
Is Sometime Ever Better Than Alway?

DAVID GRIES
Cornell University

The "intermittent assertion" method for proving programs correct is explained and compared with
the conventional method. Simple conventional proofs of iterative algorithms that compute recursively
defined functions, including Ackermann's function, are given.

Key Words and Phrases: correctness of programs, axiomatic method, intermittent assertion method,
simulating recursion using iteration, Ackermann function
CR Categories: 5.24

1. INTRODUCTION

The "intermit tent assertion" method of proving programs correct has begun to
at t ract a good deal of attention. The purpose of this paper is to compare the
method, as it is explained in [6], with the now conventional method proposed by
Hoare [4].

We shall have to give the latter method a name. "Axiomatic method" will not
do because most methods can be axiomatized. "Invar iant assertion method,"
proposed in [6], is unacceptable because it is too long and because the term
"invariant" has already been connected with loops. My solution in this paper is
to provide short names for both methods. The intermit tent assertion method will
be called the sometime method, for reasons tha t will become apparent later. By
analogy, the conventional method of [4], along with the concept of total correct-
ness (see, for example, [2]), will be called the alway method. (Alway is poetic for
always.) I t is assumed tha t the reader is familiar with the alway method.

The sometime method has been used mainly to reason about iterative algo-
r i thms that compute recursiveiy defined functions, and in this setting it has been
thought to be more "natural" than the alway method. In fact, [6] contains a
challenge to use the alway method on an iterative algorithm tha t computes
Ackermann 's function. We meet this challenge in Section 2. Section 3 outlines
the sometime method and presents for comparison a second proof of correctness
of the iterative Ackermann algorithm. Section 4 shows how to t ransform a
particular recursive definition scheme into an equivalent iterative algorithm using

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is.by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported by the National Science Foundation under Grant MCS76-22360.
Author's address: Computer Science Department, Upson Hall, Cornell University, Ithaca, NY 14853.
© 1979 ACM 0098-3500/79/1000-0258 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979, Pages 258-265.

Is Sometime Ever Better Than Alway? 259

the alway method. T h e scheme was taken f rom [6]. Finally, the discussion in
Section 5 leads to the conclusion tha t the alway me thod is to be preferred.

2. THE ACKERMANN ALGORITHM AND THE ALWAY METHOD

Ackermann ' s function A(m, n) is defined for m, n ___ 0 by

t
m = 0 --> n + 1

A (m , n) = m # O , n = O - -) A (m - l , 1)
m # O , n #O---) A (m - 1, A (m , n - 1)).

T h e following a lgor i thm to compute A(m, n) uses a "sequence" variable s. Each
e lement si of sequence s = {sn s2, s l) satisfies si >_ O, a n d n = size(s) >_ 0 is
the length of the sequence. Using a sequence instead of a s tack and number ing
the e lements in reverse order, as done here, simplifies la ter notat ion. E l emen t si
of s will be referenced within the 'algori thm by s(i), while s(. . i) refers to the
possibly e m p t y sequence (s(n), s(n - 1) s(i)). Operat ion s i x denotes the
concatenat ion of value x to sequence s. For example, if size(s) _> 2, then
s --" s(. . 3) Is(2) I s(1).

{m, n _> O)
s := (m, n);
do size(s) # 1 --)

i f s(2) = 0 ---) s := s(. . 3) Is(l) + 1
[3 s(2) # 0 a n d s(1) = 0 ~ s := s(. . 3) Is(2) - 1] 1
D s(2) # 0 a n d s(1) # 0 --) s := s(. . 3) Is(2) - 1 Is(2) Is(l) - 1
fi

od
{s = (A(m, n))}

This a lgor i thm repea ted ly manipula tes sequence s until its length is 1. Our
p rob lem is to prove t ha t the loop hal ts and that , when it halts, s contains the
desired result. In order to provide means for solving the problem, it seems
reasonable to abs t rac t f rom the a lgor i thm the manne r in which sequences are
manipu la ted and to examine this manipula t ion in a p u r e l y m a t h e m a t i c a l setting.
Thus we analyze how a single i terat ion of the loop can t rans form any sequence S'
into a sequence s" and define a relat ion > be tween such s ' and s".

Definition 2.1. T h e relat ion > on sequences is defined by

(a) s[0 [b > s[b + 1, for b _> O, any sequence s
(b) s[a [0 > s[a - 1] 1, for a > O, any sequence s
(c) s[a[b > s [a - l [a [b - 1, for a, b > O, any sequence s.

Note t ha t for any sequence s' with size(s') > 1 there exists exact ly one sequence
s" such tha t s' > s". For s ' with size(s') _< 1 there is no such s".

Given an initial sequence s -- (m, n) , a number of i terat ions of the loop is
supposed to t rans form s into (A(m, n)). Since one i terat ion t ransforms s into s '
such tha t s > s', we are led to consider relat ions >+, the t ransi t ive closure of >;
>*, the reflexive t ransi t ive closure; and >t for fixed t _> O, which represents exact ly
t applicat ions of >-. T h e necessary proper t ies are proved in the following lemma.

LEMMA 2.2. Given a, b >- O, for any sequence s there exists t > 0 such that
s l a l b >t s IA(a , b).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

260 David Gries

PROOF. T h e proof is by induction on the lexicographic ordering of pairs of
nonnegat ive integers. We assume the l e m m a t rue for d, /~ satisfying (a, b) >2
(5, 5) and prove it t rue for a, b, where (a, b) >2 (5,/~) is defined by

(a, b) >2 (d,/~) - a > 5 o r (a = d a n d b > b)

The re are three cases to consider, based on the definition of >.
Case a = O. s I 0] b > s] b + 1 = s]A(O, b), and t = 1. (This is the basis step.)
Case a ~ 0, b = 0. s] a l0 > s] a - 1] 1. Since (a, 0) >2 (a - 1, 1), by induct ion

there exists t l such t ha t s] a - 1] 1 >tl s] A (a - 1, 1) = s]A (a, 0). Thus s I a] 0
~t s] A (a , 0) with t - - t l + 1.

Case a, b ~ O. s] a l b > s l a - 1] a l b - 1. Since (a, b) >2 (a, b - 1), by
induction there is a t l such t ha t s] a - 11 a I b - 1 >tl s] a - 1]A (a, b - 1). Since
(a, b) >2 (a - 1, A (a , b - 1)), by induction there is a t2 such tha t s] a - 1]
A (a , b - 1) >t2 s l A (a _ 1, A (a , b - 1)) = s] A (a , b). Hence s] a I b >t s] A (a , b)

with t = 1 + t l + t2. Th is ends the proof.
Now consider s = (m, n) . By the lemma, there is a t > 0 such t ha t s = (m, n)

>t (A(m, n)) . Fur thermore , t is unique, since for any sequence s' there is at mos t
one s" such tha t s ' > s" and there is no s" such tha t (A(m, n)) > s". Hence for
any sequence s satisfying (m, n) >* s there is a unique value r(s), v(s) __ 0, a
function of s, such t ha t s >,(8) (A(m, n)) . We therefore take as the necessary loop
invar iant

P: (m, n) >* s >~(~) (A (m , n)) .

P is initially t rue with s = (m, n) and r(s) = r ((m, n)); upon te rmina t ion (P a n d
size(s) = 1) implies the desired result. T h a t P remains t rue is a lmost trivial to
show, since > was expressly defined so tha t execution of the loop body with
var iable s containing a value s' would change s to the unique value s" satisfying
s' >- s". For a t e rmina t ion function we use r(s), which is dec remented by 1 each
t ime the loop body is executed.

R e m a r k 1. T h e invar iant P was not as easy to derive as the above descript ion
indicates, a l though it should have been. []

R e m a r k 2. Reference [6] says t ha t the alway me thod requires two separa te
proofs to establish to ta l correctness, one to show part ia l correctness and the o ther
to show terminat ion. While this is true, the example indicates t ha t a p roper
choice of invar iant can make the proof of t e rmina t ion a lmost trivial. []

R e m a r k 3. T h e formalizat ion of the me thod for proving te rmina t ion has
previously been done in two ways, which we summar ize here.

(1) St rong Termina t ion . Der ive an integer funct ion t(~) of the p rog ram varia-
bles 2, show tha t t _> 0 whenever the loop is still executing, and show tha t each
execution of the loop body decreases t by a t least 1. For a loop do B ---) S o d with
invar iant P this means proving t ha t

(P a n d B) ~ t _ > 0 and { P a n d B } T : = t ; S (t _ T - 1 }

where T is a new variable.
(2) Weak Termina t ion . Choose a "well-founded" set (W, >), i.e., > is a part ial

ordering with the p roper ty t ha t for any w in W there is no infinite chain w > wl
> w2 > T h e n choose a function f (2) of the p rogram variables ~ and prove
ACM Transactions on Programming Languages and Systems, VoL 1, No. 2, October 1979.

Is Sometime Ever Better Than Alway? 261

tha t

{P and B} u) := ~; S{f(u)) > f(2)}

where & is a new set of variables.
Under the reasonable assumption tha t nondeterminism is bounded [2], the two

methods are equivalent. The first induces a function f(2) = t(2) and a well-
founded ordering defined by f(2) > f(:~) iff (P a n d B) implies t (x) > t (y) >_ O.
Given bounded nondeterminism and a proof by the second method, one can show
tha t the number of i terations of the loop for any initial state 2 is bounded, and we
choose t(2) as tha t bound.

In this situation, we prefer using strong termination. Having an explicit bound
on the number of i terations of each loop is indeed useful if one wants to analyze
the execution t ime of an algorithm. []

3. THE SOMETIME METHOD

The sometime method was invented as early as 1972 by R.M. Burstall and
presented in a 19,74 IFIP Congress lecture [1]. Burstall felt tha t it would have
intuitive appeal, since "it is very much like checking out a program by doing a
step-by-step hand simulation" [1]. His student, R.W. Topor, noticed after the
fact tha t D.E. Knuth actually used a similar style of argument on a few problems
[5], but Knuth had not explained it as a general method for reasoning about
programs. Manna and Waldinger bestowed the te rm " in termi t tent assertion" on
the method in their 1978 paper [6], which is responsible for the current wave of
interest in the method. Topor [7] also uses it to prove correct a version of the
Schorr-Waite algori thm for marking nodes of a directed graph; a proof by the
alway method appears in [3].

The method involves associating an assertion with a point in the algori thm
with the intention tha t s o m e t i m e during execution control will pass through tha t
point with the assertion true, but tha t it need not be true every t ime control
passes tha t point. Based on the fact tha t sometime control will be at tha t point
with the assertion true, one then argues tha t control will later reach another point
(e.g., the end of the algorithm) with another assertion t rue (e.g., the output
assertion).

To illustrate the method, let us first of all rewrite the iterative Ackermann
algorithm to include labels, which are necessary in order to discuss it. This
algorithm is actually a res ta tement of tha t given in [6], paraphased to make it
and its proof as clear as we possibly could.

start: s := (m, n);
do test: s ize(s) ~ 1 --~

i f s(2) = 0 --) s :-- s (. . 3) [s(1) + 1
s(2) # 0 a n d s(1) = 0 -* s := s(. . 3) [s(2) - 1[1

0 s(2) # 0 a n d s(1) ~ 0 --) s := s(. . 3) [s(2) - 1 [s(2) [s(1) - 1
fi

od;
finish: skip

The sometime method allows one to use an assertion tha t is t rue at a point of
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

262 David Gries

a program, but not necessarily always. A typical example is contained in the
following lemma.

LEMMA 3.1. I f s o m e t i m e s i ze (s) >-- 2 a n d s = s l a I b, a, b __ 0, a t test , t h e n

s o m e t i m e s = d l A (a, b) a t test .
PROOF. Suppose s = s l a I b at test . The lemma is proved by induction on the

lexicographic ordering >2 on pairs of nonnegative integers. Thus we assume the
lemma holds for any sequence ~ and pair (5, /~) satisfying (a, b) >2 (5, 6), and
we show tha t it holds for any sequence g and (a, b). Th e reasoning is based on an
informal understanding of how programs are executed. The re are three cases to
consider, corresponding to the three guarded commands of the al ternat ive state-
ment of the loop body.

Case a = 0: s = s l 01 b a t test . Since s i ze (s) # 1 the loop body is execute d, the
first guarded command is executed, s is changed to s = d lb + 1 , and control
returns to t e s t w i t h s = s l b + 1 = ~IA(0, b).

Case a # 0, b = 0: s = s l a l O a t test . Note tha t A (a , O) = A (a - 1, 1).
Execution of the second guarded command changes s to s l a - 111 and control
returns to test . Since (a, 0) >2 (a - 1, 1), by induction control will at some point
reach tes t with s = d lA (a - 1, 1) = ~ l A (a , 0) . Thus the lemma is established in
this case.

Case a, b # 0: s = s l a I b a t test . The third guarded command is executed, s
becomes g ! a - l l a l b - 1, and control re turns to tes t . Since (a, b! >2
(a, b - 1), by induction control will r e tu rn to t e s t at some point with s =
sl a - 1 [A(a , b - 1). Since (a, b) >2 (a - 1, A (a , b - !)) , by induction fur ther
execution is guaranteed to cause control to reach t e s t again, with s = ~ I A (a - 1,
A (a , b - 1)) = s l A (a, b). The lemma is established.

This is typical of the reasoning used with the somet ime method. Notice how
one is relying on informal "hand 'simulation" of the algorithm, but with an
assertion tha t represents a set of possible initial s tates (e.g., s = ~ l a l b a n d
a, b _> 0), ra ther than one part icular set of initial values. This is an informal way
of performing what has been called "symbolic evaluation."

Now suppose execution of the algori thm beginswi th m, n _ 0. Control reaches
tes t with s = (m, n) . By the lemma, control will r each t e s t again with s --
(A (m , n)) , the loop will te rminate because s i ze (s) = 1, and control will reach
f i n i sh with s(1) = A (m , n). Thus we have proved the following theorem.

THEOREM 3.2. I f s o m e t i m e m, n >_ 0 a t s tar t , t h e n s o m e t i m e s(1) = A (m , n) a t

f in i sh .

4. A TRANSFORMATION SCHEME

In [6] it is proved using the sometime method tha t a recursive definition (or
algorithm) of the form

~ p (x) , - - , f (x)
F (x) [n o t p (x j -* h (F (g l (x)) , F (g 2 (x)))

under the assumptions

(1) p, f, g l , g2, and h are total functions
(2) h is associative: h(u , h(v , w)) = h (h (u , v), w) for all u, v, w
(3) e is the left ident i ty of h: h(e, u) = u for all u

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Is Sometime Ever Better Than Alway? 263

is equivalent to the following i terat ive algori thm. T h e a lgor i thm uses a sequence
variable s and a simple variable z:

{F(x) well defined)
s, z := (x), e;
d o s e () - -)

i f p(s(1)) ---) s, z := s(. . 2), h(z, f(s(1)))
n o t p(s(1)) ---) s := s(. . 2) Ig2(s (1)) [g l (s (1))

f i

o d
{z = F(x)}

We want to prove the same thing using the alway method. I t is t empt ing to apply
the technique used to prove the Acke rmann algor i thm correct, and indeed it
works like a charm.

We first note tha t there mus t be a well-founded ordering ~; defined by (F(x)
well defined a n d n o t p (x)) implies (x ~; g l (x) a n d x ~ g2(x)). This means tha t
there is no infinite chain x ~; x l $. . . such tha t n o t p (xi) if F(x) is well defined,
and tha t we can use the ordering $ to prove something by induction, the way
>2 was used in Section 2.

In a t t empt ing to define an ordering on sequences as in Section 3, we find tha t
we mus t also take into account the value of s imple variable z. So we define
instead a relat ion > on pairs (s; z), where s is a sequence and z a value.

Definition 4.1. Relat ion > is defined for any sequence s and values x and z as
follows:

(a) i fp(x) , then (s ix ; z) > (s; h(z, f(x)))
(b) if n o t p(x), then (six; z) > (slg2(x) lgl(x); z).
LEMMA 4.2. Given x for which F(x) is well defined, for any sequence s and

value z there exists a t >_ 0 such that (s] x; z) >t (s; h(z, F(x))).
PRooF. The proof is by induction on the ordering ~; described above. The re

are two cases, corresponding to the cases in Definit ion 4.1.
Case p(x): (six; z) > (s; h(z, f(x))) = (s; h(z, F(x))) , and t = 1.
Case n o t p (x) : We have

(six; z)
(slg2(x) Igl(x); z)

>t~ (s Ig2(x); h(z, F(gl(x))))
~t2 (s; h(h(z, F(gl(x))), F(g2(x))))
-- (s; h(z, h(F(gl(x)), F(g2(x)))))
= (s; h(z, F(x))}

by definition
by induction, since x ~ g l (x)
by induction, since x ~ g2(x)
by associat ivi ty of h
by definition of F.

Thus (s I x; z) >t (s; h(z, F(x))) with t -- 1 + t l + t2. This completes the proof of
L e m m a 4.2.

Now note tha t L e m m a 4.2 implies the existence of a t _> 0 such tha t

((x); e) >t (() ; h(e, F(x))) = (() ; F(x)).

We define a function T as in Sect ion 3 and use the loop invar iant

P: ((x); e) >* (s; z) >~,s; z, (() ; F(x)).
ACM Transact ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

264 David Gries

We leave the simple proof that P is indeed the desired invariant to the reader;
the necessary termination function is • of the invariant P. To the reader we also
leave the proof that if F(x) is not well defined then the algorithm does not
terminate.

5. DISCUSSION OF THE METHODS

Reference [6, p. 163] has said that all known proofs of the Ackermann algorithm
using conventional methods are extremely complicated. The proof in Section 2 is
offered to support our conjecture that alway method proofs need be no more
complicated than sometime method proofs. The material in Section 4 offers hope
that iterative algorithms that compute recursively defined functions--a major
stronghold of the sometime method--will quietly succumb to the alway method.
It is simply a matter of learning the necessary techniques. (In this case the
technique is, quite simply, to define a relation > such that s' ~ s" if one iteration
of the loop transforms the loop variables s' into s", and then to investigate this
relation.) The authors of [6] quite rightly imply that a proof method should be
"natural," but "naturalness" in any field of endeavor must be learned.

Let us compare the two methods, where our knowledge of the practical use of
the sometime method is based solely on the examples given in [6]. We can begin
by comparing the two proofs of the Ackermann algorithm. Here one notices a
strong similarity. Lemmas 2.2 and 3.1 lie at the heart of the proofs, and both are
proved by induction over the ordering >2. Each proof breaks down into three
similar cases. The main difference is that one proof requires a detailed analysis
of an algorithm, while the other requires an analysis only of a simple relation that
took four lines to define. And herein lies what we would call a major drawback to
the sometime method, which we now try to explain.

Any algorithm is based on certain properties of the objects it manipulates and
it seems desirable to keep a clear distinction between these properties and the
algorithm that works on the objects. Thus in the alway method proof of Section
2, Definition 2.1 and Lemma 2.2 define, describe, and prove properties of se-
quences in a completely mathematical setting. Then the proof of the algorithm
follows easily by considering the algorithm together with these properties. A
change in the algorithm does not destroy the neat mathematical properties, but
only perhaps their relevance. In addition, one can work with mathematical
properties that have been proven by others, without having to understand their
proof. The principle of separation of concerns is being adhered to clearly in the
alway method.

The sometime method, on the other hand, as explained in current proofs, seems
to encourage confusion of properties of the objects and the algorithm itself. Thus,
in Section 3, all parts of the complete proof, including the use of induction based
on execution of a program, were packaged together.

Through programming, we hope to learn to cope with complexity (and to teach
others how to cope) using principles like abstraction and separation of concerns.
The alway method encourages the use of and gives insight into these principles;
the sometime method seems by its very nature to discourage their use, and thus
seems to be a step backward.

It is true that an alway method proof may have more parts to it. For example,
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Is Sometime Ever Better Than Alway? 265

once the mathematical properties were stated and proved in Section 2, it was
necessary to relate them to the algorithm itself, using a loop invariant and
termination function. We gladly accept this "extra" work, for in return we gain a
better understanding and have a proof that is clearly structured into its compo-
nent parts.

One referee offered the following way of looking at the two methods, which
may help the reader. For the Ackermann algorithm, using the sometime method
one

(1) makes a hypothesis that the "snapshots" of the program variables at
various points of execution form a finite sequence

(2) proves the correctness of the hypothesis by induction on program execu-
tion.

In the alway method, as used here, one

(1) defines a sequence and proves that it exists and is of bounded length
(2) shows that the sequence matches exactly the sequence of snapshots.

ACKNOWLEDGMENTS

I wish to thank R. Constable and G. Levin for discussions that led to the invariant
used in the Ackermann algorithm. I am indebted to J. Donahue, G. Levin, and
J. Williams for critically reading drafts of this paper.

REFERENCES

1. BURSTALL, R.M. Program proving as hand simulation with a little induction. Proc. IFIP Congress
1974, Amsterdam, The Netherlands, pp. 308-312.

2. DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
3. GRIES, D. The Schorr-Waite graph marking algorithm. To appear in Acta Informatica.
4. HOARE, C.A.R. An axiomatic basis for computer programming. Comm. ACM 12, 10 (Oct. 1969),

576-580, 583.
5. KNUTH, D.E. The Art of Computer Programming, Vol. I. Addison-Wesley, Reading, Mass., 1968.
6. MANNA, Z., AND WALDINGER, R. Is "sometime" sometimes better than "always"? Comm. ACM

21, 2 (Feb. 1978), 159-172.
7. ToPoR, R.W. A simple proof of the Schorr-Waite garbage collection algorithm. To appear in

Acta Informatica.

Received June 1978; revised January and May 1979

ACM Transactions on Programming Languages and Systems, Vol. i, No. 2, October 1979.

