
1

Rewrite Systems

Autumn 2004

Rewrite Systems #1 2

Famous Equations

a 2+b 2 = c 2
F = ma
eiπ+1 = 0

∇xE = -∂B/∂t
E = mc 2

Rewrite Systems #1 3

Subject

• Equations
– Reasoning with equations

• solving equations
• proving identities

– Computing with equations
• rewriting by pattern matching
• goal solving by unification

Rewrite Systems #1 4

Beautiful Results

• Knuth’s Critical Pair Lemma
• Huet’s “diamond proof” of Newman’s

Lemma
• Nash-William’s proof of Kruskal’s Tree

Theorem

Rewrite Systems #1 5

Tentative Course Outline

1. Introduction
2. Termination
3. Church-Rosser
4. Orthogonality
5. Diagrams
6. Completion
7. Saturation

8. Modularity
9. Unification
10. Induction
11. Polynomials
12. Boolean Rings
13. Extensions
14. Open Problems

Rewrite Systems #1 6

Today

• Mechanics
• Introduction & Examples
• Programming
• Concepts
• Undecidability

2

Rewrite Systems #1 7

Mechanics

• Prerequisites
• Website
• Textbook
• Homework
• Exam

Rewrite Systems #1 8

Prerequisites

• A little algebra
• A little logic
• A little combinatorics
• A little computability

Rewrite Systems #1 9

Website

• ~nachumd/rewrite

– registration (email address)
– outline
– notes (~nachumd/papers/hand-final.pdf)
– information (links)

Rewrite Systems #1 10

Information
• Course Notes
• Surveys
• Systems
• Open Problems
• Papers
• Other Links
• Other Courses

– 1997 Mini-Course
– 2002 Course
– Miscellaneous

Rewrite Systems #1 11

Books

Rewrite Systems #1 12

Today

• Chap. 0 of Terese

• Link on my page to
– http://assets.cambridge.org/052139/1156/

sample/0521391156WS.pdf

• Beginning of Chap. 5

3

Rewrite Systems #1 13

Introduction

• History
• Applications
• Examples
• Definitions

Rewrite Systems #1 14

History

algebraic specificationsADJ1970s

orthogonal systemsRosen1973

Simple word problems in
universal algebra

Knuth&Bendix1970

rewriting systemsGorn1967

tree automataBrainerd etc.1960s

word problem in abstract
algebra

Evans1951

string rewrite rulesThue1914

Rewrite Systems #1 15

Applications
• Symbolic Computation
• Functional Programming Languages

– Miranda, Haskell, ML, Curry, Refine, Obj
• Semantics of Programming Languages
• Automated Deduction

– Robbins Algebra
• Verification

– Modelling Verilog
• Hardware Synthesis

– Bluespec @ MIT
Rewrite Systems #1 16

Knot Equivalences

Rewrite Systems #1 17

Knot Moves

Rewrite Systems #1 18

Braids

4

Rewrite Systems #1 19

Braid Equivalences

Rewrite Systems #1 20

Abstract Rewriting

An abstract rewriting system is composed
of

• elements T
• binary relation → ⊂ T ×T

– there may be several relations →, →, ...
– labelled transition system

Rewrite Systems #1 21

String Rewriting

A string rewriting system is composed of

• alphabet Σ
– defines set Σ* of words

• rules R ⊂ Σ* × Σ*
– define rewrite relation →

Rewrite Systems #1 22

Transitions

Rewrite Systems #1 23

Marble State

Rewrite Systems #1 24

Simple Rules

5

Rewrite Systems #1 25

Marble Move

Rewrite Systems #1 26

Flag Problem

Rewrite Systems #1 27

Dutch National Flag

Rewrite Systems #1 28

Non-trivial Problem

Rewrite Systems #1 29

Markov System

Rewrite Systems #1 30

Hydra vs. Hercules

6

Rewrite Systems #1 31

Terms

• Signature Σ=(S,#,X)
– S set of symbols
– arity function #:S→NN
–– variables variables X

• Defines set of first-order terms (with
variables)

Rewrite Systems #1 32

Term Rewriting

A term rewriting system is composed of

• signature Σ defining terms T

• rules R ⊂ T ×T
– define rewrite relation →

Rewrite Systems #1 33

Example

• Σ = ({+,s,0},#,{x,y,...})
#(+)=2, #(s)=1, #(0)=0
– +/2, s/1, 0/0

• R={ +(s(x),y)→s(+(x,y)),
+(0,x)→x }

Rewrite Systems #1 34

Pattern Matching

• Left side of rules are applied if they
match a subterm

• If match, replace with corresponding
right side

Rewrite Systems #1 35

Basics

• substitution: f(t1,...,tn)σ = f(t1
σ,...,tn

σ)
homomorphism on the term algebra

• context C[_] is a term with a hole ❏
C[t]=C[_]σ where ❏ σ=t, xσ=x

Rewrite Systems #1 36

Semantics

• abstract reduction system (T,→R) where
→R is the smallest rewrite relation
containing R

• replaces “equals for equals”
• a relation S on terms is a rewrite

relation iff
– t S u implies tσ S uσ for any substitution σ
– t S u implies C[t] S C[u] for any context

C[_]

7

Rewrite Systems #1 37

Normal Form

• Element to which no rule applies

• Questions
– Existence
– Uniqueness

Rewrite Systems #1 38

Symbolic Computation

Rewrite Systems #1 39

Disjunctive Normal Form

¬¬x → x
¬(x∧y) → (¬x)∨(¬y)
¬(x∨y) → (¬x)∧(¬y)

x∧(y∨z) → (x∧y)∨(x∧z)
(y∨z)∧x → (y∧x)∨(z∧x)

Rewrite Systems #1 40

Termination

• No endless sequence of rewrites

Rewrite Systems #1 41

Growth Problem

Rewrite Systems #1 42

Duplication Problem

8

Rewrite Systems #1 43

Toyama’s Problem

Rewrite Systems #1 44

Confluence

• Order of rewrites doesn’t matter

Rewrite Systems #1 45

Chameleon Isle

?

Rewrite Systems #1 46

Chamelion Problem

Rewrite Systems #1 47

Urn System

Rewrite Systems #1 48

Programming

9

Rewrite Systems #1 49

Quotient Equations

minus(x,0) = x
minus(s(x),s(y)) = minus(x,y)

quot(0,s(y)) = 0
quot(s(x),s(y)) = s(quot(minus(x,y),s(y)))

Rewrite Systems #1 50

Quotient Program

minus(x,0) → x
minus(s(x),s(y)) → minus(x,y)

quot(0,s(y)) → 0
quot(s(x),s(y)) → s(quot(minus(x,y),s(y)))

Rewrite Systems #1 51

Append & Reverse

 @z → z
(x:y)@z → x:(y@z)

r →
(x:y)r → yr@(x:)

Rewrite Systems #1 52

Haskell

reverse :: [[a]] -> [a]

reverse (x:xs) = (reverse xs) ++ [x]
reverse [] = []

Rewrite Systems #1 53

ML
• Robin Milner
• Logic for Computable

Functions
Stanford & Edinburgh

1972-1995
• Meta-Language

– Theorem proving
– Type system
– Higher-order functions

Rewrite Systems #1 54

Pattern Matching

fun length nil = 0
| length (x::s) = 1 + length(s);

10

Rewrite Systems #1 55

List Functions

• Reverse a list
fun reverse nil = nil

| reverse (x::xs) =
append ((reverse xs), [x]);

• Append lists
fun append(nil, ys) = ys

| append(x::xs, ys) = x :: append(xs, ys);

Rewrite Systems #1 56

Value Declarations
• General form

val <pat> = <exp>
• Examples

val myTuple = (“Conrad”, “Lorenz”);
val (x,y) = myTuple;
val myList = [1, 2, 3, 4];
val x::rest = myList;

Rewrite Systems #1 57

Types in ML

f : A → B means
for every x ∈ A,

some element y=f(x) ∈ B
f(x) = run forever

terminate with an exception

In words, “if f(x) terminates normally, then f(x)∈ B.”

Rewrite Systems #1 58

Compound Types

• Tuples
– (4, 5, “noxious”) : int * int * string

• Lists
– nil
– 1 :: [2, 3, 4] infix cons notation

• Records
– {name = “Fido”, hungry=true}

: {name : string, hungry : bool}

Rewrite Systems #1 59

Higher-Order

• Apply function to every element of list
fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);

map (fn x => x+1, [1,2,3]); [2,3,4]

Rewrite Systems #1 60

Higher-Order Functions

• Tactic is a function
• Method for combining tactics is a

function on functions
• Example:

f(tactic1, tactic2) =
λ formula. try tactic1(formula)

else tactic2 (formula)

11

Rewrite Systems #1 61

Datatypes

• Recursively defined data structure
datatype tree = leaf of int | node of

int*tree*tree

node(4, node(3,leaf(1), leaf(2)),
node(5,leaf(6), leaf(7))

)

4

5

76

3

21

Rewrite Systems #1 62

• Recursive function
fun sum (leaf n) = n
| sum (node(n,t1,t2)) = n + sum(t1) + sum(t2)

Rewrite Systems #1 63

Automated Deduction

Rewrite Systems #1 64

Equational Reasoning

• Reflexivity
x=x

• Commutativity
x=y => y=x

• Transitivity
x=y & y=z => x=z

• Functional Reflexivity
x=x’ & y=y’ => f(x,y)=f(x’,y’)

Rewrite Systems #1 65

Robbins Algebra

¬(¬(x ∨ y) ∨ ¬(x ∨ ¬y)) = x

Rewrite Systems #1 66

Robbins Algebras are Boolean

• 60-year old conjecture
• 20 years of computer attempts
• Solved by McCune in 1996
• 8 days on Unix workstation
• 50,000 equations inferred
• 2,500,000 attempted rewrites
• 12-step proof (of main lemma)

12

Rewrite Systems #1 67

Word Problems

• Given an equational theory E
• Does an equation g=d follow?
• Does an identity s=t follow?

Rewrite Systems #1 68

Undecidable Problem

ah = ha
oh = ho
at = ta
ot = to
tai = it
hoi = ih

that = itht

Rewrite Systems #1 69

Undecidable Problem

abaabb = bbaaba
aababba = bbaaaba
abaaabb = abbabaa

bbbaabbaaba = bbbaabbaaaa
aaaabbaaba = bbaaaa

Rewrite Systems #1 70

Turing Machines

• Deterministic or nondeterministic, TM
• One-way infinite tape
• Represent instantaneous description
(with machine state at position of
read head) of TM tape as a word with
$ at right end

Rewrite Systems #1 71

Turing Machine System

TM transition SRS rule

q,a |→ p,c,R qa → cp
q,B |→ p,c,R q# → cp#
q,a |→ p,c,L xqa → pxc

(every tape symbol x)

Rewrite Systems #1 72

Homework #1

• Sorting program
– Numbers: 0, (s 0), (s (s 0)),...

• Run my interpreter: hw1.scm
• Input: “your-sort-program.scm”

• Check that output is sorted
– (0 (s 0) (s (s 0)) (s (s (s 0))))

