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1. Introduction. The theory of well-quasi-ordering was first developed by

Graham Higman [l] (under the name "finite basis property") and by P.

Erdos and R. Rado in an unpublished manuscript. Some hints of the theory

had already occurred, however, in B. H. Neumann [4]. The theory was

further developed by Rado [5], and by Kruskal ([2; 3] and the present pa-

per).

The theory described in this paper was developed in order to settle the

following conjecture due to A. Vazsonyi:

Vazsonyi's Conjecture. There is no infinite set {n, t2, • • • ] of (finite

connected) trees such that Ti is not homeomorphically embeddable in Tjfor alli^j.

The main result of the present paper is the Tree Theorem, which is stated

in §2. Roughly speaking, this theorem asserts that if we quasi-order the set

T(X) of all functions from all finite trees into a quasi-ordered space X in a

natural way, then X well-quasi-ordered implies T(X) well-quasi-ordered.

This theorem yields the above conjecture as an easy corollary. It also contains

Theorem 1.1 of Higman [l] as a special case.

This paper is self-contained except for a few results quoted from earlier

papers. However, the reader unfamiliar with the subject may find the exposi-

tion uncomfortably brief.

2. Basic definitions and the Tree Theorem. A quasi-order (qo) is a binary

relation which is transitive (xSSy^z implies x^z) and reflexive (x^x for all x).

A partial-order (po) is a quasi-order which is proper (x^y^x implies x = y).

We define x<y to mean xsSy and y%x.

We suppose from now on that X is qo by SS. A subset U of X is called an

upper ideal = upper set = ideal if x in U and x^y implies y in U. Ideals are

obviously closed under intersections and unions. If A EX, then upper A is

defined to be the ideal which is the intersection of all the ideals containing A.

Clearly upper .4 = {y|y^some x in .4}. If upper A = U, we say that A

generates or spans U, and that U is the ideal generated by A.
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WELL-QUASI-ORDERING 211

A space X is well-quasi-ordered (wqo) [or well-partially-ordered (wpo)] if

it is qo [or po] and if every ideal has a finite generating set(2).

Lemma. Suppose X is qo. Then the following conditions are equivalent:

(1) X is wqo;

(2) X satisfies the nowhere ascending chain condition, that is, every sequence

xi, x2, • • •  of elements from X with the property that Xi%Xjfor i<j is finite;

(3) X satisfies both (a) the strictly descending chain condition, namely, every

sequence xi>x2> • • • is finite, and (h) the incomparable chain condition,

namely, every sequence xi, x2, ■ ■ ■  with Xi%Xjfor i^j is finite;

(4) for every x in X, X —upper x is wqo.

The reader may easily supply the proof; see also Theorem 2.5 of [l] or

Theorem 1 of [3 ] for proofs and further conditions.

root

Let Ps be the collection of all (finite connected) trees. Write ti St2 if the

tree 7i may be homeomorphically embedded in t2. Clearly P* is qo by S.

To prove Vazsonyi's Conjecture it suffices to prove that P* is wqo. (In fact,

Vazsonyi's Conjecture is equivalent to Ps being wqo, but we do not bother

to prove this.)

The proof that P* is wqo proceeds by an elaborate induction-like pro-

cedure. As frequently happens in such cases, the induction will not work

unless we strengthen and generalize the statement to be proved. In the pres-

ent case we must strengthen and generalize to an extreme degree.

First we replace P* by P, the space of (finite connected) structured trees.

A tree t is said to be structured if:

(la) a particular vertex, called the root of r, is specified;

(2) Higman [l] calls this "finite basis property." Rado [5] uses "partial well-order." They

both deal with po sets rather than qo sets.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



212 J. B. KRUSKAL [May

(lb) every edge of r is oriented so that it points away from the root of r;

(lc) at each vertex v of r the edges just above v (that is, the edges whose

initial vertex is v) are linearly ordered.

We define co: n—>r2 to be a monomorphism if:

(2a) co is a homeomorphic embedding when the structure on ti and r2 is

disregarded;

(2b) a takes each vertex of ti into a vertex of 7-2;

(2c) co maps each edge of t\ into an oriented path of 7-2, and does so in an

orientation-preserving manner;

(2d) for each vertex v of ti, co maps the edges which initiate at v into paths

which initiate at u(v) in a manner which is strictly order-preserving (with

respect to the linear orders at v and at co(tj)).

To each structured tree t there corresponds an ordinary tree #r obtained

by disregarding the structure. It is clear from (2a) that Ti^T2 implies #ti

S§t2; that is, # is a homomorphism(3). It is also clear that # is onto; that is,

# is an epimorphism(3). As an epimorphism preserves wqo(3), it suffices to

prove that P is wqo in order to prove P* wqo.

Write t: t—>X for a function defined on the vertices of r into X. We call

t a (structured) tree over X. Intuitively, we may visualize t as t with each

vertex v labelled with an element of X. We shall call t the carrier of t. If

t', n, etc. denote subtrees of r, we shall denote the function / restricted to

these subtrees by t', t,, etc., and we shall refer to subtrees of t in this sense.

We shall also use this convention in reverse: if /', ti, etc. are trees, we shall

denote their carriers by r', n, etc. We may speak of a vertex, root, etc. of /

when we mean the corresponding object of t.

Let T(X) be the collection of all trees over X. It h and t2 are trees in

T(X), define a monomorphism co: /1—>/2 to be a monomorphism co: ri—>t2 with

CO
Ti   —>  ?Z

h \     /  u

X

the additional property that

(3) £1(7;) St2i»(v) for every vertex v of n. Intuitively, this requires that co

map each vertex of h into a vertex of t2 with a greater label. If h and /2 are

in T(X), define hSt2 if and only if there is a monomorphism co: h—>t2.

Clearly T(X) is qo. Define b: T(X)—>T to be the function which assigns

to each tree t over X its carrier r. It is easy to see that b is an epimorphism(3)

if X is nonempty. Hence if for some (nonempty) X we show T(X) wqo, it

follows that P is wqo. We shall in fact prove the following:

The Tree Theorem. X wqo implies T(X) wqo.

(3) See §4 for a fuller statement.
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3. An Equivalent Theorem. The Tree Theorem is our main result. How-

ever it does not seem possible to apply our induction-like proof to it as it

stands. To make our proof work, we must apply it to a more complicated

proposition which is equivalent to the Tree Theorem.

For any vertex v of a (structured) tree r we define d(v) =the degree of v to

be the number of edges whose initial vertex is v. We refer to the edges whose

initial vertex is v as the edges which sprout from v. We define the branch of r

at v to consist of v and all vertices which can be reached from v along positively

oriented paths starting at v, together with all edges which sprout from any

of these vertices. (In other words, the branch at v consists of v and all vertices

which lie above v, together with all edges which lie above vi) We define the

root of the branch at v to be v itself, and we use in the branch the orientations

and linear orders of t itself. Clearly the branch becomes a structured tree

under these definitions. We define the branch oftatv to be t restricted to the

branch of r at v.

A forest means a (finite) ordered sequence of structured trees. A forest

over X means a (finite) ordered sequence of trees over X. If v is a vertex in t,

let us temporarily denote the edges which sprout from v by ei, • • ■ , ep, where

the subscripts are given in accordance with the linear order at v. Yet the

terminal vertices of these edges be Vi, • • • , V We refer to the branches of t

(or of t) at Vi, ■ ■ • , vp as the branches of t (or of t) above v. We refer to the

sequence of branches above v as the forest above v (where the branches making

up the forest are ordered in the obvious way). If the degree of v is 0, the forest

above v is the empty sequence.

We define a graded quasi-ordered space Q to consist of a qo set Q+ together

with an infinite sequence Qo, Qi, • • • of subsets of Q, possibly overlapping,

whose union is Q+. A graded space Q is said to be wqo if

(4a) Q+ is wqo, and

(4b) there is some integer N, called the total degree of Q, for which Qn

= Qn+i= ■ ■ ■  hutQN-i^QN.
It a tree t:r—>Q+ over Q+ satisfies the following condition, we call it a

tree over Q and denote it by t: t—>Q :

(5) for every v in r, t(v) is in <2<*(»)- Intuitively this means that each vertex

of t must be labelled with an element from the appropriate subset of Q+.

Define T(Q) to be the collection of all trees over Q. Note that T(Q) is a sub-

set of T(Q+), and that the obvious qo on T(Q) is precisely that which it re-

ceives as a subset of T(Q+).

Theorem 1. Q wqo implies T(Q) wqo.

This is the proposition that we shall actually prove.

If Q has total degree 0, then T(Qf) = T(Q) and Q wqo becomes equivalent

to Qo wqo, so this theorem reduces to the Tree Theorem. On the other hand

if we assume the Tree Theorem, we have that Q wqo implies Q+ wqo, which
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implies T(Q+) wqo which implies T(Q) wqo. Thus Theorem 1 is equivalent to

the Tree Theorem.

The proof of Theorem 1 consists of three main parts. In the first part,

given that Q is wqo and T(Q) is not, we construct another wqo space Q*

which is "smaller" than Q (in a certain technical sense defined later). In the

second part we prove that T(Q*) is not wqo. Thus by repeating this construc-

tion, we can obtain an infinite sequence Q, Q*, Q**, • • • of wqo spaces, each

"smaller" than the preceding one (and such that T(Q), T(Q*), • ■ • are not

wqo). In the third part we show that such an infinite sequence of wqo spaces

is impossible: the wqo character forbids it.

4. Some lemmas and definitions. Suppose that X and Y are qo spaces.

Suppose h: X-^Y is a function. We call h a homomorphism if h preserves S,

that is, if £1^X2 implies h(xf) Sh(x2). We call h a monomorphism if it is 1-1

and if Xi^X2 if and only if h(xi) Sh(xf). We call h an epimorphism if it is onto

and a homomorphism. We call h an isomorphism it is onto and a monomor-

phism. The following simple lemmas will be used many times:

Epimorphism Lemma. If h: X—>Y is a homomorphism, then X wqo implies

h(X) wqo. In particular, if h is an epimorphism, then X wqo implies Y wqo.

Monomorphism Lemma. If h: X—+Y is a monomorphism, then Y wqo im-

plies X wqo. Every subspace of a wqo space is wqo.

Suppose Q and Q' are graded qo spaces. By a function h: Q—*Q' we mean

a function h: Q+—>Q'+ which satisfies the following:

(6) for every i ^ 0,        h(Q/) C Qi.

If h: Q+—>Q'+ is also a homomorphism, we call h: Q—*Q' a homomorphism. It in

addition h(Q/) = Qi, then we call h an epimorphism. It is easy to verify the

following:

Second Epimorphism Lemma. If h: Q—*Q' is a homomorphism, then Q wqo

implies h(Q) wqo. In particular, if h is an epimorphism, then Q wqo implies

Q' wqo.

Note that the total degree of h(Q) necessarily exists and is less than or

equal to that of Q.
If Xi, • • • , Xk are disjoint qo spaces, we define their direct union, written

OXi or Xi O • • • \JXh,

to be the qo space whose set is the set-theoretic union of the sets X{ and

whose qo is the union of the quasi-orders of the Xf; that is, an ordering rela-

tion exists between two elements in the direct union if and only if the two

elements belong to the same Xt and an ordering relation exists between them

there. If Xu ■ ■ ■ , Xt are qo spaces we define their Cartesian product (or direct
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product) to be the space whose set is the Cartesian product of the Xis with

SS defined component-wise: (xi, • • • , xf) SS(yi, • • • , yf) it and only if x^sSy*

for every i. Both the direct union and Cartesian product are clearly qo spaces.

Finite Union Lemma. // a qo space is the union of a finite number of wqo

subspaces, then the space is wqo. The direct union of a finite number of disjoint

wqo spaces is wqo.

Finite Cartesian Product Lemma. The Cartesian product of a finite

number of wqo spaces is wqo.

The first lemma is trivial. The second lemma, which is Theorem 2.3 of

[l] and the Finite Product Lemma of [3] may easily be proved using condi-

tion (2) of the lemma is §2.

Let F= {X} he the collection of all finite linearly ordered sets X, including

the empty set. If X is qo, define F(X) to be the set of all functions /: X—>X

using any X in F. Each element of F(X) may be thought of as a finite sequence

of elements from X, and this picture is only slightly inaccurate. Define a

monomorphism o>:/i—»/2 to mean a monomorphism w: Xi—>X2 (where Xi is the

domain of /i and X2 is the domain of ff) with the additional property that

a
^i —* A2

fi   \  //2

X

fi(i) ^fifo(i) for every i in Xi. Define fi^fi if and only if there is a monomor-

phism w:/i—->/2. Intuitively, one sequence is less than another if some subse-

quence of the greater sequence majorizes the smaller sequence term by term.

We agree that the empty sequence (that is, the unique function from the

empty set into X) is ^ every sequence. Intuitively, F(X) is the set of all

finite sequences of elements of X, qo in a natural though unfamiliar way.

Clearly F(X) is qo. We shall generally denote an element / of F(X) as a

sequence. Thus for example, (xi, x2, xf) denotes the function/: {1, 2, 4}—>X

whose values are Xi, x2, and X4. We shall seldom mention the set X involved

as it is not important.

Notice that the natural embedding of XX • • • XX in F(X) is a mono-

morphism. Thus the following theorem is closely related to the Finite Car-

tesian Product Lemma:

Finite Sequence Theorem. X wqo implies F(X) wqo.

For a proof of this theorem, see Theorem 4.3 of [l] or §4 of [3]. Rado

[5] and Kruskal [2] contain related but much more general theorems. If

we consider only unbranched (structured) trees, P(X) reduces to F(X) so the

Tree Theorem may be considered an extension of the Finite Sequence Theo-

rem.
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If Q is any graded space, define +Q to be the graded space of total degree

0 given as follows:

+Q< - i+Q)i = Q+,
+Q+ - i+Q)+ = Q+.

Obviously +Q is wqo if and only if Q+ is wqo. Also, P(<2) is a subset of

Fi + Q), which is the same as TiQ+).

A space Q of total degree N is called neutral if Qo, ■ ■ ■ , Qn are pairwise

disjoint and if there are no ordering relations between elements belonging to

different sets of this collection. We wish to associate a neutral space \\Q with

any space Q which has some total degree (which we shall call N). Let

[ypo, ypi, • • • } be an infinite set with the "discrete" ordering: ypiS^Pj if and

only if i =j. Define

hn   -(hO-)   - iQiX^>      iorOSiSN-l,
Wi=mi-\QiXM,      toriZN,

b,Q+ =. ih,Q)+ = 0 \Qi.
o

ti<2+ acquires a natural order as a subset of Q+X [ipo, • • • , *Pn) ■ It is easy

to see that \\Q is a neutral graded space of the same total degree as Q. Using

the Finite Union Lemma, we see that \Qis wqo if and only if Q is wqo.

There is a natural epimorphism tp1: ^Q—^Q which is defined by

k~Kx, h) = x.

It is easy to verify that fc]_1 is an epimorphism.

Suppose that Y is a qo space, and that (yi, • • • , yf) is a fixed element of

F(Y). Let (zi, ■ ■ ■ , Zj) he any other element of F(Y) such that

iyi, • ■ • ,yf) % izi, ■ ■ ■, zj).

We shall need the following construction in §5.

Let the degree of inequality of (zi, • • • , zf) (with respect to (yi, • • • , y,))

be the largest integer p such that

iyu ■ • • ,yf) S (zi, • • • , zf).

Clearly O^p^r—1. Let the first residual term of (zi, • • • ,zf) be the first term

Zi (if any) such that yiSzi. Recursively, let the kth residual term of (zi, • • • , zf)

be the first term zt (if any) such that z( follows the ik — l)st residual term and

ykSz,. Clearly (zi, • • • , zf) has precisely p residual terms if and only if its

degree of inequality equals p. Let the residual sequence be the sequence

(ztl, • • • , Zi) of residual terms.

If zik and zik+l are the feth and (& + l)st residual terms, then clearly yk+i ̂ s<

for ik<i<ik+i. Let

((Zl> -  • " . Zii-l), (zn+l, • * - . Z,'2-i), • • • , (Zip+l, • • • , zf))
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be the nonresidual double sequence associated with (zi, • • • , zf). This double

sequence clearly belongs to

F(Y - upper yi) X • • ■ X F(Y - upper y^+i).

If X and X* are qo spaces, we call X* smaller than X if there is a mono-

morphism from X* into X. We call X* essentially smaller than X if there is an

x in X such that X* is smaller than X — upper x. By condition (4) of the

lemma in §2, if X is not wqo, then there is an essentially smaller space X*

such that X* is not wqo.

If Q and Q* are two graded spaces of total degrees N and N*, we define

Q* to be smaller than Q by descent at R if

(7a) Q% is essentially smaller than Qr;

(7b) Q* is smaller than Qn for all n>R, and

(7c)  AT* = max (N, R).

The integer R is called the index of descent. If Q* is smaller than <2 by descent

at some unspecified integer, we say merely that Q* is smaller than Q.

The reason for this peculiar definition is that it describes the result of the

construction in a later section. Another way of expressing (7c) is this:

AT* ̂ AT; and furthermore R <N* in case N* = N, but R = N* in case N* > N.

It should be pointed out that the relation "smaller" for graded spaces is not

transitive, though "smaller by descent at R" is transitive.

5. First part of proof. Construction of Q*. It will suffice to prove Theorem

1 for neutral graded spaces. To see this first notice that any function h: Q—>Q'

induces a function Th: T(Q)—*T(Q') by the following natural definition:

Th(f.T-*Q) = (hf.T-^Qf).

T

tj    \ ht

h
Q -> Q'

It is easy to see that if h is a homomorphism or an epimorphism, then Th is

also. We have already seen that for any graded space Q there is a neutral

space kQ and an epimorphism fcp1: W->Q- Then Ftp1: T(\\Q)^T(Q) is also

an epimorphism. Thus if Theorem 1 holds for neutral graded spaces, we have

that Q wqo implies \Q wqo, which implies T(\\Q) wqo, which implies T(Q)

wqo.

Now suppose that Q is some wqo neutral space and that T(Q) is not wqo.

Q will remain fixed throughout the remainder of this and the following section.

We wish to construct a wqo neutral space Q* which is smaller than Q such

that T(Q*) is also not wqo. Throughout this and the following section, N

and N* will always refer to the total degrees of Q and Q*.

If t is a structured tree, then the height of t is the number of edges in the

longest oriented path in r. As T(Q) is not wqo, it must (according to the
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lemma of §2) contain some tree t such that P(0 —upper t is not wqo. Among

all such trees t choose one, which we shall call s: cr—>Q, whose carrier cr has

minimum height. The tree s will play a leading role throughout this and the

following section. Let the degree of the root of s be called r, that is, s has r

branches just above its root. Let these branches be called si, • • • , sr where

the subscripts have been assigned in accordance with the linear ordering at

the root of s. (According to our previous convention, the carrier of each s,-

is called cr,. In the future we shall use this convention without further notice.)

Each tree st has height strictly smaller than the height of s. It follows from

the manner in which s was chosen that P(Q) — upper s< is wqo for 7 = 1 to r.

This fact is of central importance. Finally we set w = s(root of s), that is, u is

the label at the root of s. Thus u is in Qr.

In case s has height 0, much of the preceding paragraph is vacuous, and

also unnecessary. For if s has height 0, define Q* thus:

*
Qi = Qi — upper u,

et = U Q*,
N* = N.

It is easy to verify that Q* is a wqo neutral space, that P(Q*) = P(Q) —upper s

and is therefore not wqo, and that Q* is smaller than Q with the index of

descent being zero. Thus if s has height 0 the construction of Q* is elementary.

We shall hereafter assume that the height of s is greater than zero, which in

turn implies that r>0.

Our construction of Q* is conceptually a little different in the cases r<N

and r^N, though no formal distinction need be made. In case r<N, we

shall have Q* essentially smaller than Qr, but Q* = Qi for i^r. In case r^N,

we shall have Qt essentially smaller than Q{ both for i = r and for i>r. The

reader is advised to keep these two different cases in mind, though no further

reference to this distinction will be made. In both cases Q* is relatively

complicated for i<r.

Recalling from before that F is the operator that forms the space of

finite sequences, first define

Fi = F[TiQ) - upper s,-],        for « - 1 to r,

Wi= FiX ■ • • X Fi+i, for i = 0 to r - 1.

Next define Q' by

=   iQ+ ° fe+ X W<1       for 7 = 0 to r - 1,

[Qi — upper u,       for i ^ r,

Qf = UQi -6+O0 [Q+XWi],
0

N' = max (tV, r).
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We define Q* to be tj<2'. (ltr>N, Q' is not neutral.)

It is easy to see that Q* is a neutral graded space, that it has total degree

N* = max (N, r), and that Q* is smaller than Q by descent at r. To verify

that Q* is wqo, we note that T(Q) —upper s,- is wqo by a previous remark, Ft

is wqo by the Finite Sequence Theorem, Wi and also Q+XWi are wqo by

the Finite Cartesian Product Lemma, Qi is wqo either by the Finite Union

Lemma or trivially depending on i, each Q* = Qi X {'/'«•} with O^isSA7* is

obviously wqo, and finally QX is wqo by the Finite Union Lemma. Thus we

have proved that Q* is a wqo neutral space.

It is convenient to define another graded-space Q", which is larger than

Q', for use in the next section. Let

= i<2+ ° te+ x w*\>     for»' - o to r - l,

\q+,       for i ^ r,

Qf = UQi' =Q+OT0[Q+XWi],
o

N" = max (N, r).

Q" is clearly a graded space of total degree N", though not necessarily neu-

tral. As a matter of fact it is also wqo, though we have no need of this fact.

Furthermore, T(Q") contains T(Q), T(Q'), and T(+Q).

6. Second part of proof. T(Q*) is not wqo. To prove that T(Q*) is not

wqo we shall define a function H: T(Q')-^>T( + Q). We shall prove that H is

a homomorphism and covers T(Q) — upper s. The Second Epimorphism

Lemma then shows that T(Q*) is not wqo, as we see from this diagram:

P(Q*) ̂* P(Q') 5 T(+Q) D T(Q) - upper s.

The definition of H is a little complicated and requires certain prelimi-

naries. Suppose t: t—*Q is in T(Q"). We classify the vertices of t according to

which part of Q" their labels lie in. If t(v) is in Q+, we call v an ordinary vertex

of t. If t(v) is in Q+ X W? we call v special of degree p. (Clearly if v is special of

degree p, it has degree p in the ordinary sense.)

We have already defined a forest to be an ordered sequence of trees. Call

the length of a forest the number of trees in it. Then the forest above a vertex

which is of degree p has length p. Define a double forest to be an ordered se-

quence of forests. Thus the elements of Wi are double forests. The length of a

double forest is the number of forests in it. If

(('h, • • • , 'i*i)j • • • , (tn-iA, * ' * , <p+i,Vi-i))

is a double forest of length p + 1 and
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is a forest of length p, we call the following forest their intermingling:

ihl,   •   -   •   , tl$i,  ti, t2l,   ■   ■   •   ,  <2*2,  t2,   •   •   ■   ,  tp, /p+1,1,   •   •   •   ,  <p+l,4,p+1).

If t is any element of TiQ") and v is any vertex of t, we shall define another

tree Evt, which we call the expansion of t at v, which also belongs to TiQ").

If v is an ordinary vertex of t, define Evt to be / itself. If v is special of degree

p in t, write the forest above v as ih, ■ • • , tf) and write tiv) = [xiv), wiv)]

where of course x(v) is in Q+ and wiv) is a double forest of length p + 1 and

belongs to Wp. Define Evt to be the same as t with two changes: the label at

v is changed from [xiv), wiv)] to xiv); and the forest above v is changed from

ih, ■■■, tf) to the intermingling of (ti, • • • , tf) with wiv). This expansion

process is illustrated by the accompanying diagram.

/, (, tn ti hi hi h hi hi

v ■   [*(»), (((„), (/2I)t2i), (hi,ki>)] ^^m   *w

It is clear that Evt belongs to TiQ"), and that if v is special then Evt has

one less special vertex than /, for the vertex v is not special in Evt, and the

many new vertices introduced into Evt are all necessarily ordinary.

Now we define H: T(Q')-^T( + Q). If Hs in T(Q'), let the vertices of t be

tr1, • • • , v". Define

Ht = Ev> • • • £„»£,»/.

It is clear that every vertex of Ht is ordinary, so Lit belongs to T( + Q). It is

also clear that Ht is independent of the order in which the expansion operators

are applied; thus Ht is well-defined. We note that H could be extended to

apply to every tree in T(Q"), but we do not wish to make this extension.

We wish to prove that H is a homomorphism. To do so we need two homo-

morphism-like properties of the expansion operator. First, if t and t' are in

T(Q"), if co: t—*t' is a monomorphism, and if v is a vertex of /, then there exists

a monomorphism P„co: Evt—*Ea^)t''. Second, if t and t' are in T(Q"), if co:

t—*t' is a monomorphism, and if v' is a vertex of t' which is not in the image

of co, then co: t—>Ev-t' is a monomorphism.

The second of these statements is obvious. To prove the first, we note that

v is ordinary if and only if os(v) is ordinary, and that v is special of degree p

if and only if co(zi) is special of degree p, because t(v) St'w(v).

In case v and cc(v) are ordinary, Evt = t and Ea(V)t'=t', so we may define

E„co to be co itself. In case v and cc(v) are special of degree p, write
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t(v) = [x(v),(fh ■ ■ ■ ,ff+i)\,

t'o>(v) = [x'(v),(fi,---,U+i)],

where fi and /,' are each forests which belong to r7,. Then t(v) ^t'a)(v) implies

that x(i>)sSx'(a) and that/iSS// for i = l to p + 1. Thus for each i there is a

monomorphism 0,-:/<—>/»'. Now we put together co and the 0, to form E^co. For

those vertices of Evt which come from trees of /,- we define £„« with the aid of

8i; for every other vertex we define £„w to agree with co. It is not hard to see

that -E„co is a monomorphism.

Now we prove that H is a homomorphism. Suppose that / and t* are in

T(Q"), and that t^t*. Then there is a monomorphism co: t—*t*. Yet v1, ■ ■ ■ , v"

be the vertices of /. Let v*1, • • • , v*" be those vertices of t* which are not in

the image of co. Then

£„"■•• E„ko: Ev' ■ ■ • EVU —> £„•<■ • • • £„«£„(„*) • • • -E„(„y*

is a monomorphism from Ht into Ht*, so Ht^Ht*. This proves that H is a

homomorphism.

To prove that H covers P(Q) — upper 5 is a little complicated and requires

certain preliminaries. If t is a tree in P(Q") and v is a vertex of /, we call v

prunable if

(8a) the branch of t at v belongs to T( + Q), and

(8b) the forest (si, ■ - - , sr) s6 the forest of t above v. We call v minimal

prunable if it is prunable and if it is not above any other prunable vertices,

that is, if v cannot be reached from any other prunable vertex along a posi-

tively oriented path of t. If v is prunable we shall define another tree Pvt,

which we call t pruned at v, which also belongs to P(Q"). (The process of

pruning is inverse to the process of expanding in a sense that we shall soon

make precise.) Recall from an earlier section the concepts of degree of in-

equality, residual sequence, and nonresidual double sequence. By condition

(8b) we see that the forest (ti, • • ■ , tf) of t above v must have some degree of

inequality p with respect to the forest (si, ■ ■ ■ , sr). Of course O^psSr —1.

Define the residual forest of t above v to be the residual sequence of (k, ■ • ■ ,tf)

with respect to (si, • • • , sf). Define the nonresidual double forest of t at v to

be the nonresidual double sequence of (h, ■ ■ ■ ,tf) with respect to (si, ■ ■ ■ ,sr).

Denote the nonresidual double forest at v by w(v). Define Pvt to be the same

as t but with two changes: the label at v is changed from t(v) to [t(v), w(v)];

and the forest above v is changed from (h, ■ ■ ■ , tf) to the residual forest of t

above v. This pruning process is illustrated by the accompanying diagram.

From the definition of degree of inequality we see that v has degree p in

Pvt. From condition (8a) we see that the nonresidual double forest w(v) is

made of trees lying in T( + Q). From the definition of nonresidual double

sequence we see that w(v) lies in W„. Thus we have shown that Pvt lies in
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'i '» h U tt h h h ti

f^f      ((,) • W      &W> ((«, fe 0, fe h))]

TiQ"). We also note that v is not pr unable in PTt because the label at v in

Pvt is not in Q+; so Pvt has strictly fewer prunable vertices than t.

We prove that if v is any prunable vertex of any tree t in TiQ"), then

EvPvt = t. As P, and Ev only change the trees on which they operate at and

above v, EvPvt clearly is the same as t everywhere else than at and above v.

Pv changes the label at v from tiv) to [tiv), wiv) ] where wiv) is the nonresidual

double forest associated with the forest above v in t. Ev then changes the label

[tiv), wiv)] back to tiv). As for the forest above v, P, changes the original

forest above v to its residual forest by removing the trees which belong to the

nonresidual double forest wiv). Ev then intermingles this new forest above v

with the double forest wiv), thus obviously restoring the original forest

above v.

The preceding paragraph demonstrates that the pruning operators are

inverse to the expansion operators. As H is a product of expansion operators,

we can show that H covers TiQ) — upper s by showing that each tree in

TiQ) — upper s may be transformed into a tree of TiQ') by a suitable product

of pruning operators. The following three paragraphs are technical steps nec-

essary to prove that the pruning operators may be applied often enough.

If t is in TiQ") — upper s, and if v in t is prunable, then Pvt is also in

T(Q")~upper s. For suppose co: s^>Pvt is a monomorphism. As s(v') is in

Q+ for every vertex v' of s, and as s(v') SPvt(o>(v')) according to the definition

of monomorphism, we must have Pvt(u(v')) in Q+, which implies that v cannot

be in the image of co. Then by an earlier remark, co: s-+EvPvt is a monomor-

phism, so sSt, which contradicts the assumption made about t.

Recall that u is the label at the root of s. If t is in T(Q") — upper s, if v is a

vertex of t such that uSt(v), and if the branch of t at v is in T( + Q), then v is

prunable. We only need to prove that condition (8b) holds. Suppose that it

fails. Let

co: (si, • • • , sr) —* the forest above v

he a monomorphism. Then it is possible to define a monomorphism co': s—>t

by defining o>' (root of s) = v and defining co' for the other vertices of s with
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the aid of co. But such a monomorphism co' cannot exist by the assumption

concerning t, so co also cannot exist, so condition (8b) holds.

Suppose t is in T(Q") — upper 5. Suppose v is minimal prunable in /. Sup-

pose that t has the property that for every vertex v' of t, u^t(v') implies v'

prunable. Then P,t has the same property. For let v' he in Pvt and suppose

u^Pvt(v'). This implies vj&v', so Pvt(v')=t(v'). Thus u^t(v'). Then as / is

assumed to have the property we are considering, v' is prunable in t. As v was

assumed minimal prunable in t, we have that v' is not below v. Therefore the

branch of t at v' is the same as the branch of Pvt at v'. As v' is prunable in t,

and as prunability at a vertex depends only on the nature of the branch at

that vertex, v' is prunable in Pvt. Thus Pvt does indeed have the property we

claimed for it.

Now we can prove that H covers P(Q) — upper s. Let t be any tree in

P(Q) —upper 5. Every branch of t belongs to T( + Q) of course. Thus by the

second preceding paragraph, u^t(v') implies that v' is prunable. Let v1 be

any minimal prunable vertex of t (if t has any prunable vertices). Form

Pvd. By the third preceding paragraph, Pvd belongs to T(Q")— upper 5.

By the immediately preceding paragraph, u^Pvd(v') implies v' prunable. Let

v2 be any minimal prunable vertex of Pvd (if this tree has any prunable ver-

tices). Form PviPvd. As before we see that this tree belongs to P(Q") — upper

s, and that u^P^Pvd(v') implies v' is prunable. We continue the process of

picking minimal prunable vertices v3, v*, • • - and forming new trees as long

as we can. By an earlier remark, each successive tree formed has strictly

fewer prunable vertices than the tree from which it was formed. Therefore

this process must stop after a finite number of steps. Let v" be the last mini-

mal prunable vertex which occurs. Let t'=PV' • • • Pv*Pvd. Then t' belongs

to P(Q") — upper 5 and has the property that u^t'(v') implies v' prunable.

But t' has no prunable vertices. Therefore u%t'(v') for every vertex v' of t'.

Therefore /' belongs to T(Q')— upper s. Furthermore it is clear that Ht'=t.

For let ir*+1, • • • , V be the vertices of t' other than vl, • • • , V. Then

Ht' = £„.••• Ev„t' = £„.••• Ev'Ps • • • P,,t = t.

Thus H does indeed cover P(Q) — upper s. This completes the proof that

T(Q*) is not wqo.

7. Third part of the proof. In this section we prove the following:

Lemma. If Q(l), Q(2), • ■ ■ is a sequence of wqo neutral (graded) spaces,

and Q(k + 1) is smaller than Q(k) for every k, then the sequence is finite.

Let the total degree of Q(k) be N(k), and let the index of descent from

N(k) to N(k+1) be R(k). For convenience, let QN(k)(k) be denoted by Q«,(k);
the mnemonic significance of this is obvious.

Our basic tool is the following:
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Lemma. If X(l), X(2), • • • is a sequence of qo spaces, each smaller than

the preceding one, and if X(l) is wqo, then there are only a finite number of values

of k for which X(k + 1) is essentially smaller than X(k).

This is essentially Theorem 2.4 of [l] and condition (3b) of Theorem 1

of [3]. The reader may prove this very simple but useful lemma for himself.

We prove the sequence £>(1), Q(2), • • • must be finite by repeated use

of the lemma just stated. First note that Qa(l), Q«>(2), ■ • ■ is a sequence of

qo spaces satisfying the hypotheses of the lemma. Hence Qx(k + 1) is essen-

tially smaller than Q„(k) for only a finite number of values of k. But when-

ever R(k)>;N(k), we have Qx(k + 1) essentially smaller than Q„(k). Thus

R(k) ~^N(k) only a finite number of times. Let k0 be so large that R(k) <N(k)

for all k^ko- Let M=N(kf). By condition (7c) in the definition of descent,

we see that M = N(k0)=N(ko + l)=N(ko + 2)= ■ ■ ■. Thus for k^k0 we have

R(k)<M.
Now Q.\i-i(ko), Qid-i(ko + l), • ■ • satisfy the hypotheses of the lemma.

But whenever R(k) = M— 1, QM-i(k + l) is essentially smaller than Qu-i(k).

Hence by the lemma we may pick a ki so large that for k^ki, R(k) <M — 1.

Using the argument in the preceding paragraph M times, we eventually

find a kid so large that for k^ku we have R(k) <M— M =0, which is impos-

sible. That is to say, k cannot be greater than kii. Therefore the sequence

Q(l), Q(2), • • •  is finite. This completes the proof of the Tree Theorem.

8. Two conjectures. If gi and g2 are graphs, define giSg2 if gi can be

homeomorphically embedded in g2. This relation is a qo on the set of all

graphs. The set of all graphs is not wqo, for infinite, pairwise incomparable

sets of elements are known.

Conjecture 1. The set of all (connected) trees, finite or infinite, is wqo.

Conjecture 2. The set of all finite graphs of maximum degree S3 is wqo.

9. Connections with Higman's theory. The main result of Higman [l],

namely Theorem 1.1, is equivalent to our Theorem 1 with an extra hypoth-

esis: namely that Qn (and hence Qn+i, Qn+2, • • • ) is empty, where N is the

total degree of Q. Geometrically this means that we consider only structured

trees with vertices of degree S N— 1. However the language and viewpoint of

[l ] are so different from the present paper that a brief glossary might be useful.

Higman [l] Present Paper

Quasi-order Quasi-order

Quasi-order with finite basis property       Well-quasi-order

Algebra A Space containing T(Q)

Set of operations M Set Q

Set of 77-ary operations Mn Set Qn

Minimal algebra Space T(Q)

Closure of a set B Upper B

Operator V Operator F.
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Actually not any minimal algebra corresponds strictly to some T(Q) but

only a minimal algebra which is "free" in the sense that different expressions

do not represent the same elements of the algebra. However any algebra is

the epimorphic image of a free algebra, and epimorphism preserves wqo, so

it is sufficient to deal with free algebras. The tree spaces may be considered

as explicit constructions of the free (minimal) algebras in the same way that

word groups are used to give explicit constructions of free groups and free

products.
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