Jumping and Escaping

The Abstract Path order

Eitan Weisbach

September 3, 2013

Eitan Weisbach

Jumping and Escaping

・ < ≧ > < ≧ > < ≧ > ≥ September 3, 2013 1 / 16

< (17) × <

let R be a binary relation over a set V, we define the following:

- R^+ the transitive closure.
- R^* the transitive reflexive closure.
- R^{ϵ} the reflexive closure.
- the immortal elements for a relation R over V are does points v ∈ V that initiate an infinite R-chain of (not necessarily distinct) points in V: vRv'Rv"R...
- $R^{\infty} = \{ \langle u, v \rangle : u, v \in V, u \text{ is immortal for R} \}$

E Sac

イロト 人間ト イヨト イヨト

let A,B be binary relations, and $E = A \cup B$.

Jumping

relation A jumps over relation B if

 $BA \subseteq AE^* + B.$

Escaping

relation A escapes from relation B if there is some point in every infinite B-chain from which an A-step leads to a point that is immortal in E.

A (10) A (10)

an infinite sequence $s_0 E s_1 E \dots$ is constricting in B if whenever there is a B-step $s_i B s_{i+1}$ in the sequence, it is the case that all the neighbors t, such that $s_i A t$, are mortal in E.

Proposition 1

if s is immortal in E, then there is an infinite B-constricting sequence in E originating in S

Proof.

simply take a B-step only when all possible A-steps leads to mortality.

A (10) A (10)

Constriction II

$$B_{\#} = B \setminus AE^{\infty}$$

 $B_{\#}$ steps are the only kind of B-steps in a constricting sequence, so we get: if relation A escapes from relation B then $B_{\#}^{\infty} = \emptyset$.

Theorem 1

if A and B are well founded and A jumps over B, then E is also well founded.

A (10) A (10)

assume by way of contradiction that there is an infinite E-chain.then by proposition 1 there is also an infinite E'-chain: C where $E' = (B_{\#} + A)$.

$$C = v_1 E' v_2 E' \dots$$

if C contains a finite number of $B_{\#}$ -steps then it contains an infinite A-Chain and we are done.

if C does not contain an infinite number of $B_{\#}$ -steps, then by the jumping property each $B_{\#}A$ -step can be replaced with a $B_{\#}$ -step(it cannot be replaced with a AE^* step since we assume all A steps leads to mortality.) by preforming this replacement repeatably we get :

proof II

$$C = v_1 A^* v_i \underline{B_{\#} A^n} v_k B_{\#} \dots$$

= $v_1 A^* v_i \overline{B_{\#} A^{n-1}} v_k B_{\#} \dots$
= $v_1 A^* v_i \overline{B_{\#} A^{n-2}} v_k B_{\#} \dots$
... = $v_1 A^* v_i \overline{B_{\#} v_k} \underline{B_{\#} A^*} B_{\#} v_l \dots$
... = $v_1 A^* \underbrace{v_i B_{\#} v_k B_{\#} v_l}_{\text{an infinite } B_{\#}\text{-chain}}$

and thus we get an infinite $B_{\#}$ -chain in contradiction to the well-foundedness of B.

Theorem 2

if relation A jumps over relation B, escapes from B and is well founded then E is also well founded.

Proof.

the proof is identical to the one presented for Theorem 1 except when we get an infinite $B_{\#}$ -chain it implies that $B_{\#}^{\infty} \neq \emptyset$ which is a contradiction to the fact that A escapes from B.

Abstract path ordering

$$t \succ u \quad \text{if} \quad \begin{cases} t \rhd u \quad \text{and} \quad t \rhd^+ \succ^* u, \quad \text{or} \\ t \gg u \quad \text{and} \quad t(\rhd^+ \succ^* + \succ) / \rhd u \end{cases} \tag{a}$$

$$R/S = \{ \langle x, y \rangle : \forall z. ySz \Rightarrow xRz \}$$

The abstract path ordering is not necessarily an ordering, as it can be non transitive.

Lemma 1

for the path ordering , relation \triangleright jumps over \Box where $\Box := \gg \cap (\rhd^+ \succ^* + \succ) / \rhd$ (case b of the path ordering definition).

Proof.

by the division in (b), $\exists \rhd \subseteq \rhd^+ \succ^* + \succ$. by the definition of \succ we get $\succ \subseteq \rhd^+ \succ^* + \exists$, giving $\exists \rhd \subseteq \rhd^+ \succ^* + \exists$ as required.

Theorem

the path ordering \succ is transitive if \gg is transitive and \rhd is universal.

< 回 > < 三 > < 三 >

Proof.

let \Box be short for $\gg \cap \succ / \rhd$. we proceed by induction with respect to to \rhd in any any of the three positions s,t or u in $s \succ t \succ u$.

- if $s \triangleright s' \succeq t$ then $s' \succ u$ by induction in the first position and $s \succ u$ by definition.
- ② if $s \Box t ▷ t' \succeq u$, then $s \succ t' \succeq u$ on account of the division clause and $s \succ u$ by induction in the second position.
- If s □ t □ u, then we have s ≫ u and s ≻ t' ≻ v for all v ⊲ u. by induction in the third position, s ≻ u for all v ⊲ u from which it follows that s □ u, hence, s ≻ u.

if \succ is transitive then due to sub-term property ($\triangleright \subseteq \succ$) we get a much simpler definition to \succ .

 $\succ \coloneqq \rhd \succeq + [\gg \cap \succ \; / \; \rhd]$

イロト イポト イヨト イヨト 二日

the following is an alternative mutually-recursive definition of \succ , which together with its transitive closure \succ^* , can be implemented "bottom-up":

$$\Box := \gg \cap (\rhd^+ \succ^* + \Box) / \rhd \tag{b'}$$

we can have \Box on the right side of the second line instead of \succ as appears in case (b) of the original definition of \succ , since case (a) of \succ is subsumed by the first by the first alternative, $\rhd^+ \succ^*$.

the abstract path ordering may be viewed in the following stratified fashion, with the empty relation serving for the base case:

$$\begin{split} \succ_{n} &\coloneqq (\rhd \cap \rhd^{+} \succ_{n-1}^{*}) + \beth_{n} + \succ_{n-1} \\ \square_{n} &\coloneqq \gg_{n} \cap (\rhd^{+} \succ_{n-1}^{*} + \beth_{n-1}) / \rhd + \beth_{n-1} \\ &\gg_{n} &\coloneqq \succ_{n-1}^{lex} + \gg_{n-1} \end{split}$$
(a") (b")

where \succ_{n-1}^{lex} looks at certain \succ_{n-1} relations between \triangleright -neighbors of the points in question.

Theorem

A Path ordering \succ is well-founded if \Box is.

Proof.

since $\succ \subseteq (\triangleright + \sqsupset)^+$, then by Theorem 1,Lemma 1 and the assumption that \triangleright is well founded, we get that \succ is well founded.

Theorem

A Path ordering \succ is well-founded if \triangleright escapes from \Box .

Proof.

since $\succ \subseteq (\triangleright + \sqsupset)^+$, then by Theorem 2,Lemma 1 and the assumption that \triangleright is well founded, we get that \succ is well founded.

< 回 > < 三 > < 三 >