Termination Well-Founded Orderings

n := 0while x > 0 do n := n + 1y := 0; while $y^2 + 2y \le x$ do y := y + 1if $x = y^2$ then x := y - 1else s := 0r := 0; while $r^2 + 2r \le x - y^2$ do r := r + 1while $x > y^2 + r^2$ do y := 0; while $y^2 + 2y \le x$ do y := y + 1 $s := s + (s + y^2 + y - x)^2$ $x := x - u^2$ r := 0; while $r^2 + 2r \le x - y^2$ do r := r + 1for i := 1 to n do $x := r^2 + r - 1$ while s > 0 do r := 0; while $r^2 + 2r \le s$ do r := r + 1 $x := x + (x + r^2 + r - s)^2$ $s := s - r^2$

Amoebae

Colony Dies Out

• depth(o) = 0• depth((a1 ... an)) = 1+max{depth{ai}} { (depth(a), |a|) : subcolony a } fission: depth decreases fusion: síze decreases

Big Picture

Programs are state-transition systems
Choose a well-founded order on states
Show that transitions are decreases

Real Picture

Programs are state-transition systems
Choose a function for "ranking" states
Choose a well-founded order on ranks
Show that transitions always decrease rank

Imaginary Picture

Programs are state-transition systems
Choose a function for "ranking" states
Choose a well-founded order on ranks
Show that transitions eventually decrease rank

Nested Loops

Per Iteration

Invariants

Well-Founded Orderings

No infinite descending sequences

 $x_1 > x_2 > x_3 > \dots$

Well-Founded Induction

> is a wfo of X

 $\forall x \in X. [\forall y < x. P(y)] \Rightarrow P(x)$ $\forall x \in X. P(x)$

Why?

David Gries

 Under the reasonable assumption that nondeterminism is bounded, the two methods are equivalent.... In this situation, we prefer using strong termination.

All-Purpose Ranks 0<1<2<... $< \omega < \omega + 1 < \omega + 2 < \cdots$ $< \omega_2 < \omega_2 + 1 < \cdots < \omega_3 < \cdots < \omega_4 < \cdots$ $< \omega^2 < \omega^2 + 1 < \cdots < \omega^2 + \omega < \omega^2 + \omega + 1 < \cdots$ $< \omega^3 < \omega^3 + 1 < \cdots < \omega^4 < \cdots < \omega^5 < \cdots$ $< \omega^{\omega} < \cdots < \omega^{\omega^{\omega}} < \cdots < \omega^{\omega^{\omega}} < \cdots < \omega^{\omega^{\omega}} < \cdots$

Ordinals

0, 1, 2, ..., $\omega, \omega + 1, \omega + 2, \ldots,$ $2\omega, 2\omega+1, ..., 3\omega, ...,$ $\omega^2, ..., \omega^2 + 2\omega + 3, ..., \omega^3, ...,$ $\omega^{\omega}, \ldots, \omega^{\omega^{\omega}}, \ldots,$ $\varepsilon_0, \varepsilon_0 + 1, \dots, 2\varepsilon_0 + \omega + 2\omega + 3, \dots,$ $E_1, ..., E_{E_0}, ...,$

Transilion System

State

Transilion

Well-Founded Method

All-Purpose Ranking

• $r: Q \rightarrow Ord$ • $r(x) = \sup \{r(y)+1: x \rightarrow y\}$

Abstraction

Frank Ramsey

Ramsey's Theorem

Infinite complete graph Finitely colored edges

Monochrome infinite clique

Disjunctive Orders

States Q
Algorithm R ⊆ QxQ
Transitive closure R⁺
Well-founded orders > and ⊐ on Q
R⁺ ⊆ > ∪ ⊐

Ranking Method

 States Q. • Algorithm $R \subseteq QxQ$ Well-founded order > on W • Ranking function $r: Q \rightarrow W$ • Define X > Y if r(X) > r(Y) $R \subseteq >$

Invariants

 States Q • Algorithm $R \subseteq QxQ$ Well-founded order > on W • Ranking function $r: Q \rightarrow W$ • Define X > Y if r(X) > r(Y) $R \subseteq >$

Algorichmic System

State

The second se

P r o g r a m to subject subject to send the electronic

Transilion

Classical Algorithms

 Every algorithm can be expressed precisely as a set of conditional assignments, executed in parallel repeatedly.

if c then f(s1,...,sn) := t
if c then f(s1,...,sn) := t
if c then f(s1,...,sn) := t

Practical Method

 States Q. • Algorithm $R \subseteq QxQ$ Well-founded order > on W • Ranking function $r: Q \rightarrow W$ • Define X > Y if r(X) > r(Y) $R \subseteq >$

DLR

"Well, lemme think. ... You've stumped me, son. Most folks only wanna know how to go the other way."

Mortal (black) nodes on bottom and immortal (green) nodes on top

・ ロ ト ・ 画 ト ・ 画 ト ・ 画 ト ・ 日 ト

Mortal in each alone (dashed **Azure** or solid **Bordeaux**), but immortal in their union

▲□▶▲□▶▲≡▶▲≡▶ = ∽��?

Infinite Separation

Infinite Separation

Enough?

 \bigcirc

Enough?

Constriction + Jumping

Constriction + Jumping

Gremlins

Gremlins

