotonic, since each is defined by a composition
of monotonic functions. There is an interesting relation
between these two functions:

(i) f i (x) ~ f l (x) for any x;
(ii) i f g(oa) =-oo, then f2(x) = f l (x) for any x.

We shall use the second result often in later proofs. The
above properties generalize to any n-ary (n > 1) mono-
tonic function g. For example, if g(o~, y) --= ~ for all
(w,y) C D1 +, then

g(if p(x) t h e n hi(x) e l s e h2(x), ha(x))---

if p(x) t h e n g(h~(x), ha(x)) e l s e g(h2(x), ha(x)).

T h e O r d e r i n g ~ o n F u n c t i o n s

L e t f a n d g be two monotonic functions mapping D, +
into D.~ +. We say t h a t f C g, read " f i s less defined than
or equal to g," i f f (x) c g(x) for any x E DI+; this
relation is indeed a partial ordering on (D1 + --+ D2+).
We say t h a t f ~ g, read 'geis equal to g," i f f (x) --- g(x)
for each x C D1 + (t h a t i s , f ~ g i f f f ~ g and g ~ f) .
We denote by ~2 the function which is always undefined:
f~ (x) is ~o for any x C D1 +. Note that f~ ~ f f o r any func-
t i o n f of (D, + ~ D+).

Infinite increasing sequences f0 c j] ___ f i c . . . of
functions in (D1 + ~ D2 +) are called chains. It can be
shown that any chain has a unique limit function in
(DI+ --+ D2+), denoted by lim~ {fd, which has the charac-
teristic properties thatf~ ___ lim~ If,'} for every i, and for
any function g such that J~ c g for every i, we have
lim~ {f~} ___ g.

Example 4. Consider the sequence of monotonic
functionsfi ,)q,f2,.. . over the natural numbers defined by

.fg(x) =-- (ifx < i then x! else co).

This sequence is a chain, asf i ~f i+1 for every i; lim i {f~}
is the factorial function. []

C o n t i n u o u s F u n c t i o n a l s

We now consider a function r mapping the set of
functions (D1 + --+ D, +) into itself, called a functional;
that is, r takes any monotonic func t ionfas its argument
and yields a monotonic function r [f] as its value. As in
the case of functions, it is natural to restrict ourselves
to monotonic functionals, i.e. r such t h a t f ___ g implies
r[f] C_ r[g] for a l l f a n d g in (D1 + -+ D~+). For our
purposes, however, we consider only functionals satisfy-
ing a stronger property, called continuity. A functional
z is said to be continuous if for any chain of functions

fo ~ f, ~ A CC _ ...

we have

r[A] __c ~bq] __ ~g.-,] --_ . . .

and

r[lim, 1J~}] = lim, {r[j~]}.

Every continuous functional is clearly monotonic.
We usually specify a functional r by composition of

known monotonic functions and the function variable
/7, denoted by r[F] (x); when Fis replaced by any known
monotonic function f , the composition rules determine
a monotonic function r[f] (x). It can easily be shown that
any functional defined by composition of monotonic

functions and the function variable F is continuous.
Example 5.

(a) The functional over the integers defined by

r[F](x) =-- i f x = 0 then 1 else F(x + 1)

is constructed by composition of monotonic functions
(i f - t h e n - e l s e , addition, weak equality, and the constant
functions 0 and 1) and the function variable F; it is

493 Communications August 1973
of Volume 16
the ACM Number 8

therefore cont inuous . Given any mono ton i c funct ion
f over the integers, z[f] is ano ther mono ton i c funct ion
over the integers :

if f (x) -= oJ, then r[f l (x) ~ if x = 0 then 1 elsew;
i f f (x) -~ x -- 1, then r[f] (x) -= i fx = 0 then 1 else x.

(b) The func t iona l over the na tu ra l numbers
(N + ~ N +) defined by

r[F](x) =--- if Vx[F(x) = x] then F(x) else oJ

is m o n o t o n i c bu t not con t inuous ; if we cons ider the
chain f0 ___ J~ C:_ . . . where f i (x) ~ if x < i t h e n

x else ~, r[f~] - - ~2 for any i so tha t limi{r[f~]} ---
~, whereas r[lim~ {fd] is the ident i ty funct ion. []

F i x e d p o i n t s

Let r be a funct ional mapp ing (D, + --+ D~ +) in to
itself. W e say tha t a funct ion f is a f i x e d p o i n t of r if
f - r [f] ; i.e. r maps the funct ion f back into itself. W e
say t h a t f i s a l e a s t f i x e d p o i n t of r if f is a f ixedpoin t of r
and f___ g for any o ther f ixedpoin t g o f r . An i m p o r t a n t
f u n d a m e n t a l resul t is tha t a n y con t i nuous r m a p p i n g
(D1 + --+ D2 +) into i tself has a un ique l e a s t f i x e d p o i n t f l in
(D1 + --> De+). We can compu te f i as the l imit of the
chain r°[~2] C r~[~2] ___ r2[S2] _____ . . . (where r°[~2] ------ ~2 and
r~+l[f~] = r[ri[~2]]), as fol lows f rom Kleene ' s first re-

curs ion t heo rem [6].
E x a m p l e 6 . All the func t iona ls in the fo l lowing

examples are defined by c o m p o s i t i o n of m o n o t o n i c
funct ions and the funct ion var iable F and are therefore
con t inuous by cons t ruc t ion and have unique least

f ixedpoints .
(a) The funct ional r over (N + --+ N ~) given by

r [F](x) =- i f x = 0 then 1 else F(x + 1)

has as f ixedpoints the funct ions (for each n C N +)

fi,(x) -= i fx = 0then 1 else n.

The least f ixedpoin t is

f i (x) -~ i f x = 0 then 1 else ~.

(b) The only (and therefore leas t) f ixedpoint o f the
funct ional r over the integers given by

r[F] (x) ~ i fx > 100 then x -- 10 else F (F (x -1- 11)),

is

fi(x) -~ i fx > 100 then x - 10 else 91.

(c) The func t iona l r over the integers defined by

r[F](xt , x...) =-- i fx i = x2 then x2 q- 1
else F(x~, F(xt -- 1, x... + 1))

has as f ixedpoints the funct ions

f (x l , xz) -~ i f xl = x2 then x~ + 1 else xl q- 1,
g(x~, x=) =-- i f x~ >_ x= then xt q- 1 else x~ -- 1, and
h(x~ ,x2) -~ i f (x~ >_ x2) /k (x~ -- x~ even) then x~ q- 1 else ~,,

the la t ter be ing the least f ixedpoin t f i (Morr i s , 1968
[13]). N o t e t h a t f ' (x ~ , x~) ---- xl q- I is no t a f ixedpoint ,
since r [f '] (x ~ , ~o) =-- ~o while3"' (x l , ~o) - x~ + 1. []

W e cons ider a func t iona l r over (D1 + --+ D~+) ", i.e.
r maps n-tuples of funct ions f rom (D1 + + D2 +) in to
n-tuples of funct ions f rom (D1 + ~ D2+). Such a func-
t iona l is given by coo rd ina t e funct ionals r l , • • • , r , , , so
tha t r [F~ , . . . ,F,~] is (r~[F~, . . . ,F,,], . . . , r, ,]F~, . . . ,

F ,]) . r is con t inuous iff each r i is con t inuous . A cont inu-
ous func t iona l r over (D1 + + D2+)" has a un ique least

f i x e d p o i n t f i ~- (i l l , - . . , f i , ,) ; tha t is
(a) f i , -= r i [f , l , . . . , f i ,] for a11i, 1 <__ i <__ n;
(b) for any f ixedpoint g -= (g ~ , . . . , g~) of r , i.e.
g, =-- r i [g ~ , . . . , g,] for all i (1 < i < n) , f i~ ~ g~ for

a l l i (I < i < n) .
E x a m p l e 7. Cons ider the func t iona l r[F, ,F2] =--

(r l [F l , F2], r2[F1, Ee]) over (N + --+ N+) 2, where:

r~[F~, Fd(x) -= i fx = 0then I else F~(x -- 1) + F.,.(x -- 1)
r2[F~ , F.~] (x) ~ i f x = 0 then 0 else F.a(x -k 1).

F o r any n C N +, the pa i r (g,, , h,) defined by

g , (x) - - - - i f x = 0 k / x = l t h e n l e l s e (x - 1) . n q - 1
h , (x) =- i f x = 0 then 0 else n

is a f ixedpoin t of r , since g , =- r~[g,,h~] and h, =--
r2[g,,hn] (and therefore (g , , h ,) =- r [g , , h ,]) . The least
f ixedpoin t is the pa i r :

(i f x = 0 ~ / x = 1 t h e n l e l s e w , i f x = 0 t h e n 0 e l s e o ~) . []

R e c u r s i v e P r o g r a m s

So far, we have been conce rned on ly with func t ions
cons ide red abs t rac t ly , as pure ly m a t h e m a t i c a l objects .
F o r example , we though t of the fac tor ia l funct ion as a
cer ta in m a p p i n g between a rgumen t s and values, with-
out cons ider ing how the m a p p i n g is specified. T o con-
t inue our discussion we mus t i n t roduce at this p o i n t a
" p r o g r a m m i n g l anguage" for specifying funct ions . A
funct ion will be specified by a piece o f code in the
syntax o f the l anguage and then will be executed ac-
co rd ing to c o m p u t a t i o n rules given by the semant ics o f

the language.
In the rest of this pape r we use for i l lus t ra t ion a

pa r t i cu la r ly s imple language, chosen because o f its
s imilar i t ies to fami l ia r l anguages such as ALGOL or
LISP. A l t h o u g h our p r o g r a m m i n g l anguage is very
s imple, it is power fu l enough to express any " p a r t i a l
recurs ive" funct ion , hence by C h u r c h ' s thesis any
" c o m p u t a b l e " funct ion (see M insky , 1967 [12]). A
p r o g r a m in our language, cal led a recurs ive de f i n i t i on

or recurs i ve p r o g r a m , is of the fo rm

F (x) ~ r[F] (x)

where r [F] (x) is an express ion represent ing compos i -
t ion of k n o w n m o n o t o n i c funct ions and p red ica tes and
the func t ion var iable F, app l i ed to the ind iv idua l vari-
able x. (2) F o r example , the fo l lowing is a p r o g r a m for

2 We shall purposely be vague in our definitions in this sec-
tion to avoid introducing the notions of schemata and interpreta-
tions. For a formal approach, see Manna and Pnueli, 1970 [7] or
Cadiou, 1972 [2].

494 Communications August 1973
of Volume 16
the ACM Number 8

computing the factorial function:

F(x) ~ i fx = 0 then 1 else x.F(x--1).

This program resembles the ALGOL declaration

integer procedure f (x) ;
f : = i f x =Othen 1 eisex*f(x--1);

and the LISP definition

DEFINE ((
(FF (LAMBDA (X)(COND ((ZEROP X) 1)

(T (TIMES X (FF (SUB1 X))))))))) .

Of course our programs are meaningless until we
describe the semantics of our language, i.e. how to
compute the function defined by a program. The next
step is therefore to give computation rules for executing
programs. Our aim is to characterize the rules such that
for every program F (x) ~ r[F] (x) the computed func-
tion will be exactly the least fixedpointf~.

C o m p u t a t i o n S e q u e n c e

Let F(x) ~ r[F] (x) be a program over some domain
D +. For a given input value d E D + (for x), the program
is executed by constructing a sequence of terms
to, h , t 2 , . . . , called a computation sequence for d, as
follows :
(1) The first term to is F(d).
(2) For each i, i > 0, the term t~+l is obtained from ti
in two steps: first (a) substitution: some occurrences
(see below) of F(e) in ti are replaced by ~-[F](e)
simultaneously, where e may be any subexpression;
and then (b) simplification: known functions and
predicates are replaced by their values, whenever pos-
sible, until no further simplifications can be made.
(3) The sequence is finite and t, is the final term in the
sequence if and only if no further substitution or sim-
plification can be applied to t, (that is, when tn is an
element of D+).

C o m p u t a t i o n R u l e s

A computation rule C tells us which occurrences of
F(e) should be replaced by r[F] (e) in each substitution
step. For a given computat ion rule C, the program
defines a partial function f~ mapping D + into D + as
follows: I f for input d ~ D ÷ the computat ion sequence
for d is finite, we say t ha t f c (d) - tn ; if the computa-
tion sequence for d is infinite, we say that f c (d) =- o~.

The following are examples of typical computat ion
rules: (I) f u l l computation rule: Replace all occurrences
of F simultaneously. We denote the computed function
by fFL. (2) leftmost-innermost("call by value") rule:
Replace only the leftmost-innermost occurrence of F
(that is, the leftmost occurrence of F with all argu-
ments free of F 's) . We denote the computed function
by fz~ • This is the rule which corresponds to the usual
stack implementation of recursion for languages like
LISP or ALGOL where a procedure evaluates all its argu-
ments before execution. (3) leftmost-outermost ("call
by name") rule: Replace only the leftmost-outermost

occurrence of F. We denote the computed function
byfLo •

Example 8. We consider the recursive program for
the "91-function" over the integers:

F(x) ~ i f x > 100 then x -- 10 else F(F(x+ll)) .

We illustrate the computat ion secquences for x = 99
using the three rules.
(a) Using the full rule:

to is F(99)
i f 99 > 100 then 99 -- 10

else F(F (99+ 11)) [substitution]
h is F(F(110)) [simplification]

i f [if 110 > 100 then I10 -- 10
else F(F(l l0+ l l))] > 100

then [if 110 > 100 then 110 -- 10
else F(F(I10+ll))] -- l0

else F(F([if 110 > 100
then 110 -- I0
else F(F(110+11))]+11)) [substitution]

t~. is F(F(111)) [simplification]
i f [i f 111 > 100 then 111 - - 1 0

else F (F (l l l + l l))] > 100
then [if 111 > 100 then 111 -- 10

else F (F (l l l + l l))] -- 10
else F(F([if 111 > 100

then 111 -- 10
else F (F (l l l + l l))] + l l)) [substitution]

h is 91.

In short, omitting simplifications and underlining the
occurrences of F used for substitution: _F(99)
_F(F(l l0)) ~ _F(_F(111)) --~ 91. Thus, f rL(99) =- 91.
(b) Using the leftmost-innermost rule:

F(99) ---, F(F(l l0)) --* F (100) --* F(E(l l l) --* F (101) ~ 91.

Thus, fLt(99) = 91.
(c) Using the leftmost-outermost rule

E(99) ---, F_ (F(ll0))
i f F _ (l l 0) > 100 then F (I I 0) -- 10

else F(F(F(llO)+ll))
--* E (F(F(IlO)+ll))

ifF_(ll0) + 11 > 100 then F(ll0) -- 9
else F(F(F(110)+22))--10

F(ll0) -- 9 ~ 9 1 .

Thus, fLo(99) -= 91. []

An important property o f f c should be mentioned at
this point (Cadiou, 1972 [2]): For any computat ion rule
C, the computed function f c is less defined than the least
fixedpoint, i.e. f c __-f~, but they are not necessarily
equal.

A program may consist in general of a system of
recursive definitions of the form

I
FI(x) ~ rl[Fx , . . . , F,](X)
F...2(x) ~ r.,.[F1, , F,](X)

~F,(x) ~ r,[F1, . . . , F,I(X),

where each ri is an expression representing a composi-
tion of known monotonic functions and predicates and
the function variables F~, F ,2 , . . . ,F, applied to the

495 Communications August 1973
of Volume 16
the ACM Number 8

individual variables x = (x ~ , . . . , xk). The generaliza-
tion of the computation rules to systems of recursive
definitions is straightforward; the computed function

/4"(1) 4'(2) g-(n) f c of the system can be described as w c , j c , • • • , J C),

where each ¢(~) j c is computed as described above. The
results of this section still hold for systems of recursive
definitions.

Fixpoint Computation
All of the methods for proving properties of pro-

grams described in the rest of this paper are based on
the assumption that the computed function is equal to
the least fixedpoint. We are therefore interested only
in the computation rules that yield the least fixedpoint.
We call such computation rules fixedpoint computation
rules.

Let a[F I, . . . , F ~, F '+', . . . , Fk](d) denote any term
in the computation sequence for d under some compu-

tation rule C, where we use superscripts to distinguish
the individual occurrences of F in a. Suppose that we
choose for substitution the occurrences F 1, . . . , F i (for
some i, l < i < k) of F in a. We say that this is a safe
substitution if:

(V f f + a , . . . , f k) a [~ , . . . , ~ , f , + , , . . . , f k l (d) =-- ~o.

Intuitively, the substitution is safe if the values of
F ~+~,. . . , F k are not relevant: as long as F ~, . . . , F ~ are
not known, the value of o~[F1, . . . , F k] (d) cannot be
determined, and hence there is no need to compute
F ~ + ~ , . . . , F k at this point.

A safe computation rule is any computation rule
which uses only safe substitutions. It can be shown that
any safe computation rule is a fixedpoint rule (Vuille-
min, 1973 [17]). For example, since the full rule and
the leftmost-outermost rule are safe, they are both
fixedpoint rules.

The leftmost-innermost rule, however, is not safe.
The following example illustrates a program for which
fLt ~ f i ; that is, the leftmost-innermost rule is not a
fixedpoint rule (Morris, 1968 [13]).

Example 9. Consider the program over the integers

F(x , y) ~ i f x = 0 t h e n 1 else F (x -- 1, F (x -- y, y)).

The least f ixedpointfi is

.f, (x ,y) -~ i f x > 0 then 1 else co.

We compute F(1,0) using the leftmost-innermost
computation rule:

F_ (1,0) ~ F (0 , F_ (1 ,0)) --~ F (0 , F (0 , F_ (1 , 0)))

and so on. The sequence is infinite, and therefore
fLi(1,0) -~ w. In fact

f m (x , y) =-- i f x = 0 V (x > 0 A y > 0 A (y divides x))
then 1 else co,

which is strictly less defined than f i . []
In practice, the fixedpoint computation rules de-

scribed so far (the full rule and the leftmost-outermost
rule) lead to very inefficient computations. In the rest

of this section we describe and illustrate a fixedpoint
computation rule, called the normal computation rule,
which leads to efficient computations. In fact, the
normal computation rule can be shown to perform the
minimum possible number of substitutions of any rule
within the class of computation rules which we de-
scribed (Vuillemin, 1973 [17]).

The idea of the normal rule is to delay the evalua-
tion of the arguments of procedures as long as possible,
keeping arguments as formal expressions until they are
needed. This rule is similar to ALGOL 60 "call by name,"
but with two important differences: (a) absolutely no
side effects are allowed, and (b) any argument is evalu-
ated at most once, namely the first time (if ever) it is
needed.

Using the normal rule, &+l is obtained from t, by
substituting r[F] for one occurrence of F chosen as
follows: we try first to replace the leftmost-outermost
occurrence of F in ti by r[F], and start to evaluate the
necessary tests in the new term, in order to eliminate
the if-then-else connectives. If this is possible, we are
done. Otherwise, we choose a new occurrence of F in
ti which corresponds to the first F we had to test during
the previous evaluation, and repeat the process.

We denote the computed function by fN. The nor-
mal rule is safe, and it is therefore a fixedpoint rule.
The rule can be implemented in programming lan-
guages with almost no overhead, and provides an
attractive alternative to call by value, which is not a
fixedpoint rule, and call by name, which is not efficient.

Example 10. Consider the program over the natural
numbers

F (x , y) ~ i f x = 0 t h e n y + 1
else i f y = 0 then F (x -- 1, 1)

else F (x - 1, F(x , y - 1)) .

We shall compute F(2,1) using the normal computa-
tion rule. The occurrence of F chosen for substitution
is underlined.

F_(2,1) ~ F (1 , F (2 , 0)) - - + F (1 , E (1 , 1)) - - - ~ F (1 , F (0 , F (I , 0)))

F (1 , F_(1,0) -t- I) ~ F (1 , E (0 , 1) -t- 1) ~ E (1 , 3)

-+ F_(0, F (1 , 2)) --* F (1 , 2) + 1 ---+ F_(0, F (1 , 1)) + 1

- . F (1 , 1) + 2 ~ E (0 , F (1 , 0)) + 2 --* E (1 , 0) + 3

F_(0,1) + 3 ~ 5.

Note that in F(1,F_ (2,0)), for example, the inner
occurrence of F was chosen for substitution, since trying
to substitute for the outer F would lead to

i f l = 0 t h e n . . .
else i f F (2 , 0) = 0 then • • •

else . . - ,

which requires testing for the value of F(2, 0).
We compare below the number of substitutions

required for each computation rule on this example.

Normal rule: 14
Full rule: 23
Leftmost-innermost: 14
Leftmost-outermost: 29

496 C o m m u n i c a t i o n s Augus t 1973
o f Vo lu me 16
the A C M N u m b e r 8

f N (x , y) =-- f i (x , y) is known as " A c k e r m a n n ' s
f tmct ion ." This funct ion is of special interest in recur-
sive funct ion theory because it grows faster than any
primit ive recursive funct ion; for example, f , (0, 0) = 1,

f i (1 , 1) = 3 , f i (2 , 2) = 7 , f i (3 , 3) = 61, a n d f i (4 , 4) =
2 2221~ - - 3. []

Example 11. Consider the p r o g r a m over the integers

F(x, y) ~ i f x = 0 then I e lse F(x -- 1, F(x -- y, y)).

We shall compu te F(2, 1), using the normal compu ta t ion
rule:

F(2, 1) ~ F (1 , F(1, 1))--~F_(0, F (I - F(1, 1),F(1, 1))) ~ 1.

We again compa re the subst i tut ions required:

N o r m a l rule: 3
Full rule: 7
Lef tmos t - innermost : 7
Lef tmos t -ou te rmos t : 3 []

II . C o m p u t a t i o n a l I n d u c t i o n

The first me thod we shall describe is conceptual ly
very simple: In order to p rove some p rope r ty of a p ro-
gram, we show that it is an invariant during the course
o f the computa t ion .

F o r simplicity, we shall first explain the me thod for
s imple p rograms , consist ing of a single recursive defini-
tion, then generalize to more complex programs .

C o m p u t a t i o n a l I n d u c t i o n fo r a S i n g l e R e e u r s i v e
D e f i n i t i o n

T o prove the p rope r ty P (f i) of the funct ion f l
defined by F ~ ~-[F], it is sufficient to : (a) check tha t P
is t rue before start ing the computa t ion , i.e. P(f2); and
(b) show that, i f P is true at one step of the compu ta -
tion, it remains true after the next step, i.e. P(F) implies
P (r [F]) for every F. In short

f rom P(~2) and V F { P (F) ~ P(r[g])}, infer P(f~).

Since this rule is not valid for every p,3 we shall only
consider admissible predicates P(F) which are s imply
conjunct ions of inequalities a[F] c ¢/[F], where a and
¢/are two cont inuous functionals. In this case, the justi-
fication of the principle is easy; if a[~2] ___ B[f~] and
VF{a[F] ~ t3[F] ~ a[r[F]] C ~[r[F]]/, then by a simple
induction, a[r~[f~]] C/3[r~[~2]] for every i _> 0. Since by
Kleene 's first recursion theorem rg[~2] ~ f i for all i, and ¢/
is monotonic , we have /3[ri[f~]] ~ ~lf,], and therefore
a[ri[~]] __C/3till for any i. By definition of the limit, this
implies lim~ {a[r~[f~]]} ~ 5[fi], and since ~ is cont inu-
ous, we have

a[fi] =- a.[lim, {r'[~2]}] -- l im, {a[r'[f~]]} ~ ~[fi].

Thus,

,~[f~] ___ ~[f,].

Example 12. We wish to show tha t the p r o g r a m

F(x) ~ i f p (x) then x else F(F(h (x)))

defines an idempoten t function,i .e , tha t V x [f i (f i (x)) --
f i(x)], or in short, t i f f -= f i . By p and h, we unders tand
respectively any natural ly extended part ial predicate and
function. We prove P(fi) , where P(F) is f i F =-- F, i.e.
(f iF ~ F) A (F c f iF) .
(a) Show P(f~), i.e. fTf~ ~ ~2.

f" (ft (x))
=- f" (w) definition of ft
-= i f p (w) then ~o e l s e f i (f , (h (w)))

definition of f ,
-= i f co then o: else f i (fT (h (w)))

since p(o:) =-- co
~- w definition of i f w then a else b

~ (.v) definition of ft.

(b) Show VF{ P(F) ~ P (r [F]) I , i.e.

VF{f rF =-- F ~ f,r[F] ~ T[F]}.

J; (r[F] (x))
---= f ,(if p(x) then x else F(F(h(x))))

definition of r
~- i fp (x) thenfi(x) elsef,(F(F(h(x))))

distributing f , over conditional,
since f , (w) ~

=- if p (x) then x e l s e f i (F(F(h (x))))
definition off i

=-- if p(x) then x else F(F(h(x)))
induction hypothesis

=- r[F](x) definition of r. []

The next example uses as domain the set ~;* of
finite strings over a given finite a lphabet ~, including
the emp ty string A. There are three basic funct ions:

h(x) gives the head (first let ter) of the string x;
t (x) gives the tail o f the string x (i.e. x with its first

letter r emoved) ;
a . x concatenates the letter a to the string x.

F o r example, h (B C D) = B, t (BCD) = CD, B . C D =
BCD. These funct ions satisfy the fol lowing propert ies ,
for every a 6 ~ and w C Z*:

h (a . w) = ~, t (~ .w) = w, a . w ~ A, and
w ~ A ~ h (w) . t (w) = w.

This system is somet imes called " l inear LISP." There is
no difficulty involved in generalizing our p roofs to real
LISP programs .

Example 13. The p r o g r a m

F(x, y) ~ i f x = A then y else h(x).F(t(x), y)

defines the a p p e n d funct ion f i (x, y) , denoted x , y . We
shall show that append is associative, i.e. that x* (y , z) =
(x . y) . z . For this purpose we prove P(f i) , where P(F) is
F(x, y)*z -- F(x, y , z) .
(a) Show P(~2); i.e. Vx, y, z[~2(x, y)*z =--- f~(x, y.z)] .

3 Consider, for example, the recursive program over the nat-
ural numbers F(x) ~ i fx = 0 then 1 else x.F(x -- 1), and the
predicate P(F): 3x[F(x) ~ oJ /~ x N w]. Then P(ft) and
VFIP(F) ~ P(r[F])} hold; but, since f ' (x) is a total function
(the factorial function), P (fi) does not hold.

497 Communications August 1973
of Volume 16
the ACM Number 8

a(x, y)*z
o~*z definition of ~t
ifo~ = A then z else h(o~). (t(~)*z)

definition of append
---w since~ = Ais
--= ~2 (x, y , z) definition of ft.

(b) Show V F { P (F) ~ P(r[F])} :
~[FI (x, y,z)

if x = A then y , z else h (x) .F(t (x), y , z)
definition of z

i fx = A then y , z else h(x). (F(t(x), y),z)
induction hypothesis

~- i fx = A then y , z else (h(x).F(t(x), y))*z
definition of append

~= (if x = A'then y else h(x).F(t(x), y))*z
distributing append over
tional, since ~*z -= ~0

=- r[F] (x," y)*z definition of r. []

condi-

P a r a l l e l Induct ion

We shall now present an applicat ion of computa -
t ional induct ion to proving properties o f two p rograms :
F ~ , IF] and G ~ a[G]. To prove P (f i , g,) for an ad-
missible predicate P(F, G) (e.g. a conjunct ion of in-
equalities a[F, G] ___ ~[F, G], where a and ~ are continu-
ous functionals), use the following rule:

f rom P(a, a) and (VF, G){P(F, G) ~ P(r[F], a[G])},
infer P (f i , g,).

Example 14. Consider the two programs (Morris,
1971 [14])

F(x, y) ~ if p(x) then y else h(F(k(x), y))
G (x, y) ~ i f p (x) then y else G (k (x) , h (y)) ,

where p stands for any naturally extended partial pred-
icate, and h and k for any naturally extended partial
functions. In order to prove t h a t f i (x , y) ~ g,(x, y)
for all x and y, we shall consider

P(F, G) :Vx , y { [F(x , y) =-- G(x, y)]
/~ [G(x, h(y)) =-- h(G(x, y))]} .

We prove P (f i , g,), which impl iesf i ~ g , , as follows:
(a) Show P (~2, ~2).

Vx,y{[ft(x, y) ~ f~(x,y)]
/k [f~(x, h(y)) ~ h(~(x, y))]} ,

clearly true, since h(~0) =-- w.
(b) Show (VF, G){P(F, G) ~ P(r[F], a[a])} .
(1)
r[F] (x, y)

--= if p (x) then y else h (F (k (x) , y))
~- if p(x) then y else h(G(k(x), y))

induction hypothesis
if p(x) then y else G(k(x), h(y))

induction hypothesis
~- ~[61 (x, y)

(2)
~[GI (x, h(y))

if p (x) then h (y) else G (k (x) , h (h (y)))
-= if p(x) then h(y) else h(G(k(x), h(y)))

induction hypothesis
=- h(if p(x) then y else G(k(x), h(y)))
-~ hMG](x,y)). []

C o m p u t a t i o n a l Induct ion for a S y s t e m o f Recurs ive

D e f i n i t i o n s

We shall state the computa t iona l induct ion principle
for a p rogram consisting o f two recursive definitions,

/:I ~ TI[FI, F21
F2 ~ ¢2[FI, F~];

the generalization to a system, of n (n > 2) recursive
definitions is straightforward.

To prove P(f~l, fi2), where P(FI, F2) is an admis-
sible predicate, use the following rule:

f rom P(f~, fl) and (VF1, F2){P(F~, F2)
P(rI[F~, F2], r2[F,, F,z])},

infer P (i l l , f,~).

Example 15. Consider the p rogram

I F1 (x) ~ if p (x) then FI (F~ (h (x))) else F.2 (g (x))
F.z (x) ¢=-if q(x) then.f(F.z(F1(x))) else f(h(x))

l F3(x) ~ i f p (x) then F3(f(F4(h(x)))) else f(F4(g(x)))
F4(x) ~ if q(x) then f(F4(F3(x))) else h(x)

in which p and q stand for any natural ly extended par-
tial predicates, and f , g, and h for any natural ly extended
partial functions. To prove that f i , - f , , , let P (Ft , F2,
F3, F4) be (F~ =- F3) /~ (F2 =--fF4). []

T r a n s f o r m a t i o n s W h i c h L e a v e f i Invar iant
We can use computa t iona l induct ion to prove useful

theorems about recursive programs. For example, if we
modify a recursive p rog ram F ~ r[F] by replacing some
occurrences o f F in r[F] by either r[F] o r f i , the funct ion
computed by the new program is precisely the or ig ina l f i .

To prove this, let us write r[F] = r ' [F, F], where we
use the second argument in r'[F, F] to distinguish the
occurrences of F which we wish to replace. We define
r~[F] ----- T'[F, r[F]] and r2[F] -- r ' [F, f i] ; our goal is to
show t h a t f i - f,~ --- f ~ . We show this in two steps:
(a) (ill C f ,) and (rio ~ f i) . This par t is easy since by
definition of t1 and r2, f i =- r~[fi] ~ r2[fi]. That is, f i is a
fixedpoint of both r~ and r2 ; therefore, it is more defined
than bothfi~ andf i~ .
(b) (f i c f i ~) a n d (fi ~f i .~) . This can be shown by
computa t iona l induct ion with P(F , Ft , F2) being the
admissible predicate (F c t5) /k (F ___ F2) /k (F
r[F]) A (F ~ f i) .

Example 16. Consider the two recursive programs
over the natural numbers

F(x) ¢=: i f x > 10 then x - 10 else F(F(x + 13))

and

G(x) ~ i f x > 10 then x -- 10 else G(x -t- 3).

We want to prove t h a t f i = g~ .
If we replace F(x -+- 13) in r by r[FJ(x + 13), we get

a new recursive p rog ram F(x) ~ r'[F](x) where

F(x) ~ i f x > 10thenx -- 10
else F(ifx -t- 13 > 10 then x + 13 -- 10

else F(F(x + 13 + 13))).

Since this is an f i invariant t ransformat ion f i ~ f i , .

498 Communications August 1973
of Volume 16
the ACM Number 8

Since x >_ 0, we always have x -k 13 > 10, therefore
f~, -~ g , . The case x ~ w is immediate. Thus, f i -= g,
as desired. []

Example 17. To provef,~ - - f , , for the program

[F, (x) ¢=: if p (x) then Fz (F~ (Fo. (f (x)))) else g (x)

l
F...(x) ~ if q(x) then Fj(h(x)) else k(x)
F3 (x) ¢=: if p (x) then F~ (F4 (f (x))) else g (x)
F4(x) ~ if q(x) then Fz(F3(h(x))) else F.z(k (x)),

we first change the definitions o f F~ and F4 to

El(x) ~ if p (x) then F.j(fr., (F,.(f(x)))) else g (x)

and

F4(x) ~ if q (x) then ft.. (F, (It (x))) else fi.~ (k (x)),

respectively, and then prove by computa t iona l induction
that

(fi~ =--f3) f (J;2f~,2 =- f~,), using
P(F~, F,, F3, F~) : (F~ =- F~) f (fi.f.., =- F~).

The reader should be aware o f the difficulties in-
volved in proving that f~, ~- f~3 without the above
modifications. []

Truncat ion Induct ion

I f for some cont inuous functional r we define the
sequence o f f u n c t i o n s f ~ by l e t t i n g f ~ ----- r~[f~], i.e.

f ° ----- [2 a n d f i+~ ---- r [f i] for all i E N(na tu ra l numbers) ,

then the same argument used to establish the validity
o f computa t iona l induct ion also shows the validity o f
the following very similar rule:

f rom p (f o) and (Vi ~ N) [P f f ') ~ P(f'+~)],
infer P (f i).

The resemblance o f this rule to the usual mathematical
induct ion on natural numbers suggests that we con-
sider a similar rule using complete induct ion over na-
tural numbers, which Morris, 1971 [14] calls truncation
induction. 4 More precisely:

In order to prove P(f i) , P(F) being an admissible
predicate, we show that for any natural number i,
the t ruth o f P (f) for a l l j < / implies the t ruth of P(f~).
Tha t is

f rom (Vi E N){[(Vj~ Nsuchthat j < i) P (f)] ~ P(f i) } ,
infer P (fi).

The validity o f this rule is established by first using induc-
t ion on N to show that P (f") holds for all n C N; one can
then use the p r o o f given above for the validity o f com-
putat ional induction.

When the p rogram consists o f a system of recursive
definitions such as

z~[F1, . . . , Fk],

we l e t f ° be (9 , ~2), f~+~ be (r ~ [f] , . . . , rdf~]), a n d f i
be (fi~, . . . , ilk); the t runcat ion induction rule is then
precisely the same as above.

Example 18. (Morris, 1971 [14]). We consider again
(see Example 14) the two programs:

F(x,y) ~ if p(x) then y else h(F(k(x), y))
G(x,y) ~ if p(x) then y else G(k(x), h(y)),

where p stands for any natural ly extended partial pred-
icate, and h and k for any naturally extended partial
functions.

In order to prove that both programs define the same
function, we check that f ° ---- gO, f l _---- gl and that

f~ _-- gi for all i > 2. We treat the cases for i = 0 and
i = 1 separately, since to p r o v e f i ~- g~ we have to use
the induct ion hypothesis for both i -- 1 and i - 2. []

T e r m i n a t i o n
The examples introduced so far demonst ra ted that

computa t iona l induct ion is convenient and natural for
proving many kinds of properties of recursive programs.
However, certain difficulties are involved in proving
termination. To show that g C fr for some fixed func-
t ion g (which is not ~2), we cannot simply choose P(F)
to be g ___ F, as then P(f~) will always be false. In the
next example we demonst ra te that if the domain is
specified by a "recursive predicate," it is possible to
overcome this difficulty.

Example 19 (Milner). The function reverse(x) -
f~(x, A) where F(x, y) ~ if x = A then y else F(t(x),
h(x) .y) gives as value over 2;* the string made up of the
letters of x in reverse order. For example, if

Z = {A, B, C}, then reverse(ACBB) = BBCA.

We shall show that reverse(x), i.e. f i (x , A), is defined
for any x in 2;*. For this purpose, we characterize the
elements of 2;* by the function word (x) -- g,(x), where

G(x) ~ i fx = A then true else G(t(x)).

We let P(F, G) be the admissible predicate

(Vx, y E s*) {[G(x) f word(y)] ~ word(F(x, y))}.

(a) Show e(~2, a).

[~2(x) f word(y)] C word ([~(x, y))

holds since it reduces to w ~ oJ.
(b) Show VF, G { P(F, G) ~ P(r[F], ~r[G])/.

,r[G](x) A word(y)
-=- (i fx = A then true else G(t(x))) f word(),)

definition of ,r
-~ if x = A then word(y) else G(t(x)) f word(y)

distributing A over conditional
ifx = A then word(y) else G(t(x)) f word(h(x)-y)

definition of word
if x = A then word(y) else word(F(t(x), h(x).y))

induction hypothesis
--- word(if x = A then y else F(t(x), h(x).y))

distributing word over conditional
=-- word(r[F](x, y)) definition oft .

4 When applied to natural numbers, the two induction schemata
are equivalent, i.e. we can validate either rule using the other. Thus
in any system which includes a formalization of natural numbers,
truncation induction and computational induction are equivalent
from a theoretical point of view. Experience in using both methods
shows that they are also equivalent in practice.

499 Communications August 1973
of Volume 16
the ACM Number 8

Therefore, by computat ional induction, we have:

[word(x) /~ word(y)] C word(fi(x, y)) for all x, y E :~*,

which for y = 3. gives word(x) c word(reverse (x)) .
Since by definition we have that word(x) is true for all
x ~ 2:* and word(~) = o~, this implies that reverse(x)
w f o r a n y x E ~ * . []

III. Structural Induct ion

One familiar method of proving assertions on the
domain N of natural numbers is that of complete induc-
tion: in order to prove that the statement P(c) is true
for every natural number c, we show that for any natural
number a, the truth of P(b) for all b < a implies the
truth of P (a) .

That is,

from (Va E N){[(Vb C N such that b < a)P(b)l
~ P(a)]},

infer (Vc C N)e(c).

Since this induction rule is not valid for every ordered
domain (e.g. it is valid over the natural numbers with
ordering < but fails over the integers with ordering < -
consider P which is always false), we shall first charac-
terize the ordered domains which are "good" for such
induction. We then present a general rule called struc-
tural induction, for proving assertions over these do-
mains; complete induction, as well as many other well-
known induction rules, is a special case of structural
induction. Finally, we give several examples using struc-
tural induction to prove properties of programs.

Wel l - founded Sets
A partially ordered set (S, ~<) consists of a set S and

a partial ordering ~< on S. Note that the ordering need
not be total; i.e. it is possible that for some a, b C S,
neither a ~ b nor b ~< a holds. A partially ordered set
(S, ~<) which contains no infinite decreasing sequence
a0 > al >- a2 > . . . of elements of S is called a well-
founded set.

Example 20.
(a) The set of all real numbers between 0 and 1, with
the usual ordering < , is partially ordered but not well
founded (consider the infinite decreasing sequence ½ >
~ > ~ > . . .) .
(b) The set I of integers, with the usual ordering _<, is
partially ordered but not well founded (consider 0 > -- 1
> - 2 > . . .) .
(c) The set N of natural numbers, with the usual order-
ing < , is well founded.
(d) I f 2; is any alphabet, then the set Z* of all finite
strings over :~, with the substring relation (w~ ~ w2 iff w~
is a substring of w2), is well founded. []

Structural Induction

We may now state and prove the rule of structural
induction on well-founded sets) Let (S, ~<) be a well-
founded set, and let P be a total predicate over S. I f
for any a in S, we can prove that the truth of P (a) is
implied by the truth of P (b) for all b < a, then P(c) is
true for every c in S. That is

from (Va C S) { [(Vb C S such that b .< a)P (b)] ~ P (a) },
infer (Vc ~ S)P(c).

To prove the validity of this rule, we show that if the
assumption is satisfied, there can be no element in S for
which P is false. Consider the set ,4 of elements a ~ S
such that P(a) is false. Let us assume that A is non-
empty. Then there is a least element a 0 such that a :~ a0
for any a ~ A; otherwise there would be an infinite de-
scending sequence in S. Then, for any element b such
that b < ao, P(b) is true; that is, (Vb C S such that
b < ao) P(b) must hold. But the assumption then im-
plies that P(ao) is true, in contradiction with the fact
that a 0 C A. Therefore A must be empty, i.e. P(c) is
true for all elements c ~ S.

Note that if there is no b in S such that b < a, the
statement (Vb ~ S such that b < a)P(b) holds vacu-
ously. For such a's we must therefore show P(a) uncon-
ditionally to establish the hypothesis needed for the
structural induction.

Appl icat ions
We now give several examples using structural induc-

tion to prove properties of recursive programs. Such
proofs require suitable choices of both the partial order-
ing ~< and of the predicate P. Some of the examples
show that the partial ordering to be chosen is not always
the usual partial ordering on the domain. Other ex-
amples illustrate that it is often useful to prove a more
general result than the desired property.

Example 21 (Cadiou). Factorial functions. Consider
the programs over the natural numbers

F (x) ~ i f x = 0 then 1 else x . F (x - - 1)

and

G(x, y) ¢==ifx = y then 1 else G(x, y + 1). (y Jr 1).

f , (x) and g,(x, 0) compute x! = 1.2 x for every
x C N in two different ways: g,(x, 0) by "going up"
f rom 0 to x and f~ (x) by "going down" f rom x to 0.
We wish to show that g,(x, O) ~ f i (x) for any x C N
by using the predicate

P(x) : (Vy C N)[g~(x + y, y) ' fr(y) =- f i (x + y)]

and the usual ordering on natural members.
(a) I f x = 0, P (0) is Vy[go(y, y) . f , (y) ~-- fi(Y)],
which is clearly true by definition of g~.
(b) I f x > 0, we assume P (x ') for all x ' < x and show
P(x).

5 Structural induction is sometimes also called Noetherian in-
duction. When the ordering ~< is total; i.e. a ~ b or b ~ a holds
for any a, b E S, it is called transJinite induction.

500 Communications August 1973
of Volume 16
the ACM Number 8

For any y ~ N,

g, (x + y, y)-f, (y)
=--- g,(x + y, y + 1)- (y + 1).f,(.V)

definition of g, (since x > 0)
g . (x + y, y + l)'fT(y + 1)

definition off~ (since y + 1 > 0)
~g,((x -- 1) + (y + 1), y + 1)-f~(y + 1)

since x > 0
-------.f, (x -- 1 + y -[- 1) induction hypothesis (since

x - - l < x)
-~fi(x + y).

By complete induction, then, P (x) holds for all
x C N. In particular, for y = 0, g,(x , O).fi(O) =-f~(x).
Sincef~(0) -- 1, we have g , (x, 0) -- f i (x) as desired. []

In the preceding example we used the most natural
ordering on the domain to perform the structural in-
duction. In the next example it is natural to use a some-
what surprising ordering.

Example 22 (Burstall). "Mc Ca r t hy ' s 91-funct ion" f~
is defined by the following program over the integers:

F(x) ~ i f x > 100 then x -- 10 else F(F(x + 11)) .

We wish to show thatfT ----- g, where g is

g(x) =-ifx > 100 then x - 10 else91.

The p roo f is by structural induct ion on the well-founded
set (I, ~<), where I is the integers and ~< is defined as
follows:

x -< y i f f y < x <_ 101
(where < is the usual ordering on the integers); thus
101 < 100 < 99 < . . . , but for example, 102 3(101.
One can easily check that (I, ,<) is well founded.

S u p p o s e f . (y) ---- g(y) for all y E / s u c h that y < x.
We must show t h a t f i (x) -= g(x) .
(a) For x > 100,f~(x) ---- g(x) directly.
(b) For I00 >__ x _ 90, f i (x) =-f~(f~(x + 11)) --

f~(x + 1), and since x + 1 < x we h a v e f i (x) --
f r (x + 1) ----- g (x + I) by the induction assumption.
But g (x + I) ~ 91 ---- g(x) , t h e r e fo r e f i (x) ----- g(x) .
(c) Finally, for x < 90, f i (x) =-- f i (f i (x + 11)), and
since x + 11 < x we havefT(x) =---f~(fi(x + 11)) ----
f~ (g (x + I 1)) by induction. But g (x + 11) ~ 91, and
we know by induct ion t h a t f i (9 1) --= g (91) ~- 91, so

f , (x) =-- f i (g(x + 11)) = - f i (9 1) -- 91 -- g(x) , as
desired.

We could alternatively have proven the above prop-
erty by structural induct ion on the natural numbers with
the usual ordering < , using the more complicated pred-
i c a t e P (n) : (Vx C I)[x > 100 -- n ~ f r (X) --~ g(x)] .
The reader should note that the details of this p roo f
and of the above p roof are precisely the same. []

Since the set (2;*, ~<) of finite strings over 2; with
the substring relation is well founded, we may use it for
structural induction. In the following example we use an
induct ion rule that can easily be derived f rom struc-
tural induction, namely:

f r o m P (A) and (Vx E 2~*)[x # A A P (t (x)) ~ P(x)] ,
infer (Vx C ~*)P(x) .

501

Example 23. Consider again the p rog ram of Ex-
ample 19 defining the function reverse(x) -- f i (x , A),
where

F(x, y) ~ i fx = A then y else F(t(x), h(x).y).

We wish to prove that r e v e r s e (r e v e r s e (x)) ~ x for
all x E 2;*. Of course, proving that reverse has this
proper ty does not show that it actually reverses all
words: many other functions, e.g. the identity function,
also satisfy this property.

To prove reverse(reverse(x)) =-- x, we let

P(x) be (Vy E Z*)[reverse(fT(x, y)) ~ f~(y, x)].

(a) I f x = A, then for any y we have

reverse (fi (A, y)) -= reverse(y) ~ fi(y, a).

(b) I f x # A, then for any y, we have
reverse(f,(x, y))

--= reverse(.f,(t(x), h(x).y))

=-.l;(h(x)'y, t(x))

=-.f&v, h(x).t(x))

definition of,l'~ (since x # A)
induction hypothesis (since x ;>
t(x))
definition off.(since h(x).y # A)

=--f,(y, x).
Therefore reverse(fi(x, y)) - - f i (y , x) for all x, y E 2;*;
in particular, for y -- A, reverse(reverse(x)) -- r e -

v e r s e (fT (x , A)) -- f_(A, x) ---- x, as desired• []
Other properties of r e v e r s e may easily be proven by

structural induction• In particular, the following ex-
ample uses the properties that, for any a, b E 2; and

w C ~*:
(i) r e v e r s e (w , a) --= a . r e v e r s e (w) ,

(ii) reverse (a. w) --= r e v e r s e (w) ,a , and
(iii) reverse(a. (w,b)) - b. (reverse(w),a) ,

where • is the a p p e n d function defined in Example 13
(Section I I) .

Example 24. Another reverse function• We wish to
show that the p rogram (due to Ashcrof t)

F(x) ~ i f x = A thenA
else if t(x) = A then x

else h (F(t (x)))
• F(h(x).F (t (F(t (x)))))

a*
also defines a reversing function on 2; , i.e. t h a t f i (x) ----
reverse (x) for all x C Y.*. Note that this definition does
not use any auxiliary functions.

In the p roof we shall use the following lemma charac-
terizing the elements of 2;*: for any x E ~*, either
x = A, or x C 2; (i.e. t (x) = A), or x = a. (w.b) for
some a E 2;, w C Y.*, and b C 2;. The lemma is easy to
prove by a s t raightforward structural induction.

We now prove thatfT ------ reverse by structural induc-
t ion on (2;*, ~), where ,< is the following partial
ordering:

x ,-< y i f fx is a substring o f y or x is a proper substring
o f r e v e r s e (y). One ca n check that (2;*, ,<) is well founded.

Using the above lemma, the p roo f may be done in

three parts.
(1) x = A : f i (x) --= A------ r e v e r s e (x) .

(2) x E ~ : f i (x) --= x = r e v e r s e (x) .

(3) x = a. (w.b) for some a C ~, w E 2;*, b ~ 2;:

Communications August 1973
of Volume 16
the ACM Number 8

iT (x)
~ h (f, (t (x))). f~ (h (x) . f i (t (f, (t (x)))))

definition of f i
=- h (f, (w.b)) . f , (a.f, (t (f, (w.b))))

since h(x) = a, t (x) = w*b
-~ /t (reverse (w.b)) .f, (a .f, (t (reverse (w'b))))

induction hypothesis (since
w*b < x)

---= /t (b" reverse (w)) . f i (a . f i (t (b. reverse (w))))
property (i) of reverse

b.fi (a.fi (reverse (w))) properties of h and t
-~ b-fi (a. reverse (reverse (w)))

induction hypothesis
(since reverse(w) < x) (6)

~- b-f, (a- w) property of reverse proven in pre-
vious example

~- b. reverse (a. w) induction hypothesis
(siqce a. w < x)

---= b. (reverse (w)*a) property (ii) of reverse
--- reverse (x) property (iii) of reverse .

We conc lude t h a t f i (x) - r eve r se (x) for all x C 23*,
as desi red. []

Given a par t ia l ly ordered set (S, ~<), we define the
lex icographic ordering ~ n on n-tuples o f e lements o f
S (i.e., on e lements of S n) by le t t ing (a l , . . . , an) <,~

(bx, . . . , b , ~) i f f a x = b l , . . . , a i - 1 = b / - l a n d a i "< bi
for some i, 1 < i < n. I t is easy to show tha t if (S, ~)
is well founded , so is (S", ~< ,,). In the fo l lowing example ,
we use the wel l - founded set (N 2, _<2), i.e. the lexico-
graphic o rder ing on pairs o f na tu ra l numbers . No te
tha t under this o rder ing (n~, n~) <2 (m l , m2) i f fnl < m~
or nx = ml and n., < m2 ; for example , (1,100) <2
(2, 0).

E x a m p l e 25. Cons ide r again the recursive p r o g r a m
over the na tu r a l number s of Example 10 fo r , compu t ing
A c k e r m a n n ' s funct ion

F(x, y) ¢== i f x = 0 then y q- -1
e lse i f y = 0 then F(x -- 1, 1)

e l s e F (x -- 1, F(x ,y -- 1)).

We wish to show t h a t f , (x , y) is defined, i . e . f i (x , y)
o~, for any x, y C N. W e shall use the s t ruc tura l induc-
t ion rule app l ied to the wel l - founded set (N 2, < ~.). As-

. / / / l
s u m m g t h a t f i (x ,y) is defined for any (x ,y) such tha t
(x ' , y ') <2 (x , y) , we show t h a t f i (x , y) mus t also be de-
fined.

(a) i f x = 0, o b v i o u s l y f i (x , y) is defined.
(b) i f x ~ 0 a n d y = 0, we note tha t (x - 1, 1) <2
(x, y) , so by the induc t ion hypothes is f i (x -- 1, 1) is
defined. T h u s f i (x , y) is also defined.
(c) F ina l ly , i f x ~ 0 and y ~ 0, (x, y - - 1) < 2

(x, y) , and therefore f i (x, y - - I) is defined by the in-
duc t ion hypothes is . Now, regardless o f the value of

f , (x , y -- 1), we have (x -- 1 , f i (x , y -- 1)) <2 (x, y)
and the des i red resul t fol lows by ano the r app l i ca t ion of
the induc t ion hypothes is . []

Acknowledgmen t s . We are indeb ted to R o b i n Mi lne r
for many s t imula t ing discussions and James M o r r i s for
suggesting m a n y improvemen t s to this paper .

Received November 1971: revised April 1972

References
1. Burstall, R.M. Proving properties of programs by structural
induction. Computer J. 12, 1 (Feb. 1969), 41-48.
2. Cadiou, J.M. Recursive definitions of partial functions and
their computations. Ph.D. Th. Computer Science Dept., Stanford
U., 1972.
3. deBakker, J.W., and Scott, D. A theory of programs
(unpublished memo., Aug. 1969).
4. Floyd, R.W. Assigning meanings to programs. Proc. Sympo. in
Appl. Math. Vol. 19. Mathematical Aspects t~f Computer Science,
(J.T. Schwartz, Ed.) AMS, Providence, R.I., 1967, pp. 19-32.
5. Grief, I.G. Induction in proofs about programs. Master's Th.,
M.I.T., 1972.
6. Kleene, S.C. Introduction to Metamathematics. D. Van
Nostrand, Princeton, N.J., 1950.
7. Manna, Zohar, and Pnueli, Amir. Formalization of properties
of functional programs. J. ACM, 17, 3 (July 1970), 555-569.
8. Manna, Zohar, and Vuillemin, John. Fixpoint approach
to the theory of computation. Comm. ACM 15, 7 (July 1972),
pp. 528-536.
9. McCarthy, John, and Painter, J.A. Correctness of a compiler
for arithmetic expressions. Proc. Sympo. in Appl. Math. Vol. 19.
Mathematical Aspects of Computer Science, (J.T. Schwartz, Ed.)
AMS, Providence, RT, 1967, pp. 33-41.
10. Milner, Robin. Logic for computable functions--description
of a machine implementation. Comput. Sci. Rept., Stanford U.,
1972.
11. Milner, Robin. Implementation and applications of Scott's
logic for computable functions. Presented at Proc. ACM Conf. on
Proving Assertions About Programs, Las Cruces, N.M., Jan. 1972,
pp. 1-6.
12. Minsky, Marvin. Computation-Finite and Infinite Machines.
Prentice-Hall, Englewood-Cliffs, N.J., 1967.
13. Morris, James H. Lambda-calculus models of programming
languages. Ph.D. Th., Proj. MAC, MIT, MAC-TR-57, Dec. 1968.
14. Morris, James H. Another recursion induction principle.
Comm. ACM 14, 5 (May]971), 351-354.
15. Park, David. Fixpoint induction and proofs of program
properties. In Machine Intelligence 5, (B. Meltzer and D. Miehie,
Eds.) Edinburgh U. Press, Edinburgh, 1969, pp. 59-78.
16. Scott, Dana. Outline of a mathematical theory of computation.
Proc. Fourth Ann. Princeton Conf. on Information Sciences and
Systems, Princeton U., 1970, pp. 169-176.
17. Vuillemin, Jean. Proof techniques for recursive programs.
Ph.D. Th., Comput. Sci. Dept., Stanford U., 1973 (to appear).

Note that reverse (w) < x because reverse (w) is a proper
substring of reverse(x), as may be seen from property (iii) of
reverse .

502 Communications August 1973
of Volume 16
the ACM Number 8

