

Part 1: Introduction & resultsPart 2: Kruskal's theorem - Proof IdeaPart 3: Gap embedding - Proof Idea

Part I

Introduction

Orders

Definition. A **Quasi Order** is a reflexive and transitive relation. **Definition.** A set A is Well Quasi Ordered under \preceq if for all infinite sequences from A:

 a_1, a_2, a_3, \ldots

Gap Embedding for Well-Quasi-Orderings – p.4/

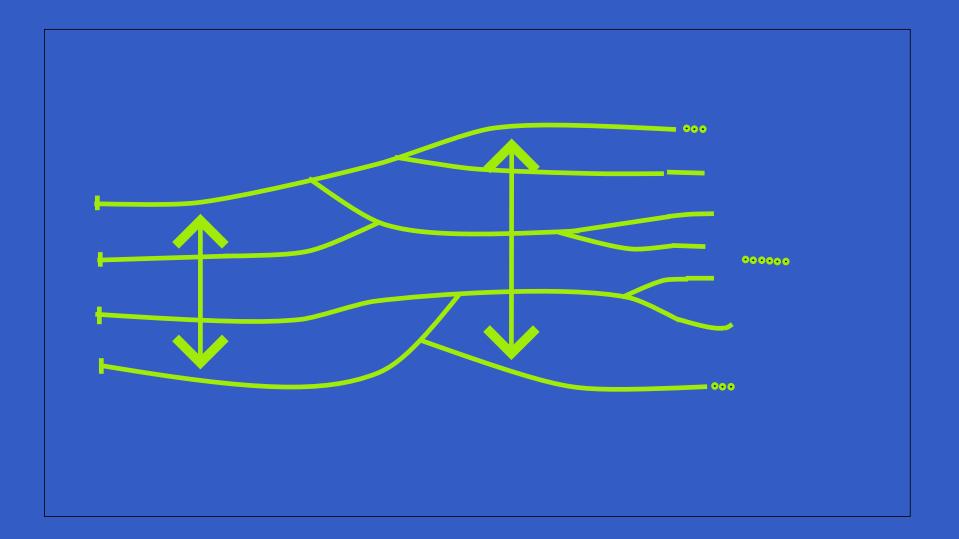
there exists some i < j such that $a_i \preceq a_j$.

Good/Bad Sequences

Definition. A sequence $a_1, a_2, a_3, ...$ s.t. for every i < j, $a_i \not \subset a_j$ holds is called a bad sequence; otherwise called good.

 a_i and a_j are comparable if either $a \preceq b$ or $b \preceq a$; otherwise they are incomparable. If a_i, a_j are incomparable for all i, j then the sequence is an antichain.

Illustration of a well-partial ordering



Gap Embedding for Well-Quasi-Orderings - p.6/4

• Q is a WQO.

- Q is a WQO.
- Q has no infinite strictly decreasing chains and no infinite antichains (Ramsey).

- Q is a WQO.
- Q has no infinite strictly decreasing chains and no infinite antichains (Ramsey).
- Any infinite Q-sequence contains an increasing chain (Ramsey).

- Q is a WQO.
- Q has no infinite strictly decreasing chains and no infinite antichains (Ramsey).
- Any infinite Q-sequence contains an increasing chain (Ramsey).
- Every linear extension of ≿ on Q/≈ is a well-order.

Gap Embedding for Well-Quasi-Orderings –

Tree embedding

Definition. For two labelled trees s is embedded into t if there is a 1-1 function f, mapping vertices to \preceq vertices and edges to unique disjoint paths.

Tree embedding

Definition. For two labelled trees s is embedded into t if there is a 1-1 function f, mapping vertices to \preceq vertices and edges to unique disjoint paths.

Tree embedding

Formally:

• for all nodes v, u in s,

$$f(v \wedge u) = f(v) \wedge f(u)$$

Gap Embedding for Well-Quasi-Orderings – p.9/4

where $a \wedge b$ denotes the closest common ancestor of a, b

 $v \precsim f(v)$

Kruskal's Theorem

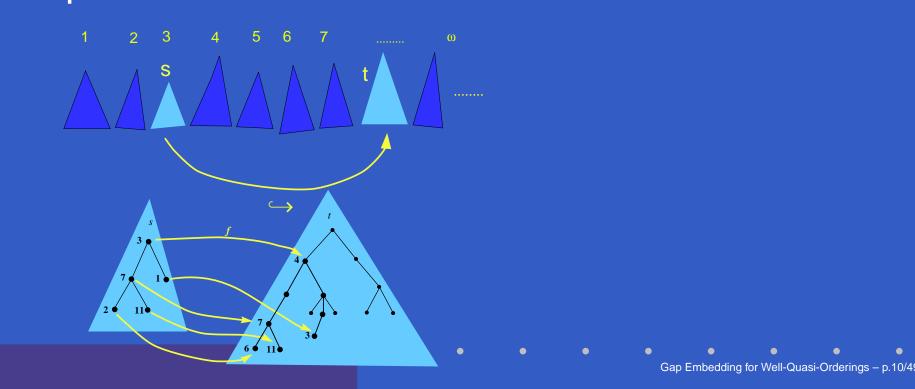
Theorem. (Kruskal 1960) Finite trees are wqo under the embedding relation.

Kruskal's Theorem

Theorem. (Kruskal 1960) Finite trees are wqo under the embedding relation.Hence, every infinite sequence of trees is a good sequence.

Kruskal's Theorem

Theorem. (Kruskal 1960) Finite trees are wqo under the embedding relation.Hence, every infinite sequence of trees is a good sequence.

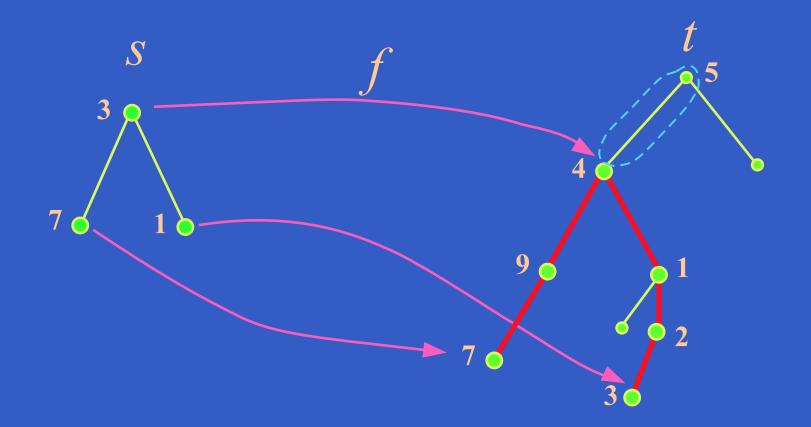


Definition. (Gap embedding) *s* is embedded with gaps in *t* (denoted $s \rightarrow t$) if there is an embedding $f : s \rightarrow t$ satisfying:

Definition. (Gap embedding) *s* is embedded with gaps in *t* (denoted $s \rightarrow t$) if there is an embedding $f : s \rightarrow t$ satisfying:

Gap condition: For all edges (u, v) in s and for all w in the path from f(u) to f(v) in t, $w \succeq v$;

Definition. (Gap embedding) *s* is embedded with gaps in *t* (denoted $s \leftrightarrow t$) if there is an embedding $f : s \rightarrow t$ satisfying: **Gap condition:** For all edges (u, v) in *s* and for all *w* in the path from f(u) to f(v) in *t*, $w \succeq v$; **Root gap condition:** $u \succeq r(s)$ for all vertices *u* in the access path from t^{\bullet} to $f(s^{\bullet})$.



Gap Embedding for Well-Quasi-Orderings – p.12/49

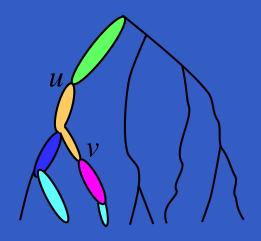
Known Results

Theorem ([Kříž '89]) The set of finite trees with ordinal labels is a wqo under gap embedding.(Proved a similar result for infinite trees ['95 Kříž].)

Definition. Given a tree path [u, v], we say that the path is comparable if all the vertices in it have comparable labels, that is, $\forall x, y \in [u, v]. x \preceq y \lor y \preceq x.$

Theorem. The set of finite trees with well quasi ordered labels, with each node comparable to its ancestors, is a wqo under gap embedding.

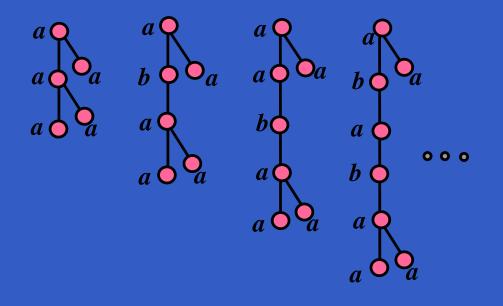
Let Q be a wqo and let T_k be the set of all trees such that each path in a tree can be partitioned into some fixed $k \in \mathbb{N}$ or less comparable sub-paths.



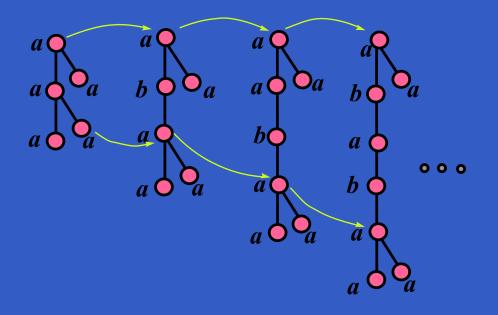
Main Theorem T_k is worked under gap embedding.

This is an optimal setting for partiality on nodes ordering:

Proposition. If the node ordering is not total then finite trees are not wqo under gap embedding.



Proposition. If the node ordering is not total then finite trees are not wqo under gap embedding.



Proposition. If the node ordering is not total then finite trees are not wqo under gap embedding.

Theorem proves that this is the canonic counterexample.

Kruskal's Theorem — Proof Idea

The Proof of Kruskal's Theorem

Theorem. (Kruskal 1960) Finite trees are wqo under the embedding relation.

The Proof of Kruskal's Theorem

Theorem. (Kruskal 1960) *Finite trees are wqo under the embedding relation.* Kruskal's original proof ('60): Long, constructive

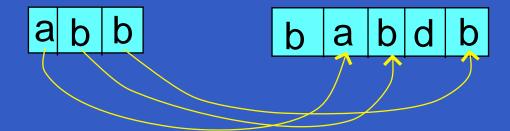
The Proof of Kruskal's Theorem

Theorem. (Kruskal 1960) Finite trees are wqo under the embedding relation.
Kruskal's original proof ('60): Long, constructive We shall see:
Nash-Williams's proof ('63): Short, simple, nonconstructive

Definition. Let Q be a quasi order. We denote by $[Q]^{<\omega}$ the set of all finite sequences from Q.

Definition. Let Q be a quasi order. We denote by $[Q]^{<\omega}$ the set of all finite sequences from Q. For $s,t \in [Q]^{<\omega}$ we say that there is an embedding of s into t if there is a 1-1 mapping ffrom s into t such that for all $s_i \in s$, $s_i \preceq f(s_i)$.

Definition. Let Q be a quasi order. We denote by $[Q]^{<\omega}$ the set of all finite sequences from Q. For $s,t \in [Q]^{<\omega}$ we say that there is an embedding of s into t if there is a 1-1 mapping ffrom s into t such that for all $s_i \in s, s_i \preceq f(s_i)$.



Theorem. (Higman '52) : If Q is work then $[Q]^{<\omega}$ is work too.

Theorem. (Higman '52) : If *Q* is wqo then $[Q]^{<\omega}$ is wqo too. Proof: By a Minimal Bad Sequence method.

Higman's Lemma: Proof

Assume there is a bad sequence.

Assume there is a bad sequence. Take a minimal bad sequence, w.r.t. the length of each string (finite sequence).

Assume there is a bad sequence. Take a minimal bad sequence, w.r.t. the length of each string (finite sequence).

Gap Embedding for Well-Quasi-Orderings – p.22/4

T:= <u>a</u>, b

Assume there is a bad sequence. Take a minimal bad sequence, w.r.t. the length of each string (finite sequence).

Assume there is a bad sequence. Take a minimal bad sequence, w.r.t. the length of each string (finite sequence).

Gap Embedding for Well-Quasi-Orderings –

Assume there is a bad sequence. Take a minimal bad sequence, w.r.t. the length of each string (finite sequence).

Take off the first element of each string (T is bad \Rightarrow there is no empty string in T). Denote by S.

T:= [a, b] [a,c,d] [e, e, f] [a, f, d, a]

Take off the first element of each string (T is bad \Rightarrow there is no empty string in T). Denote by S.



S contains no infinite bad subsequence S', or else contradict minimality of T:

S contains no infinite bad subsequence S', or else contradict minimality of T:

T:= [a, b][a,c,d][e, e, f][a, f, d, a]S:=bc,de, ff, d, aS:=c,df, d, af, d, aT^S:=[a, b]c,df, d, a

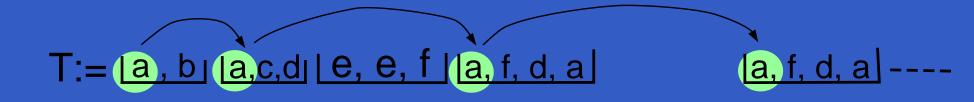
T contains an infinite subsequence with increasing heads.

T contains an infinite subsequence with increasing heads. Since *S* contains no infinite bad subsequence, the corresponding subsequence of *S* contains an embedded pair:

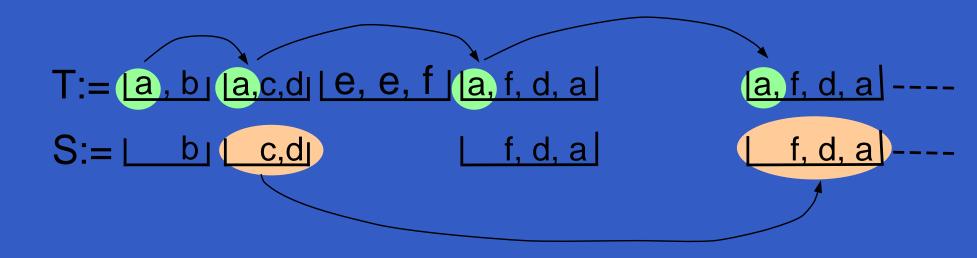
T contains an infinite subsequence with increasing heads. Since *S* contains no infinite bad subsequence, the corresponding subsequence of *S* contains an embedded pair:

T:= [a, b] [a,c,d] [e, e, f] [a, f, d, a] [a,e, f, g] [a, f, d, a] ----

T contains an infinite subsequence with increasing heads. Since *S* contains no infinite bad subsequence, the corresponding subsequence of *S* contains an embedded pair:

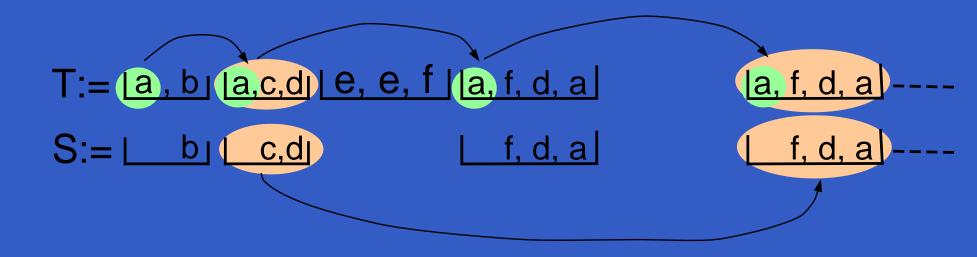


T contains an infinite subsequence with increasing heads. Since *S* contains no infinite bad subsequence, the corresponding subsequence of *S* contains an embedded pair:



Gap Embedding for Well-Quasi-Orderings – p.25/4

T contains an infinite subsequence with increasing heads. Since *S* contains no infinite bad subsequence, the corresponding subsequence of *S* contains an embedded pair:



Gap Embedding for Well-Quasi-Orderings – p.25/4

T contains an infinite subsequence with increasing heads. Since *S* contains no infinite bad subsequence, the corresponding subsequence of *S* contains an embedded pair:

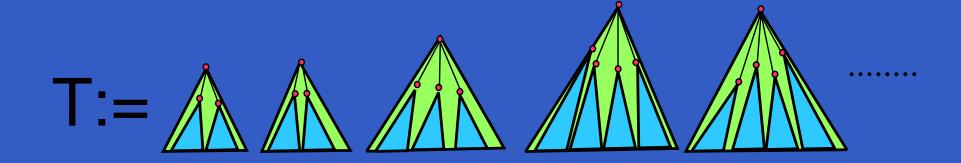
contradiction to T's badness.

Kruskal's Theorem: Proof Idea

Find a Minimal Bad Sequence: No subsequence of its children is bad! Minimality w.r.t sizes of trees suffices.

Kruskal's Theorem: Proof Idea

Find a Minimal Bad Sequence: No subsequence of its children is bad! Minimality w.r.t sizes of trees suffices.



Kruskal's Theorem: Proof Idea

Find a Minimal Bad Sequence: No subsequence of its children is bad! Minimality w.r.t sizes of trees suffices.

n in M

Let S be the set of T's children.

No subsequence of children is bad: Otherwise there would be a bad sequence $S' \subseteq S$ appended with *T*'s prefix: Contradict minimality of *T*.

No subsequence of children is bad: Otherwise there would be a bad sequence $S' \subseteq S$ appended with *T*'s prefix: Contradict minimality of *T*.

 $\mathsf{T}:=\bigwedge \bigwedge \bigwedge$

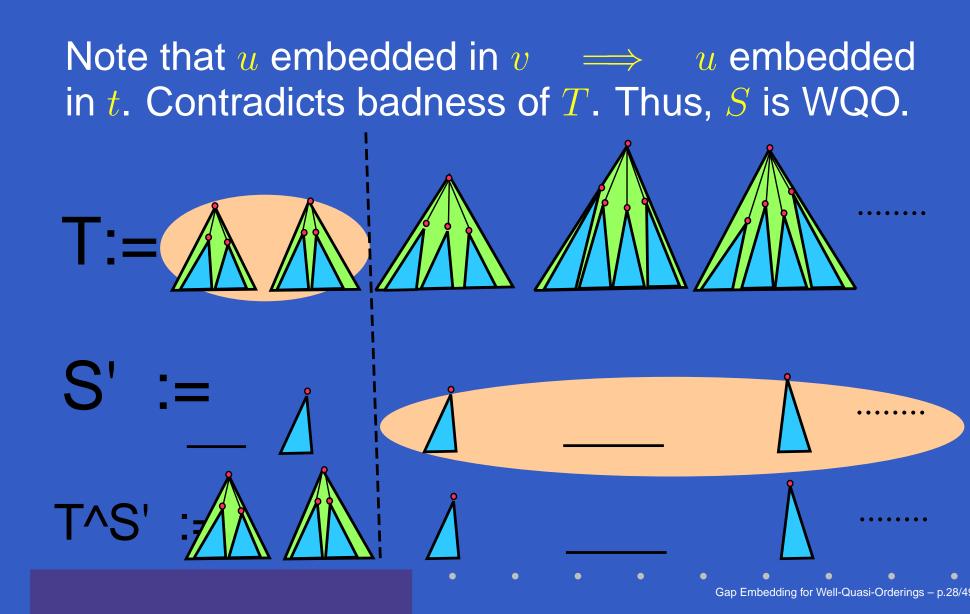
 $S:= \frac{1}{10} \frac{1}{1$

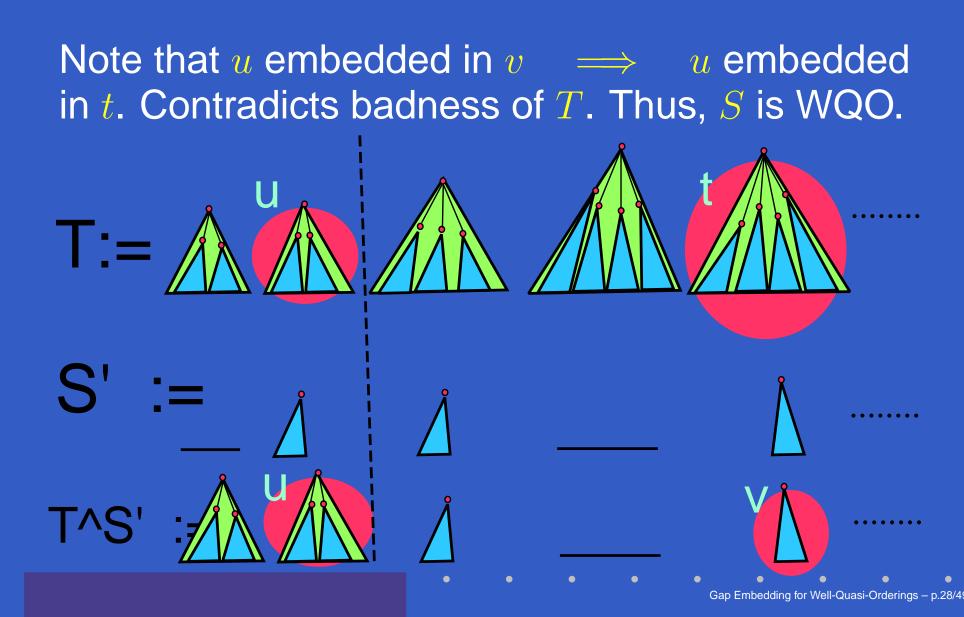
No subsequence of children is bad: Otherwise there would be a bad sequence $S' \subseteq S$ appended with *T*'s prefix: Contradict minimality of *T*.

Gap Embedding for Well-Quasi-Orderings – p.27/

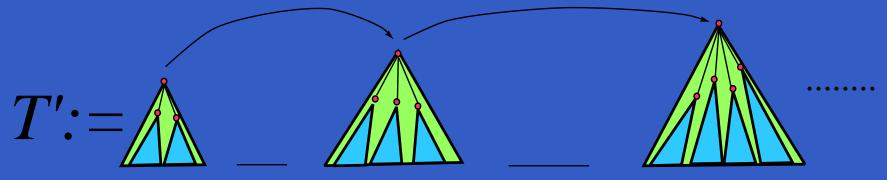
T:=

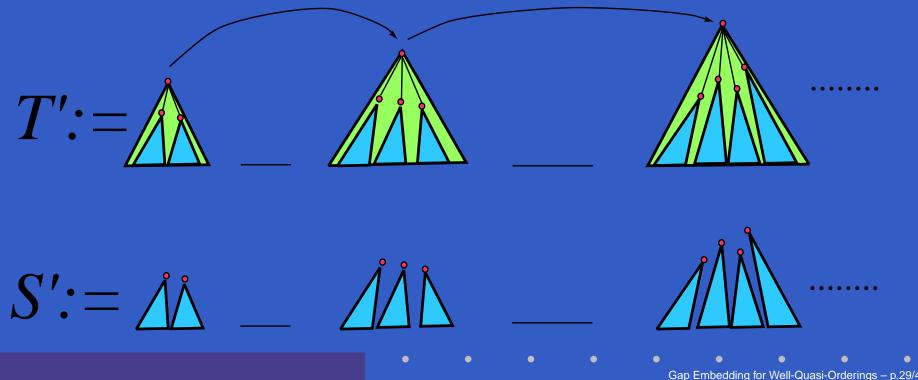
No subsequence of children is bad: Otherwise there would be a bad sequence $S' \subseteq S$ appended with *T*'s prefix: Contradict minimality of *T*.

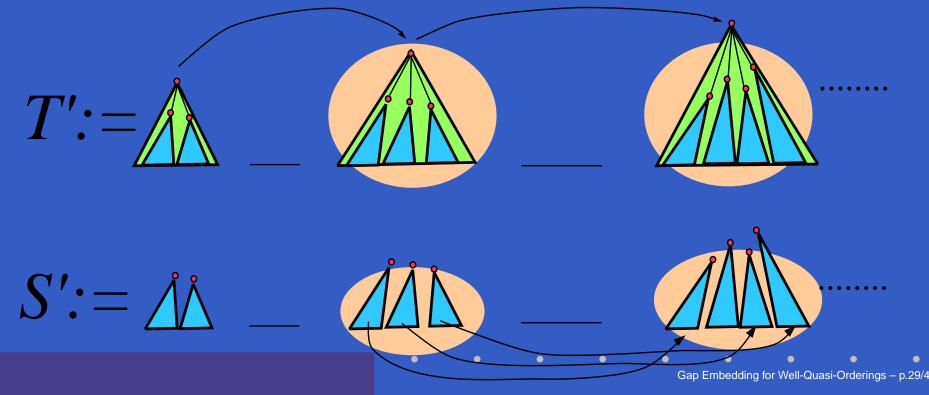




Let $T' \subseteq T$ be root increasing and $S' \subseteq S$ the corresponding sequence of children.







Let $T' \subseteq T$ be root increasing and $S' \subseteq S$ the corresponding sequence of children. *S* is wqo \Rightarrow Higman's Lemma yields *S'* contains an embedded pair.

Gap Embedding for Well-Quasi-Orderings – p.29/

Contradiction to T's badness!

Part III

Gap Embedding

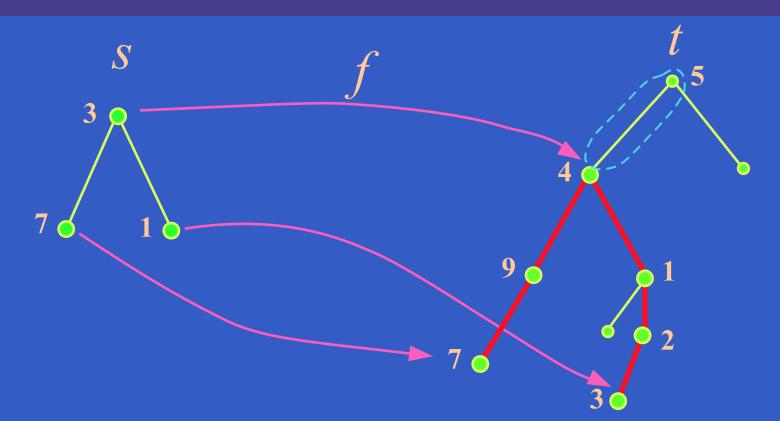
Definition. (Gap embedding) *s* is embedded with gaps in t ($s \leftarrow t$) if there is an embedding $f: s \rightarrow t$ satisfying:

Definition. (Gap embedding) *s* is embedded with gaps in t ($s \leftrightarrow t$) if there is an embedding $f: s \rightarrow t$ satisfying:

Gap condition: For all edges (u, v) in s and for all w in the path from f(u) to f(v) in t, $w \succeq v$;

Definition. (Gap embedding) *s* is embedded with gaps in t ($s \rightarrow t$) if there is an embedding $f: s \rightarrow t$ satisfying:

Gap condition: For all edges (u, v) in s and for all w in the path from f(u) to f(v) in t, $w \succeq v$; **Root gap condition:** $u \succeq r(s)$ for all vertices u in the access path from t^{\bullet} to $f(s^{\bullet})$.



Gap Embedding for Well-Quasi-Orderings – p.32/4

Gap Embedding

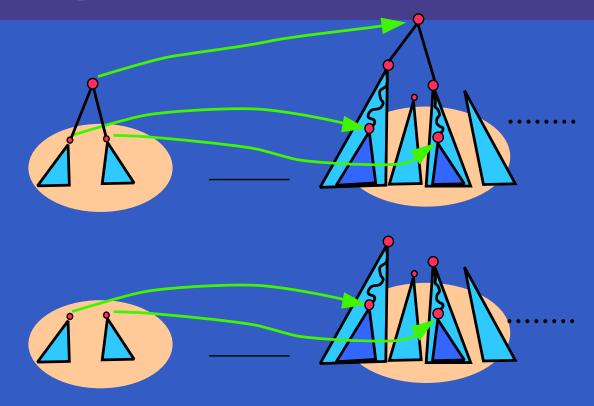
Theorem. The set of finite trees with ordinal labels are wqo under gap embedding.
Proof method: again, Nash-Williams.
The problem: Construction of a minimal bad sequence.

The problem: Construction of a minimal bad sequence. Minimality w.r.t size of trees won't work:

- The problem: Construction of a minimal bad sequence. Minimality w.r.t size of trees won't work:
 - We need the root gap condition for induction: "Higman's stage" maps root to root.
 - Thus, we can't prove that S the set of children of the minimal sequence T is WQO: T^S' not necessarily bad.

T':=

S' :=



Solution: Prove the existence of a **minimal** bad sequence *h*, i.e. with no bad children subsequences directly.

Solution: Prove the existence of a **minimal** bad sequence *h*, i.e. with no bad children subsequences directly.

 By inductive construction of bad sequences of children, this process must end sometime via a cardinality argument —>

Solution: Prove the existence of a **minimal** bad sequence *h*, i.e. with no bad children subsequences directly.

- By inductive construction of bad sequences of children, this process must end sometime via a cardinality argument =>
- There exists a bad sequence h with NO bad subsequence S.

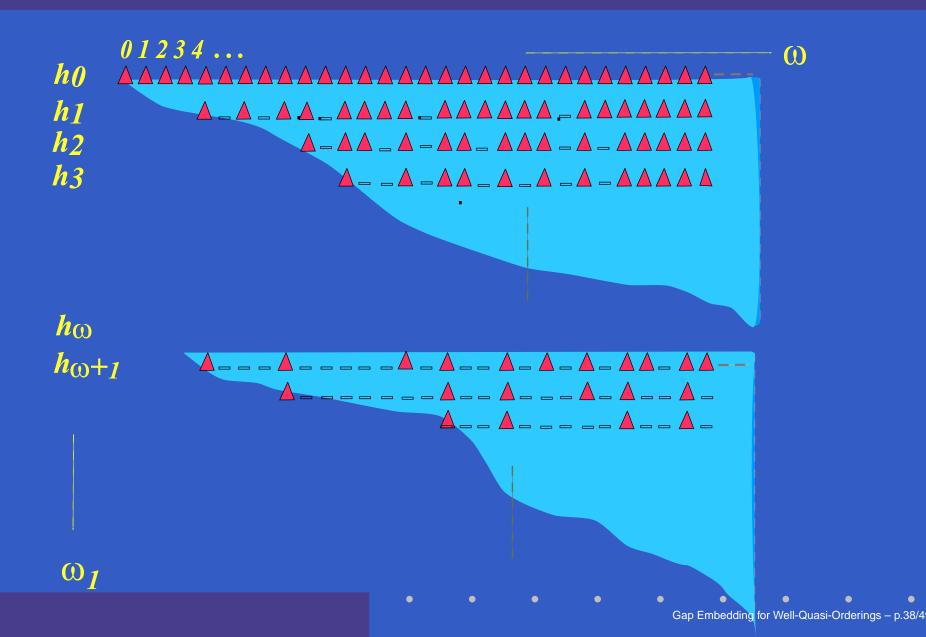
Assume the process doesn't end, i.e. no minimal bad sequence. Build by transfinite induction an infinite table *H* of (presumable) size $\omega_1 \times \omega$:

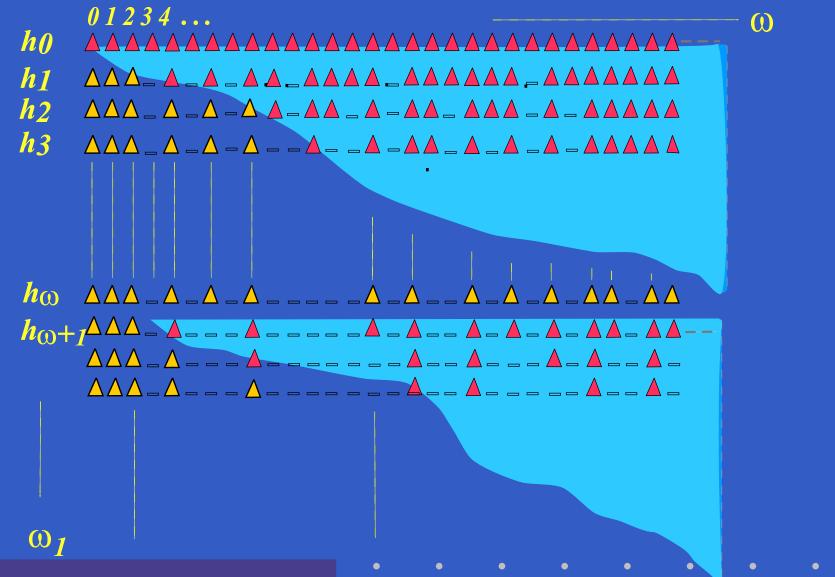
Assume the process doesn't end, i.e. no minimal bad sequence. Build by transfinite induction an infinite table *H* of (presumable) size $\omega_1 \times \omega$:

• Each row h_{α} is a bad sequence of length ω .

Assume the process doesn't end, i.e. no minimal bad sequence. Build by transfinite induction an infinite table *H* of (presumable) size $\omega_1 \times \omega$:

- Each row h_{α} is a bad sequence of length ω .
- By induction build next row $h_{\alpha+1}$ from the subtrees of h_{α} .





For a limit ordinal λ, row h_λ must converge since trees are finite.

- For a limit ordinal λ , row h_{λ} must converge since trees are finite.
- The construction must terminate before ω₁ (first uncountable ordinal), since we cannot take more than ℵ₀ many subtrees.

Difficulty: The rows might vanish in the limit case! ⇒

- Difficulty: The rows might vanish in the limit case! ⇒
- We need to append the preceding row to the new one to compensate for this (close to $T^{S'}$ in Nash-Williams' proof) \Rightarrow

 For the appending to result in a bad sequence, need to maintain special invariants throughout induction:

- For the appending to result in a bad sequence, need to maintain special invariants throughout induction:
- Root labels increasing in both directions: Rows and columns.

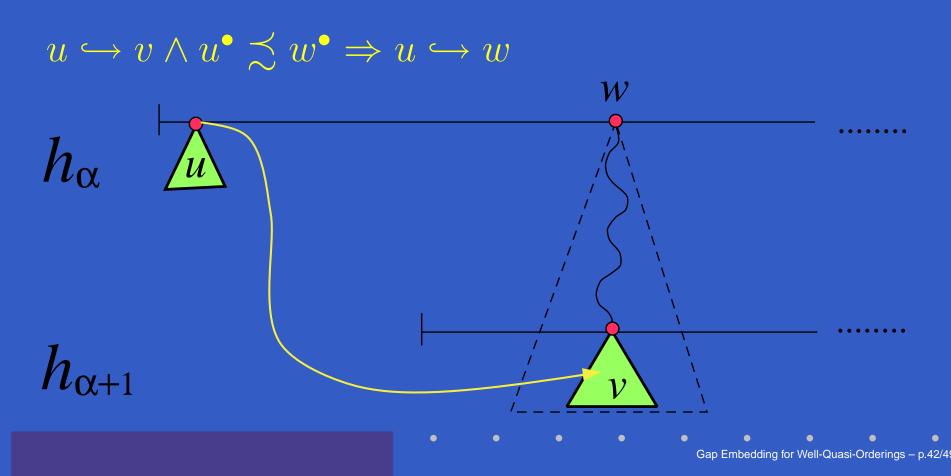
- For the appending to result in a bad sequence, need to maintain special invariants throughout induction:
- Root labels increasing in both directions: Rows and columns.
- Row increase achieved by Ramsey the question is at what stage take an increasing subsequence.

• Reason for root increase in rows: So that $h_{\alpha+1} := h_{\alpha} \hat{\ } h_{\alpha+1}$ is bad.

• Reason for root increase in rows: So that $h_{\alpha+1} := h_{\alpha} h_{\alpha+1}$ is bad.

 $u \hookrightarrow v \land u^{\bullet} \precsim w^{\bullet} \Rightarrow u \hookrightarrow w$

• Reason for root increase in rows: So that $h_{\alpha+1} := h_{\alpha} \hat{\ } h_{\alpha+1}$ is bad.



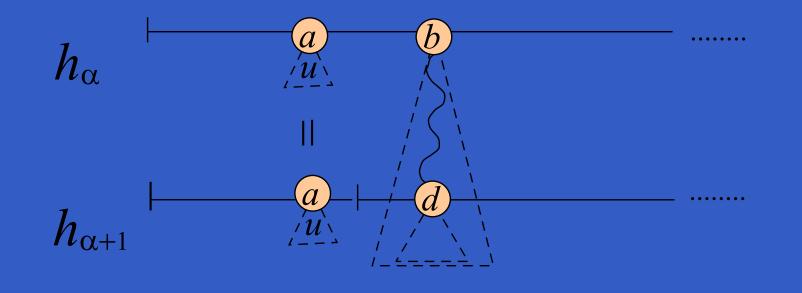
• Reason for root increase in columns: So that $h_{\alpha+1} := h_{\alpha} \hat{\ } h_{\alpha+1}$ is increasing.

• Reason for root increase in columns: So that $h_{\alpha+1} := h_{\alpha} \hat{h}_{\alpha+1}$ is increasing.

 $a\precsim b\precsim d\Rightarrow a\precsim d$

• Reason for root increase in columns: So that $h_{\alpha+1} := h_{\alpha} \hat{h}_{\alpha+1}$ is increasing.

 $a\precsim b\precsim d\Rightarrow a\precsim d$



Gap Embedding for Well-Quasi-Orderings - p.43/4

Ordinal Labels

 For Column increase: Taking only root increasing bad sequences suffices in this case.

Ordinal Labels

- For Column increase: Taking only root increasing bad sequences suffices in this case.
- Each induction step take the lexicographic minimal sequence w.r.t. roots from $Increasing(Subtrees(h_{\alpha}))$

Ordinal Labels

- For Column increase: Taking only root increasing bad sequences suffices in this case.
- Each induction step take the lexicographic minimal sequence w.r.t. roots from $Increasing(Subtrees(h_{\alpha}))$
- This ensures column root increase: Otherwise, had to choose $h_{\alpha+1}(n)$ earlier $(n := \min dom(h_{\alpha+1})).$

 For column root increase need the condition that nodes are comparable to their ancestors!

- For column root increase need the condition that nodes are comparable to their ancestors!
- The previous construction not suffices.

- For column root increase need the condition that nodes are comparable to their ancestors!
- The previous construction insufficient.
- Intuition: There are many lexicographic minimal sequences to choose from at each step → Either doesn't contradict Lex minimality, hence not column increasing, or appending doesn't yields a bad sequence.

Solution: Look at all the bad sequences each step, not just root increasing ones!

- Solution: Look at all the bad sequences each step, not just root increasing ones!
- Then take the lexicographic minimal w.r.t. roots.

- Solution: Look at all the bad sequences each step, not just root increasing ones!
- Then take the lexicographic minimal w.r.t. roots.
- And only then, take a root increasing subsequence from the chosen one!

 This approach also simplifies the proof:
 Column root increase achieved since otherwise contradiction with the preceding step alone, and not some early stage.

• For λ a limit ordinal:

$$h_{\lambda}(i) := \lim_{\alpha \to \lambda} h_{\alpha}(i)$$

۲

• For λ a limit ordinal:

 $h_{\lambda}(i) := \lim_{\alpha \to \lambda} h_{\alpha}(i)$

 $h_{\lambda} := Subtrees(h_{\lambda})$

• For λ a limit ordinal:

 $h_{\lambda}(i) := \lim_{lpha o \lambda} h_{lpha}(i)$

 $h_{\lambda} := Subtrees(h_{\lambda})$

 $h_{\lambda} := Increasing \ Lex(h_{\lambda})$

• For λ a limit ordinal:

 $h_{\lambda}(i) := \lim_{\alpha \to \lambda} h_{\alpha}(i)$

 $h_{\lambda} := Subtrees(h_{\lambda})$

 $h_{\lambda} := Increasing \ Lex(h_{\lambda})$

It works! (believe me)

THE END