
Termination
Well-Founded Orderings

Amoebae

A.2 Multisets 179

root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.

Fission

A.2 Multisets 179

root

!!!!!!!!!!!!!!!

"""""""""""""""""

s1 s1

##
##

##
##

#

$$
$$

$$
$$

s2

s′1 . . . s′k s2

deleted

Figure A.2: Labelled tree for M3 ≺# M2 ≺# M1

of a sequence of such steps (a ‘life’) of an amoebae colony is given in Figure A.3.
Prove that a colony of amoebae has only a finite life.

amoeba colony

...

life of amoeba colony

Figure A.3: Amoebae

Next, we extend the capabilities of amoebae by allowing them to reproduce.
Two amoebae which can touch each other may reproduce, thereby sharing their
outer membrane, and making arbitrarily many copies of their sons (as suggested
in Figure A.4). In particular, an amoeba is allowed to multiply its sons and retain
its outer membrane, while ‘eating’ another amoeba. Show that even together with
this second rule of activity, each colony must eventually terminate.

180 Mathematical background

fusion

fusion

Figure A.4: Fusion of two amoebae

Colony Dies Out

depth(o) = 0

depth(a1 ... an) = 1+max{depth{ai}}

 { (depth(a),|a|) : subcolony a }
fission: depth decreases

fusion: size decreases

Big Picture

Programs are state-transition systems

Choose a well-founded order on states

Show that transitions are decreases

Real Picture

Programs are state-transition systems

Choose a function for “ranking” states

Choose a well-founded order on ranks

Show that transitions always
decrease rank

Imaginary Picture

Programs are state-transition systems

Choose a function for “ranking” states

Choose a well-founded order on ranks

Show that transitions eventually
decrease rank

Nested Loops
r := 1
u := 1
loop v := u

until r≥n
s := 1
loop u := u+v

s := s+1
while s≤r
repeat

r := r+1
repeat

(n - r)ω2 + (r - s)ω + k

Per Iteration
r := 1
u := 1
loop v := u

until r≥n
s := 1
loop u := u+v

s := s+1
while s≤r
repeat

r := r+1
repeat

ω(n-r)+r+1-s

Lexicographic
r := 1
u := 1
loop v := u

until r≥n
s := 1
loop u := u+v

s := s+1
while s≤r
repeat

r := r+1
repeat

(n-r,r+1-s)

Invariants
r := 1
u := 1
loop v := u

until r≥n
s := 1
loop u := u+v

s := s+1
while s≤r
repeat

r := r+1
repeat

1≤r≤n

1≤s≤r+1

Well-Founded Orderings

No infinite descending sequences

x1 > x2 > x3 > ...

Well-Founded Induction

∀x∈X. [∀y<x. P(y)] ⇒ P(x)
∀x∈X. P(x)

Why?

> is a wfo of X

David Gries

Under the reasonable assumption that
nondeterminism is bounded, the two
methods are equivalent…. In this
situation, we prefer using strong
termination.

All-Purpose Ranks

0 < 1 < 2 < ...

< ω < ω+1 < ω+2 < ...

< ω2 < ω2+1 < ... < ω3 < ... < ω4 < ...

< ω2 < ω2+1 < ... < ω2+ω < ω2+ω+1 < ...

< ω3 < ω3+1 < ... < ω4 < ... < ω5 <...

< ωω < ... < ωω < ... < ωω <... ω ωω

Ordinals
0, 1, 2, ...,

ω, ω+1, ω+2, ...,

2ω, 2ω+1, ..., 3ω, ...,
ω2, ..., ω2+2ω+3, ..., ω3, ...,

ωω, ..., ωωω, ...,

ε0, ε0+1, ..., 2ε0+ωω+2ω+3, ...,

ε1, ..., εε0, ...,

...

Transition System

State

Transition

Discrete Transition System

Q0

QF

Q

Well-Founded Method

States Q

Algorithm R ⊆ QxQ

Well-founded order > on Q

R ⊆ >

All-Purpose Ranking

r : Q → Ord

r(x) = sup { r(y)+1 : x → y }

Computation

Abstraction

Frank Ramsey

Ramsey’s Theorem

Infinite complete graph

Finitely colored edges

Monochrome infinite clique

Closure

Proof

Proof

Proof

Disjunctive Orders

States Q

Algorithm R ⊆ QxQ

Transitive closure R+

Well-founded orders > and ⊐ on Q

R+ ⊆ > ∪ ⊐

Ranking Method

States Q

Algorithm R ⊆ QxQ

Well-founded order ≻ on W

Ranking function r : Q → W

Define X > Y if r(X) ≻ r(Y)

R ⊆ >

Invariants

States Q

Algorithm R ⊆ QxQ

Well-founded order ≻ on W

Ranking function r : Q → W

Define X > Y if r(X) ≻ r(Y)

R ⊆ >

Algorithmic System

State

Transition

P
r
o
g
r
a
m

Classical Algorithms

Every algorithm can be expressed
precisely as a set of conditional
assignments, executed in parallel
repeatedly.

if c then f(s1,...,sn) := t

if c then f(s1,...,sn) := t

if c then f(s1,...,sn) := t

Practical Method

States Q

Algorithm R ⊆ QxQ

Well-founded order ≻ on W

Ranking function r : Q → W

Define X > Y if r(X) ≻ r(Y)

R ⊆ >

Color Code!

Bordeaux

Azure

Mortal (black) nodes on bottom and immortal (green)
nodes on top

· · ·

· · ·• • • • •

• • • • •

Mortal in each alone (dashed Azure or solid Bordeaux),
but immortal in their union

· · ·• • • • •

Infinite Separation!

Infinite Separation!

Enough?

Enough?

Enough?

Lazy Commutation!Jumping

Lazy Commutation!Jumping

Constriction + Laziness!Jumping

Constriction + Laziness!Jumping

Constriction + Laziness!Jumping

Gremlins

Gremlins

