
Acta Informatica 5, 333--352 (t975)
�9 by Springer-Verlag 1975

A Closer Look at Termination

Shmuel Katz and Zohar Manna

Received October t 6, t 974

Summary. Several methods for proving that computer programs terminate are
presented and illustrated. The methods considered involve (a) using the "no-infini-
tely-descending-chain" property of well-founded sets (Floyd's approach), (b) bounding
a counter associated with each loop (loop approach), (c)showing that some exit of
each loop must be taken (exit approach), or (d) inducting on the structure of the data
domain (Burstall's approach). We indicate the relative merit of each method for pro-
ring termination or non-termination as an integral part of an automatic verification
system.

Introduction

In recent years a considerable number of verification systems for proving
correctness of computer programs have been developed (e.g., [7, t2, t5, t9])
but, surprisingly, very few of these t ry to treat the problem of termination. (One
of the interesting exceptions is the work of Cooper [6].) A program is said to
terminate if for all legal input values the execution of the program will eventually
reach a HALT statement. In this paper we give an overview of several possible
methods for proving termination, and indicate which method seems to us to be
most compatible with automatic verification systems.

In Section t, we outline the classic Floyd technique [10] for proving termina-
tion, which uses the "no-infinitely-descending-chain" property of well-founded
sets. We demonstrate two possible directions for overcoming some difficulties
in practically applying the method.

In Section 2, we introduce a loop approach to proving termination. In
this approach, we associate a counter with each loop, reflecting the number of
times the loop has been executed, and show that all the counters are absolutely
bounded from above. (A similar technique has been suggested by Elspas [8].)

In Section 3, an exit approach is defined, where termination is shown by
directly proving that for each loop the conditions for exiting the loop must be
true at some stage of the computation (see also Sites' Ph.D. thesis [t8]).

Finally, in Section 4, we illustrate the possibility of proving termination
along with correctness by using a technique suggested by Burstall [3]- In
this technique, we show that if some property PA is assumed at a point A (in
particular, the START point), we must eventually reach another point B (in
particular, a HALT point), with some property qB true. This is shown by induction
on the possible values of the data domain.

In each section we t ry to point out briefly the advantages and the disadvantages
of each method. As indicated in Section 2, we consider the loop approach to be
the method for proving termination which can be most easily integrated into an

22 Acta Informatica, Vol. 5

334 S. Katz and Z. Manna

automatic verification system. This method also provides the greatest information
about the complexity and control behavior of the program.

Since we may not assume a priori that the program actually terminates, any
automatic verification system should also at tempt to prove non-termination of a
program which loops forever for some input value. In Section 3 we claim that
the exit approach, while of limited use in proving termination, is actually the
natural way to prove non-termination.

1. Floyd's Method

The traditional method of proving termination, which was suggested by
Floyd It0], makes use of a well-founded set (W, ~-) with a partial ordering >-
having the property that there is no infinitely descending chain of elements from
W, i.e., any chain of the form w 1 >- w~ >- ... must be finite. The procedure requires
finding a set of cutpoints which cut every loop of the program at least once.
Then for each cutpoint A, a partial function ua and an assertion qA must be
chosen. The function u A maps elements of the program's data domain into W,
while qA serves to restrict the domain of u A. The assertion qA must be true each
time the cutpoint A is reached (and thus is called an invariant); it indicates a
set of values of the data domain that includes all those values that can be reached
at A during the execution of the program. The proof of termination consists of
showing that u A >-u 8 each time control moves along a simple path (which is a
part of a loop), from a cutpoint A to a cutpoint B. A path is simple if it contains
no other cutpoints.). Thus clearly no loop or combination of loops could be
executed indefinitely because the no-infinitely-descending-chain condition would
be violated.

In the above method the actual proof of termination is generally mechanical
once the proper choices of a well-founded set (W, >-), cutpoints {A}, functions
{ua}, and assertions {qa} have been made. In fact, considerable progress has been
achieved recently in automatically finding the invariants of a program, and there
are several existing or proposed systems for this purpose (e.g., [4, 9, 11, t4, 17, 20]).
Thus the main remaining requirement for an automation of Floyd's technique
for proving termination is a systemization of techniques for finding the well-
founded set (W, >-) and the functions {ua}. Unfortunately, making the correct
choice of the functions {UA} is a difficult task qualitatively different from the
discovery of the invariants {qn}. In the following example we demonstrate one
possible heuristic which sometimes can be profitably applied to yield such functions.

Example 1 (Floyd's approach). The program in Fig. I is a flowchart version
of McCarthy's "9t - funct ion" . I t computes the function

z = i f x > 1 0 1 then x - - 1 0 e l se 91

over the integers. We will consider only termination.
For convenience we will call the path around the loop which is taken when

Yl =< 100, the le]t path, and the path around the loop which is used when Yl > 100
and yz 4:1, the right path. We choose point A as the cutpoint which cuts both
paths around the loop. Let us take the set N of all natural numbers, with the
regular < ordering, as the well-founded set. We might initially t ry to show that

A Closer Look at Termination 335

F

[(y, ,yz)-(y, ..,yz*t)]
]

START)
4

(,,.

I(,, I [,-, ,- ,ol

Fig. t. The "9t-function" program

either Yz or y, alone are strictly monotonic, and are bounded. A glance at the
program will show that such an attempt would fail since the two variables both
increase and decrease in the loop.

As a next heuristic step, we assume that a linear function involving Yz and y ,
is required. That is, that uA has the form

o~. Y1+f l" Y2+7

for some constants x, r, and ~. By considering the two paths around the loop, and
the requirement that there be a drop in the value of u A, we can see that 0t, r ,
and ~, must fulfill

a" Yl + r " Y2 + 7 > ~" (Yl + t ~) + ft. (y, + 1) + ~ . . - for the left path
and

o~. Y z + f l " y z + v > a �9 (yl-- 10) + f t . (y~--t) + 7 .-. for the right path.

Thus we have obtained a set of inequalities.

Simplifying, we have
0> 1

and
0 > -- tO,t--ft.

These may be solved; one (integer) solution is ~ = - - 2 , fl = 2t. Thus we have found
that for any u a of the form - - 2 y z + 2 1 y z + T , there will be a drop in the value of
the (integer-valued) functions each time the loop is executed.

In order to show that the resultant sequence is well-founded, we would like
to choose the non-negative integers N as the domain W and fix 7 so that the values
of u a will always be non-negative. For this purpose, we seek an upper bound a on

336 S. Katz and Z. Manna

Yl and lower bound b on Yv Using known invariant-generating techniques, it is
possible to find that

(Y1<=tll ^ y ~ l) v (yl-----x ̂ y ~ l)

is an invariant at A. Thus, a = m a x (t t t , x) and b----t. Therefore the smaUest
possible value of the function is - - 2 , max (11t, x)+21 + 7 , and a sufficient 7 to
guarantee that the function is always non-negative is y----2, max (t l t , x). We
have thereby obtained the function

ua:- -2Yl+21y~+2 �9 max (111, x).

Note that the heuristic of assuming a linear u~ was crucial to the develop-
ment. []

In the following example we illustrate another common problem which
involves the complexity of the required functions {uA}. As it stands, in order to
prove termination using Floyd's method, a drop must be shown along every
simple path from a cutpoint to another cutpoint (which is on a loop). This often
makes the choice of functions very sensitive to the placement of the cutpoints,
and requires adding unnatural components to the functions {ua} in order to
ensure a drop. As we demonstrate, this difficulty may be overcome by slightly
generalizing Floyd's method, showing that for every possible path simple or not
from a cutpoint, there will eventually be a drop in the function.

Example 2 (Floyd's approach). The program in Fig. 2 computes the greatest
common divisor (g.c.d.) of two positive integers x~ and x,. Since this program
consists of two inner loops and an outer loop, it is natural to choose A, B, and C
as the cutpoints. If we use the original Floyd method with these cutpoints, a
typical set of functions 1 is

uA : (Yl+Y,, 2)

us: i fyz~=y ~ then (Yz+Yz, 1) else (Yz+Y2, 4)

Uc: if y 1 < y 2 then (y~ + y , , O) else (Yl + Y,, 3)

where the well-founded set is the set of all pairs of non-negative integers with the
lexicographical ordering *. The needed invariants at A, B, and C are y~ > 0 and
y2>0.

There will be a drop in the path from B to C, for example, because the path
condition Yl~Y~ implies that either Yl<Y~, so that us is (Yl-bY~, 1) and uc is
(Yl-kY2, 0), or Yl=Y~, so that u B is (Yl+Y~, 4) but u c is (Yl+Y2, 3). Similarly, the
path condition Y2 ~Yl for taking the pat.h from C to A implies that whenever this
path is followed u c is (Yl +Y~, 3) (because y~ >Yl is false), and so there is a drop
to (YI + Y~, 2). For the path around the first inner loop, from B back to B, we
use the invariant y~ > 0 at B to show that the function value drops because the
first component always descends from Yl +Y2 to 3'1 even though the second
component may increase from t to 4.

1 These functions were suggested by Martin Fiirer.
2 That is, (r %) < (fly f12) in the lexicographical ordering iff ~1 < fll or, ~ = ~1 and

A Closer Look at Termination 337

START)

[cy,,y2) -- [
L_ A[_

2--

Fig. 2. g.c.d, program

~D

On the other hand, choosing cutpoints E and C allows using the far simpler
functions

u~: (Yl + Y2, 0)

Uc: (Yl + Y2, t)

where W is again the set of all pairs of non-negative integers with the lexico-
graphical ordering.

Finally, if we choose cutpoints D and G, then

UD: Yl + Y v

u~ : Yl + Y2

are sufficient, where W is the set of all natural numbers. In this case, it is neces-
sary to note that we have cut only every possible path around the loops. The
"impossible" path around the outer loop A - B - - C - - A (which does not execute
either inner loop) is not cut; but since this cannot occur, the set of cutpoints is
nevertheless adequate.

A generalized version of Floyd's method which is less sensitive to the placement
of the cutpoints will now be used. We will prove that for each cutpoint i there
will eventually be a drop in the value of the function at some cutpoint i along
every path from i, ignoring intermediate values. The advantage of this generaliza-
tion is that simpler functions can often be used, but the penalty is that more
paths must be treated.

This approach enables us to prove termination by considering the cutpoints
A, B, and C with te A, UB, and u c being y~ + y2 8. In order to show a drop somewhere

3 The invariants needed are still y l>O y~>O at A, B and C.

338 S. Katz and Z. Manna

along every non-simple possible path from A, we consider three cases: (a) For
all paths which begin A - B - - B (i.e., from A to B, and then do the first
inner loop at least once), the second time B is reached u B is yl--y ,+y2-=yl
(relative to Yl and y , at A). This value is always smaller than Yl+Y , because
y , > 0. (b) For all paths which begin A - B - - C - - C (i.e., do not include the
upper inner loop, but do at least one circuit around the lower inner loop) the
second time C is reached u c is y l+y , - - y l=y2 . This value is again smaller than
Yl + Y2 because Yl > 0. (c) Finally, we note that any path which begins A - B- -
C--A (i.e., from A to A, without doing either inner loop) cannot be executed
because the condition for following such a path is that Yl 4:y, , Yl =<Y,, and
Y2 ~Yl are all true, which is impossible.

Similar reasoning can be used to show an eventual drop for every path from
B, and from C, thus the program must terminate. []

As a final example, we bring a more typical program, where termination is
not based on any complicated tricks, and the variables which control termination
are basically counters. The example illustrates how the functions {uA} can be
chosen in the case of a more complicated nested loop structure.

Example 3 (Floyd's approach). The program in Fig. 3 computes the deter-
minant IX[a, b]l of order M, M-->t, by Gaussian elimination. We choose the
three cutpoints A, B, and C.

This program has three loops, where ~ is the top loop controlled by the variable
a, fl is the middle loop controlled by b, and 7 is the bottom loop controlled by c.
Loop ~r can be said to "dominate" fl and 7 because a is not changed in fl or 7.
Similarly,/5 dominates 7 because b is not changed in 7. This suggests using the
triples of non-negative integers with the lexicographical ordering as the well-
founded set, with a leftmost component for ~r a middle component for/5, and a
right component for 7" The functions over N 8 can be

ua: (M--a, M + t , M + l) ,

UB: (M--a, M + l - - b , M + t) ,

Uc: (M--a, M + t - - b , c).

The functions include M and M + t either in order to guarantee a drop along the
paths from A to B and from B to C, or to guarantee that the values are non-
negative. The ordering of the components is clearly important. For example,
along the path from C to B the value of the third component increases, but the
second component decreases.

The invariants needed to guarantee that there will indeed be a drop from
cutpoint to cutpoint, and that the values of each component are non-negative
integers, are

qa: t <--a~M,

qB: t " < a < M h b < = M + t ,

qc: t < = a < M ^ b < M + t ^a<=c.

Such invariants can all be generated automatically using existing methods. []

A Closer Look at Termination 339

I
ly ..,- y-Xta,a) I

X[b,c]

~ START)

T

q
"-Xrb'c]'X[b'a]x[o,a] X[a,c] J

Fig. 3. Program for evaluating the determinant z = I X].

2. The Loop Approach

Another solution to the problem of proving termination systematically is
to rely more on the invariants than on the functions. This shift of emphasis
should allow the methods we suggest to take full advantage of the progress in
finding invariants automatically. In order to facilitate this process, it is also
convenient to consider loops as the basic entities, rather than paths between
cutpoints.

In the remainder of this paper we will assume that the loops of a program have
been identified. Algorithms for this task can be found in [t] or [2]. We further
assume that for the programs we treat, the loops can be enclosed in blocks, such
that every block contains at most one top-level loop, ignoring lower-level loops
which are possibly contained in inner blocks. There is exactly one entrance to
each block, and one or more exits. We then associate one cutpoint with each
block so that its top-level loop will be cut.

Note that a top-level loop may actually consist of several looping paths,
obtained by test branching and join points, but sharing a single cutpoint.

340 S. Katz and Z. Manna

We use counters as an essential tool for this technique. With each cutpoint,
and thus each block with a loop, we associate a counter. The counter must be
initialized before entering the block so that its value is zero upon first reaching
the cutpoint, and incremented exactly once by one along the top-level loop inside
the block before control returns again to the cutpoint.

There are many locations where the counters could be initialized to zero. The
two extreme possibilities are of special interest: (a) the counter is initialized only
once, at the beginning of the program (a "g loba l" initialization, parameterizing
the total number of times the cutpoint is reached), or (b) the counter is initialized
]ust before entering its block (a " loca l" initialization, indicating the number of
executions of the corresponding loop since the most recent entrance to the block).

These counters will serve a dual purpose:

(t) We may indicate the values of the program variables in terms of the
counters. For example, for a cutpoint A with counter n, y (no) indicates the value
of the variable y when cutpoint A is reached with n = n o. (If there is no way of
reaching A with n=no, then y(no) is undefined.)

(2) We may also denote relations among the number of times various paths
have been executed. For example, an invariant i >/" at cutpoint A means that
whenever control reaches A, the statements adjoining counter i have been executed
more often than those adjoining counter i- Similarly, i ~ r , for fixed r, means
that the statements adjoining counter i will not be executed more than r times.

For convenience we shall assume that every invariant involving counters
implicitly contains the information that they are non-negative integers.

Variables which are not par t of the program but are useful and even necessary
in order to prove properties of the program have been used previously by several
researchers (e.g., E51)- Knuth Et6] uses a ' t ime clock' incremented before every
s tatement in order to prove termination. We found that such" impl ic i t " variables
are virtually indispensable whenever it is necessary to discuss how the control
moves along various paths through the program. For this reason, we often use
additional auxiliary counters in order to facilitate a proof of termination.

The loop approach depends upon the fact tha t a counter at cutpoint A indi-
cates the number of times the control has passed A (as mentioned above, either
globally or locally). Thus, if we are able to show for each block tha t its counter is
absolutely bound from above at the cutpoint of the block, then the program must
terminate. Proving termination becomes equivalent to finding invariants of the
loop which guarantee tha t for each cutpoint A, its counter i has a fixed upper
bound r at A 4. In effect, for a single loop we have added counters and then adopted
a particular case of Floyd's method, with W the non-negative integers and r
the upper bound needed to establish that uA: r - - i assumes values in N. The
advantage gained is that a program to generate invariants for proving correctness
may simultaneously produce invariants which are useful for proving termination
by this method. In addition, invariants involving the counters are often useful
for proving correctness as well.

4 The bound r may be expressed in terms of constants and any variables which are
not changed in that block.

A Closer Look at Termination 341

(Yl ,Y2)

.~%-:757 I
L J

START)

1(,,,,2)- (x,,)]
t r,,.,.~

f- ~A
I I 1 " " r H . | I I I]

L [j .-- j r

,1"

Fig. 4. The "9t-function" program (with counters)

Example 1 (loop approach). We again consider the 9t-program, this time
proving termination by the loop approach (see Fig. 4). There is only one block
which includes one top-level loop (with two alternative p a t h s) t h a t is cut by
cutpoint A. We associate the counter n with the cutpoint. Furthermore, it is
convenient to use the two additional counters i and/' , as indicated in Fig. 4. We
want to find invariants at A which will establish a bound on n. However, since
n=i--b/, at A, we shall first look for bounds on i and/ ' .

The counters i and i allow us to express at cutpoint A the obvious invariant

y~- - i - / .+ t (t)

(because y , is increased b y 1 each time i is increased, and decreased by t each
time/, is increased, and y , is initially t). Similarly, we obtain

y l = t t i - - t 0 / '+ x. (2)

We seek bounds on Yx and y , which will allow us to bound i and/. by the loop
approach. We have

y , > t (3)

(because y , is initially t , is increased on the left path, and can be decreased by t
on the right path only when its value is greater than t).

342 S. Katz and Z. Manna

Combining (t) and (3) we obtain the invariant

i __> i (4)

i.e., the right path around the loop cannot be executed more often than the left.

By using (4) with (2) we obtain both

y ~ l i i - - l O i + x > i + x (5)
and

y, ~ 11 i - - t 0] + x -------i + x (6)

(depending on whether we substitute i for i, or i for i).

I t is clear that

n - - i + i (7)
at A. This is a typical "s tructural invariant" , i.e., an assertion which contains
only counters and is dependent only on the structure of the graph of the flow-
chart.

From (5) and (6) we may obtain 2y 1 >__i + i + 2 x , and by (7)

Yl >= n/2 + x. (8)

We now would like to bound Yl from above. Initially we reach A with
y~ = x ^ y , = t ^ n = 0. If the left path is then taken, Yl --<-- t 1 t after completing
it, and this will then remain true at A. If the yl > 100 branch is taken initially,
the program will immediately terminate. Thus at A we have

(Yl = x ^ Y2---- 1 ^ n---- 0) v Yl --~ 11 !. (9)

If we let the invariant qa be the conjunction of (8) and (9), then

qa ~ I n = 0 v n/2+x<=ttt] .

Thus the counter n is absolutely bounded at A and the program must terminate. []

Example 2 (loop approach). We apply the loop approach to the g.c.d, program
of Fig. 5. I t contains one outer block with counter i and two inner blocks with
counters I" and k globally initialized. To prove termination of the program, we
have to find bounds for i at A, 1" at B, and k at C.

I t is not difficult to discover the invariant

y ~ > 0 ^ y 2 > 0 at A, B and C. (t)

To link] with Yl, we note that Yl and Y2 are integers and that each time 1" is in-
creased by one, Yl is decreased by at least one (because Y2 ~ t). Thus we obtain

Yx<----xl--l' at A, B a n d C , (2)
and similarly

y2<=x,--k at A, B and C. (3)

We may use (t) with (2) and (t) with (3) to conclude that

i < x l ^ k<x2 (4)

throughout the computation, bounding the total number of executions of the
inner loops.

A Closer Look at Termination 343

HALT j -

I
I
'F l l ~ - I ,, k- ik~",' ~
I 1 ~ - '
I I

I
,I Ii
IJ
i L
t_

I

S T A R T)

I " , , , , ' - " , , ' , ' I
i

A -

V
�9 r)

Yt = Y2

r - -B - ~ - -

IL '

r - - _ L ~ _1

___J

Fig. 5. g.c.d, program (with counters)

Since we have upper bounds on t" and k, but need an upper bound on the
counter i of the outer loop, we would like to show tha t

i~_i+k at A, (5)

i.e., tha t each t ime we complete the outer loop, at least one of the inner loops has
been executed on that pass. In order to establish that this is indeed an invariant,
we must also show that

(y14=y~^i<=j+k) v i < j + k at B.

That is, either control has arrived at B from A, so Yl 4:y~ n i-----j+k holds, or
control was already at B and made a pass around the loop, so i < j + k. Similarly
we must show tha t

(yl<y2^i<=i+k) v i < j + k at C.

Using these assertions, it is easy to verify that in fact i ____~" + k is an invariant
at A. Then clearly the outer loop must also terminate because from (4) and (5)
it follows that

i < x l + x ~ at A. (6)

Note that the use of the counters served to reduce the sensitivity to the
placement of the cutpoints seen in Floyd's method. This is because an invariant
which is true at the cutpoint of a loop, and which involves only counters and

344 S. Katz and Z. Manna

START)

I, -xt ' , ' ; I

i t " * ' 0 I

I
I,--,.~o.o; I

..... , ~ T =fix-T~

"(b...,)
F

l i t . ___ . J j I

(~ 1 7 6 ,'
I I ~1 ,'
L - - - - - I X [a , a l I j

_1
_ _ J

Fig. 6. Program for evaluating the determinant z = J X I (with counters)

constants, is actually true anywhere on the loop, except for possible minor per-
turbat ion by a constant. []

Example 3 (loop approach). Let us consider the Gaussian elimination pro-
gram of Example 3. We demonstrate the division to blocks and the (local) place-
ment of the counters in Fig. 6. The invariants needed to bound the counters are

qA: I ~ a ~ M A i = a - - t ,

qB: "l ~ a < M A b ~ M + l A i = a - - I A j = b - - (a + t) ,

qc: l ~ a < M A b < M + t A a ~ c A i = a - - t h j = b - - (a + t) A k = M - - c .

A Closer Look at Termination 345

Then clearly

q a D i ~ M - - t ,

qB~i <=M--t,

qc~k<_M--l,

proving termination by the loop approach.

Note that since the program variables are very similar to counters, the in-
variants connecting the variables to the counters are trivial. The nesting of the
blocks and the local initialization of the counters take care of the relations between
the loops which were handled in Floyd's method by using "triples". []

An important side-benefit of the loop approach lies in the added information
provided on the (time) complexity and the control behavior of the given program.
In proving termination by showing counters bounded, we actually have obtained
upper bounds on the number of times the loops may be executed. Note that in
Example t we also obtained the interesting information that the right path
around the loop will ultimately be executed the same number of times as the
left path (i.e., i = j when the program terminates). Moreover, since n = 0 v
n / 2 + x ~ l t t , the loop itself will be executed no more than max (0,222--2x)
times. Similarly, in Example 2 we obtained the (rather loose) bound of xl+x ~
on the number of executions of the outer loop, and the bounds of x 1 and x 2,
respectively, for the inner loops.

I t would be natural to extend this by refining the estimates and by also con-
sidering lower bounds on the counters. Although, of course, at a cutpoint inside
the loop we may only assert that its counter i is non-negative, we can often
establish a constant r', such that r'<=i is an invariant immediately after exit
from the loop.

3. The Exit Approach

Note that both in Floyd's method and in the loop approach there is not neces-
sarily any direct reference to those tests of the program which lead out of the
block. Another type of proof, which we term the exit approach, involves generating
for each cutpoint the conditions which would lead out of the block from the
cutpoint. The program will terminate for a given input if for every cutpoint
either (a) such a condition will eventually hold; or (b) t h e cutpoint is never
reached.

For the cutpoint A of a block with a locally initialized counter n and k
exits we define the exit condition R A (~, 9(n)) as

v v . . .

where Pi (x, Y (n)) is the condition for traversing the path from the cutpoint A to
the i--th exit of the block. We then t ry to find loop invariants qa at A such that

v x [qA = 3noRA Y(n0))] .

This indicates that there must be a value n o => O, such that after n o iterations
of the top-level loop of the block, one of the p~ (•, y (n)) will be true and therefore
the corresponding exit path of the block will be taken.

346 S. Katz and Z. Manna

BI I inner
block
(loop)

t

_1

block
(loop) ,

I
I

J

I inner
block
(loop)

?

.I

inner
block
(loop)

b

Fig. 7 a and b

For the common case of "s t ructured blocks", i.e. blocks with a single exit,
the cutpoint may be located next to the exit test and the exit condition may be
generated by "forward substi tution" along the path between the cutpoint and
the exit. In the more general case, there may be several exits from the block,
and it may be impossible to generate the entire exit condition at a given cutpoint,
because of inner blocks between the cutpoint and the exit, as is the case for cut-
point A of Figs. 7a and 7b. This difficulty may often be overcome simply by
choosing the location of the cutpoint with more care. For example, for the loop
of Fig. 7a, the exit condition RB(X , ~(n)): ~b2(s , y (n))v p l (i , / (y (n))) is easy to
generate at point B. When there is no way to generate the entire exit condition
at a single cutpoint, as in Fig. 7b, the problem can usually be treated by using a
set of cutpolnts, such as A and B in Fig. 7b. In this case we generate for every one
of these cutpoints partial exit conditions each of which would "cover" only
some of the exits from the block. For the loop of Fig. 7b, the partial exit con-
ditions are Ra: ~bl(:~ , ~(n)) and RB: p~(x, ~(n))v ps(~,/(~(n))). Then to show
termination it is sufficient to prove that

V~{[9A~ 3noRA (i, ~(no))] v [q ~ 3noRB(~, P(n0))] }.

A Closer Look at Termination 347

Example 3 (exit approach). For the Gaussian el iminat ion p rogram of Fig. 6,
a proof b y the exi t approach would use the same invar ian ts as for the loop ap-
proach.

For the innermost block, wi th the exit test c = a, we mus t show tha t

qc ~ 3 h0 [e (ho) = a].

We use the facts t h a t a and M are cons tant in the block, t ha t the a and M
are integers, and t ha t t --< a < M and e = M - - k are invar ian ts a t C. Since t =< a < M
implies t ha t 3 k 0 [M - - k o = a], and c ----- M - - k implies V k o [e (k0) = M - - k0] clearly

t < a < M ^ c = M - - k = 3k o [c(ko) = a] ,

and therefore the innermost loop mus t t e rmina te each t ime it is entered.

Similarly, i t is not difficult to show tha t

qB D S]o [b (io) = M + t],

q~ = 3 i o [a (io) = M]. []

Even if we ignore the problem of genera t ing the exit conditions, we do not
consider the exit approach to be the preferable me thod for proving terminat ion.
The basic difficulty is t ha t it is often unfeasible to show directly t ha t certain
values will occur during execution of the program. In the g.c.d, program (Fig. 2),
for example , i t is bo th difficult and unnecessary (even for correctness) to de-
mons t r a t e direct ly t ha t Ya (n)=y2(n) will eventua l ly occur a t point A.

The real impor tance of the exit approach lies in proving non-termination. Both
Floyd ' s me thod and the loop approach are not sui table for this task. If we fail
to find an appropr ia te set of descending functions {ua}, or to find invar ian ts which
bound the counters, we still have not proven tha t it is impossible to find other,
more successful, funct ions or invar iants . However , if we are able to show tha t
there exits some legal input value x 0 and some invar iants qa a t a cutpoint A,
such t ha t

qa = Vn ~ Ra (~o, Y (n))

then the exit condition can never be t rue for execution with input x o and the
block is proven non-terminat ing. A proof of non- te rminat ion could be valuable
as an aid in debugging the p rog ram (see [13]).

Modi/ied Example 2 (non-termination). The p rog ram of Fig. 8 differs f rom
tha t of Fig. 5 only in t ha t the exit test of the first inner loop is Yl >Y~ ins tead
of Yl > Yz. As in Example 2, it is not difficult to discover t ha t Yl > 0 and Y2 > 0
are invar ian ts a t A, B, and C. Using Yz > 0, we can prove te rmina t ion of the
first inner loop (by the loop approach). However , we cannot prove te rmina t ion
of the second inner loop only b y using Yl > 0. The problem is clearly the pos-
sibil i ty t ha t Yl = 0 a t C.

Thus we t r y to see if there are input values such t ha t the first inner loop
could end with y l = 0, so t ha t C will be reached with t ha t value. The first t ime
the first inner block is entered, Yl (])=Yl (0) - -] . y2(0). We wan t to choose Yl (0)
and Y2 (0) so t ha t Yl (/') will be zero when the exit condit ion Yl < Y2 becomes true.
If we take Y l (0) = m . y2(0) for some m => l, then cutpoint B is reached, and
Yl (i) = m . Y2 (0) - -] . Y2 (0) = (m- -]) �9 y~ (0). In this case, since Yl => 0 ^ y~ > 0 is

348 S. Katz and Z, Manna

(START)

1
I c''''~ - (" , "~) I
I' i

[(i, J,k)"- (0,0,0 d

i A
! ,

1 r " [--e-~ I

r _ x _ , , , rr:Ja , I
t ~'TT-~ i

[i k -,- k+], T f~"~-'~! F ' y,l,, ,z]] j ; ~ - a - - ~ m , 2 - , , ~-~[t

IT 1 "i i;
I_. _J

r - - - L - - i
* i"'i*l i
i == ,

I _ _ - I

Fig. 8. A modified g.c.d, program

an invariant , Yz < Y2 can occur only when 7" = m. Intui t ively, this means tha t we
will choose the initial value of Yl as an exact multiple of y=, and since Y2 is sub-
t rac ted f rom yl each t ime the first inner loop is executed until Yl <Y~, the loop
will end with Yl = 0. Since Yl (0) = xx and Y2 (0) = x=, we choose inputs x~ > 0 and
x 2 > 0 such tha t x~ = m �9 x~ for some m > t.

Once we have shown tha t C can be reached initially with ya = 0, it is easy to
prove tha t Yl = 0 and y= > yl will then be invariants at C, since y~ > 0 is invar iant
and Yl is not changed in the second inner loop.

Thus, we m a y conclude tha t in order to prove non-termination, we can choose
integer inputs such t h a t

x l > 0 A X ~ > 0 A X l = m . x 2 for some m > t

and then show tha t

qA: y l = x ~ ^ Y2=X2 ^'i=O,
qB: Y x = (m - - i) "Y~ ^ Y l ~ O ^ y=>O,

qc: y~=O A y~ < y~ A y ~ > O

are invariants for such inputs. Clearly, cutpoint C is reached, and

Vk [qc ~ y~(k) >Yl] ,

i.e., the negation of the exit condition of the second inner loop is an invar iant for
inputs as indicated, so the program is therefore proven non-terminating. []

A Closer Look at Termination 349

START)
1
] _

F
l

q,(i,i) i
(HALT)

A t
p(~,~)) F

Fig. 9

4. Structural Induction

All of the methods in the previous sections prove termination independently
of a proof of correctness. Burstall [3], however, has suggested an alternative
which proves correctness and termination together. In this approach we show that
if we assume some property Pa at a point A (in particular, t he START point), we
must eventually reach a point B (in particular, a HALT point) with some pro-
perry qB true. Instead of using invariants, such a claim is proven by induction on
the domain of the input values (and is therefore called structural induction).

The notation of the exit approach is exactly suited to Burstall's method.
We denote by ~0 (~, ~) the desired relation between the input variables �9 and

the output variables 3. Let us consider a simple program having the structure
indicated in Fig. 9.

To show termination, we must prove that

3no[P(~, ~(n0))] at A.

Similarly, to show termination and correctness w.r.t. ~(s ~), we want to es-
tablish that

3no[P(~, ~(no)) ^ ~0(s] at A.

Note that due to the way we defined p (n), if the above equation is true for n 0,
then 9 (no) is defiried and must actually occur at A, implying that the loop was
not exited with n<n o.

Example 1 (structural induction). Consider the termination and correctness
of the "91-program" of Example I (see Fig. 4) with respect to the termination
condition

p(x, y(n)): yl(n) > 100 ^ y2(n)=1
23 Acta Informatica, Vol. S

350 S. Katz and Z. Manna

and the input -output relation

~ (x , z): z = i f x > t 0 t then x - - 1 0 else 9t .

For x > 10t, the correctness, including terminat ion, is trivial. Thus it suffices
to prove tha t (using the initial values Yl (0) = x and Y2 (0) = t) at A, for any integer
x, x < 1 0 t :

[Yl (0) = x ^ y~ (0) = 11 =

3n[n >=0 A yl(n) > 100 A y , (n)=t A (1)

(yx (n) - - t 0) -= (if x > t0 t then x - - 1 0 else 91)] .

Since x<101 , this can be simplified to

[Yl (0) = x A y , (0) = t] =

3n In > 0 A y l (n) = 10t A y , (n) = t] .
(2)

Instead of using invariants, we t ry to prove (2) by induction on x. However, as
in m a n y proofs by induction, it is easier to prove a more general s tatement , since
this way the inductive hypothesis used is stronger. Generalizing 0 to a variable g
and I to h, we t ry to prove at A tha t for any integer x, x < t 0 1 :

YhVg{E h > i A g>O A yx(g)=x A y , (g)=h]~

3n [n >g A yl(n)=101 A y2(n)=h]}.
(3)

This means tha t if A is reached with yl(g)=x A y,(g)=h when x < 1 0 1 , h > t
and g _--> 0, then A will eventually be reached with some n =>g such tha t YI (n) = t01
A y , (n) = h. Clearly (2) is a special case of (3), and Yl (0) = x and y , (0) = 1 actual ly
occur at A, so proving (3) is sufficient to prove correctness and terminat ion of
the program.

We now proceed to prove (3) by using "go ing-down" induct ion on x.

Base step. x= t01. This is trivial: take n=g.

Inductive step. Assume (3) holds for every x', x < x' <= t0 t , and show it holds
for x. We distinguish between two cases

(a) 9 0 - - x - - t 0 0

YI (g) = x A Y2 (g) = h

yx(g+ t) = x + t t A y2(g+ l) = h + l

y l (g+2) .=x+t A y , (g+2)=h

y l (n ') = t O t A y,(n')----h

(given)

(executing the left path,
since x ~ 4 00)

(executing the right path, since
x + 1 1 > 1 0 0 A h + t > 1)

(induction, since x < x + t ~ t0t) .

for some n ' => g + 2

A Closer Look at Termination 35 t

(b) x < 90.

Yl (g) = x ^ y , (g) = h

yx(g+t)=x+11 ^ y 2 (g + l) = h + t

y l (n ') = t 0 t A y2(n')=h+l
for some n ' = > g + l

y l (n ' + t) = 9 t ^ y~(n'+l)=h

y l (n ") = 1 0 1 ^ y,(n")=h
for some n" >= n' + t

This me thod comple te ly combines

(given)

(execut ing the left p a t h since
x__< 100)

(induct ion, since x < x + t t ~ t01)

(execut ing the r ight pa th ,
since t 0 t > 100 and h + t > I)

(induct ion, since x < 91).
[]

t e rmina t i on wi th correctness, and, in
m a n y cases, yields a ve ry e legant proof. This seems especial ly t rue for i t e ra t ive
versions of " i n h e r e n t l y " recursive programs. However , since i t is not based on
invar ian t s , this t ype of proof could not t ake full a d v a n t a g e of the techniques used
in exis t ing ver i f ica t ion systems.

Acknowledgement. We would like to thank Nachum Dershowitz, Amir Pnueli and
Adi Shamir for their critical reading of the manuscript and their many helpful sug-
gestions.

References

t . Aho, A.V., UUman, J .D. : The theory of parsing, translation, and compiling
Vol. 2. Englewood Cliffs (N.J.): Prentice Hall t973

2. Allen, F . E . : A basis for program optimization. Proc. IF IP , Congress 71, Ljub-
liana, Yugoslavia. Amsterdam: North-Holland t971, pp. 380-390

3. Burstall, R.M. : Program proving as hand simulation with a lit t le induction.
Proc. I F I P Congress 74, Stockholm, Sweden. Amsterdam: North-Holland 1974,
pp. 308-3t2

4. Caplain, M. : Finding invariant assertions for proving programs. Proceedings of
Internat ional Conference on Reliable Software. Los Angeles (Calif.) Apri l t975,
pp. t65-t71

5. Clint, M. : Program proving: coroutines. Acta Informatica 2, 50-63 (t973)
6. Cooper, D.C. : Programs for mechanical program verification. Machine Intelligence

6. New York: American Elsevier 197t, pp. 43-59
7. Deutsch, L.P. : An interactive program verifier. Dept. of Comp. Sci., U. of Calif.,

Berkeley (Calif.) Ph.D. Thesis, June 1973
8. Elspas, B., Levit t , K.N., Waldinger, R. J. : An interactive system for the veri-

fication of computer programs. SRI, Menlo Park (Calif.), Sept. t 973
9. Elspas, B. : The semiautomatic generation of inductive assertions for proving

program corretness. SRI, Menlo Park (Calif.), July 1974
10. Floyd, R .W. : Assigning meaning to programs. In: J .T. Schwartz (ed.) : Proc. of a

Symposium in Applied Mathematics, 19. Providence (R.I.): Amer. Math. Soc.
t967, pp. 19-32

t 1. German, S.M., Wegbreit , B. : A synthesizer of inductive assertions. I E E E Trans.
on Software Engineering, SE-t , 68-75 (t975)

t 2. Igarashi, S., London, R.L. , Lucldaam, D. C. : Automatic program verification I :
A logical basis and its implementation. Acta Informatica 4, t45-182 (1975)

t 3. Katz, S.M., Manna, Z. : Towards automat ic debugging of programs. Proceedings
of Internat ional Conference on Reliable Software. Los Angeles (Calif.), April t975

352 S. Katz and Z. Manna

14. Katz, S.M., Manna, Z. : Logical analysis of programs. Comm. ACM, to appear (1976)
t 5. King, J. : A program verifier. Dept. of Comp. Sci., Ca~legie-Mellon U., Pi t tsburgh

(Pa.) Ph.D. Thesis, t969
t6. Knuth, D .E . : The Ar t of Computer Programing, Vol. I. Reading (Mass.): Ad-

dison-Wesley, t968
t 7. Moriconi, M. S. : Towards the interactive synthesis of assertions. The Universi ty

of Texas at Austin Research Report , October t 974
t 8. Sites, R.L. : Proving tha t computer programs terminate cleanly. Dept. of Com-

puter Science, Stanford University, STAN-CS-74-4t8 Ph.D. Thesis, May t974
t9. Waldinger, R., Levit t , K.N. : Reasoning about programs. Artificial Intelligence

5, 235-3t6 (t974)
20. Wegbreit , B. : The synthesis of loop predicates. Comm. ACM 17, t02-1 t2 (t974)

S. Katz
Z. Manna
Applied Mathematics Depar tment
Weizmann Ins t i tu te of Science
Rehovot, Israel

