Ordinal Arithmetic with List Structures

Nachum Dershowitz*
Edward M. Reingold
Department of Computer Science
University of Illinois at Urbana-Champaign
1304 W. Springfield Avenue
Urbana, Illinois 61801, USA
e-mail: \{nachum, reingold\}@cs.uiuc.edu

Abstract

We provide a set of "natural" requirements for well-orderings of (binary) list structures. We show that the resultant order-type is the successor of the first critical epsilon number.

The checker has to verify that the process comes to an end. Here again he should be assisted by the programmer giving a further definite assertion to be verified. This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops. To the pure mathematician it is natural to give an ordinal number. In this problem the ordinal might be $(n-r) \omega^{2}+(r-s) \omega+k$. A less highbrow form of the same thing would be to give the integer $2^{80}(n-r)+2^{40}(r-s)+k$. —Alan M. Turing (1949)

1 Introduction

A riddle-consider the Lisp-like function $f \Gamma$

$$
\begin{aligned}
& f(a)=a \\
& f(b)=b
\end{aligned}
$$

[^0]\[

f(\operatorname{cons}(x, y))= $$
\begin{cases}a & \text { if } x \equiv y \equiv a \Gamma \\ \operatorname{cons}(\operatorname{cons}(\ldots \operatorname{cons}(b, f(y)), y) \ldots, y) & \text { if } x \equiv b \text { and } y \neq b \Gamma \\ \operatorname{cons}(\operatorname{cons}(\ldots \operatorname{cons}(a, y), y) \ldots, y) & \text { if } x \equiv b \text { and } y \equiv a \Gamma \\ \operatorname{cons}(x, \operatorname{cons}(x, \ldots \operatorname{cons}(x, \operatorname{cons}(f(x), b) \ldots)) & \text { if } y \equiv b \text { and } x \not \equiv a \Gamma \\ \operatorname{cons}(x, \operatorname{cons}(x, \ldots \operatorname{cons}(x, \operatorname{cons}(x, a) \ldots))) & \text { if } y \equiv b \text { and } x \equiv a \Gamma \\ \operatorname{cons}(f(x), \operatorname{cons}(f(x), \ldots \operatorname{cons}(f(x), a) \ldots)) & \text { if } x \neq a, b \text { and } y \equiv a \Gamma \\ \operatorname{cons}(x, f(y)) & \text { otherwise. }\end{cases}
$$
\]

that maps binary trees with leaves labeled a or b to themselves．Ellipses represent repetitions of arbitrary length Γ so f is actually a multivalued func－ tion．Question：Is there any expression z over $a \Gamma b \Gamma$ and cons Γ such that $z, f(z), f(f(z)), f(f(f(z))), \ldots$ is an infinite sequence Γ or must every such sequence $\left\{f^{(n)}(z)\right\}_{n}$ end in all as or bs？This function is depicted in Fig－ ure 1 Twhere we use bullets（ \bullet ）for internal nodes（＂cons cells＂）and squares for leaves（atoms）．

The surprising answer is that no other infinite sequences are possible．
In general「such questions can be answered by using the notion of well－ ordering Γ stemming from the fundamental work of Cantor［1915］．Floyd Γ in his landmark paper［1967］Г envisioned proving termination of programs by showing that some ordinal－valued function decreases strictly with each repetition of a loop Гas did Turing before him（see the quotation above）．The well－ordering most commonly used is ω Гthe natural ordering of the natural numbers［DijkstraГ1976；GriesГ1981］「but lexicographic orderings（ ω^{n} ）also play an important part［Manna「1974］．Occasionally＂＂larger＂orderings have been used（for exampleГ［Dershowitz and MannaГ1979；DershowitzГ1987］）； see［DershowitzГ1987；Dershowitz and OkadaГ1988；CichonT1990］．

The riddle above is a termination question on binary trees one of the most pervasive data structures used in computer science．Like numbers Γ binary trees can be well－ordered in many ways．In this paperTwe give＂nat－ ural＂principles that such orderings ought to satisfy．We consider infinite binary trees「and show how a＂regular＂subclass－the trees representable as list structures in Lisp－more than suffice for all ordinals up to and including $\epsilon_{\epsilon_{\epsilon \ldots . .}}$ ． the first critical epsilon number．（Different notions of＂naturalness＂of ordinal notations are surveyed in［Crossley and KisterГ1986／1987］．）Con－ versely $o r d i n a l s$ up to and including $\epsilon_{\epsilon_{\epsilon}}$ ．can be neatly represented by this subclass of infinite binary trees．

In the next section Γ we consider natural orderings on binary trees Γ and some（known）consequences of those principles for finite trees．By imposing a lexicographic rule Γ we get－not surprisingly－an ϵ_{0} ordering．Then Γ in

Section 3Twe present our main resultsГthe extension of the natural ordering to arbitrary list structures Γ which correspond to the "rational" subset [Courcelle 1983] of infinite binary trees. We show that $\epsilon_{\epsilon_{\epsilon} \ldots}+1$ can be proved well-ordered by the Homeomorphic Embedding Theorem on infinite binary trees. Section 4 mentions related work on orderings of (finite) ordered treesПleading to orderings of type Γ_{0} Tthe first impredicative ordinal; the last section includes a few remarks on implications for program verification.

Nonempty lists are built from"cons" cells cons (x, y) containing two pointers Γx and y; pointers may point either to the empty list nil or to a cons cell. We use $|l|$ for the size of a list structure $l \Gamma$ that is Γ the number of cons cells and nil pointers in l. Thus Tfor example $\Gamma \mid$ nil $|=1 \Gamma| \operatorname{cons}($ nil, nil $) \mid=3 \Gamma$ and $|z|=2$ Twhen $z \equiv \operatorname{cons}($ nil,$z)$.

The orderings we deal with are really quasi-orderings; that is Γ they are not anti-symmetric. For a quasi-ordering \geq Fwe use \simeq for the intersection of \geq and its inverse \leq; the strict ordering $>$ is $\geq \cap \nsim$. We use \equiv for structural equality Γ and $\not \equiv$ for its complement.

2 Small Ordinals

The ordering principles we propose apply equally well to cyclic and acyclic list structures. We begin Γ therefore Γ with the more mundane Γ acyclic variety-that is Γ with finite binary trees.

2.1 Axioms of Ordering

Principle 1 (Growth). A tree is greater than or equivalent to its subtrees; that is,

$$
\operatorname{cons}(x, y) \geq x, y
$$

for all trees x, y.
Principle 2 (Monotonicity). Replacing a subtree by a greater or equivalent one results in a greater or equivalent tree; that is,

$$
x \geq y \Rightarrow\left\{\begin{array}{l}
\operatorname{cons}(x, z) \geq \operatorname{cons}(y, z) \\
\operatorname{cons}(z, x) \geq \operatorname{cons}(z, y),
\end{array}\right.
$$

for all trees x, y, z.

Okada and Steele [1988] relate any ordering on finite trees satisfying such principles to Ackermann's ordinal notation.

By "deleting" in a tree we mean replacing a subtree by one of its subtrees; "inserting" is the inverse operation.

Lemma 1. Deleting (inserting) results in a smaller (greater) or equivalent tree.

Proof. Follows from Growth and Monotonicity.
So「if t_{1} is homeomorphically embedded in $t_{2} \Gamma$ then $t_{1} \leq t_{2} \Gamma$ where \leq is any ordering satisfying Principles 1 and 2. (A tree t is homeomorphically embedded in a tree t^{\prime} if there's a mapping of nodes of t_{1} into nodes of t_{2} such that each edge of t_{1} corresponds to a disjoint path in t_{2}.)

Monotonicity implies that if $x^{\prime} \geq x$ and $y^{\prime} \geq y$ Г then $\operatorname{cons}\left(x^{\prime}, y^{\prime}\right) \geq$ $\operatorname{cons}(x, y)$. What .however should the ordering of $\operatorname{cons}(x, y)$ and $\operatorname{cons}\left(x^{\prime}, y^{\prime}\right)$ be when $x^{\prime}>x$ and $y>y^{\prime}$? We choose a lexicographic rule in which "left" is more significant than "right". NoteVhowever「that Lemma 1 implies that $\operatorname{cons}\left(x^{\prime}, y^{\prime}\right)<\operatorname{cons}(x, y)$ whenever $y>\operatorname{cons}\left(x^{\prime}, y^{\prime}\right)$. So Γ we can't just say that $x^{\prime}>x$ implies $\operatorname{cons}\left(x^{\prime}, y^{\prime}\right) \geq \operatorname{cons}(x, y)$. Hence Γ the following lexicographic principle is the strongest that can be formulated without violating our prior principles.

Principle 3 (Lexicography). If $x^{\prime}>x$ and $\operatorname{cons}\left(x^{\prime}, y^{\prime}\right) \geq y$, then $\operatorname{cons}\left(x^{\prime}, y^{\prime}\right) \geq \operatorname{cons}(x, y)$.

Let \geq be a minimal ordering satisfying Principles $1 \Gamma 2$ Tand 3 . (A "minimal" ordering is one that violates one of the principles if any pair $s \geq t$ is removed from the ordering.)

Theorem 1. The ordering \geq is total; that is $t_{1} \geq t_{2}$, or $t_{2} \geq t_{1}$, or both. Specifically,

$$
\operatorname{cons}\left(x^{\prime}, y^{\prime}\right) \geq \operatorname{cons}(x, y) \text { if and only if }\left\{\begin{array}{ll}
y^{\prime} \geq y & \text { if } x^{\prime} \simeq x, \\
\operatorname{cons}\left(x^{\prime}, y^{\prime}\right) \geq y & \text { (a) } x^{\prime}>x, \\
y^{\prime} \geq \operatorname{cons}(x, y) & \text { if } x^{\prime}<x
\end{array}\right. \text { (c). }
$$

Proof. By induction on size of the treesFthis definition-combined with the fact that the empty treeГnillis comparable with all trees (it is the smallest by virtue of the Growth Principle)-gives a total ordering. (Transitivity
of this definition can be shown by induction and case analysis．）This or－ dering clearly satisfies the principles．FurthermoreГany ordering satisfying the principles must satisfy the＂if＂direction Γ the first case of which follows from Monotonicity；the second「from Lexicography；and the third「from the Growth Principle and transitivity．

Lemma 2．For any trees x and y ，cons $(x, y)>$ nil．
Proof．Making $\operatorname{cons}(x, y) \geq$ nil $\not \geq \operatorname{cons}(x, y)$ still gives an ordering satisfying the principles．

Theorem 2．Tree comparison of finite trees t_{1} and t_{2} can be done in time $O\left(\left|t_{1}\right| \times\left|t_{2}\right|\right)$ ．

Proof．Follows from Theorem 1ГLemma 2 Tand induction on $\left|t_{1}\right|$ and $\left|t_{2}\right|$ ．

The ordering \geq is actually a quasi－orderingTfor

because Fin general厂
Lemma 3．If $x<y$ ，then $\operatorname{cons}(x, \operatorname{cons}(y, z)) \simeq \operatorname{cons}(y, z)$ ．
Proof．The inequality $\operatorname{cons}(x, \operatorname{cons}(y, z)) \geq \operatorname{cons}(y, z)$ follows from the Growth Principle；the other direction follows from Lexicography us－ ing Lemma 2.

2．2 Order－Preserving Mapping

One can map finite binary treesTunder the given ordering「to ordinals below ϵ_{0} in the following straightforward way：
Proposition 1．There is an order－preserving mapping from trees under \geq to the ordinals up to ϵ_{0} ：

$$
\begin{aligned}
\llbracket n i l \rrbracket & =0 \\
\llbracket \operatorname{cons}(x, y) \rrbracket & =\omega^{\llbracket x \rrbracket}+\llbracket y \rrbracket
\end{aligned}
$$

In other words，lists $\left(l_{1}, \ldots, l_{n}\right)$ are interpreted as the noncommutative sum $\omega^{\left[l_{1}\right]}+\cdots+\omega^{\left[l_{n}\right]}$ ．

This mapping is not one-to-one; as we just saw Γ there are equivalent Γ non-isomorphic trees. It is order-preserving. This means that for two finite binary trees t and $t^{\prime} \Gamma t \geq t^{\prime}$ if and only if $\llbracket t \rrbracket \geq \llbracket t^{\prime} \rrbracket$. Furthermore Γ there is a one-to-one correspondence between binary trees and expressions involving (non-commutative) addition and exponentiation. Since such expressions give all ordinals below ϵ_{0} Гour ordering is of order-type $\epsilon_{0} \Gamma$ too. Thus Γ expressions in Cantor Normal Form are in one-to-one correspondence with the equivalence classes on binary trees imposed by \simeq.

2.3 Embedding Theorem

As a special case of Higman's Lemma [HigmanT1952] Twe know thatTin any infinite sequence $\left\{t_{i}\right\}_{i<\omega}$ of finite binary trees Γ there must be two trees t_{j} and $t_{k}(j<k)$ such that t_{j} is homeomorphically embedded in t_{k}. In other words Γt_{k} can be obtained from t_{j} by deletion only. By Lemma 1 Γ it follows that $t_{j} \leq t_{k}$; hence Γ an infinite descending sequence of trees is impossible. In other wordsTour ordering is well-founded. We have already seen that \leq is order-isomorphic to ϵ_{0}. Since ϵ_{0} induction is equivalent to the consistency of Peano Arithmetic Γ this means that the Embedding Lemma of Higman cannot be proved in Peano Arithmetic [FriedmanT19??].

2.4 Arithmetic

The mapping from ordinals to binary trees gives a convenient data structure for representing ordinals below ϵ_{0}. Arithmetic operations (commutative addition \oplus Commutative multiplication \otimes Гand exponentiation) Γ and a predecessor operation to get fundamental sequences Γ are now easy to define;
the following correspondences are suggestive:

$$
\begin{array}{rlrl}
0 & \mapsto \text { nil } \\
1 & \mapsto \operatorname{cons}(n i l, n i l) & & \\
x \oplus n i l & \mapsto x \\
\operatorname{cons}(x, y) \oplus \operatorname{cons}\left(x^{\prime}, y^{\prime}\right) & \mapsto \operatorname{cons}\left(x, y \oplus \operatorname{cons}\left(x^{\prime}, y^{\prime}\right)\right) & \text { if } x \leq x^{\prime} \\
x \otimes n i l & \mapsto n i l \\
\operatorname{cons}(x, n i l) \otimes \operatorname{cons}\left(x^{\prime}, y^{\prime}\right) & \mapsto \operatorname{cons}\left(x \oplus x^{\prime}, \operatorname{cons}(x, n i l) \otimes y^{\prime}\right) & & \\
\operatorname{cons}(x, y) \otimes z & \mapsto(\operatorname{cons}(x, n i l) \otimes z) \oplus(y \otimes z) & & \\
\omega^{x} & \mapsto \operatorname{cons}(x, n i l) & & \\
\operatorname{pred}_{n}(\operatorname{cons}(n i l, n i l)) & \mapsto n i l & & \text { if } x \text { is a successor ordinal } \\
\operatorname{pred}_{n}(\operatorname{cons}(x, n i l)) & \mapsto \operatorname{cons}\left(\operatorname{pred}_{n}(x), n i l\right) \otimes n & \text { if } x \text { is a limit ordinal } \\
\operatorname{pred}_{n}(\operatorname{cons}(x, n i l)) & \mapsto \operatorname{cons}\left(\operatorname{pred} d_{n}(x), n i l\right) & \text { if } y \not \equiv \text { nil } \\
\operatorname{pred}_{n}(\operatorname{cons}(x, y)) & \mapsto \operatorname{cons}\left(x, p r e d_{n}(y)\right) &
\end{array}
$$

For exampleTthis binary-tree data structure could be used in implementing the computation of the various extensions of Ackermann's function (see Γ for exampleГ [Ketonen and Solovay [1981]). An ordinal-indexed function $A_{\alpha}(n)$ can be defined for ordinals α and natural numbers n by

$$
A_{\alpha}(n)= \begin{cases}2 n & \text { if } \alpha=0, n \geq 1 \Gamma \\ A_{\beta}^{(n)}(1) & \text { if } \alpha \text { is a successor ordinal } \beta+1 \Gamma \\ A_{\text {pred }_{n}(\alpha)}(n) & \text { if } \alpha \text { is a limit ordinal. }\end{cases}
$$

The computation of this function plays an important role in the unbounded search procedures of Reingold and Shen [1991]. MoreoverГ these search procedures themselves use ordinals to index the recursive calls.

These operations also make it easy to encode problems like the "Battle of Hydra and Hercules" of Kirby and Paris [1982] as hard-to-prove-well-defined functions on binary trees.

3 Medium Sized Ordinals

List structuresTin generalГcorrespond to "rational" binary treesTwhich are like ordinary binary trees Dut paths may be of length ω Г as long as there are only a finite number of distinct subtrees.

3.1 Axioms of Ordering

All the principles of Section 2.1 apply to this case as well Γ but an infinite number of deletions could increase a tree without violating Principles 1-3.

So Twe take the following extension of Principle 2 as axiomatic:
Principle 4 (Continuity). Replacing infinitely many subtrees by greater or equivalent ones results in a greater or equivalent tree.

Principles 1-4 do not Γ however Γ give a total ordering. We do not Γ for example「know how to order

An additional principle is called for:
Principle 5 (Dominance). If $x>y_{i}$, for all $i=1,2, \ldots$, then $\operatorname{cons}(x$, nil) $\geq \operatorname{cons}\left(y_{1}, \operatorname{cons}\left(y_{2}, \ldots\right)\right)$.

For finite trees Γ this is a direct consequence of Theorem 1.

3.2 Order-Preserving Mapping

It turns out that we can restrict ourselves to the class of list structures in which there are no cycles except self-loops. Call such a list normalized.

Theorem 3. For every rational binary tree t there is a normalized list ℓ such that $t \leq \ell \leq t$.

When comparing structures like $\ell \Gamma$ under \leq we mean to compared its (possibly) infinite tree expansion.

Proof. All cycles in the graph representation of a rational tree can be reduced to self loops as follows: If a full binary tree is homeomorphically embedded in t Then t is equivalent to the structure z such that $z \equiv \operatorname{cons}(z, z) \Gamma$ which is just a double self-loop:

Consider a cyclic graph $z \equiv \operatorname{cons}\left(x_{1}, \operatorname{cons}\left(x_{2}, \ldots, \operatorname{cons}\left(x_{n}, z\right)\right)\right)$:

If any of the x_{k} contains all of z as a subterm Then z both contains the full binary tree (obtained by deleting all other x_{i} and pruning x_{k} to what is left of z) and is contained by it (as are all binary trees). Hence \bar{z} is equivalent to the full binary tree.

If none of the x_{i} have z as a subterm Γ then Γ by induction on $|l|$ Twe can suppose that there is a normalized list among the x_{i} that has a maximal ordinal assignment. We have z less than or equal to the structure $z^{\prime} \equiv$ $\operatorname{cons}\left(\max \left\{x_{i}\right\}, z^{\prime}\right)$ by Monotonicity and z greater than or equal to z^{\prime} by Continuity. HenceTwe can replace the loop in z with the self-loop of z^{\prime}.

Similarly $\Gamma \equiv \operatorname{cons}\left(\ldots\left(\operatorname{cons}\left(\operatorname{cons}\left(z, x_{n}\right), x_{n-1}\right), \ldots\right), x_{1}\right) \Gamma$ that is Γ

can be replaced by the double-self-loop corresponding to the full tree or by a self-loop $z^{\prime} \equiv \operatorname{cons}\left(\max \left\{x_{i}\right\}, z^{\prime}\right)$.

An attempt to prove a result like Theorem 3 appears in [Brown[1979].
Proposition 2. There is an order-preserving mapping from normalized lists, under the above ordering, onto the ordinals up to and including $\epsilon_{\epsilon_{\epsilon \ldots .}}$.

Proof. The mapping from lists to ordinals is:

$$
\begin{array}{ll}
\llbracket \text { nil } & =0, \\
\llbracket t \text { such that } t \equiv \operatorname{cons}(t, x) \rrbracket & =\epsilon_{\llbracket x \rrbracket}, \\
\llbracket t \text { such that } t \equiv \operatorname{cons}(x, t) \rrbracket & =\omega^{\llbracket x \rrbracket+1} \\
\llbracket t \text { such that } t \equiv \operatorname{cons}(t, t) \rrbracket & =\epsilon_{\epsilon_{\epsilon \ldots \ldots}, \ldots}, \\
\llbracket \operatorname{cons}(x, y) \rrbracket & \left.=\omega \begin{array}{ll}
1 & \llbracket x \rrbracket \text { not a limit ordinal } \\
1 & \llbracket x \rrbracket \text { not an epsilon number and } y \not \equiv \text { nil } \\
0 & \text { otherwise }
\end{array}\right\}+ \begin{cases}\beta & \text { if } \llbracket \\
\llbracket y \rrbracket & \text { ot } \rrbracket\end{cases}
\end{array}
$$

(AdditionThereГis not commutative.) Its inverse is:

1. $\langle 0\rangle=$ nil
2. $\langle\alpha+\beta\rangle= \begin{cases}\operatorname{succ}(\langle\alpha\rangle) & \text { if } \beta=1 \Gamma \\ \operatorname{append}(\operatorname{succ}(\langle\alpha\rangle),\langle\beta\rangle) & \text { otherwise. }\end{cases}$
3. $\operatorname{succ}(t)= \begin{cases}\operatorname{cons}(\text { nil, nil }) & \text { if } t \equiv \text { nil } \Gamma \\ \operatorname{cons}(\operatorname{succ}(\operatorname{car}(t), \text { nil })) & \text { if } \operatorname{cdr}(t) \equiv t \Gamma \\ \operatorname{cons}(\operatorname{car}(t), \operatorname{succ}(\operatorname{cdr}(t))) & \text { otherwise. }\end{cases}$
4. $\left\langle\omega^{\alpha}\right\rangle= \begin{cases}z \text { such that } z \equiv \operatorname{cons}(\langle\beta\rangle, z) & \text { if } \alpha=\beta+1 \Gamma \\ \operatorname{cons}(\langle\alpha\rangle, \text { nil }) & \text { otherwise. }\end{cases}$
5. $\left\langle\epsilon_{\alpha}\right\rangle=z$ such that $z \equiv \operatorname{cons}(z,\langle\alpha\rangle)$.

Arithmetic and predecessors can be defined via these mappingsTor independently「as operations on listsFin a manner parallel to that of the previous section.

Theorem 4. For normalized lists ℓ and $\ell^{\prime}, \ell^{\prime} \geq \ell$ if and only if $\llbracket \ell^{\prime} \rrbracket \geq \llbracket \ell \rrbracket$.
Proof. There are three cases derived from the above mapping:

1. $\epsilon_{\alpha} \geq \epsilon_{\beta}$ if and only if $\alpha \geq \beta$.
2. $\omega^{\alpha}+\beta \geq \epsilon_{\gamma}$ if and only if $\alpha \geq \epsilon_{\gamma} \beta \geq \epsilon_{\gamma}$.
3. $\omega^{\alpha}+\beta \geq \omega^{\alpha^{\prime}}+\beta^{\prime}$ if and only if $\alpha>\alpha^{\prime}$ or ($\alpha=\alpha^{\prime}$ and $\beta \geq \beta^{\prime}$).

Corollary. For rational trees t and $t^{\prime}, t^{\prime} \geq t$ if and only if $\llbracket t^{\prime} \rrbracket \geq \llbracket t \rrbracket$, where $\llbracket t \rrbracket$ is the ordinal assigned to the normalized list equivalent to t.

Theorem 5. Normalized lists ℓ_{1} and ℓ_{2} can be compared in time $O\left(\left|\ell_{1}\right| \times\right.$ $\left|\ell_{2}\right|$).

Proof. Use the mapping in the above proposition and induction over $\left|\ell_{1}\right|$ and $\left|\ell_{2}\right|$.

Theorem 6. An arbitrary list ℓ can be normalized in time $O\left(|\ell|^{2}\right)$.

Returning to the riddle F we interpret a as 0Γ and b as a self-loop. Then Γ we have $\llbracket \operatorname{cons}(b, b) \rrbracket=\epsilon_{\epsilon_{\epsilon \ldots .}}$ and Γ in all cases (except a and $\left.b\right) \Gamma f$ gives a smaller ordinal:

3.3 Embedding Theorem

Nash-Williams' version of the Embedding Theorem [Nash-Williams下 1965] also holds for infinite ordered trees: In any infinite sequence $\left\{t_{i}\right\}_{i<\omega}$ of (finite or infinite) binary trees Γ there must be two trees t_{j} and $t_{k}(j<k)$ such that t_{j} is homeomorphically embedded in t_{k}. Since our ordering contains the embedding relationTwe have:

Theorem 7. The Embedding Theorem for infinite (rational) binary trees suffices to prove the well-ordering of $\epsilon_{\epsilon_{\epsilon}, \ldots}+1$.

A similar analysis of infinite Γ not necessarily rational binary trees may also be possible.

4 Bigger Ordinals

The epsilon number $\epsilon_{\epsilon_{\epsilon} \ldots}$ is $\phi_{2}(0)$ in the Veblen-Feferman-Schütte hierarchy [Veblen Г 1908; Feferman Г 1968; SchmidtГ 1976]. Less natural orderings on (nonbinary) ordered trees correspond to much larger ordinals in that hierarchy. In particular Γ some orderings based on Kruskal's Tree Theorem [KruskalГ 1960] correspond to the first impredicative ordinal $\Gamma \Gamma_{0} \Gamma$ and even to larger ones [FriedmanT19??; SimpsonT1985; SmoryńskiГ 1986; DershowitzГ1987; GallierГ1991]. The significance of Γ_{0} for computer science is discussed in [Gallier 1991].

5 Conclusions

It has been argued [Gries F 1979] that the natural numbers suffice for termination proofs Since the (maximum) number of iterations of any terminating deterministic (or bounded nondeterministic) program loop is fixed 5 depending only on the values of the variables and inputs when the loop is begun. This begs the issue however Γ since the proof that such a function exists may require transfinite induction with much larger ordinals than ω. As we have seen Γ the termination of the problem given in the introduction requires induction up to $\phi_{2}(0)$. As phrased 5 the "function" f makes nondeterministic choices lbut (like the Battle of Hercules and Hydra) can be made deterministic by adding to the recursion an integer argument k Twhich increases by a fixed amount with each recursive call and which determines the number of repetitions. Though one can define an integer-valued function $\tau(x)$ that counts how many steps it takes to reduce x to a Гproving that τ acts as a termination ("variant" [DijkstraГ1976]) function Γ decreasing with each recursive call Γ requires a much stronger principle of induction than provided by the Peano Axioms.

References

[Brown「1979] T. Brown. Canonical simplification of finite objects well quasi-ordered by tree embedding. Technical Report UIUCDCS-R-79-9815 University of Illinoisए UrbanaГIllinoisए August 1979.
[Cantor[1915] G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers. The Open CourtTChicago「1915. Translated by P. E. B. Jourdain; a Dover edition (1952) is available.
[CichonT1990] E. A. Cichon. Bounds on derivation lengths from termination proofs. Technical Report CSD-TR-622TDepartment of Computer ScienceГ University of London ГSurrey EnglandГJune 1990.
[CourcelleГ1983] B. Courcelle. Fundamental properties of infinite trees. Theoret. Comp. Sci.Г25(2):95-169ГMarch 1983.
[Crossley and Kister[1986/1987] J. N. Crossley and J. B. Kister. Natural well-orderings. Arch. math. LogikГ26:57-76Г1986/1987.
[Dershowitz and Manna[1979] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of the $А С М Г$ 22(8):465-476ГAugust 1979.
[Dershowitz and Okada「1988] N. Dershowitz and M. Okada. Prooftheoretic techniques and the theory of rewriting. In Proceedings of the Third IEEE Symposium on Logic in Computer ScienceГ pages 104-111Г Edinburgh $\operatorname{Scotland\Gamma ~July~} 1988$.
[Dershowitz [1987] N. Dershowitz. Termination of rewriting. J. of Symbolic Computation Г 3(1\&2):69-115Г February/April 1987. Corrigendum: ${ }_{4} \mathrm{\Gamma} 3$ (December 1987) Г409-410.
[DijkstraГ1976] E. W. Dijkstra. A Discipline of Programming. PrenticeHallГEnglewood Cliffs ГNJГ1976.
[FefermanT1968] S. Feferman. Systems of predicative analysis II: Representation of ordinals. J. of Symbolic LogicГ33(2):193-220ГJune 1968.
[Floyd[1967] R. W. Floyd. Assigning meanings to programs. In Proceedings of Symposia in Applied Mathematics, XIX: Mathematical Aspects of Computer ScienceГpages 19-32ГProvidenceГRIF1967. American Mathematical Society.
[Friedman「19??] H. Friedman. The metamathematics of the Higman and Kruskal theorems. UnpublishedГ19??
[GallierГ1991] J. Gallier. What's so special about Kruskal's Theorem and the ordinal Γ_{0}. A survey of some results in proof theory. Annals of Pure and Applied LogicГ53(3)ГSeptember 1991.
[Gries[1979] D. Gries. Is sometime ever better than alway? ACM Transactions on Programming Languages and SystemsГ1(2):258-265ГOctober 1979.
[GriesГ1981] D. Gries. The Science of Programming. SpringerTNew YorkT 1981.
[HigmanT1952] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society (3)Г2(7):326-336Г September 1952.
［Ketonen and Solovay［1981］J．Ketonen and R．Solovay．Rapidly growing Ramsey functions．Ann．Math．Г113：267－314Г1981．
［Kirby and Paris「1982］L．Kirby and J．Paris．Accessible independence re－ sults for Peano arithmetic．Bulletin London Mathematical SocietyГ14：285－ 293 Г1982．
［Kruskal［1960］J．B．Kruskal．Well－quasi－ordering「the Tree TheoremГand Vazsonyi＇s conjecture．Transactions of the American Mathematical Soci－ etyГ95：210－225ГМау 1960.
［MannaГ1974］Z．Manna．Mathematical Theory of Computation．McGraw－ HillГ New YorkГ1974．
［Nash－Williams1965］C．S．J．A．Nash－Williams．On well－quasi－ordering infinite trees．Proceedings of the Cambridge Philosophical Societyए 61（3）：697－720ГJuly 1965.
［Okada and SteeleГ1988］M．Okada and A．Steele．Ordering structures and the Knuth－Bendix completion algorithm．In Proceedings of the Allerton Conference on Communication，Control，and ComputingГMonticelloГILT 1988.
［Reingold and ShenT1991］E．M．Reingold and X．Shen．More nearly op－ timal algorithms for unbounded searching Γ part II：The transfinite case． SIAM J．Comput．Г20（1）：184－208「February 1991.
［SchmidtГ1976］D．Schmidt．Built－up systems of fundamental sequences and hierarchies of number－theoretic functions．Arch．math．LogikГ 18：47－53Г 1976.
［SimpsonT1985］S．G．Simpson．Nichtbeweisbarkeit von gewissen kombina－ torischen eigenschaften endlicher baüme．Archiv für Mathematik．，Logik und Grundlagen 5 25：45－65Г 1985．English translationए＂Nonprovability of certain combinatorial properties of finite trees＂Tin Harvey Friedman＇s Research in the Foundations of MathematicsएNorth－Holland［1986］．
［SmoryńskiT1986］C．Smoryński．Varieties of arboreal experience．In L．A． HarringtonTM．D．MorleyГA．SčedrovTand S．G．SimpsonTeditors L Harvey Friedman＇s Research in the Foundations of MathematicsГpages 381－397． North－HollandT1986．
[Veblen「1908] O. Veblen. Continuous increasing functions of finite and transfinite ordinals. Transactions of the American Mathematical Society $\overline{ }$ 9:280-292Г1908.

$$
\text { ab } \stackrel{a}{a}
$$

[^0]: *Research supported in part by the National Science Foundation under Grants CCR-90-07195 and CCR-90-24271.

