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Part I

Introduction
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Orders

Definition. A Quasi Order is a reflexive and
transitive relation.
Definition. A set A is Well Quasi Ordered under
- if for all infinite sequences from A:

a1, a2, a3, . . .

there exists some i < j such that ai - aj.
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Good/Bad Sequences

Definition. A sequence a1, a2, a3, . . . s.t. for
every i < j, ai 6- aj holds is called a bad
sequence; otherwise called good.

ai and aj are comparable if either a - b or b - a;
otherwise they are incomparable. If ai, aj are
incomparable for all i, j then the sequence is an
antichain.
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Illustration of a well-partial ordering
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Equivalent Definitions for WQO

• Q is a WQO.

• Q has no infinite strictly decreasing chains
and no infinite antichains (Ramsey).

• Any infinite Q-sequence contains an
increasing chain (Ramsey).

• Every linear extension of % on Q/≈ is a
well-order.
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Tree embedding

Definition. For two labelled trees s is embedded
into t if there is a 1-1 function f , mapping vertices
to - vertices and edges to unique disjoint paths.
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Tree embedding

Formally:
• for all nodes v, u in s,

f(v ∧ u) = f(v) ∧ f(u) ,

where a ∧ b denotes the closest common
ancestor of a, b

• v - f(v)
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Kruskal’s Theorem

Theorem. (Kruskal 1960) Finite trees are wqo
under the embedding relation.

Hence, every infinite sequence of trees is a good
sequence.
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Gap Embedding

Definition. (Gap embedding) s is embedded
with gaps in t (denoted s ↪→ t) if there is an
embedding f : s→ t satisfying:

Gap condition: For all edges (u, v) in s and for

all w in the path from f(u) to f(v) in t, w % v ;

Root gap condition: u % r(s) for all vertices u in

the access path from t• to f(s•).
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Gap Embedding
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Known Results

Theorem ([Kříž ’89]) The set of finite trees with
ordinal labels is a wqo under gap embedding.

(Proved a similar result for infinite trees [’95 Kříž].)
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Our Result

Definition. Given a tree path [u, v], we say that
the path is comparable if all the vertices in it have
comparable labels, that is,
∀x, y ∈ [u, v]. x - y ∨ y - x.

Theorem. The set of finite trees with well quasi
ordered labels, with each node comparable to its
ancestors, is a wqo under gap embedding.
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Our Result

Let Q be a wqo and let Tk be the set of all trees
such that each path in a tree can be partitioned
into some fixed k∈N or less comparable
sub-paths.

u

v
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Our Result

Main Theorem Tk is wqo under gap
embedding.
This is an optimal setting for partiality on nodes

ordering:
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Our Result

Proposition. If the node ordering is not total
then finite trees are not wqo under gap
embedding.
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Theorem proves that this is the canonic counter

example.
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Part II

Kruskal’s Theorem —
Proof Idea
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The Proof of Kruskal’s Theorem

Theorem. (Kruskal 1960) Finite trees are wqo
under the embedding relation.

Kruskal’s original proof (’60): Long, constructive
We shall see:

Nash-Williams’s proof (’63): Short, simple, non-

constructive
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Higman’s Lemma

Definition. Let Q be a quasi order. We denote
by [Q]<ω the set of all finite sequences from Q.

For s, t ∈ [Q]<ω we say that there is an em-

bedding of s into t if there is a 1-1 mapping f

from s into t such that for all si ∈ s, si - f(si).

a b b a bb bd
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Higman’s Lemma

Theorem. (Higman ’52) : If Q is wqo then [Q]<ω

is wqo too.

Proof: By a Minimal Bad Sequence method.
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Higman’s Lemma: Proof

Assume there is a bad sequence.

Take a minimal bad sequence, w.r.t. the length of
each string (finite sequence).
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Assume there is a bad sequence.
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each string (finite sequence).

T:= a , b e, e, f a, f, d, aa,c,d

Gap Embedding for Well-Quasi-Orderings – p.22/49



Higman’s Lemma: Proof (cont.)

Take off the first element of each string (T is bad
⇒ there is no empty string in T ). Denote by S.

T:= a , b e, e, f a, f, d, aa,c,d

S:=      b     e, f     f, d, a   c,d
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Higman’s Lemma: Proof (cont.)

S contains no infinite bad subsequence S ′, or
else contradict minimality of T :

T:= a , b e, e, f a, f, d, aa,c,d

S:=      b     e, f     f, d, a   c,d

S':=     f, d, a   c,d
T^S':=     f, d, a   c,d   a , b
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Higman’s Lemma: Proof (cont.)

S contains no infinite bad subsequence S ′, or
else contradict minimality of T :

T:= a , b e, e, f a, f, d, aa,c,d

S:=      b     e, f     f, d, a   c,d

S:=     f, d, a   c,d
T^S:=     f, d, a   c,d   a , b
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Higman’s Lemma: Proof (cont.)

T contains an infinite subsequence with
increasing heads.

Since S contains no infinite
bad subsequence, the corresponding
subsequence of S contains an embedded pair:

contradiction to T ’s badness.

¤
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Kruskal’s Theorem: Proof Idea

Find a Minimal Bad Sequence: No subsequence
of its children is bad!
Minimality w.r.t sizes of trees suffices.

Let S be the set of T ’s children.
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Kruskal’s Theorem: Proof Idea (cont.)

No subsequence of children is bad: Otherwise
there would be a bad sequence S ′ ⊆ S appended
with T ’s prefix: Contradict minimality of T .
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Kruskal’s Theorem: Proof Idea (cont.)
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Kruskal’s Theorem: Proof Idea (cont.)
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Kruskal’s Theorem: Proof Idea (cont.)

No subsequence of children is bad: Otherwise
there would be a bad sequence S ′ ⊆ S appended
with T ’s prefix: Contradict minimality of T .
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Kruskal’s Theorem: Proof Idea (cont.)

Note that u embedded in v =⇒ u embedded
in t. Contradicts badness of T . Thus, S is WQO.

T:=

S':=
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Kruskal’s Theorem: Proof Idea (cont.)

Note that u embedded in v =⇒ u embedded
in t. Contradicts badness of T . Thus, S is WQO.

T:=

S':=

........ 

........ 

T^S':= ........ 

u

u v

t
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Kruskal’s Theorem: Proof Idea (cont.)

Let T ′ ⊆ T be root increasing and S ′ ⊆ S the
corresponding sequence of children.

S is wqo ⇒ Higman’s Lemma yields S ′ contains
an embedded pair.

Contradiction to T ′s badness!

¤
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Kruskal’s Theorem: Proof Idea (cont.)
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Kruskal’s Theorem: Proof Idea (cont.)

Let T ′ ⊆ T be root increasing and S ′ ⊆ S the
corresponding sequence of children.
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Kruskal’s Theorem: Proof Idea (cont.)

Let T ′ ⊆ T be root increasing and S ′ ⊆ S the
corresponding sequence of children.
S is wqo ⇒ Higman’s Lemma yields S ′ contains
an embedded pair.

Contradiction to T ′s badness!
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Part III

Gap Embedding
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Gap Embedding

Definition. (Gap embedding) s is embedded
with gaps in t (s ↪→ t) if there is an embedding
f : s→ t satisfying:

Gap condition: For all edges (u, v) in s and for

all w in the path from f(u) to f(v) in t, w % v ;

Root gap condition: u % r(s) for all vertices u in

the access path from t• to f(s•).
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Gap Embedding
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Gap Embedding

Theorem. The set of finite trees with ordinal
labels are wqo under gap embedding.

Proof method: again, Nash-Williams.

The problem: Construction of a minimal bad se-

quence.
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Gap Embedding: Proof Idea

The problem: Construction of a minimal bad
sequence.
Minimality w.r.t size of trees won’t work:

• We need the root gap condition for induction:
"Higman’s stage" maps root to root.

• Thus, we can’t prove that S the set of children
of the minimal sequence T is WQO:
T^S ′ not necessarily bad.
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Gap Embedding: Proof Idea

T’:=

S’:=

........ 

........ 
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Gap Embedding: Proof Idea

Solution: Prove the existence of a minimal bad
sequence h, i.e. with no bad children
subsequences directly.

• By inductive construction of bad sequences
of children, this process must end sometime
via a cardinality argument =⇒

• There exists a bad sequence h with NO bad
subsequence S.
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Gap Embedding: The Construction

Assume the process doesn’t end, i.e. no minimal
bad sequence. Build by transfinite induction an
infinite table H of (presumable) size ω1 × ω:

• Each row hα is a bad sequence of length ω.

• By induction build next row hα+1 from the
subtrees of hα.
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Gap Embedding: The Construction
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Gap Embedding: The Construction

• For a limit ordinal λ, row hλ must converge
since trees are finite.

• The construction must terminate before ω1

(first uncountable ordinal), since we cannot
take more than ℵ0 many subtrees.
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Gap Embedding: The Construction

• Difficulty: The rows might vanish in the limit
case! ⇒

• We need to append the preceding row to the
new one to compensate for this (close to TˆS ′

in Nash-Williams’ proof) ⇒
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Gap Embedding: The Construction

• For the appending to result in a bad
sequence, need to maintain special invariants
throughout induction:

• Root labels increasing in both directions:
Rows and columns.

• Rows increase achieved by Ramsey — the
question is at what stage take an increasing
subsequence.
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Gap Embedding: The Construction

• For the appending to result in a bad
sequence, need to maintain special invariants
throughout induction:

• Root labels increasing in both directions:
Rows and columns.

• Row increase achieved by Ramsey — the
question is at what stage take an increasing
subsequence.
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Gap Embedding: The Construction

• Reason for root increase in rows: So that
hα+1 := hαˆhα+1 is bad.

u ↪→ v ∧ u• - w• ⇒ u ↪→ w
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Gap Embedding: The Construction

• Reason for root increase in rows: So that
hα+1 := hαˆhα+1 is bad.

u ↪→ v ∧ u• - w• ⇒ u ↪→ w

hα
........ 

........ 
hα+1

u

v

w
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Gap Embedding: The Construction

• Reason for root increase in columns: So that
hα+1 := hαˆhα+1 is increasing.

a - b - d⇒ a - d
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Gap Embedding: The Construction

• Reason for root increase in columns: So that
hα+1 := hαˆhα+1 is increasing.

a - b - d⇒ a - d

a
........ 

........ 

a+1
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Ordinal Labels

• For Column increase: Taking only root
increasing bad sequences suffices in this
case.

• Each induction step take the lexicographic
minimal sequence w.r.t. roots from
Increasing(Subtrees(hα))

• This ensures column root increase:
Otherwise, had to choose hα+1(n) earlier
(n := min dom(hα+1)).
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WQO Labels

• For column root increase need the
condition that nodes are comparable to their
ancestors!

• The previous construction not suffices.

• (Intuition: There are many lexicographic
minimal sequences to choose from each step
⇒ Either doesn’t contradict Lex minimality,
hence not column increasing, or appending
doesn’t yields a bad sequence.)
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WQO Labels

• For column root increase need the
condition that nodes are comparable to their
ancestors!

• The previous construction    insufficient..

• Intuition: There are many lexicographic
minimal sequences to choose from at each    step
⇒ Either doesn’t contradict Lex minimality,
hence not column increasing, or appending
doesn’t yields a bad sequence.
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WQO Labels

• Solution: Look at all the bad sequences each
step, not just root increasing ones!

• Then take the lexicographic minimal w.r.t.
roots.

• And only then, take a root increasing
subsequence from the chosen one!
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WQO Labels

• This approach also simplifies the proof:
Column root increase achieved since
otherwise contradiction with the preceding
step alone, and not some early stage.
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The Limit Step

• For λ a limit ordinal:

hλ(i) := lim
α→λ

hα(i)

•

hλ := Subtrees(hλ)

•

hλ := Increasing Lex(hλ)

It works! (believe me)
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THE END
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