Rewrite Systems

Autumn 2004

Famous Equations

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
F=m a \\
e^{i \pi+1}=0 \\
\nabla \times E=-\partial B / \partial t \\
E=m c^{2}
\end{gathered}
$$

Subject

- Equations
- Reasoning with equations
- solving equations
- proving identities
- Computing with equations
- rewriting by pattern matching
- goal solving by unification

Tentative Course Outline

1. Introduction
2. Modularity
3. Termination
4. Unification
5. Church-Rosser
6. Induction
7. Orthogonality
8. Polynomials
9. Diagrams
10. Boolean Rings
11. Completion
12. Extensions
13. Saturation
14. Open Problems

Mechanics

- Prerequisites
- Website
- Textbook
- Homework
- Exam

Website

- ~nachumd/rewrite
- registration (email address)
- outline
- notes (~nachumd/papers/hand-final.pdf)
- information (links)

Today

- Chap. 0 of Terese
- Link on my page to
- http://assets.cambridge.org/052139/1156/ sample/0521391156WS.pdf
- Beginning of Chap. 5

Introduction

- History
- Applications
- Examples
- Definitions

Applications

- Symbolic Computation
- Functional Programming Languages
- Miranda, Haskell, ML, Curry, Refine, Obj
- Semantics of Programming Languages
- Automated Deduction
- Robbins Algebra
- Verification
- Modelling Verilog
- Hardware Synthesis
- Bluespec @ MIT

Braid Equivalences

String Rewriting

A string rewriting system is composed of

- alphabet Σ
- defines set Σ^{\star} of words
- rules $R \subseteq \Sigma^{\star} \times \Sigma^{\star}$
- define rewrite relation \rightarrow

Marble State

Terms

- Signature $\Sigma=(S, \#, X)$
- S set of symbols
- arity function \#:S $\rightarrow \mathrm{N}$
- variables X
- Defines set of first-order terms (with variables)

Example

- $\Sigma=(\{+, s, 0\}, \#,\{x, y, \ldots\})$
\#(+)=2, \#(s)=1, \#(0)=0
- +/2, s/1,0/0
- $R=\{+(s(x), y) \rightarrow s(+(x, y))$, $+(0, x) \rightarrow x\}$

Basics

- substitution: $f\left(t_{1}, \ldots, t_{n}\right){ }^{\sigma}=f\left(t_{1}{ }^{\sigma}, \ldots, t_{n}{ }^{\sigma}\right)$ homomorphism on the term algebra
- context $C\left[_\right]$is a term with a hole \square $C[t]=C\left[_\right]^{\sigma}$ where $\square^{\sigma}=\dagger, x^{\sigma}=x$

Term Rewriting

A term rewriting system is composed of

- signature Σ defining terms T
- rules $R \subseteq T \times T$
- define rewrite relation \rightarrow

Pattern Matching

- Left side of rules are applied if they match a subterm
- If match, replace with corresponding right side

Semantics

- abstract reduction system $\left(T, \rightarrow_{R}\right)$ where \rightarrow_{R} is the smallest rewrite relation containing R
- replaces "equals for equals"
- a relation S on terms is a rewrite relation iff
- \dagger S u implies $\dagger^{\sigma} S u^{\sigma}$ for any substitution σ
- \dagger S u implies C[\dagger] S C[u] for any context
\qquad

Normal Form

- Element to which no rule applies
- Questions
- Existence
- Uniqueness

Disjunctive Normal Form

$$
\begin{aligned}
& \neg \neg x \rightarrow x \\
& \neg(x \wedge y) \rightarrow(\neg x) \vee(\neg y) \\
& \neg(x \vee y) \rightarrow(\neg x) \wedge(\neg y) \\
& x \wedge(y \vee z) \rightarrow(x \wedge y) \vee(x \wedge z) \\
&(y \vee z) \wedge x \rightarrow(y \wedge x) \vee(z \wedge x)
\end{aligned}
$$

Growth Problem

$$
\begin{gathered}
\text { Quotient Equations } \\
\operatorname{minus}(x, 0)=x \\
\operatorname{minus}(s(x), s(y))=\operatorname{minus}(x, y) \\
\operatorname{quot}(0, s(y))=0 \\
\operatorname{quot}(s(x), s(y))=s(q u o t(\operatorname{minus}(x, y), s(y)))
\end{gathered}
$$

Append \& Reverse

$\square @ z \rightarrow z$
$(x: y) @ z \rightarrow x:(y @ z)$
$\square^{r} \rightarrow \square$
$(x: y)^{r} \rightarrow y^{r} @(x: \square)$

List Functions

- Reverse a list
fun reverse nil = nil
| reverse (x::xs) =
append ((reverse $x s),[x]$);
- Append lists
fun append(nil, ys) $=y s$ | append($x:: x s, y s)=x:: \operatorname{append}(x s, y s)$;

Types in ML

$f: A \rightarrow B$ means
for every $x \in A$,
$f(x)=\left\{\begin{array}{l}\text { some element } y=f(x) \in B \\ \text { run forever } \\ \text { terminate with an exception }\end{array}\right.$

In words, "if $f(x)$ terminates normally, then $f(x) \in B$."

Higher-Order

- Apply function to every element of list fun map (f, nil) $=$ nil

$$
\text { | map }(f, x:: x s)=f(x):: \operatorname{map}(f, x s) ;
$$

$\operatorname{map}(f n x=>x+1,[1,2,3]) ; \quad[2,3,4]$

Value Declarations

- General form
val <pat> = <exp>
- Examples
val myTuple = ("Conrad", "Lorenz");
$\operatorname{val}(x, y)=$ myTuple;
val myList $=[1,2,3,4]$;
val $x:$:rest $=$ myList;

Compound Types

- Tuples
- (4, 5, "noxious") : int * int * string
- Lists
- nil
- 1 :: $[2,3,4]$ infix cons notation
- Records
- \{name = "Fido", hungry=true\}
: \{name : string, hungry : bool\}

Datatypes

- Recursively defined data structure datatype tree = leaf of int \mid node of int*tree*tree
node(4, node(3,leaf(1), leaf(2)),
node(5,leaf(6), leaf(7))
)

Automated Deduction

Robbins Algebra

$$
\neg(\neg(x \vee y) \vee \neg(x \vee \neg y))=x
$$

Equational Reasoning

- Reflexivity $x=x$
- Commutativity $x=y=>y=x$
- Transitivity $x=y \& y=z=>x=z$
- Functional Reflexivity $x=x^{\prime} \& y=y^{\prime}=>f(x, y)=f\left(x^{\prime}, y^{\prime}\right)$

Robbins Algebras are Boolean

- 60-year old conjecture
- 20 years of computer attempts
- Solved by McCune in 1996
- 8 days on Unix workstation
- 50,000 equations inferred
- 2,500,000 attempted rewrites
- 12-step proof (of main lemma)
\qquad

Word Problems

- Given an equational theory E
- Does an equation $g=d$ follow?
- Does an identity $s=\dagger$ follow?

Undecidable Problem

$a b a a b b=b b a a b a$
$a a b a b b a=b b a a a b a$
abaaabb = abbabaa
bbbaabbaaba $=$ bbbaabbaaaa $a a a b b a a b a=b b a a a a$

Turing Machine System

TM transition SRS rule
$q, a \mapsto p, c, R \quad q a \rightarrow c p$
$q, B \mapsto p, c, R \quad q \# \rightarrow c p \#$
$q, a \mapsto p, c, L \quad x q a \rightarrow p x c$
(every tape symbol x)

Turing Machines

- Deterministic or nondeterministic, TM
- One-way infinite tape
- Represent instantaneous description (with machine state at position of read head) of TM tape as a word with \$ at right end

Homework \#1

- Sorting program
- Numbers: $0,\left(\begin{array}{l}\text { (} 0 \text {), (s (s } 0) \text {),... }\end{array}\right.$
- Run my interpreter: hw1.scm
- Input: "your-sort-program.scm"
- Check that output is sorted - (0 (s 0) (s (s 0)) (s (s (s 0))))

