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Introduction 

Many different inductive methods have been used to 
prove properties of programs. Well-known methods in- 
clude, for example, recursion induction, structural in- 
duction, inductive assertions, computat ional  induction, 
truncation induction, and fixedpoint induction. Our in- 
tention in this paper is to introduce these methods to 
as wide a class of readers as possible, illustrating their 
power as practical techniques for proving properties 
of  recursive programs. 

In Section I we give the theoretical background 
necessary to understand the fixedpoint approach to 
recursive programs (essentially following Scott, 1970 
[16]), as well as the practical computat ional  approach.  
We emphasize that while existing inductive methods 
prove properties of the "least fixedpoint function" of a 
recursive program, in practice this function may differ 
from the function computed by some common computa-  
tion rules. We briefly suggest "fixedpoint" computat ion 
rules which assure that the computed function is iden- 
tical to the least fixedpoint. A brief informal exposition 
of the fixedpoint theory was given by Manna and 
Vuillemin, 1972 [8]. 

In Section II  we examine computational induction 
methods, i.e. methods in which the induction is based 
on the steps of the computation.  We first present the 
extremely simple induction method introduced by Scott 
(deBakker and Scott, 1969 [3]). Examples are presented 
which introduce various applications of  the method. 
We also discuss another computat ional  induction 
method, truncation induction (Morris, 1971 [14]). A 
related method, called fixedpoint induction, is described 
in Park, 1969 [15]. 

We describe the structural induction method and its 
application for proving properties of  programs in Sec- 
tion lII .  This method was suggested explicitly by Bur- 
stall, 1969 [1], although it was often used previously, 
for example by McCarthy and Painter, 1967 [9], for 
proving the correctness of  a compiler and by Floyd, 
1967 [4] for proving termination of flowchart programs.  
Our intention in this section is to emphasize, by means of 
appropriately chosen examples, that the choice of a 
suitable partial ordering on the data structure and of a 
suitable induction hypothesis leads to simple and clear 
inductive proofs. 

Although it can be shown that computat ional  in- 
duction and structural induction are essentially equiva- 
lent, there are practical reasons for keeping both of them 
in mind. Computat ional  induction i s  best suited for 
proving the correctness and equivalence of programs, 
and because of its simplicity it is particularly convenient 
for machine implementation (Milner, 1972 [10, 11]). On 
the other hand, termination of programs is usually more 
convenient to show by structural induction. 

We concentrate on these two methods because they 
form a natural basis for future automatic program 
verifiers. In particular, all other known verification tech- 
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niques can be justified rather directly by application of 
these methods. Grief, 1972 [5], discussed briefly the 
power of the different methods. 

I. Recursive  Programs  

In this section, we introduce the fixedpoint theory 
of partial functions and show its relation to recursive 
programs and their computations.  

The partial orderings on D + and (D X D) + are de- 
scribed in the diagrams below, where each connecting 
line indicates that  the lower element is less defined than 
the upper element. (Lines implied by transitivity or 
reflexivity are not shown.) El 

a b \ /  
6 0  

(a a) (a,b) (b,a) (b,b) ' 

2><21. 
(a,co) (oa,a) (co,b) _(b,w) 

Part ia l  Funct ions  
We wish to consider partial functions from a domain 

Dt into a range D2, i.e. functions which may be unde- 
fined for some arguments. For  example, the quotient 
function x /y ,  mapping R X R (pairs of real numbers)  
into R, is usually considered to have no value if y = 0. 
Partial functions arise naturally in connection with com- 
putation, as a computing process may give results for 
some arguments and run indefinitely for others. Par- 
tial predicates are of  course a special case, since a par- 
tial predicate is a partial function mapping a domain 
D1 into l true , fa lse} .  

In developing a theory for handling partial func- 
tions it is convenient to introduce the special element co 
to represent the value undefined. We let D ÷ denote 
D U {co}, assuming co ~ D by convention; when D is 
the Cartesian product A, X - . .  X A,,, we let D + be 
A~ + )< • - - X A,~ +. Any partial f unc t ion fmapp ing  Dt = 
A x  X • • • X A,, into D2 may then be considered as a total 
function mapping Dt into D2+: if f is undefined for 
( d ~ , . . . , d , )  E O , ,  we l e t f ( d , ,  . . . ,  d,) beco. 

Since we shall consider composit ions of  partial func- 
tions, we may need to compute functions with some 
arguments being undefined. Thus we must extend every 
function mapping Dt into D2 + to a function mapping 
Dt + into D~+; such extensions are discussed in the next 
section. 

The Order ing  C on the D o m a i n  
To define appropriate  extensions of partial func- 

tions f rom D~ into D2 to total functions from D, + into 
D + 2 , we first introduce the pariial ordering' c on every 
extended domain D ÷. The partial ordering ___ is intended 
to correspond to the notion "is less defined than or 
equal to ,"  and accordingly we define it by letting co c d 
and dc__ d for all d E D +. Note  that distinct elements of 
D are unrelated by ___ : for distinct a and b in D, neither 
a ___ b nor b ___ a holds. I f  D + is the Cartesian product  
Ax + X " "  • X A,~ +, we define ( a t , . . .  ,an) ~ ( b t , . . .  ,b~} 
when a~ c b~ for each i, 1 < i < n. 

Example 1. I f D  = {a, b}, then D + = {a, b, co} and 
(O X D)+ = {(co, w), (w, a), (a, co ) , . . . ,  (a, b), (b, a), (b, b)}. 

~A partial ordering is a binary relation which is reflexive 
((Va)[a C a]), antisymmetric ( (Va,b)[a C b A b C a ~ a is 
identical to b]), and transitive ((Va,b,c)[a C b /~ b C c 
a Cc]) .  As usual, we write a C b ifa  ~ b and a is not identical 
to b, a ~ b if a CZ b does not hold, etc. 

D + (D X D) + = D + X D + 

M o n o t o n i c  Funct ions  
Any function f computed by a program has the 

property that whenever the input x is less defined than 
the input y, the o u t p u t f ( x )  is less defined t h a n f ( y ) .  
We therefore require that  the extended function f f rom 
Dt + into D2 + be monotonic, i.e. 

x ___ y impl iesf(x)  C f (y )  for all x,y ~ D~-. 

We let (Dr + ---+ D~ +) denote the set of  all monotonic  
functions from D~ + into D + 2 • 

I f f  has only one argument, monotonicity requires 
f (w )  to be % with one exception: the constant function 
f (x )  = c for all x E D + is always monotonic.  In the fol- 
lowing we denote such a constant function just by c. I f f  
has many arguments, i.e. Dt = At )< - - -  )< A,,, it may 
have many different monotonic extensions. A particu- 
larly important  extension of any function is called the 
natural extension, defined by l e t t ingf (d t ,  . . .  , d,~) be w 
whenever at least one of the d~ is co. This corresponds in- 
tuitively to the functions computed by programs which 
must know all their inputs before beginning execution 
(i.e. ALGOL "call by value").  

Example 2. 
(a) The identity function, mapping any x in D + into 
itself, is obviously monotonic.  
(b) The quotient function, mapping (x, y} into x /y ,  
extended to a total function by letting x/O be w for any 
x in R, becomes monotonic  by the natural  extension: let 
x/co and ~o/y be co for any x and y in R +. 
(c) The equality predicate mapping D X D into {true, 
false} can be extended in the following particularly 
interesting ways: 

(i) The natural extension (weak equality), denoted 
by = ,  yields the value co whenever at least one of its 
arguments is w. The weak equality predicate is of 
course monotonic.  
(ii) Another  extension (strong equality), denoted by 
~-, yields the value true when both arguments are w 
and false when exactly one argument is w; in other 
words, x -= y if and only if x c y and y c x. The 
strong equality predicate is not a monotonic  mapping 
f rom D + X D + into {true,false} +, since (c0, d) ___ 
(d, d} but (w ~ d) ~ (d ~ d) (i.e. false ~ true)  for 
d C D .  

(d) The i f - then-e lse  function, mapping {true,false} 
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X D X D into D, is defined for any a, b 6 D by letting 

i f  true then a else b = a, 
i f  false then a else b = b. 

It can be extended to a monotonic function mapping 
{ t r u e , f a l s e }  + X D + X D + into D + by letting, for any 
a, b C D +, 

i f  true then a else co = a, 
i f  false then co else b = b, 
i f  co then a else b = ,.. 

Note that this is not the natural extension of i f - t h e n -  

e l s e .  [ ]  

I.Ve shall assume all the functions of  our examples to 
be naturally extended, except for  the constant functions 
and the if-then-else function. 

C o m p o s i t i o n  o f  F u n c t i o n s  

An important operation on functions is composition, 
which allows functions to be defined in terms of sim- 
pler functions. If f is a function from Dj + to D~ + and g a 
function from D, + into Da +, then the composition o f f  
and g is the function from DI* into Da + defined by 
g ( f ( x ) )  for every x in D~ ÷. It is easy to show that, i f f  
and g are monotonic functions, so is their composition. 

Example 3. 
(a) The function f ,  given by 

f(x) -~ i f  x = 0 then 1 else x, 

is defined by composition of  the weak equality predi- 
cate, the constant functions 0 and 1, the identity 
function, and the i f - t h e n - e l s e  function. Since all these 
functions are monotonic, f is monotonic. 
(b) The function f ,  given by 

f(x) -~ i f  x =- co then 0 else 1, 

defined using the nonmonotonic predicate ~ ,  is not 
monotonic, sincef(¢0) -- 0 and f ( 0 )  = 1 (i.e. o~ ___ 0, 
butf(~0) ~ : f ( 0 ) ) .  [] 

Finally, we discuss an important corollary which 
follows from properties of monotonic functions. Con- 
sider functions f~ and f i ,  given by 

f~ (x) -~ g(if p(x) then & (x) else &(x) ), and 

j~ (x)  ~ i f  p (x)  then g (h~ ( x ) )  else g (h~ (x)), 

where p, g, h~, and h~ are monotonic. Then both./q and 
f,_ are monotonic, since each is defined by a composition 
of monotonic functions. There is an interesting relation 
between these two functions: 

( i ) f i (x )  ~ f l ( x )  for  any x; 
(ii) i f  g(oa) =-oo, then f2(x)  = f l ( x )  for  any x. 

We shall use the second result often in later proofs. The 
above properties generalize to any n-ary (n > 1) mono- 
tonic function g. For  example, if g(o~, y) --= ~ for all 
(w,y) C D1 +, then 

g(if p(x) t h e n  hi(x) e l s e  h2(x), ha(x))--- 

if p(x) t h e n  g(h~(x), ha(x)) e l s e  g(h2(x), ha(x)). 

T h e  O r d e r i n g  ~ o n  F u n c t i o n s  

L e t f a n d  g be two monotonic functions mapping D, + 
into D.~ +. We say t h a t f  C g, read " f i s  less defined than 
or equal to g,"  i f f ( x )  c g(x )  for any x E DI+; this 
relation is indeed a partial ordering on (D1 + --+ D2+). 
We say t h a t f  ~ g, read 'geis equal to g," i f f (x)  --- g(x) 
for each x C D1 + ( t h a t i s , f  ~ g i f f f  ~ g and g ~ f ) .  
We denote by ~2 the function which is always undefined: 
f~ (x) is ~o for any x C D1 +. Note that f~ ~ f f o r  any func- 
t i o n f  of (D, + ~ D+). 

Infinite increasing sequences f0 c j ]  ___ f i c  . . .  of  
functions in (D1 + ~ D2 +) are called chains. It can be 
shown that any chain has a unique limit function in 
(DI+ --+ D2+), denoted by lim~ {fd, which has the charac- 
teristic properties thatf~ ___ lim~ If,'} for every i, and for 
any function g such that J~ c g for every i, we have 
lim~ {f~} ___ g. 

Example 4. Consider the sequence of monotonic 
functionsfi ,  )q,f2,.. .  over the natural numbers defined by 

.fg(x) =-- (ifx < i then x!  else co). 

This sequence is a chain, asf i  ~f i+1 for every i; lim i {f~} 
is the factorial function. [] 

C o n t i n u o u s  F u n c t i o n a l s  

We now consider a function r mapping the set of 
functions (D1 + --+ D, +) into itself, called a functional; 
that is, r takes any monotonic func t ionfas  its argument 
and yields a monotonic function r [ f ]  as its value. As in 
the case of functions, it is natural to restrict ourselves 
to monotonic functionals, i.e. r such t h a t f  ___ g implies 
r[f] C_ r[g] for a l l f a n d  g in (D1 + -+ D~+). For  our 
purposes, however, we consider only functionals satisfy- 
ing a stronger property, called continuity. A functional 
z is said to be continuous if for any chain of functions 

fo ~ f, ~ A CC _ ... 

we have 

r[A] __c ~bq] __ ~g.-,] --_ . . .  

and 

r[lim, 1J~}] = lim, {r[j~]}. 

Every continuous functional is clearly monotonic. 
We usually specify a functional r by composition of 

known monotonic functions and the function variable 
/7, denoted by r[F] (x); when Fis  replaced by any known 
monotonic function f ,  the composition rules determine 
a monotonic function r[f] (x). It can easily be shown that 
any functional defined by composition of monotonic 

functions and the function variable F is continuous. 
Example 5. 

(a) The functional over the integers defined by 

r[F](x) =-- i f  x = 0 then 1 else F(x + 1) 

is constructed by composition of monotonic functions 
( i f - t h e n - e l s e ,  addition, weak equality, and the constant 
functions 0 and 1 ) and the function variable F; it is 
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therefore  cont inuous .  Given  any mono ton i c  funct ion 
f over  the integers,  z[ f]  is ano ther  mono ton i c  funct ion 
over  the  integers :  

if f (x) -= oJ, then r[ f l (x)  ~ if x = 0 then 1 elsew; 
i f f (x)  -~ x -- 1, then r[f] (x) -= i fx  = 0 then 1 else x. 

(b)  The  func t iona l  over the na tu ra l  numbers  
(N  + ~ N +) defined by 

r[F](x) =--- if  Vx[F(x) = x] then F(x) else oJ 

is m o n o t o n i c  bu t  not  con t inuous ;  if  we cons ider  the  
chain  f0 ___ J~ C:_ . . .  where f i ( x )  ~ if  x < i t h e n  

x else ~, r[f~] - -  ~2 for any i so tha t  limi{r[f~]} --- 
~, whereas  r[lim~ {fd] is the ident i ty  funct ion.  [] 

F i x e d p o i n t s  

Let  r be a funct ional  mapp ing  (D,  + --+ D~ +) in to  
itself. W e  say tha t  a funct ion f is a f i x e d p o i n t  of  r if 
f -  r [ f ] ;  i.e. r maps  the funct ion f back  into itself. W e  
say t h a t f i s  a l e a s t f i x e d p o i n t  of  r if  f is a f ixedpoin t  of  r 
and  f___ g for any  o ther  f ixedpoin t  g o f r .  An  i m p o r t a n t  
f u n d a m e n t a l  resul t  is tha t  a n y  con t i nuous  r m a p p i n g  
(D1 + --+ D2 +) into i tself  has a un ique  l e a s t f i x e d p o i n t f l  in 
(D1 + --> De+). We can compu te  f i  as the l imit  of  the 
chain  r°[~2] C r~[~2] ___ r2[S2] _____ . . .  (where r°[~2] ------ ~2 and  
r~+l[f~] = r[ri[~2]]), as fol lows f rom Kleene ' s  first re- 

curs ion  t heo rem [6]. 
E x a m p l e 6 .  All  the  func t iona ls  in the fo l lowing 

examples  are  defined by  c o m p o s i t i o n  of  m o n o t o n i c  
funct ions  and  the funct ion  var iable  F and  are therefore  
con t inuous  by  cons t ruc t ion  and  have unique least  

f ixedpoints .  
(a)  The  funct ional  r over  (N  + --+ N ~) given by 

r [F](x)  =- i f  x = 0 then 1 else F(x  + 1) 

has as f ixedpoints  the  funct ions  (for each n C N +) 

fi,(x) -= i fx  = 0then 1 else n. 

The  least  f ixedpoin t  is 

f i ( x )  -~ i f  x = 0 then 1 else ~. 

(b)  The  only  (and therefore  leas t )  f ixedpoint  o f  the 
funct ional  r over  the integers given by 

r[F] (x) ~ i fx  > 100 then x -- 10 else F ( F ( x  -1- 11 )), 

is 

fi(x) -~ i fx  > 100 then x - 10 else 91. 

(c) The  func t iona l  r over the  integers defined by 

r[F](xt ,  x...) =-- i fx i  = x2 then x2 q- 1 
else F(x~, F(xt  -- 1, x... + 1)) 

has  as f ixedpoints  the  funct ions  

f ( x l  , xz) -~ i f  xl = x2 then x~ + 1 else xl q- 1, 
g(x~,  x=) =-- i f  x~ >_ x= then xt q- 1 else x~ -- 1, and 
h(x~ ,x2)  -~ i f  (x~ >_ x2) /k (x~ -- x~ even) then x~ q- 1 else ~,, 

the la t ter  be ing  the least  f ixedpoin t  f i  (Morr i s ,  1968 
[13]). N o t e  t h a t f ' ( x ~ ,  x~) ---- xl  q- I is no t  a f ixedpoint ,  
since r [ f ' ] ( x ~ ,  ~o) =-- ~o while3"' ( x l ,  ~o) - x~ + 1. [] 

W e  cons ider  a func t iona l  r over  (D1 + --+ D~+) ", i.e. 
r maps  n-tuples of  funct ions  f rom (D1 + + D2 +) in to  
n-tuples of  funct ions  f rom (D1 + ~ D2+). Such a func- 
t iona l  is given by coo rd ina t e  funct ionals  r l ,  • • • , r , , ,  so 
tha t  r [F~ ,  . . .  ,F,~] is (r~[F~, . . .  ,F,,], . . .  , r, ,]F~, . . .  , 

F , ] ) .  r is con t inuous  iff each r i  is con t inuous .  A cont inu-  
ous func t iona l  r over  (D1 + + D2+)" has  a un ique  least  

f i x e d p o i n t f i  ~- ( i l l ,  - . .  , f i , , ) ;  tha t  is 
( a ) f i ,  -= r i [ f , l , . . . , f i , ]  for a11i, 1 <__ i <__ n; 
(b)  for any  f ixedpoint  g -= ( g ~ , . . . ,  g~) of  r ,  i.e. 
g,  =-- r i [ g ~ , . . . ,  g,] for all i (1 < i < n ) , f i~  ~ g~ for 

a l l i  (I < i <  n) .  
E x a m p l e  7. Cons ider  the  func t iona l  r[F, ,F2] =-- 

( r l [ F l  , F2], r2[F1, Ee]) over (N + --+ N+)  2, where:  

r~[F~, Fd(x)  -= i fx  = 0then I else F~(x -- 1) + F.,.(x -- 1) 
r2[F~ , F.~] (x) ~ i f  x = 0 then 0 else F.a(x -k 1 ). 

F o r  any n C N +, the  pa i r  (g,, ,  h,) defined by  

g , ( x ) - - - - i f x = 0 k / x  = l t h e n l e l s e  ( x -  1 ) . n q -  1 
h , ( x )  =- i f x  = 0 then 0 else n 

is a f ixedpoin t  of  r ,  since g ,  =- r~[g,,h~] and  h,  =-- 
r2[g,,hn] (and therefore  ( g , , h , )  =- r [ g , , h , ] ) .  The  least  
f ixedpoin t  is the  pa i r :  

( i f x  = 0 ~ / x  = 1 t h e n l  e l s e w ,  i f x  = 0 t h e n 0 e l s e o ~ ) .  []  

R e c u r s i v e  P r o g r a m s  

So far, we have  been conce rned  on ly  with  func t ions  
cons ide red  abs t rac t ly ,  as pure ly  m a t h e m a t i c a l  objects .  
F o r  example ,  we though t  of  the fac tor ia l  funct ion  as a 
cer ta in  m a p p i n g  between a rgumen t s  and  values,  with-  
out  cons ider ing  how the m a p p i n g  is specified. T o  con-  
t inue our  discussion we mus t  i n t roduce  at  this  p o i n t  a 
" p r o g r a m m i n g  l anguage"  for specifying funct ions .  A 
funct ion  will be specified by a piece o f  code  in the  
syntax o f  the  l anguage  and  then will be executed  ac- 
co rd ing  to  c o m p u t a t i o n  rules given by  the semant ics  o f  

the language.  
In  the rest  of  this  pape r  we use for i l lus t ra t ion  a 

pa r t i cu la r ly  s imple  language,  chosen  because  o f  its 
s imilar i t ies  to fami l ia r  l anguages  such as ALGOL or  
LISP. A l t h o u g h  our  p r o g r a m m i n g  l anguage  is very 
s imple,  it  is power fu l  enough  to express  any " p a r t i a l  
recurs ive"  funct ion ,  hence by  C h u r c h ' s  thesis any  
" c o m p u t a b l e "  funct ion  (see M insky ,  1967 [12]). A 
p r o g r a m  in our  language,  cal led a recurs ive  de f i n i t i on  

or recurs i ve  p r o g r a m ,  is of  the  fo rm 

F ( x )  ~ r[F] (x)  

where r [ F ] ( x )  is an express ion represent ing  compos i -  
t ion of  k n o w n  m o n o t o n i c  funct ions  and  p red ica tes  and  
the func t ion  var iable  F,  app l i ed  to  the  ind iv idua l  vari-  
able  x. (2) F o r  example ,  the  fo l lowing is a p r o g r a m  for  

2 We shall purposely be vague in our definitions in this sec- 
tion to avoid introducing the notions of schemata and interpreta- 
tions. For a formal approach, see Manna and Pnueli, 1970 [7] or 
Cadiou, 1972 [2]. 
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computing the factorial function: 

F(x) ~ i fx  = 0 then 1 else x.F(x--1). 

This program resembles the ALGOL declaration 

integer procedure f (x ) ; 
f : =  i f x  =Othen 1 eisex*f(x--1); 

and the LISP definition 

DEFINE (( 
(FF (LAMBDA (X)(COND ((ZEROP X ) 1 )  

(T (TIMES X (FF (SUB1 X)) ) ) ) ) ) ) ) .  

Of  course our programs are meaningless until we 
describe the semantics of our language, i.e. how to 
compute the function defined by a program. The next 
step is therefore to give computation rules for executing 
programs. Our aim is to characterize the rules such that 
for every program F ( x )  ~ r[F] (x) the computed func- 
tion will be exactly the least fixedpointf~. 

C o m p u t a t i o n  S e q u e n c e  

Let F(x )  ~ r[F] (x) be a program over some domain 
D +. For  a given input value d E D + (for x),  the program 
is executed by constructing a sequence of terms 
to, h ,  t 2 , . . . ,  called a computation sequence for  d, as 
follows : 
(1) The first term to is F(d).  
(2) For  each i, i > 0, the term t~+l is obtained from ti 
in two steps: first (a) substitution: some occurrences 
(see below) of F(e)  in ti are replaced by ~-[F](e) 
simultaneously, where e may be any subexpression; 
and then (b) simplification: known functions and 
predicates are replaced by their values, whenever pos- 
sible, until no further simplifications can be made. 
(3) The sequence is finite and t, is the final term in the 
sequence if and only if no further substitution or sim- 
plification can be applied to t, (that is, when tn is an 
element of D+). 

C o m p u t a t i o n  R u l e s  

A computation rule C tells us which occurrences of 
F(e)  should be replaced by r[F] (e) in each substitution 
step. For  a given computat ion rule C, the program 
defines a partial function f~ mapping D + into D + as 
follows: I f  for input d ~ D ÷ the computat ion sequence 
for d is finite, we say t ha t f c (d )  - tn ; if the computa-  
tion sequence for d is infinite, we say that f c  (d) =- o~. 

The following are examples of  typical computat ion 
rules: ( I ) f u l l  computation rule: Replace all occurrences 
of  F simultaneously. We denote the computed function 
by fFL. (2) leftmost-innermost("call by value") rule: 
Replace only the leftmost-innermost occurrence of F 
(that is, the leftmost occurrence of F with all argu- 
ments free of F 's) .  We denote the computed function 
by fz~ • This is the rule which corresponds to the usual 
stack implementation of recursion for languages like 
LISP or ALGOL where a procedure evaluates all its argu- 
ments before execution. (3) leftmost-outermost ("call 
by name") rule: Replace only the leftmost-outermost 

occurrence of F. We denote the computed function 
byfLo • 

Example 8. We consider the recursive program for 
the "91-function" over the integers: 

F(x) ~ i f x  > 100 then x -- 10 else F(F(x+ll) ) .  

We illustrate the computat ion secquences for x = 99 
using the three rules. 
(a) Using the full rule: 

to is F(99) 
i f  99 > 100 then 99 -- 10 

else F(F (99+ 11 ) ) [substitution] 
h is F(F(110) ) [simplification] 

i f  [ if  110 > 100 then I10 -- 10 
else F(F( l l0+ l l ) ) ]  > 100 

then [if 110 > 100 then 110 -- 10 
else F(F(I10+ll))]  -- l0 

else F(F([if 110 > 100 
then 110 -- I0 
else F(F(110+11 ) )]+11 ) ) [substitution] 

t~. is F(F(111 ) ) [simplification] 
i f [ i f  111 > 100 then 111 - - 1 0  

else F ( F ( l l l + l l ) ) ]  > 100 
then [if 111 > 100 then 111 -- 10 

else F ( F ( l l l + l l ) ) ]  -- 10 
else F(F([if 111 > 100 

then 111 -- 10 
else F ( F ( l l l + l l ) ) ] + l l ) )  [substitution] 

h is 91. 

In short, omitting simplifications and underlining the 
occurrences of F used for substitution: _F(99) 
_F(F( l l0 ) )  ~ _F(_F(111)) --~ 91. Thus, f rL(99)  =- 91. 
(b) Using the leftmost-innermost rule: 

_F(99) ---, F(F(l l0))  --* F_ (100) --* F(E( l l l )  --* F (101) ~ 91. 

Thus, fLt(99) = 91. 
(c) Using the leftmost-outermost rule 

E(99) ---, F_ (F(ll0)) 
i f F _ ( l l 0 )  > 100 then F ( I I 0 )  --  10 

else F(F(F(llO)+ll  ) ) 
--* E (F(F(IlO)+ll ) ) . . . .  

ifF_(ll0) + 11 > 100 then F(ll0) -- 9 
else F(F(F(110)+22))--10 

F(ll0)  -- 9 ~ 9 1 .  

Thus, fLo(99) -= 91. [] 

An important  property o f f c  should be mentioned at 
this point (Cadiou, 1972 [2]): For  any computat ion rule 
C, the computed function f c  is less defined than the least 
fixedpoint, i.e. f c  __-f~, but they are not necessarily 
equal. 

A program may consist in general of a system of 
recursive definitions of the form 

I 
FI(x)  ~ rl[Fx , . . . ,  F,](X) 
F...2(x) ~ r.,.[F1, , F,](X) 

~F,(x) ~ r,[F1, . . . , F,I(X), 

where each ri is an expression representing a composi- 
tion of known monotonic functions and predicates and 
the function variables F~, F ,2 , . . .  ,F, applied to the 
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individual variables x = ( x ~ , . . . ,  xk). The generaliza- 
tion of the computation rules to systems of recursive 
definitions is straightforward; the computed function 

/4"(1) 4'(2) g-(n) f c  of the system can be described as w c  , j c  , • • • , J C  ), 

where each ¢(~) j c  is computed as described above. The 
results of this section still hold for systems of recursive 
definitions. 

Fixpoint Computation 
All of the methods for proving properties of pro- 

grams described in the rest of this paper are based on 
the assumption that the computed function is equal to 
the least fixedpoint. We are therefore interested only 
in the computation rules that yield the least fixedpoint. 
We call such computation rules fixedpoint computation 
rules. 

Let a[F I, . . . ,  F ~, F '+', . . . ,  Fk](d) denote any term 
in the computation sequence for d under some compu- 

tation rule C, where we use superscripts to distinguish 
the individual occurrences of F in a. Suppose that we 
choose for substitution the occurrences F 1, . . .  , F i (for 
some i, l < i < k) of F in a. We say that this is a safe 
substitution if: 

( V f f + a , . . . , f k ) a [ ~ , . . . ,  ~ , f , + , , . . . , f k l ( d )  =-- ~o. 

Intuitively, the substitution is safe if the values of 
F ~+~,. . . ,  F k are not relevant: as long as F ~, . . . ,  F ~ are 
not known, the value of o~[F1, . . . , F k] (d)  cannot be 
determined, and hence there is no need to compute 
F ~ + ~ , . . . , F  k at this point. 

A safe computation rule is any computation rule 
which uses only safe substitutions. It can be shown that 
any safe computation rule is a fixedpoint rule (Vuille- 
min, 1973 [17]). For  example, since the full rule and 
the leftmost-outermost rule are safe, they are both 
fixedpoint rules. 

The leftmost-innermost rule, however, is not safe. 
The following example illustrates a program for which 
fLt ~ f i  ; that is, the leftmost-innermost rule is not a 
fixedpoint rule (Morris, 1968 [13]). 

Example 9. Consider the program over the integers 

F(x ,  y )  ~ i f x  = 0 t h e n  1 else F ( x  -- 1, F ( x  -- y, y )  ). 

The least f ixedpointfi  is 

.f, (x ,y)  -~ i f  x > 0 then  1 else co. 

We compute F(1,0) using the leftmost-innermost 
computation rule: 

F_ (1,0)  ~ F (0 ,  F_ (1 ,0) )  --~ F ( 0 ,  F ( 0 ,  F_ ( 1 , 0 ) ) )  . . . .  

and so on. The sequence is infinite, and therefore 
fLi(1,0) -~ w. In fact 

f m ( x , y )  =-- i f x  = 0 V  (x > 0 A y  > 0 A  (y divides  x ) )  
then 1 else co, 

which is strictly less defined than f i .  [] 
In practice, the fixedpoint computation rules de- 

scribed so far (the full rule and the leftmost-outermost 
rule) lead to very inefficient computations. In the rest 

of this section we describe and illustrate a fixedpoint 
computation rule, called the normal computation rule, 
which leads to efficient computations. In fact, the 
normal computation rule can be shown to perform the 
minimum possible number of substitutions of any rule 
within the class of computation rules which we de- 
scribed (Vuillemin, 1973 [17]). 

The idea of the normal rule is to delay the evalua- 
tion of the arguments of procedures as long as possible, 
keeping arguments as formal expressions until they are 
needed. This rule is similar to ALGOL 60 "call by name," 
but with two important differences: (a) absolutely no 
side effects are allowed, and (b) any argument is evalu- 
ated at most once, namely the first time (if ever) it is 
needed. 

Using the normal rule, &+l is obtained from t, by 
substituting r[F] for one occurrence of F chosen as 
follows: we try first to replace the leftmost-outermost 
occurrence of F in ti by r[F], and start to evaluate the 
necessary tests in the new term, in order to eliminate 
the if-then-else connectives. If this is possible, we are 
done. Otherwise, we choose a new occurrence of F in 
ti which corresponds to the first F we had to test during 
the previous evaluation, and repeat the process. 

We denote the computed function by fN. The nor- 
mal rule is safe, and it is therefore a fixedpoint rule. 
The rule can be implemented in programming lan- 
guages with almost no overhead, and provides an 
attractive alternative to call by value, which is not a 
fixedpoint rule, and call by name, which is not efficient. 

Example 10. Consider the program over the natural 
numbers 

F ( x , y )  ~ i f x  = 0 t h e n y  + 1 
else i f y  = 0 then F ( x  -- 1, 1) 

else F ( x -  1, F(x ,  y -  1 ) ) .  

We shall compute F(2,1) using the normal computa- 
tion rule. The occurrence of F chosen for substitution 
is underlined. 

F_(2,1) ~ F ( 1 , F ( 2 , 0 ) ) - - + F ( 1 ,  E ( 1 , 1 ) ) - - - ~ F ( 1 ,  F ( 0 ,  F ( I , 0 ) ) )  

F ( 1 ,  F_(1,0) -t- I )  ~ F ( 1 ,  E ( 0 , 1 )  -t- 1) ~ E ( 1 , 3 )  

-+  F_(0, F ( 1 , 2 ) )  --* F ( 1 , 2 )  + 1 ---+ F_(0, F ( 1 , 1 ) )  + 1 

- . F ( 1 , 1 )  + 2 ~ E ( 0 ,  F ( 1 , 0 ) )  + 2 --* E ( 1 , 0 )  + 3 

F_(0,1) + 3 ~ 5. 

Note that in F(1,F_ (2,0) ), for example, the inner 
occurrence of F was chosen for substitution, since trying 
to substitute for the outer F would lead to 

i f l  = 0 t h e n . . .  
else i f  F (2 ,  0)  = 0 then • • • 

else . . -  , 

which requires testing for the value of F(2, 0). 
We compare below the number of substitutions 

required for each computation rule on this example. 

Normal  rule: 14 
Full rule: 23 
Leftmost-innermost: 14 
Leftmost-outermost: 29 
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f N ( x , y )  =-- f i ( x , y )  is known as " A c k e r m a n n ' s  
f tmct ion ."  This funct ion is of  special interest in recur-  
sive funct ion theory  because it grows faster  than  any 
primit ive recursive funct ion;  for example,  f ,  (0, 0) = 1, 

f i ( 1 ,  1) = 3 , f i (2 ,  2) = 7 , f i (3 ,  3) = 61, a n d f i ( 4 ,  4) = 
2 2221~ - -  3. [] 

Example 11. Consider  the p r o g r a m  over  the integers 

F(x,  y )  ~ i f x  = 0 then I e lse  F( x  -- 1, F(x  -- y, y )  ). 

We shall compu te  F(2,  1 ), using the normal  compu ta t ion  
rule:  

F(2, 1 ) ~ F ( 1 ,  F(1, 1))--~F_(0, F ( I -  F(1, 1),F(1, 1))) ~ 1. 

We again compa re  the subst i tut ions required:  

N o r m a l  rule: 3 
Full  rule: 7 
Lef tmos t - innermost :  7 
Lef tmos t -ou te rmos t :  3 [] 

II .  C o m p u t a t i o n a l  I n d u c t i o n  

The  first me thod  we shall describe is conceptual ly  
very simple:  In order  to p rove  some p rope r ty  of  a p ro-  
gram,  we show that  it is an invariant during the course 
o f  the computa t ion .  

F o r  simplicity, we shall first explain the me thod  for  
s imple p rograms ,  consist ing of  a single recursive defini- 
tion, then generalize to more  complex  programs .  

C o m p u t a t i o n a l  I n d u c t i o n  fo r  a S i n g l e  R e e u r s i v e  
D e f i n i t i o n  

T o  prove  the p rope r ty  P ( f i )  of  the funct ion f l  
defined by F ~ ~-[F], it is sufficient to : (a) check tha t  P 
is t rue before start ing the computa t ion ,  i.e. P(f2);  and 
(b) show that,  i f P  is true at  one step of  the compu ta -  
tion, it remains  true after the next step, i.e. P(F)  implies 
P ( r [F ] )  for  every F. In short  

f rom P(~2) and V F { P ( F )  ~ P(r[g])}, infer P(f~). 

Since this rule  is not  valid for  every p,3 we shall only 
consider admissible predicates  P(F)  which are s imply 
conjunct ions  of  inequalities a[F] c ¢/[F], where a and 
¢/are two cont inuous  functionals.  In this case, the justi-  
fication of  the principle is easy; if  a[~2] ___ B[f~] and 
VF{a[F]  ~ t3[F] ~ a[r[F]] C ~[r[F]]/, then by a simple 
induction,  a[r~[f~]] C/3[r~[~2]] for every i _> 0. Since by 
Kleene 's  first recursion theorem rg[~2] ~ f i  for all i, and ¢/ 
is monotonic ,  we have /3[ri[f~]] ~ ~lf,], and therefore 
a[ri[~]] __C/3till for any  i. By definition of  the limit, this 
implies lim~ {a[r~[f~]]} ~ 5[fi], and since ~ is cont inu-  
ous, we have 

a[fi] =- a.[lim, {r'[~2]}] -- l im, {a[r'[f~]]} ~ ~[fi]. 

Thus,  

,~[f~] ___ ~[f,].  

Example 12. We wish to show tha t  the p r o g r a m  

F(x) ~ i f  p (x) then x else F(F(h (x))) 

defines an idempoten t  function,i .e ,  tha t  V x [ f i ( f i ( x ) )  -- 
f i(x)],  or in short,  t i f f  -= f i  . By p and h, we unders tand  
respectively any natural ly  extended part ial  predicate  and 
function. We prove  P(fi) ,  where P(F) is f i F  =-- F, i.e. 
( f iF  ~ F) A (F c f iF) .  
(a) Show P(f~), i.e. fTf~ ~ ~2. 

f" (ft (x)) 
=- f" (w) definition of ft 
-= i f  p (w) then ~o e l s e f i  (f ,  (h (w))  ) 

definition of f ,  
-= i f  co then o: else f i  (fT (h (w) ) ) 

since p(o:) =-- co 
~- w definition of i f  w then a else b 

~ (.v) definition of ft. 

(b)  Show VF{ P(F)  ~ P ( r [ F ] ) I ,  i.e. 

VF{f rF  =-- F ~ f,r[F] ~ T[F]}. 

J; (r[F] (x)) 
---= f ,( if  p(x) then x else  F(F(h(x)))) 

definition of r 
~- i fp (x)  thenfi(x) elsef,(F(F(h(x)))) 

distributing f ,  over conditional, 
since f ,  (w) ~ 

=- if  p (x )  then x e l s e f i  (F(F(h (x ) )  ) ) 
definition off i  

=-- if p(x) then x else F(F(h(x))) 
induction hypothesis 

=- r[F](x) definition of r. [] 

The  next  example  uses as domain  the set ~;* of  
finite strings over  a given finite a lphabet  ~, including 
the emp ty  string A. There  are three basic funct ions:  

h(x )  gives the head (first let ter)  of  the string x; 
t ( x )  gives the tail o f  the string x (i.e. x with its first 

letter r emoved )  ; 
a . x  concatenates  the letter a to the string x. 

F o r  example,  h ( B C D )  = B, t (BCD)  = CD, B . C D  = 
BCD. These funct ions satisfy the fol lowing propert ies ,  
for every a 6 ~ and w C Z*: 

h (a . w)  = ~, t (~ .w)  = w, a . w  ~ A, and 
w ~ A ~ h ( w ) . t ( w )  = w. 

This system is somet imes  called " l inear  LISP." There  is 
no difficulty involved in generalizing our  p roofs  to real 
LISP programs .  

Example 13. The p r o g r a m  

F(x, y) ~ i f  x = A then y else h(x).F(t(x),  y) 

defines the a p p e n d  funct ion f i  (x, y) ,  denoted x , y .  We 
shall show that  append is associative, i.e. that  x* ( y , z )  = 
( x . y ) . z .  For  this purpose  we prove  P(f i ) ,  where P(F) is 
F(x, y)*z -- F(x, y , z ) .  
(a) Show P(~2); i.e. Vx,  y, z[~2(x, y)*z =--- f~(x, y.z) ] .  

3 Consider, for example, the recursive program over the nat- 
ural numbers F(x) ~ i fx  = 0 then 1 else x.F(x -- 1), and the 
predicate P(F): 3x[F(x) ~ oJ /~ x N w]. Then P(ft) and 
VFIP(F) ~ P(r[F])} hold; but, since f ' (x )  is a total function 
(the factorial function), P (fi) does not hold. 
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a(x, y)*z 
o~*z definition of ~t 
ifo~ = A then z else h(o~). (t(~)*z) 

definition of  append 
---w since~ = Ais 
--= ~2 (x, y , z )  definition of ft. 

(b) Show V F { P ( F )  ~ P(r[F])} : 
~[FI (x, y,z) 

if  x = A then y , z  else h (x) .F( t  (x), y , z )  
definition of z 

i fx  = A then y , z  else h(x). (F(t(x), y),z) 
induction hypothesis 

~- i fx  = A then y , z  else (h(x).F(t(x), y))*z 
definition of append 

~= (if x = A'then y else h(x).F(t(x),  y))*z 
distributing append over 
tional, since ~*z -= ~0 

=- r[F] (x," y)*z definition of r. [] 

condi- 

P a r a l l e l  Induct ion  

We shall now present an applicat ion of  computa -  
t ional induct ion to proving properties o f  two p rograms :  
F ~ , IF]  and G ~ a[G]. To prove P ( f i ,  g,) for an ad- 
missible predicate P(F, G) (e.g. a conjunct ion of  in- 
equalities a[F, G] ___ ~[F, G], where a and ~ are continu- 
ous functionals),  use the following rule: 

f rom P(a,  a)  and (VF, G){P(F,  G) ~ P(r[F], a[G])}, 
infer P ( f i  , g,).  

Example 14. Consider the two programs (Morris,  
1971 [14]) 

F(x, y) ~ if p(x) then y else h(F(k(x), y) ) 
G (x, y )  ~ i f  p (x)  then y else G (k (x) ,  h ( y ) ) ,  

where p stands for any naturally extended partial pred- 
icate, and h and k for any naturally extended partial 
functions. In order to prove t h a t f i ( x ,  y) ~ g,(x,  y)  
for all x and y, we shall  consider 

P(F, G) :Vx , y { [F(x , y )  =-- G(x, y)] 
/~ [G(x, h(y)  ) =-- h(G(x,  y))]} .  

We prove P ( f i ,  g,),  which impl iesf i  ~ g , ,  as follows: 
(a) Show P (~2, ~2). 

Vx,y{[ft(x, y)  ~ f~(x,y)]  
/k [f~(x, h(y)  ) ~ h(~(x,  y)) ]} ,  

clearly true, since h(~0) =-- w. 
(b) Show (VF, G){P(F, G) ~ P(r[F], a[a])} .  
(1) 
r[F] (x, y) 

--= if  p (x)  then y else h (F (k (x) ,  y ) ) 
~- if p(x) then y else h(G(k(x), y)) 

induction hypothesis 
if p(x) then y else G(k(x), h(y)) 

induction hypothesis 
~- ~[61 (x, y) 

(2) 
~[GI (x, h(y)) 

if  p (x)  then h (y)  else G (k (x) ,  h (h (y) ) ) 
-= if p(x) then h(y)  else h(G(k(x), h(y))) 

induction hypothesis 
=- h(if p(x) then y else G(k(x), h(y))) 
-~ hMG](x,y)).  [] 

C o m p u t a t i o n a l  Induct ion  for  a S y s t e m  o f  Recurs ive  

D e f i n i t i o n s  

We shall state the computa t iona l  induct ion principle 
for a p rogram consisting o f  two recursive definitions, 

/:I ~ TI[FI, F21 
F2 ~ ¢2[FI, F~]; 

the generalization to a system, of n (n > 2) recursive 
definitions is straightforward. 

To prove P(f~l, fi2), where P(FI, F2) is an admis- 
sible predicate, use the following rule: 

f rom P(f~, fl) and (VF1, F2){P(F~, F2) 
P(rI[F~, F2], r2[F,, F,z])}, 

infer P ( i l l ,  f,~). 

Example 15. Consider the p rogram 

I F1 (x) ~ if  p (x) then FI (F~ (h (x ) )  ) else F.2 (g (x ) )  
F.z (x) ¢=-if q(x) then.f(F.z(F1(x) ) ) else f(h(x) ) 

l F3(x) ~ i f p ( x )  then F3(f(F4(h(x) ) ) ) else f(F4(g(x) ) ) 
F4(x) ~ if q(x) then f(F4(F3(x) ) ) else h(x) 

in which p and q stand for  any natural ly extended par-  
tial predicates, and f ,  g, and h for any natural ly extended 
partial functions. To  prove that  f i ,  - f , , ,  let P (Ft ,  F2, 
F3, F4) be (F~ =- F3) /~ (F2 =--fF4). [] 

T r a n s f o r m a t i o n s  W h i c h  L e a v e f i  Invar iant  
We can use computa t iona l  induct ion to prove useful 

theorems about  recursive programs.  For  example, if we 
modify  a recursive p rog ram F ~ r[F] by replacing some 
occurrences o f  F in r[F] by either r[F] o r f i ,  the funct ion 
computed  by the new program is precisely the or ig ina l f i .  

To  prove this, let us write r[F] = r ' [F,  F], where we 
use the second argument  in r'[F, F] to  distinguish the 
occurrences of  F which we wish to replace. We define 
r~[F] ----- T'[F, r[F]] and r2[F] --  r ' [F,  f i ] ;  our  goal is to 
show t h a t f i  - f,~ --- f ~ .  We show this in two steps: 
(a) (ill C f , )  and (rio ~ f i ) .  This par t  is easy since by 
definition of t1  and r2, f i  =- r~[fi] ~ r2[fi]. That  is, f i  is a 
fixedpoint of  both  r~ and r2 ; therefore, it is more  defined 
than bothfi~ andf i~ .  
(b) ( f i c f i ~ ) a n d  (fi ~f i .~) .  This can be shown by 
computa t iona l  induct ion with P(F ,  Ft ,  F2) being the 
admissible predicate (F c t5) /k (F ___ F2) /k (F 
r[F]) A (F ~ f i ) .  

Example 16. Consider  the two recursive programs 
over the natural  numbers  

F(x) ¢=: i f x  > 10 then x - 10 else F(F(x + 13)) 

and 

G(x) ~ i f x  > 10 then x -- 10 else G(x -t- 3). 

We want  to prove t h a t f i  = g~ .  
If  we replace F(x -+- 13) in r by r[FJ(x + 13), we get 

a new recursive p rog ram F(x) ~ r'[F](x) where 

F(x) ~ i f x  > 10thenx -- 10 
else F(ifx -t- 13 > 10 then x + 13 -- 10 

else F(F(x + 13 + 13))). 

Since this is an f i  invariant  t ransformat ion  f i  ~ f i , .  
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Since x >_ 0, we always have x -k 13 > 10, therefore 
f~, -~ g , .  The case x ~ w is immediate. Thus, f i  -= g,  
as desired. [] 

Example 17. To provef,~ - - f , ,  for the program 

[ F, (x) ¢=: if p (x) then Fz (F~ (Fo. ( f (x))  ) ) else g (x) 

l 
F...(x) ~ if q(x) then Fj(h(x) ) else k(x) 
F3 (x) ¢=: if p (x) then F~ (F4 ( f (x))  ) else g (x) 
F4(x) ~ if q(x) then Fz(F3(h(x) ) ) else F.z(k (x) ), 

we first change the definitions o f  F~ and F4 to 

El(x) ~ if p (x) then F.j(fr., (F,.(f(x)) ) ) else g (x) 

and 

F4(x) ~ if q (x) then ft.. (F, (It (x)) ) else fi.~ (k (x)), 

respectively, and then prove by computa t iona l  induction 
that  

(fi~ =--f3 ) f (J;2f~,2 =- f~,), using 
P(F~, F,,  F3, F~) : (F~ =- F~) f (fi.f.., =- F~). 

The reader should be aware o f  the difficulties in- 
volved in proving that  f~, ~- f~3 without  the above 
modifications. [] 

Truncat ion  Induct ion 

I f  for some cont inuous  functional  r we define the 
sequence o f  f u n c t i o n s f  ~ by l e t t i n g f  ~ ----- r~[f~], i.e. 

f °  ----- [2 a n d f  i+~ ---- r [ f  i] for all i E N(na tu ra l  numbers) ,  

then the same argument  used to establish the validity 
o f  computa t iona l  induct ion also shows the validity o f  
the following very similar rule: 

f rom p ( f o )  and (Vi  ~ N ) [ P f f ' )  ~ P(f'+~)], 
infer P (f i  ). 

The resemblance o f  this rule to the usual mathematical  
induct ion on natural  numbers  suggests that  we con- 
sider a similar rule using complete induct ion over na- 
tural numbers,  which Morris,  1971 [14] calls truncation 
induction. 4 More  precisely: 

In order to prove P( f i ) ,  P(F)  being an admissible 
predicate, we show that  for any natural  number  i, 
the t ruth o f  P ( f )  for a l l j  < / implies  the t ruth of  P(f~).  
Tha t  is 

f rom (Vi E N){[ (Vj~  Nsuchthat j  < i ) P ( f ) ]  ~ P( f i ) } ,  
infer P (fi). 

The validity o f  this rule is established by first using induc- 
t ion on N to show that  P (f") holds for all n C N; one can 
then use the p r o o f  given above for  the validity o f  com-  
putat ional  induction.  

When  the p rogram consists o f  a system of  recursive 
definitions such as 

z~[F1, . . . ,  Fk], 

we l e t f  ° be (9 . . . .  , ~2), f~+~ be ( r ~ [ f ] , . . . ,  rdf~]), a n d f i  
be (fi~, . . . ,  ilk); the t runcat ion induction rule is then 
precisely the same as above. 

Example 18. (Morris, 1971 [14]). We consider again 
(see Example 14) the two programs:  

F(x,y) ~ if p(x) then y else h(F(k(x), y))  
G(x,y) ~ if p(x) then y else G(k(x), h(y)), 

where p stands for any natural ly extended partial pred- 
icate, and h and k for any naturally extended partial 
functions. 

In order to prove that  both programs define the same 
function, we check that  f °  ---- gO, f l  _---- gl and that  

f~ _-- gi for all i > 2. We treat the cases for i = 0 and 
i = 1 separately, since to p r o v e f  i ~- g~ we have to use 
the induct ion hypothesis  for both i -- 1 and i - 2. [] 

T e r m i n a t i o n  
The examples introduced so far demonst ra ted  that  

computa t iona l  induct ion is convenient  and natural  for 
proving many  kinds of  properties of  recursive programs.  
However,  certain difficulties are involved in proving 
termination.  To show that  g C fr  for some fixed func- 
t ion g (which is not  ~2), we cannot  simply choose  P(F) 
to  be g ___ F, as then P(f~) will always be false. In the 
next example we demonst ra te  that  if the domain  is 
specified by a "recursive predicate,"  it is possible to 
overcome this difficulty. 

Example 19 (Milner). The function reverse(x) - 
f~(x, A) where F(x, y) ~ if x = A then y else F(t(x), 
h(x) .y) gives as value over 2;* the string made up of  the 
letters of  x in reverse order. For  example, if 

Z = {A, B, C}, then reverse(ACBB) = BBCA. 

We shall show that  reverse(x), i.e. f i (x ,  A), is defined 
for any x in 2;*. For  this purpose,  we characterize the 
elements of  2;* by the function word (x) -- g,(x), where 

G(x) ~ i fx = A then true else G(t(x)). 

We let P(F, G) be the admissible predicate 

(Vx, y E s*) {[G(x) f word(y)] ~ word(F(x, y))}. 

(a) Show e(~2, a).  

[~2(x) f word(y)] C word ([~(x, y)) 

holds since it reduces to w ~ oJ. 
(b) Show VF, G { P(F, G) ~ P(r[F], ~r[G])/. 

,r[G](x) A word(y) 
-=- ( i fx  = A then true else G(t(x))) f word(),) 

definition of ,r 
-~ if x = A then word(y) else G(t(x)) f word(y) 

distributing A over conditional 
ifx = A then word(y) else G(t(x)) f word(h(x)-y) 

definition of word 
if x = A then word(y) else word(F(t(x), h(x).y)) 

induction hypothesis 
--- word(if x = A then y else F(t(x), h(x).y)) 

distributing word over conditional 
=-- word(r[F](x, y)) definition oft .  

4 When applied to natural numbers, the two induction schemata 
are equivalent, i.e. we can validate either rule using the other. Thus 
in any system which includes a formalization of natural numbers, 
truncation induction and computational induction are equivalent 
from a theoretical point of view. Experience in using both methods 
shows that they are also equivalent in practice. 
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Therefore, by computat ional  induction, we have: 

[word(x) /~ word(y)] C word(fi(x, y)) for all x, y E :~*, 

which for y = 3. gives word(x) c word(reverse (x ) ) .  
Since by definition we have that word(x) is true for all 
x ~ 2:* and word(~) = o~, this implies that reverse(x) 
w f o r a n y x E ~ * .  [] 

III. Structural  Induct ion 

One familiar method of proving assertions on the 
domain N of natural numbers is that of complete induc- 
tion: in order to prove that the statement P(c) is true 
for every natural number c, we show that for any natural 
number a, the truth of P(b) for all b < a implies the 
truth of P (a ) .  

That  is, 

from (Va E N){[(Vb C N such that b < a)P(b)l 
~ P(a)]}, 

infer (Vc C N)e(c). 

Since this induction rule is not valid for every ordered 
domain (e.g. it is valid over the natural numbers with 
ordering < but fails over the integers with ordering < -  
consider P which is always false), we shall first charac- 
terize the ordered domains which are "good"  for such 
induction. We then present a general rule called struc- 
tural induction, for proving assertions over these do- 
mains; complete induction, as well as many other well- 
known induction rules, is a special case of structural 
induction. Finally, we give several examples using struc- 
tural induction to prove properties of programs. 

Wel l - founded  Sets  
A partially ordered set (S, ~< ) consists of  a set S and 

a partial ordering ~< on S. Note  that the ordering need 
not be total; i.e. it is possible that for some a, b C S, 
neither a ~ b nor b ~< a holds. A partially ordered set 
(S, ~< ) which contains no infinite decreasing sequence 
a0 > al >- a2 > . . .  of elements of S is called a well- 
founded set. 

Example 20. 
(a) The set of  all real numbers between 0 and 1, with 
the usual ordering < ,  is partially ordered but not well 
founded (consider the infinite decreasing sequence ½ > 
~ > ~ >  . . . ) .  
(b) The set I of integers, with the usual ordering _<, is 
partially ordered but not well founded (consider 0 > -- 1 
> - 2  > . . . ) .  
(c) The set N of natural numbers, with the usual order- 
ing < ,  is well founded. 
(d) I f  2; is any alphabet, then the set Z* of all finite 
strings over :~, with the substring relation (w~ ~ w2 iff w~ 
is a substring of w2), is well founded. [] 

Structural  Induction 

We may now state and prove the rule of structural 
induction on well-founded sets) Let (S, ~< ) be a well- 
founded set, and let P be a total predicate over S. I f  
for any a in S, we can prove that the truth of P (a) is 
implied by the truth of P (b )  for all b < a, then P(c) is 
true for every c in S. That  is 

from (Va C S) { [ (Vb C S such that b .< a)P (b)] ~ P (a) }, 
infer (Vc ~ S)P(c). 

To prove the validity of  this rule, we show that  if the 
assumption is satisfied, there can be no element in S for 
which P is false. Consider the set ,4 of elements a ~ S 
such that P(a) is false. Let us assume that A is non- 
empty. Then there is a least element a 0 such that a :~ a0 
for any a ~ A; otherwise there would be an infinite de- 
scending sequence in S. Then, for any element b such 
that b < ao, P(b) is true; that is, (Vb C S such that 
b < ao) P(b) must hold. But the assumption then im- 
plies that P(ao) is true, in contradiction with the fact 
that a 0 C A. Therefore A must be empty, i.e. P(c) is 
true for all elements c ~ S. 

Note that if there is no b in S such that b < a, the 
statement (Vb ~ S such that b < a)P(b) holds vacu- 
ously. For  such a's we must therefore show P(a) uncon- 
ditionally to establish the hypothesis needed for the 
structural induction. 

Appl icat ions  
We now give several examples using structural induc- 

tion to prove properties of recursive programs. Such 
proofs require suitable choices of both the partial order- 
ing ~< and of the predicate P. Some of the examples 
show that the partial ordering to be chosen is not always 
the usual partial ordering on the domain. Other ex- 
amples illustrate that it is often useful to prove a more 
general result than the desired property.  

Example 21 (Cadiou).  Factorial  functions. Consider 
the programs over the natural numbers 

F ( x )  ~ i f x  = 0 then 1 else x . F ( x  - -  1) 

and 

G(x, y)  ¢==ifx  = y then  1 else G(x, y + 1).  (y Jr 1). 

f , ( x )  and g,(x, 0) compute x! = 1.2 . . . . .  x for every 
x C N in two different ways: g,(x, 0) by "going up"  
f rom 0 to x and f~ (x )  by "going down"  f rom x to 0. 
We wish to show that g,(x, O) ~ f i (x )  for any x C N 
by using the predicate 

P(x)  : (Vy C N)[g~(x + y, y) ' fr(y)  =- f i ( x  + y)] 

and the usual ordering on natural members. 
(a) I f  x = 0, P (0 )  is Vy[go(y, y ) . f , (y )  ~-- fi(Y)], 
which is clearly true by definition of g~. 
(b) I f x  > 0, we assume P ( x ' )  for all x '  < x and show 
P(x). 

5 Structural induction is sometimes also called Noetherian in- 
duction. When the ordering ~< is total; i.e. a ~ b or b ~ a holds 
for any a, b E S, it is called transJinite induction. 
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For  any y ~ N, 

g, (x + y, y)-f,  (y) 
=--- g,(x + y, y + 1)- (y + 1).f,(.V) 

definition of g, (since x > 0) 
g . (x  + y, y + l)'fT(y + 1) 

definition off~ (since y + 1 > 0) 
~g,((x -- 1) + (y + 1), y + 1)-f~(y + 1) 

since x > 0 
-------.f, (x -- 1 + y -[- 1) induction hypothesis (since 

x - - l < x )  
-~fi(x + y). 

By complete induction, then, P ( x )  holds for all 
x C N. In particular, for y = 0, g,(x ,  O).fi(O) =-f~(x). 
Sincef~(0) -- 1, we have g ,  (x, 0) -- f i  (x ) as desired. [] 

In the preceding example we used the most  natural 
ordering on the domain to perform the structural in- 
duction. In the next example it is natural  to use a some- 
what surprising ordering. 

Example 22 (Burstall). "Mc Ca r t hy ' s  91-funct ion" f~ 
is defined by the following program over the integers: 

F(x) ~ i f x  > 100 then x -- 10 else F(F(x + 11 ) ) .  

We wish to show thatfT ----- g, where g is 

g(x) =-ifx > 100 then x -  10 else91. 

The p roo f  is by structural induct ion on the well-founded 
set (I, ~< ), where I is the integers and ~< is defined as 
follows: 

x -< y i f f y  < x <_ 101 
(where < is the usual ordering on the integers);  thus 
101 < 100 < 99 < . . . ,  but  for example, 102 3( 101. 
One can easily check that  (I, ,< ) is well founded.  

S u p p o s e f . ( y )  ---- g(y )  for all y E / s u c h  that  y < x. 
We must  show t h a t f i ( x )  -= g(x ) .  
(a) For  x > 100,f~(x)  ---- g(x )  directly. 
(b) For  I00 >__ x _ 90, f i ( x )  =-f~(f~(x + 11)) -- 

f~(x  + 1), and since x + 1 < x we h a v e f i ( x )  -- 
f r ( x  + 1) ----- g ( x  + I)  by the induction assumption.  
But g ( x  + I)  ~ 91 ---- g(x) ,  t h e r e fo r e f i ( x )  ----- g(x ) .  
(c) Finally, for x < 90, f i ( x )  =-- f i ( f i ( x  + 11)), and 
since x + 11 < x we havefT(x)  =---f~(fi(x + 11)) ---- 
f~ (g (x + I 1 )) by induction. But g (x + 11 ) ~ 91, and 
we know by induct ion t h a t f i ( 9 1 )  --= g (91)  ~- 91, so 

f , ( x )  =-- f i (g(x  + 11)) = - f i ( 9 1 )  -- 91 -- g(x ) ,  as 
desired. 

We could alternatively have proven the above prop-  
erty by structural induct ion on the natural  numbers  with 
the usual ordering < ,  using the more  complicated pred- 
i c a t e P ( n )  : (Vx C I)[x > 100 -- n ~ f r ( X )  --~ g(x)] .  
The reader should note that  the details of  this p roo f  
and of  the above p roof  are precisely the same. []  

Since the set (2;*, ~< ) of  finite strings over 2; with 
the substring relation is well founded,  we may  use it for 
structural  induction. In the following example we use an 
induct ion rule that  can easily be derived f rom struc- 
tural induction,  namely:  

f r o m P ( A )  and (Vx E 2~*)[x # A A P ( t ( x ) )  ~ P(x) ] ,  
infer (Vx  C ~*)P(x ) .  

501 

Example 23. Consider  again the p rog ram of  Ex- 
ample 19 defining the function reverse(x) -- f i (x ,  A), 
where 

F(x, y) ~ i fx  = A then y else F(t(x), h(x).y). 

We wish to prove that  r e v e r s e  ( r e v e r s e  (x) )  ~ x for 
all x E 2;*. Of  course, proving that  reverse has this 
proper ty  does not  show that  it actually reverses all 
words:  many  other functions, e.g. the identity function, 
also satisfy this property.  

To prove reverse(reverse(x))  =-- x, we let 

P(x) be (Vy E Z*)[reverse(fT(x, y)) ~ f~(y, x)]. 

(a) I f  x = A, then for any y we have 

reverse (fi (A, y)) -= reverse(y) ~ fi(y, a). 

(b) I f  x # A, then for any y, we have 
reverse(f,(x, y)) 

--= reverse(.f,(t(x), h(x).y)) 

=-.l;(h(x)'y, t(x)) 

=-.f&v, h(x).t(x)) 

definition of,l'~ (since x # A) 
induction hypothesis (since x ;> 
t(x)) 
definition off.(since h(x).y # A) 

=--f,(y, x). 
Therefore reverse(fi(x, y ) )  - - f i ( y ,  x)  for all x, y E 2;*; 
in particular, for y -- A, reverse(reverse(x))  -- r e -  

v e r s e  (fT (x ,  A))  -- f_(A, x)  ---- x, as desired• [] 
Other  properties of  r e v e r s e  may easily be proven by 

structural induction• In particular, the following ex- 
ample uses the properties that, for any a, b E 2; and 

w C ~*:  
(i) r e v e r s e ( w , a )  --= a . r e v e r s e ( w ) ,  

(ii) reverse (a. w) --= r e v e r s e  (w) ,a ,  and 
(iii) reverse(a.  (w,b) ) - b. ( reverse(w),a) ,  

where • is the a p p e n d  function defined in Example 13 
(Section I I ) .  

Example 24. Another  reverse function• We wish to 
show that  the p rogram (due to Ashcrof t )  

F(x) ~ i f x  = A thenA 
else  if t(x) = A then x 

else h (F(t (x) ) ) 
• F(h(x).F (t (F(t (x)) ) ) ) 

a* 
also defines a reversing function on 2; , i.e. t h a t f i ( x )  ---- 
reverse (x) for all x C Y.*. Note  that  this definition does 
not  use any auxiliary functions.  

In the p roof  we shall use the following lemma charac-  
terizing the elements of  2;*: for any x E ~*, either 
x = A, or x C 2; (i.e. t (x )  = A), or x = a. (w.b)  for 
some a E 2;, w C Y.*, and b C 2;. The lemma is easy to 
prove by a s t raightforward structural  induction.  

We now prove thatfT ------ reverse by structural  induc- 
t ion on (2;*, ~ ), where ,< is the following partial 
ordering:  

x ,-< y i f fx  is a substring o f y  or x is a proper  substring 
o f  r e v e r s e  (y).  One ca n check that  (2;*, ,< ) is well founded.  

Using the above lemma, the p roo f  may  be done in 

three parts. 
( 1 )  x = A : f i ( x )  --= A------ r e v e r s e ( x ) .  

( 2 )  x E ~ : f i ( x )  --= x = r e v e r s e ( x ) .  

(3) x = a. (w.b)  for some a C ~, w E 2;*, b ~ 2;: 
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iT (x) 
~ h  (f, (t (x) ) ). f~ (h (x) . f i  (t (f, (t (x))))) 

definition of f i  
=- h (f, (w.b)) . f ,  (a.f, (t (f, (w.b)))) 

since h(x)  = a, t (x)  = w*b 
-~ /t (reverse (w.b)) .f, (a .f, (t (reverse  (w'b))  ) ) 

induction hypothesis (since 
w*b < x) 

---= /t (b" reverse  ( w ) )  . f i  ( a . f i  (t (b. reverse  (w)  ) ) ) 
property (i) of reverse  

b.fi  (a.fi (reverse  (w)) ) properties of h and t 
-~ b-fi (a.  reverse  (reverse  ( w ) )  ) 

induction hypothesis 
(since reverse(w) < x) (6) 

~- b-f, (a- w) property of reverse  proven in pre- 
vious example 

~- b. reverse (a. w) induction hypothesis 
(siqce a. w < x) 

---= b. (reverse (w)*a) property (ii) of reverse  
--- reverse  (x) property (iii) of reverse .  

We conc lude  t h a t f i ( x )  - r eve r se (x )  for all x C 23*, 
as desi red.  [] 

Given  a par t ia l ly  ordered  set (S, ~<), we define the 
lex icographic  ordering ~ n on n-tuples  o f  e lements  o f  
S (i.e., on e lements  of  S n) by  le t t ing (a l ,  . . .  , an) <,~ 

(bx, . . . , b , ~ ) i f f a x  = b l ,  . . . , a i - 1  = b / - l a n d a i  "< bi  
for some i, 1 < i < n. I t  is easy to show tha t  if  (S, ~ )  
is well founded ,  so is (S",  ~< ,,). In the fo l lowing example ,  
we use the  wel l - founded  set (N 2, _<2), i.e. the lexico- 
graphic  o rder ing  on pairs  o f  na tu ra l  numbers .  No te  
tha t  under  this o rder ing  (n~, n~) <2 ( m l ,  m2) i f fnl  < m~ 
or  nx = ml and n., < m2 ;  for example ,  (1,100) <2 
(2, 0).  

E x a m p l e  25. Cons ide r  again  the recursive p r o g r a m  
over the na tu r a l  number s  of  Example  10 fo r , compu t ing  
A c k e r m a n n ' s  funct ion 

F(x, y) ¢== i f  x = 0 then y q- -1 
e lse  i f  y = 0 then F(x -- 1, 1) 

e l s e F ( x  -- 1, F(x ,y  -- 1)). 

We  wish to show t h a t f , ( x ,  y) is defined, i . e . f i ( x ,  y) 
o~, for  any  x, y C N. W e  shall  use the s t ruc tura l  induc-  
t ion rule app l ied  to the wel l - founded  set (N 2, < ~.). As- 

. / / / l 
s u m m g  t h a t f i ( x  ,y ) is defined for any  (x ,y ) such tha t  
( x ' , y ' )  <2 ( x , y ) ,  we show t h a t f i ( x ,  y) mus t  also be de- 
fined. 

(a) i f  x = 0, o b v i o u s l y f i ( x ,  y) is defined. 
(b) i f x  ~ 0 a n d y  = 0, we note  tha t  (x - 1, 1) <2 
(x, y) ,  so by the induc t ion  hypothes is  f i ( x  --  1, 1) is 
defined. T h u s f i ( x ,  y) is also defined. 
(c) F ina l ly ,  i f x  ~ 0 and  y ~ 0, (x, y - -  1 )  < 2  

(x, y ) ,  and  therefore  f i  (x, y - -  I) is defined by  the in- 
duc t ion  hypothes is .  Now,  regardless  o f  the  value  of  

f , ( x ,  y -- 1), we have (x --  1 , f i ( x ,  y --  1)) <2  (x, y )  
and  the des i red  resul t  fol lows by ano the r  app l i ca t ion  of  
the  induc t ion  hypothes is .  [] 
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Note that reverse (w) < x because reverse (w) is a proper 
substring of reverse(x), as may be seen from property (iii) of 
reverse .  
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