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 Ackermann’s Function is Not Primitive Recursive (Chi 
Woo & Planet Marth) 

 Accessible Independence Results for Peano Arithmetic 
(Laurie Kirby & Jeff Paris) 

 The Hydra Battle Revisited (Nachum Dershowitz & 
Georg Moser) 



 Ackermann’s function is not primitive recursive  

 The Ordinals  

 Hydra Vs. Hercules : introduction, termination proof, 
Peano Arithmetic doesn’t suffice  



A(m,n) (Ackerman) is defined by recursion: 

Base: 

1. 𝐴 0, 𝑛 = 𝑛 + 1 

2. 𝐴 𝑚 + 1,0 = 𝐴(𝑚, 1) 

Step: 

3. 𝐴 𝑚 + 1, 𝑛 + 1 = 𝐴(𝑚, 𝐴 𝑚 + 1, 𝑛 ) 

 

Notation:  

1) i.h stands for induction hypothesis 

2) Ai stands for the i’th rule of ackermann’s function 

3) APi stands for the I’th ackermann’s property proven  



1. A(m,n) > m +n 

Proof by induction 

on (m,n) 

 

 

1. 𝐴 0, 𝑛 =𝐴1 𝑛 + 1 > 𝑛 

2. 𝐴 𝑚 + 1,0 =𝐴2 𝐴 𝑚, 1 >𝑖.ℎ 𝑚 + 1 

3. 𝐴 𝑚 + 1, 𝑛 + 1 =𝐴3 𝐴 𝑚, 𝐴 𝑚 + 1, 𝑛 >𝑖.ℎ 𝑚
+ 𝐴 𝑚 + 1, 𝑛 ≥𝑖.ℎ 𝑚 + 𝑛 + 2  

 

  

 

A(m,n) (Ackerman) is defined by recursion: 

Base: 

1. 𝐴 0, 𝑛 = 𝑛 + 1 

2. 𝐴 𝑚 + 1,0 = 𝐴(𝑚, 1) 

Step: 

3 . 𝐴 𝑚 + 1, 𝑛 + 1 = 𝐴(𝑚, 𝐴 𝑚 + 1, 𝑛 ) 



2. 𝑥 > 𝑦 → 𝐴 𝑚, 𝑥 > 
𝐴(𝑚, 𝑦) 

Proof by induction 
on (m,x) 
 
  
1. 𝐴 0, 𝑥 =𝐴1 𝑥 + 1 > 𝑦 + 1𝐴1 = 𝐴(0, 𝑦) 

2. 𝐴 𝑚 + 1, 𝑥 + 1 =𝐴3 𝐴 𝑚, 𝐴 𝑚 + 1, 𝑥 >𝑖.ℎ                                   

        𝐴 𝑚, 𝐴 𝑚 + 1, 𝑦 =𝐴3 𝐴(𝑚 + 1, 𝑦 + 1) 

        
 
  
 

A(m,n) (Ackerman) is defined by recursion: 

Base: 

1. 𝐴 0, 𝑛 = 𝑛 + 1 

2. 𝐴 𝑚 + 1,0 = 𝐴(𝑚, 1) 

Step: 

3 . 𝐴 𝑚 + 1, 𝑛 + 1 = 𝐴(𝑚, 𝐴 𝑚 + 1, 𝑛 ) 



3. 𝑥 > 𝑦 → 𝐴 𝑥, 𝑛 > 
𝐴(𝑦, 𝑛) 

Proof by induction 

on (x,n) 

 

  

1. 𝐴 𝑥, 𝑛 >𝐴𝑃1 𝑥 + 𝑛 ≥ 𝑛 + 1 = 𝐴(0, 𝑛) 
2. 𝐴 𝑥 + 1,0 =𝐴2 𝐴 𝑥, 1 >𝑖.ℎ 𝐴 𝑦, 1 =𝐴2 𝐴(𝑦 + 1,0) 

3. 𝐴 𝑥 + 1, 𝑛 + 1 =𝐴3 𝐴 𝑥, 𝐴 𝑥 + 1, 𝑛 >𝑖.ℎ 𝐴 𝑦, 𝐴 𝑥 + 1, 𝑛  
>𝑖.ℎ+𝐴𝑃2 𝐴 𝑦, 𝐴 𝑦 + 1, 𝑛 = 𝐴(𝑦 + 1, 𝑛 + 1) 

        

 

  

 

A(m,n) (Ackerman) is defined by recursion: 

Base: 

1. 𝐴 0, 𝑛 = 𝑛 + 1 

2. 𝐴 𝑚 + 1,0 = 𝐴(𝑚, 1) 

Step: 

3 . 𝐴 𝑚 + 1, 𝑛 + 1 = 𝐴(𝑚, 𝐴 𝑚 + 1, 𝑛 ) 



4. 𝐴 𝑚 + 𝑛 + 2, 𝑥 > 

        𝐴(𝑚, 𝐴 𝑛, 𝑥 ) 

Proof by induction 

on (m+n,x) 
 

  

 

 

 

1. 𝐴 𝑛 + 2, 𝑥 >𝐴𝑃3 𝐴 𝑛 + 1, 𝑥 ≥𝐴𝑃3 𝐴 𝑛, 𝑥 + 1 
         =𝐴1 𝐴(0, 𝐴(𝑛, 𝑥)) 

2. 𝐴 𝑚 + 𝑛 + 2,0 =𝐴2 𝐴 𝑚 + 𝑛 + 1,1  

        >𝑖.ℎ 𝐴 𝑚, 𝐴 𝑛 − 1,1 =𝐴2 𝐴(𝑚, 𝐴(𝑛, 0)) 

3. 𝐴 𝑚 + 𝑛 + 2, 𝑥 + 1 =𝐴3 𝐴 𝑚 + 𝑛 + 1, 𝐴 𝑛 + 𝑚 + 2, 𝑥  
>𝑖.ℎ+𝐴𝑃2,3 𝐴 𝑚, 𝐴 𝑛, 𝐴(𝑚, 𝑥) >𝐴𝑃1,2 𝐴 𝑚, 𝐴 𝑛, 𝑥 + 𝑚  

≥𝐴𝑃2 𝐴(𝑚, 𝐴(𝑛, 𝑥 + 1)) 
        

 

  

 

A(m,n) (Ackerman) is defined by recursion: 

Base: 

1. 𝐴 0, 𝑛 = 𝑛 + 1 

2. 𝐴 𝑚 + 1,0 = 𝐴(𝑚, 1) 

Step: 

3 . 𝐴 𝑚 + 1, 𝑛 + 1 = 𝐴(𝑚, 𝐴 𝑚 + 1, 𝑛 ) 



We define the set of all primitive recursive functions 
𝑓:𝑁𝑘 → 𝑁 (when 1 ≤ 𝑘) as follow: 

1. 𝑓 ≡ 0 is primitive recursive 

2. 𝑆 𝑛 = 𝑛 + 1 is primitive recursive 

3. 𝑓𝑖
𝑛 = 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛 = 𝑥𝑖 is primitive recursive 

(projection function) 

4. Given 𝑓:𝑁𝑘 → 𝑁 primitive recursive function, and 
given 𝑔1, 𝑔2, … 𝑔𝑘: 𝑁

𝑚 → 𝑁 primitive recursive 
functions, the composition 
ℎ 𝑥1, … , 𝑥𝑚 = 𝑓 𝑔1 𝑥1, … , 𝑥𝑚 , … , 𝑔𝑘 𝑥1, … , 𝑥𝑚  

      is a primitive recursive function  

 

 



5.  let 𝑓:𝑁𝑘 → 𝑁,𝑔:𝑁𝑘+2 → 𝑁 be primitive recursive 
functions. The function ℎ:𝑁𝑘+1 → 𝑁 : 

      ℎ 0, 𝑥1, … , 𝑥𝑘 = 𝑓(𝑥1, … , 𝑥𝑘) 

      ℎ 𝑦 + 1, 𝑥1, … , 𝑥𝑘 = 𝑔(𝑦, ℎ 𝑦, 𝑥1, … , 𝑥𝑘 , 𝑥1, … , 𝑥𝑘) 

       is primitive recursive. 

 



 Denote 𝑃𝑖
𝑗

𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑗 = 𝑥𝑖  

 𝑎𝑑𝑑 0, 𝑥 = 𝑃1
1 𝑥 = 𝑥 

 add(n+1,x)= 𝑆(𝑃2
3(𝑛, 𝑎𝑑𝑑 𝑛, 𝑥 , 𝑥)) 

 
Note:  
in this example:  
1. 𝑘 = 1 
2. 𝑎𝑑𝑑 = ℎ 
3. 𝑃1

1 = 𝑓: 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 
4. 𝑔 = 𝑆 𝑃2

3 : 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑏𝑦 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 
 𝑜𝑓 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

Reminder:  
 
 
let 𝑓:𝑁𝑘 → 𝑁, 𝑔:𝑁𝑘+2 → 𝑁 be 
primitive recursive functions 
the function ℎ:𝑁𝑘+1 → 𝑁 : 
      
ℎ 0, 𝑥1, … , 𝑥𝑘 = 𝑓(𝑥1, … , 𝑥𝑘) 
      ℎ 𝑦 + 1, 𝑥1, … , 𝑥𝑘

= 𝑔(𝑦, ℎ 𝑦, 𝑥1, … , 𝑥𝑘 , 𝑥1, … , 𝑥𝑘) 
       is primitive recursive. 
 



Notation: 

1. A-Ackerman’s function 

2. 𝑃𝑅 = {𝑓|𝑓 𝑖𝑠 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒} 

3. 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of n non negative integers 

4. 𝑥 = max {𝑥1, 𝑥2, … , 𝑥𝑛} 

5. 𝑆 𝑛 = 𝑛 + 1 

6. 𝑧 𝑛 = 0 

7. 𝑃𝑖
𝑗

𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑗 = 𝑥𝑖 

8. AP-i: the I’th Ackerman property proven in previous 
slides  

 

 

 

 



Definition : 

We say that a function 𝑔 is majorized by A, if for some 
𝑖 ∈ 𝑁, 𝑔 𝑥 < 𝐴 𝑖, 𝑥 , ∀𝑥 ∈ 𝑁𝑛 

We define: 
𝐴𝑚 = {𝑔|𝑔 𝑖𝑠 𝑚𝑎𝑗𝑜𝑟𝑖𝑧𝑒𝑑 𝑏𝑦 𝐴} 

 



• The idea in this proof is to show a quality that holds to 
all primitive recursive functions, but doesn’t hold for 
A. 

• We show that A “grows” faster than any function in PR. 

 



Proposition 1: 𝑃𝑅 ⊆ 𝐴𝑚 

Proof: By structural induction: 

Base: {𝑆 𝑛 , 𝑧 𝑛 , 𝑃𝑖
𝑗
𝑥 } ⊆ 𝐴𝑚 

1. 𝑧 𝑛 = 0 < 𝑛 + 1 = 𝐴(0, 𝑛)                 (i=0) 

2. 𝑠 𝑛 = 𝑛 + 1 <𝐴𝑃1 𝐴(1, 𝑛)                   (i=1) 

3. 𝑃𝑖
𝑗
𝑥 = 𝑥𝑖 ≤ 𝑥 < 𝑥 + 1 = 𝐴(0, 𝑥)      (i=0) 

 

Reminder: 

We say that a function 𝑔 is majorized by A, if for some i, 
𝑔 𝑥 < 𝐴 𝑖, 𝑥 , ∀𝑥 ∈ 𝑁𝑛 

 



Closure under composition: 
4. Given 𝑓:𝑁𝑘 → 𝑁  and given 𝑔1, 𝑔2, … 𝑔𝑘: 𝑁

𝑚 → 𝑁 functions in 
𝐴𝑚: 

       we show the composition ℎ = 𝑓 𝑔1, … , 𝑔𝑘  is in 𝐴𝑚. 
       By the given we know that 
       (∗) 𝑔𝑖(𝑥 )< 𝐴(𝑟𝑖 , 𝑥) and  f 𝑦 < 𝐴(𝑠, 𝑦). 

       Define: 𝑔𝑗 𝑥 = max 𝑔𝑖 𝑥 𝑖∈{1…𝑘} 

       Now:         ℎ 𝑥 = 𝑓 𝑔1, … , 𝑔𝑘 <(∗) 𝐴 𝑠, 𝑔𝑗 𝑥  

<∗+𝐴𝑃2 𝐴 𝑠, 𝐴 𝑟𝑗 , 𝑥 <𝐴𝑃4 𝐴(𝑠 + 𝑟𝑗 + 2, 𝑥) 

Reminder: 
We say that a function 𝑔 is majorized by A, if for some i, 𝑔 𝑥 
< 𝐴 𝑖, 𝑥 , ∀𝑥 ∈ 𝑁𝑛 
 
 
 
 
 

 



Closure under primitive recursion: 

5. let 𝑓:𝑁𝑘 → 𝑁,𝑔:𝑁𝑘+2 → 𝑁 be in 𝐴𝑚. We show that the 
function ℎ:𝑁𝑘+1 → 𝑁 : 

      ℎ 0, 𝑥1, … , 𝑥𝑘 = 𝑓(𝑥1, … , 𝑥𝑘) 

      ℎ 𝑦 + 1, 𝑥1, … , 𝑥𝑘 = 𝑔(𝑦, ℎ 𝑦, 𝑥1, … , 𝑥𝑘 , 𝑥1, … , 𝑥𝑘) is      

      in 𝐴𝑚.  

      By the given we know that: 

      𝑓 𝑥 < 𝐴(𝑟, 𝑥) and g 𝑦 < 𝐴(𝑠, 𝑦).  

        

  

 

 

 

 

 

 

 

 



Closure under primitive recursion: 

We first prove: ℎ 𝑛, 𝑥 < 𝐴(𝑞, 𝑛 + 𝑥) for some q not 
depending on x,n. 

Let us pick 𝑞 = 1 + max {𝑟, 𝑠} and prove the claim by 
induction on n: 

Base:  

n=0: 
ℎ 0, 𝑥 = 𝑓 𝑥 < 𝐴 𝑟, 𝑥 <𝐴𝑃3 𝐴(𝑞, 𝑥) 

 

  

 

 

 

 

 

 

 

 



Closure under primitive recursion: 

Step:  

Assume that ℎ 𝑛, 𝑥 < 𝐴(𝑞, 𝑛 + 𝑥):  

ℎ 𝑛 + 1, 𝑥 = 𝑔 𝑛, ℎ 𝑛, 𝑥 , 𝑥 < A(s, z) when 
𝑧 = max {𝑛, ℎ 𝑛, 𝑥 , 𝑥}. 

Now: 

1. max 𝑥, 𝑛 ≤ 𝑛 + 𝑥 <𝐴𝑃1 𝐴(𝑞, 𝑛 + 𝑥) 

2. ℎ 𝑛, 𝑥 < 𝐴(𝑞, 𝑛 + 𝑥) (i.h) 

We can conclude that:  𝑧 < 𝐴(𝑞, 𝑛 + 𝑥) 

 

 

 

 

 

 

 

 

 



Closure under primitive recursion: 

Step:  

Now: 

ℎ 𝑛 + 1, 𝑥 < 𝐴 𝑠, 𝑧 <𝐴𝑃2 𝐴 𝑠, 𝐴 𝑞, 𝑛 + 𝑥  

≤𝐴𝑃3 𝐴 𝑞 − 1, 𝐴 𝑞, 𝑛 + 𝑥 =𝐴−𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 
𝐴 𝑞, 𝑛 + 1 + 𝑥 . 

 

 

 

 

 

 

 



Proof that 𝐴 2, 𝑧 = 2𝑧 + 3: by induction on z: 

Base: A(2,0)=A(1,1)=A(0,A(1,0))=A(1,0)+1=A(0,1)+1=2+1=3 

Step: A(2,z+1)=A(1,A(2,z))=A(1,2z+3)= 

Auxilary claim : A(1,x)=x+2 (by induction on x) 

Base: A(1,0)=A(0,1)=2 

Step: A(1,x+1)=A(0,A(1,x))=1+A(1,x)=x+3 

Back to proof: A(1,2z+3)=2z+5 

 



Closure under primitive recursion: 

Now, let 𝑧 = max {𝑥, 𝑦}. By the last claim proven: 
ℎ 𝑦, 𝑥 < 𝐴 𝑞, 𝑥 + 𝑦 ≤𝐴𝑃−2 𝐴 𝑞, 2𝑧  
<𝐴𝑃−2 𝐴 𝑞, 2𝑧 + 3 =𝑙𝑎𝑠𝑡 𝑃𝑎𝑔𝑒 𝑝𝑟𝑜𝑜𝑓 𝐴 𝑞, 𝐴 2, 𝑧 <𝐴𝑃4 
𝐴(𝑞 + 4, 𝑧) 

Proving that ℎ ∈ 𝐴𝑚. 

 

 

We had just proved that 𝑃𝑅 ⊆ 𝐴𝑚, and because it can’t be 
that 𝐴 ∈ 𝐴𝑚, we conclude that A is not primitive recursive ∎  

  

 

 

 

 

 

 



Defined as 𝑁 = {0,1,2,3… . } and is used for two 
purposes: 

1. Count discrete objects (7 pens, 12 children) 

2. Orders objects (the seventh child, the fourth pen) 

 

 

 

 

 There is an infinite number of natural numbers ,how 
can we represent objects in an infinite position ?   





 Georg Cantor (1883) invented the notion of ordinals: 

 

The first ordinals (finite ordinals) are the natural 
number: 0,1,2,3,4… 

The first infinite ordinal, denoted by 𝜔, is larger than 
any natural number, but smaller than any other 
infinite ordinal 

After 𝜔 comes 𝜔+1 , 𝜔+2, 𝜔+3, … 𝜔2, 𝜔2+1,… 𝜔3,… 𝜔2, 

𝜔2+1,… 𝜔3,…, 𝜔𝜔,… 𝜔𝜔𝜔
,….𝜀0…  

 



 Ordinals are defined to be the set of all smaller ordinals. 

 For any two ordinals 𝛼, 𝛽 we define the following (good) ordering 
:𝛼 < 𝛽 ↔ 𝛼 ∈ 𝛽  

 The following ordinals are presented in increasing order, when n is a 
natural number, and 𝛼 is an infinite ordinal  

 0 = ∅ 

 1 = 0 = {∅} 

 2 = 0,1 = {∅, {∅}} 

 𝑛 = {0,1,2,3…𝑛 − 1} 

 𝜔 = 0,1,2… = 𝑁  

 𝜔 + 1 = 𝜔 ∪ 𝜔 = {0,1,2…𝜔} 

 𝜔 + 2 = 𝜔 + 1 ∪ 𝜔 + 1 = {0,1… , 𝜔, 𝜔+1} 

 𝜔 + 𝑛 = 𝜔 + (𝑛 − 1) ∪ 𝜔 + (𝑛 − 1  

 𝛼 + 1 = 𝛼 ∪ 𝛼  

 

 

 

 

 

 

 



𝜔2 = 𝜔 ∪ 𝜔 + 𝑛 𝑛 < 𝜔 = 1,2…𝜔,𝜔 + 1,𝜔 + 2…  

𝜔𝑛 =  (𝜔 𝑛 − 1 + 𝑖)𝑖<𝜔  

𝜔2 =  (𝜔𝑖)𝑖<𝜔  

𝜔𝑛 =  (𝜔𝑛−1𝑖)𝑖<𝜔  

𝜔𝜔 =  𝜔𝑛
𝑛<𝜔  

𝜔𝛼 =  (𝜔𝛽
𝛽<𝛼 ) 

𝜖0 = 𝜔𝜖0 =  𝜔𝜔⋮𝜔

 𝑛 𝑡𝑖𝑚𝑒𝑠𝑛<𝜔  

And more… 

 

 

 





 



 Hercules always wins 

 Kirby and Paris prove that more than a regular 
induction on the natural numbers is needed to prove 
Hercules’s victory.  

 

 



Representation:  

1. Hydras are represented as unordered, rooted, finite 
tress. 

2. Each leaf in the tree represents a head of the hydra. 

3. )H,n) describes a single configuration in the game, 
where H denotes Hydra and n denotes the current 
stage of the game 

 

What about the rules of the battle? 

 

 



1. At each stage Hercules can decide which head to 
decapitate. 

2. If the head (leaf) decapitated has no grandparent 
node, then hydra suffers lost. 

3. If the head (leaf) does have a grandparent node, then 
Hydra multiply the branch issuing from that node 
along with the damaged subtree by a factor n (the 
stage).  

4. Hercules wins when hydra is reduced to an empty 
tree 

 



Hydra suffers lost as node had no grandparent root 



The node did have a grandparent, at stage n=3! 

Delete the head and its neck. Descend down by 1 from the node 
at which the neck was attached. Look at the subtree growing 
from the connection through which you just descended. Grow 3 
copies of that subtree 



 We deal with ordered trees (with immediate subtrees 
ordered sequentially from left to right)  

 Nil denote an empty list. 

 cons(x,y) is the list obtained by prepending an element 
x (the right-most subtree) to a list y (the remaining 
tree) 

 car(cons(x,y))=x 

 cdr(cons(x,y))=y 

 

 



 

 

 

 

This example can be written as  

 

 

When we write l=cons(nil,nil) for a leaf and we have 
reordered the immediate subtrees of the root of 𝐻1 such 
that the number of nodes is non-increasing  



 



 𝐻𝑛(𝑥) plays the game with initial hydra x beginning at 
stage n. 

 𝑑𝑛(𝑥) plays one round of the battle, travelling left 
along a leftmost branch until encountering a branch z 
such that 𝑐𝑎𝑟(𝑐𝑎𝑟 𝑧 ) is empty, using 𝑓𝑛 𝑦, 𝑥  to 
prepend k copies of 𝑦 = 𝑐𝑑𝑟(𝑐𝑎𝑟 𝑧 ) to x. 

 

 



 A partial order > is an irreflexive and transitive binary 
relation (for example the regular > on the Naturals) 

 A partial order > on a set A is well founded if there 
exists no infinite descending sequence 𝑎1 > 𝑎2 > ⋯ of 
elements from A (for example (N, >)) is a well founded 
ordering) 

 A partial order > is linear if ∀𝑎, 𝑏 ∈ 𝐴, 𝑠. 𝑡 𝑎 ≠ 𝑏 a and 
b are comparable by >.  

 A linear well founded order is called a well-order 



 We denote >𝑜𝑟 to be the well order on ordinals 

 Fact: any ordinal 𝛼 < 𝜖0, 𝛼 ≠ 0 can be uniquely 
represented in Cantor Normal Form as a sum 

   𝜔𝛼1 + ⋯+ 𝜔𝛼𝑛 where 𝛼1 ≥𝑜𝑟 … ≥𝑜𝑟 𝛼𝑛  

• Let 𝛼 = 𝜔𝛼1 + ⋯+ 𝜔𝛼𝑛 and 𝛽 = 𝜔𝛼𝑛+1 + ⋯+ 𝜔𝛼𝑛+𝑚. 

   The natural sum is defined as  𝛼 ⊕ 𝛽 = 𝜔𝛼𝜋 1 + ⋯    

   +𝜔𝛼𝜋 𝑛+𝑚   when  𝜋 is a permutation such that    

    𝛼𝜋(1)≥𝑜𝑟 … ≥𝑜𝑟 𝛼𝜋(𝑛+𝑚)  

• We write 𝛼𝑛 as an abbreviation of α+…+α (n times) 

 

 



 Hercules win is only a question of time and not a 
question of if. 

 We assign an ordinal 𝛼 < 𝜖0 to each hydra by the 
following recursive algorithm: 

 Assign 0 to each leaf 

 Each internal node is assigned the natural sum of it’s 
children, i.e 𝜔𝛼1 ⊕ ⋯⊕ 𝜔𝛼𝑛 when 𝛼𝑖 are the ordinals 
already assigned to the children. 

 Hydra is represented by the ordinal assigned to it’s 
root. 
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 Let (𝐻, 𝑛) denote a configuration of the game 

 Let S be some strategy taken by Hercules, then we 
denote (𝐻)𝑛

𝑆  to be the resulting Hydra if strategy S is 
used against H at stage n. This means that the next 
configuration when S is used is 𝐻 𝑛

𝑆 , 𝑛 + 1  

 

Lemma 1 (Kirby & Paris): For any strategy S, Hydra H 
and natural number n, we obtain 𝐻 >𝑜𝑟 𝐻 𝑛

𝑆   

(that is, the ordinal representing the hydra in step n is 
bigger than the ordinal representing the hydra at step 
n+1 after using strategy S) 



Proof: 

• If Hercules chops a head with no grandparent node, 
this means it is attached to the root, which means the 
total is decreased by 1. 

• If the head cut does have a grandparent node 

    then if we are in stage n, then we replace  

    the term of the ordinal (of the grandparent  

    node) 𝜔𝛼+1 with 𝜔𝛼𝑛 which is a smaller  

    ordinal.  

Conclusion: at each step, the ordinal decreases. 



Theorem 1: Every strategy is a winning strategy. 

Proof: let’s assume otherwise. Then there must be some 
strategy S which makes Hercules lose. 

This means that his fight with Hydra never terminates, 
i.e we have an infinite number of configurations  

𝐶1, 𝐶2, … . By the Lemma introduced in the previous 
slide, 𝐶1 >𝑜𝑟 𝐶2 >𝑜𝑟 𝐶3 >𝑜𝑟 … , which means we have 
found an infinite descending sequence of ordinals, in 
contradiction to >𝑜𝑟 being well founded 



 The following strategy has been defined “standard”. 

 

For an ordinal (Hydra) 𝛼 < 𝜖0 and some 𝑛 ∈ 𝑁 (the 
stage) we associate an ordinal 𝛼𝑛 < 𝜖0(the next Hydra) 

1

0                   if =0

                  if = +1

        if = +

        if = + and  is a limit ordinaln

n
n 

 



  


    

     







 


 



 A hydra is an ordinal 𝛼 < 𝜖0. The Hydra battle is a 
sequence of configurations . 

 A configuration is a pair (𝛼, 𝑛) when 𝛼 denotes a hydra 
and 𝑛 ≥ 1 is the current step. 

 The next configuration in the standard strategy is 
(𝛼𝑛, 𝑛 + 1) 



We now turn to prove that the natural numbers cannot 
prove the termination of the standard Hydra Battle. 

 

• The Hardy functions 𝐻𝛼 𝛼<𝜖0 are defined as follows: 

 
𝐻0 𝑛 = 𝑛 

𝐻𝛼 𝑛 = 𝐻𝛼𝑛
𝑛 + 1  𝑤ℎ𝑒𝑛 𝛼 > 0 



 Hydra functions: 

   The related Hydra functions 𝐿𝛼 𝛼<𝜖0 are counting the  

   length of the standard Hydra battle starting at stage n   

   with hydra represented by ordinal 𝛼. 

    

   𝐿0 𝑛 = 0 
𝐿𝛼 𝑛 = 𝐿𝛼𝑛

𝑛 + 1 + 1 𝑤ℎ𝑒𝑛 𝛼 > 0 



Lemma 2: For any 𝛼 < 𝜖0 and for any 𝑛 ∈ 𝑁  

 𝐻𝛼 𝑛 = 𝐻𝐿𝛼 𝑛 𝑛 = 𝑛 + 𝐿𝛼(𝑛) 

Proof: we first prove that  𝐻𝐿𝛼 𝑛 𝑛 = 𝑛 + 𝐿𝛼(𝑛) 

Claim: for a finite m, 𝐻𝑚 𝑛 = 𝑚 + 𝑛 

Proof: by induction on m:  

Base: for m=0 we have 𝐻0 𝑛 =𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑛 

Step: for m+1 we have  

𝐻𝑚+1 𝑛 = 𝐻𝑚 𝑛 + 1 =𝑖.ℎ 𝑚 + 𝑛 + 1. 

Since Hercules defeats hydra in a finite number of steps, 
𝐿𝛼 𝑛  is finite, and 𝐻𝐿𝛼 𝑛 𝑛 = 𝑛 + 𝐿𝛼(𝑛) 

   

 



Lemma 2: For any 𝛼 < 𝜖0 and for any 𝑛 ∈ 𝑁  

 𝐻𝛼 𝑛 = 𝐻𝐿𝛼 𝑛 𝑛 = 𝑛 + 𝐿𝛼(𝑛) 

Proof: we now turn to prove 𝐻𝛼 𝑛 = 𝐻𝐿𝛼 𝑛 𝑛  

by induction on 𝛼: 

Base:  

𝛼 = 0: 𝐻𝐿0 𝑛 𝑛 = 𝐻0(𝑛) 

Step: 

Denote 𝛾 = 𝛼𝑛, 
𝐻𝛼 𝑛 =𝐻−𝑑𝑒𝑓 𝐻𝛾 𝑛 + 1 =𝑖.ℎ 
𝐻𝐿𝛾 𝑛+1 𝑛 + 1 =𝐻−𝑑𝑒𝑓 𝐻𝐿𝛾 𝑛+1 +1 𝑛 =𝐿−𝑑𝑒𝑓 𝐻𝐿𝛼 𝑛 (𝑛) 



 We denote PA as Peano Arithmetic. 

 A function f is provably recursive in PA if there exists a 
primitive recursive predicate P and a primitive 
recursive function(defined before) g such that  

   𝑃𝐴 ⊢ ∀𝑦1 …∀𝑦𝑘∃𝑥𝑃(𝑦1, … , 𝑦𝑘 , 𝑥) and f satisfies  

   𝑓 𝑛1, … , 𝑛𝑘 = 𝑔(𝜇𝑥𝑃 𝑛1, … , 𝑛𝑘 , 𝑥 ), where 𝜇𝑥 denotes  

   the least number operator. 

  

     



 The Hardy class is defined as the smallest class of 
functions s.t: 

1. It contains the zero function, the successor function, 
all 𝐻𝛼 , 𝑠. 𝑡 𝛼 < 𝜖0 and all projection functions. 

2. It is closed under primitive recursion and 
composition. 

 

Theorem 2(Gaisi Takeuti) : The Hardy class is the class 
of all provably recursive functions in PA (no proof 
provided in this lecture)  



Theorem 3: PA cannot prove termination of the standard 
Hydra Battle. 

Proof: Lets assume otherwise. This can be written as 

𝑃𝐴 ⊢ ∀𝛼, 𝑛∃𝑚, 𝑠. 𝑡 𝐿𝛼 𝑛 = 𝑚.  

In this case  
𝑃 𝛼, 𝑛,𝑚 = (𝐿𝛼 𝑛 = 𝑚) 

𝑓 𝛼, 𝑛 = 𝐿𝛼 𝑛  

                                   𝑔 𝛼, 𝑛,𝑚 = 𝜇𝑚(𝐿𝛼 𝑛 = 𝑚) 

This means that ∀𝛼 < 𝜖0, ∀𝑛 ∈ 𝑁 𝐿𝛼(𝑛) is 

Provably recursive in PA 

    

 



𝐿(𝜖0)𝑛 𝑛 + 1 + 1 is provably recursive, and by definition  

𝐿(𝜖0)𝑛 𝑛 + 1 + 1 = 𝐿𝜖0(𝑛) is also provably recursive. 

Lemma 2 suggests that 𝐿𝜖0 𝑛 + 𝑛 = 𝐻𝜖0(n) , which 

would imply that 𝐻𝜖0(𝑛) is provably recursive in 

contradiction to theorem 2. ∎ 

 


