
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tentative Course Outline

```
1. Introduction
8. Modularity
2. Termination
9. Unification
3. Church-Rosser
10. Induction
4. Orthogonality
11. Polynomials
5. Diagrams
12. Boolean Rings
6. Completion
13. Extensions
7. Saturation
14. Open Problems
\#13 Semantic Unification
```


Sources

- Terese, Sect. 7.7
- Jouannaud, Sect. 6.2-3
- Baader \& Snyder Handout

A Simple Calendar: 12 months of 30 days
months: $0,1, \ldots, 11$
days: $0,1, \ldots, 29$
years: $\ldots,-2,-1,0,1,2, \ldots$
fixed-from-simple $\left(\begin{array}{|l|l|l|}\hline \text { month } & \text { day } & \text { year } \\ \hline\end{array} \quad \stackrel{\text { def }}{=}\right.$
simple-epoch - 1
$+360 \cdot$ year
$+30 \cdot$ month

+ day
:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goal Solving

- Given N,
- find d,m,y such that

1. fixed-from-simple $([d, m, y])=? N$
2. $0 \leq d<30=? T$ \qquad
3. $0 \leq m<12=$? T
\qquad
\qquad

Syntactic Unification

- We ask whether two terms s,t can be made identical:
$\exists \sigma . \mathrm{Eq} \mid=s \sigma=t \sigma$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Trivial Goal	
$=====$	
$s=? s$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Occurs Check

F

$=========\quad x$ within +1
$x=?+[x]$
\qquad
\qquad
\qquad
\qquad

Semantic Unification

－We ask whether two terms s，t can be made equal：

$\exists \sigma . E \mid=s \sigma=\dagger \sigma$

British Museum Method

－Try every substitution σ
－Check if $\mathrm{E} \mid=s \sigma=\dagger \sigma$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Expand Goal

$x 1=$? $u 1, \ldots, x n=$? un, $r=$? $t, x=f(x 1, \ldots, x n)$

$$
x=? ~ t
$$

17

Completeness Proof Sketch

- Suppose $s=$? t has a solution σ
- Consider proof
$s \sigma=\ldots=v=w=. . .=\dagger \sigma$
where each step uses an axiom in E
- Show that applying rule to $s=$? † yields smaller solvable subgoals
- Measure by number of non-eliminated variables in goal and number of symbols in proof

Case Analysis

1. No top application of axiom

- Decompose and consider proofs of sio $=\dagger i \sigma$

2. $v=w$ is first top application

- Mutate and consider sio = uio, $r \tau=\dagger \sigma$

3. $x=$? $\dagger(n o x$ in $\dagger)$

- Eliminate x and $x \sigma$ is $\dagger \sigma$

4. $x=$? \dagger

- Expand and consider xio $=\dagger i \sigma, r \tau=\dagger \sigma$

Narrowing

- Refine the set of solutions to a problem
- If every term has a unique $n f$, then we need only look for normal-form substitutions

Narrowing

- Apply a minimal substitution that allows for a rewrite
- $u[s]=$? v narrows to $u \sigma[r \sigma]=$? vo if

1. s is not a variable
2. $I \rightarrow r$ is a rule
3. $\sigma=m g u(s, l)$
\qquad

$$
s 1=? u 1, \ldots, s n=? \text { un, } r=? ~ \dagger
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Decidable Cases

- Given a terminating, confluent system for E
- Unification is still undecidable. Why?

Decidable Cases

- Every non-ground right side is a variable [Hullot, 1980].
- Every non-ground right side is a constructor term [Dershowitz et al., 1992].
- Every non-ground right side is a proper subterm of its left side [Narendran, Pfenning and Statman, 1997].
- Every non-ground right side is either a constructor term or a proper subterm of its left side [Mitra, 1994].
- Every right side is composed of constructors and proper subterms of its left side [Mitra, 1994].

Cont'd

- All variables are shallow on the left side [Christian, 1992]
- The system is linear and every variable that appears on both sides is shallow on both sides (convergence is unnecessary) [Nieuwenhuis, 1998].
- The system is linear and the right side of every f-rule is either a constructor term or a proper subterm of the left side, except for at most one right side that may be a value context with a single subterm $g\left(\ldots, r_{i}, \ldots\right)$, where every r_{i} is either a variable or a value Dershowitz and Mitra, 1992].
- The system is linear and the right side of every f-rule is a constructor term, except for at most one right side that may be a constructor context with a single subterm $g\left(\ldots, r_{i}, \ldots\right)$, where every r_{i} is either a variable or a value [Mitra, 1994]

Function Inversion

- One side of goal equation has no variables
- Assume system is left-linear (or else same as unification)
- Assume confluent (for ground terms)

$$
\begin{array}{rlrl}
x+0 & \rightarrow x & s(x)<s(y) & \rightarrow x<y \\
x+s(y) & \rightarrow s(x+y) & 0<s(y) & \rightarrow T \\
x \times 0 & \rightarrow 0 & 0<0 & \rightarrow F \\
x \times s(y) & \rightarrow(x \times y)+x & s(x)<0 & \rightarrow F \\
& & \\
& s(x)=? s(y) & \rightarrow x=^{?} y \\
s(x)=? & \rightarrow F \\
& 0=? s(y) & \rightarrow F
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Method

Decompose: $\frac{f\left(s_{1}, \ldots, s_{n}\right) \rightarrow{ }^{\top} f\left(t_{1}, \ldots, t_{n}\right)}{s_{1}+{ }^{7} t_{1}, \ldots, s_{n} \rightarrow{ }^{7} t_{n}}$
Mutate: $\quad \begin{array}{ll}\frac{f\left(s_{1}, \ldots, s_{n}\right) \rightarrow ?}{} s_{n} \\ s_{1}+l_{1} l_{1} \rho, \ldots, s_{n} \rightarrow{ }^{7} l_{n} \rho\end{array} \quad \begin{aligned} & \rho \text { is a solution to } r \rightarrow ? \\ & t ; f\left(h_{0}, \ldots, l_{n}\right) \rightarrow r \text { is a } \\ & \text { (renamed) rule in } R\end{aligned}$
\qquad
\qquad
\qquad
\qquad
\#13 Semantic Unification
29
\qquad
\qquad
\qquad

Winning Strategy

Repeat
Try
Ignore
Eliminate
Combine \qquad
Decompose
Mutate
\#13 Semantic Unification

Higher-Order Unification

- We ask whether two lambda terms s,t can be made equal:
$\exists \sigma . \lambda \mid=s \sigma=\dagger \sigma$

