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Abstract

We provide a set of \natural" requirements for well-orderings of
(binary) list structures. We show that the resultant order-type is the
successor of the �rst critical epsilon number.

The checker has to verify that the process comes to an end. Here

again he should be assisted by the programmer giving a further

de�nite assertion to be veri�ed. This may take the form of a quantity

which is asserted to decrease continually and vanish when the

machine stops. To the pure mathematician it is natural to give an

ordinal number. In this problem the ordinal might be

(n � r)!2 + (r � s)! + k. A less highbrow form of the same thing

would be to give the integer 280(n� r) + 240(r � s) + k.

|Alan M. Turing (1949)

1 Introduction

A riddle|consider the Lisp-like function f ,

f(a) = a

f(b) = b

�Research supported in part by the National Science Foundation under Grants CCR-

90-07195 and CCR-90-24271.
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f(cons(x; y)) =

8>>>>>>>>>><
>>>>>>>>>>:

a if x � y � a,
cons(cons(: : :cons(b; f(y)); y) : : : ; y) if x � b and y 6� b,
cons(cons(: : :cons(a; y); y) : : : ; y) if x � b and y � a,
cons(x; cons(x; : : :cons(x; cons(f(x); b) : : :))) if y � b and x 6� a,
cons(x; cons(x; : : :cons(x; cons(x; a) : : :))) if y � b and x � a,
cons(f(x); cons(f(x); : : :cons(f(x); a) : : :)) if x 6� a; b and y � a,
cons(x; f(y)) otherwise.

that maps binary trees with leaves labeled a or b to themselves. Ellipses
represent repetitions of arbitrary length, so f is actually a multivalued func-
tion. Question: Is there any expression z over a, b, and cons, such that
z; f(z); f(f(z)); f(f(f(z))); : : : is an in�nite sequence, or must every such
sequence ff (n)(z)gn end in all as or bs? This function is depicted in Fig-
ure 1, where we use bullets (�) for internal nodes (\cons cells") and squares
for leaves (atoms).

The surprising answer is that no other in�nite sequences are possible.
In general, such questions can be answered by using the notion of well-

ordering, stemming from the fundamental work of Cantor [1915]. Floyd,
in his landmark paper [1967], envisioned proving termination of programs
by showing that some ordinal-valued function decreases strictly with each
repetition of a loop, as did Turing before him (see the quotation above). The
well-ordering most commonly used is !, the natural ordering of the natural
numbers [Dijkstra, 1976; Gries, 1981], but lexicographic orderings (!n) also
play an important part [Manna, 1974]. Occasionally, \larger" orderings have
been used (for example, [Dershowitz and Manna, 1979; Dershowitz, 1987]);
see [Dershowitz, 1987; Dershowitz and Okada, 1988; Cichon, 1990].

The riddle above is a termination question on binary trees, one of the
most pervasive data structures used in computer science. Like numbers,
binary trees can be well-ordered in many ways. In this paper, we give \nat-
ural" principles that such orderings ought to satisfy. We consider in�nite
binary trees, and show how a \regular" subclass|the trees representable as
list structures in Lisp|more than su�ce for all ordinals up to and including
������ , the �rst critical epsilon number. (Di�erent notions of \naturalness" of
ordinal notations are surveyed in [Crossley and Kister, 1986/1987].) Con-
versely, ordinals up to and including ������ can be neatly represented by this
subclass of in�nite binary trees.

In the next section, we consider natural orderings on binary trees, and
some (known) consequences of those principles for �nite trees. By imposing
a lexicographic rule, we get|not surprisingly|an �0 ordering. Then, in
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Section 3, we present our main results, the extension of the natural order-
ing to arbitrary list structures, which correspond to the \rational" subset
[Courcelle, 1983] of in�nite binary trees. We show that ������ + 1 can be
proved well-ordered by the Homeomorphic Embedding Theorem on in�nite
binary trees. Section 4 mentions related work on orderings of (�nite) ordered
trees, leading to orderings of type �0, the �rst impredicative ordinal; the last
section includes a few remarks on implications for program veri�cation.

Nonempty lists are built from \cons" cells cons(x; y) containing two
pointers, x and y; pointers may point either to the empty list nil or to a cons
cell. We use jlj for the size of a list structure l, that is, the number of cons
cells and nil pointers in l. Thus, for example, j nil j = 1, j cons(nil; nil)j = 3,
and jzj = 2, when z � cons(nil ; z).

The orderings we deal with are really quasi-orderings; that is, they are
not anti-symmetric. For a quasi-ordering �, we use ' for the intersection of
� and its inverse �; the strict ordering > is � \ 6'. We use � for structural
equality, and 6� for its complement.

2 Small Ordinals

The ordering principles we propose apply equally well to cyclic and acyclic
list structures. We begin, therefore, with the more mundane, acyclic
variety|that is, with �nite binary trees.

2.1 Axioms of Ordering

Principle 1 (Growth). A tree is greater than or equivalent to its subtrees;
that is,

cons(x; y) � x; y;

for all trees x; y.

Principle 2 (Monotonicity). Replacing a subtree by a greater or equivalent
one results in a greater or equivalent tree; that is,

x � y )

(
cons(x; z) � cons(y; z)
cons(z; x) � cons(z; y);

for all trees x; y; z.
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Okada and Steele [1988] relate any ordering on �nite trees satisfying such
principles to Ackermann's ordinal notation.

By \deleting" in a tree, we mean replacing a subtree by one of its sub-
trees; \inserting" is the inverse operation.

Lemma 1. Deleting (inserting) results in a smaller (greater) or equivalent
tree.

Proof. Follows from Growth and Monotonicity.

So, if t1 is homeomorphically embedded in t2, then t1 � t2, where � is
any ordering satisfying Principles 1 and 2. (A tree t is homeomorphically
embedded in a tree t0 if there's a mapping of nodes of t1 into nodes of t2 such
that each edge of t1 corresponds to a disjoint path in t2.)

Monotonicity implies that if x0 � x and y0 � y, then cons(x0; y0) �
cons(x; y). What, however should the ordering of cons(x; y) and cons(x0; y0)
be when x0 > x and y > y0? We choose a lexicographic rule in which \left"
is more signi�cant than \right". Note, however, that Lemma 1 implies that
cons(x0; y0) < cons(x; y) whenever y > cons(x0; y0). So, we can't just say
that x0 > x implies cons(x0; y0) � cons(x; y). Hence, the following lexico-
graphic principle is the strongest that can be formulated without violating
our prior principles.

Principle 3 (Lexicography). If x0 > x and cons(x0; y0) � y, then
cons(x0; y0) � cons(x; y).

Let � be a minimal ordering satisfying Principles 1, 2, and 3. (A \min-
imal" ordering is one that violates one of the principles if any pair s � t is
removed from the ordering.)

Theorem 1. The ordering � is total; that is t1 � t2, or t2 � t1, or both.
Speci�cally,

cons(x0; y0) � cons(x; y) if and only if

8><
>:

y0 � y if x0 ' x; (a)
cons(x0; y0) � y if x0 > x; (b)
y0 � cons(x; y) if x0 < x (c):

Proof. By induction on size of the trees, this de�nition|combined with
the fact that the empty tree, nil , is comparable with all trees (it is the small-
est by virtue of the Growth Principle)|gives a total ordering. (Transitivity
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of this de�nition can be shown by induction and case analysis.) This or-
dering clearly satis�es the principles. Furthermore, any ordering satisfying
the principles must satisfy the \if" direction, the �rst case of which follows
from Monotonicity; the second, from Lexicography; and the third, from the
Growth Principle and transitivity.

Lemma 2. For any trees x and y, cons(x; y) > nil.

Proof. Making cons(x; y) � nil 6� cons(x; y) still gives an ordering
satisfying the principles.

Theorem 2. Tree comparison of �nite trees t1 and t2 can be done in time
O(jt1j � jt2j).

Proof. Follows from Theorem 1, Lemma 2, and induction on jt1j and jt2j.

The ordering � is actually a quasi-ordering, for
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because, in general,

Lemma 3. If x < y, then cons(x; cons(y; z)) ' cons(y; z).

Proof. The inequality cons(x; cons(y; z)) � cons(y; z) follows from
the Growth Principle; the other direction follows from Lexicography, us-
ing Lemma 2.

2.2 Order-Preserving Mapping

One can map �nite binary trees, under the given ordering, to ordinals below
�0 in the following straightforward way:

Proposition 1. There is an order-preserving mapping from trees under �
to the ordinals up to �0:

[[nil]] = 0

[[cons(x; y)]] = ![[x]] + [[y]]

In other words, lists (l1; : : : ; ln) are interpreted as the noncommutative sum
![[l1]] + � � �+ ![[ln]].
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This mapping is not one-to-one; as we just saw, there are equivalent,
non-isomorphic trees. It is order-preserving. This means that for two �nite
binary trees t and t0, t � t0 if and only if [[t]] � [[t0]]. Furthermore, there is
a one-to-one correspondence between binary trees and expressions involv-
ing (non-commutative) addition and exponentiation. Since such expressions
give all ordinals below �0, our ordering is of order-type �0, too. Thus, ex-
pressions in Cantor Normal Form are in one-to-one correspondence with the
equivalence classes on binary trees imposed by '.

2.3 Embedding Theorem

As a special case of Higman's Lemma [Higman, 1952], we know that, in any
in�nite sequence ftigi<! of �nite binary trees, there must be two trees tj
and tk (j < k) such that tj is homeomorphically embedded in tk . In other
words, tk can be obtained from tj by deletion only. By Lemma 1, it follows
that tj � tk ; hence, an in�nite descending sequence of trees is impossible.
In other words, our ordering is well-founded. We have already seen that �
is order-isomorphic to �0. Since �0 induction is equivalent to the consistency
of Peano Arithmetic, this means that the Embedding Lemma of Higman
cannot be proved in Peano Arithmetic [Friedman, 19??].

2.4 Arithmetic

The mapping from ordinals to binary trees gives a convenient data struc-
ture for representing ordinals below �0. Arithmetic operations (commutative
addition �, commutative multiplication 
, and exponentiation), and a pre-
decessor operation to get fundamental sequences, are now easy to de�ne;
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the following correspondences are suggestive:

0 7! nil
1 7! cons(nil ; nil)

x� nil 7! x

cons(x; y)� cons(x0; y0) 7! cons(x; y � cons(x0; y0)) if x � x0

x
 nil 7! nil
cons(x; nil)
 cons(x0; y0) 7! cons(x� x0; cons(x; nil)
 y0)

cons(x; y)
 z 7! (cons(x; nil)
 z)� (y 
 z)
!x 7! cons(x; nil)

predn(cons(nil ; nil)) 7! nil
predn(cons(x; nil)) 7! cons(predn(x); nil)
 n if x is a successor ordinal
predn(cons(x; nil)) 7! cons(predn(x); nil) if x is a limit ordinal
predn(cons(x; y)) 7! cons(x; predn(y)) if y 6� nil

For example, this binary-tree data structure could be used in implement-
ing the computation of the various extensions of Ackermann's function (see,
for example, [Ketonen and Solovay, 1981]). An ordinal-indexed function
A�(n) can be de�ned for ordinals � and natural numbers n by

A�(n) =

8><
>:

2n if � = 0; n � 1,

A
(n)
� (1) if � is a successor ordinal � + 1,

Apredn(�)
(n) if � is a limit ordinal.

The computation of this function plays an important role in the unbounded
search procedures of Reingold and Shen [1991]. Moreover, these search
procedures themselves use ordinals to index the recursive calls.

These operations also make it easy to encode problems like the \Battle of
Hydra and Hercules" of Kirby and Paris [1982] as hard-to-prove-well-de�ned
functions on binary trees.

3 Medium Sized Ordinals

List structures, in general, correspond to \rational" binary trees, which are
like ordinary binary trees, but paths may be of length !, as long as there
are only a �nite number of distinct subtrees.

3.1 Axioms of Ordering

All the principles of Section 2.1 apply to this case as well, but an in�nite
number of deletions could increase a tree without violating Principles 1{3.
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So, we take the following extension of Principle 2 as axiomatic:

Principle 4 (Continuity). Replacing in�nitely many subtrees by greater or
equivalent ones results in a greater or equivalent tree.

Principles 1{4 do not, however, give a total ordering. We do not, for
example, know how to order
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An additional principle is called for:

Principle 5 (Dominance). If x > yi, for all i = 1; 2; : : :, then cons(x; nil)
� cons(y1; cons(y2; : : :)).

For �nite trees, this is a direct consequence of Theorem 1.

3.2 Order-Preserving Mapping

It turns out that we can restrict ourselves to the class of list structures in
which there are no cycles except self-loops. Call such a list normalized.

Theorem 3. For every rational binary tree t there is a normalized list `
such that t � ` � t.

When comparing structures, like `, under �, we mean to compared its (pos-
sibly) in�nite tree expansion.

Proof. All cycles in the graph representation of a rational tree can be
reduced to self loops as follows: If a full binary tree is homeomorphically em-
bedded in t, then t is equivalent to the structure z such that z � cons(z; z),
which is just a double self-loop:
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If any of the xk contains all of z as a subterm, then z both contains the full
binary tree (obtained by deleting all other xi and pruning xk to what is left
of z) and is contained by it (as are all binary trees). Hence, z is equivalent
to the full binary tree.

If none of the xi have z as a subterm, then, by induction on jlj, we can
suppose that there is a normalized list among the xi that has a maximal
ordinal assignment. We have z less than or equal to the structure z0 �
cons(maxfxig; z

0) by Monotonicity, and z greater than or equal to z0 by
Continuity. Hence, we can replace the loop in z with the self-loop of z0.

Similarly, z � cons(: : : (cons(cons(z; xn); xn�1); : : :); x1), that is,
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can be replaced by the double-self-loop corresponding to the full tree or by
a self-loop z0 � cons(maxfxig; z

0).

An attempt to prove a result like Theorem 3 appears in [Brown, 1979].

Proposition 2. There is an order-preserving mapping from normalized
lists, under the above ordering, onto the ordinals up to and including ������ .

Proof. The mapping from lists to ordinals is:

[[nil ]] = 0;
[[t such that t � cons(t; x)]] = �[[x]];

[[t such that t � cons(x; t)]] = ![[x]]+1

[[t such that t � cons(t; t)]] = ������ ;

[[cons(x; y)]] = ![[x]] +

8><
>:

1 [[x]] not a limit ordinal
1 [[x]] not an epsilon number and y 6� nil
0 otherwise

9>=
>;+

(
� if [[
[[y]] oth

(Addition, here, is not commutative.) Its inverse is:

1. h0i = nil

2. h�+ �i =

(
succ(h�i) if � = 1,
append(succ(h�i); h�i) otherwise.
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3. succ(t) =

8><
>:

cons(nil; nil) if t � nil ,
cons(succ(car(t); nil)) if cdr(t) � t,
cons(car(t); succ(cdr(t))) otherwise.

4. h!�i =

(
z such that z � cons(h�i; z) if � = � + 1,
cons(h�i; nil) otherwise.

5. h��i = z such that z � cons(z; h�i).

Arithmetic and predecessors can be de�ned via these mappings, or inde-
pendently, as operations on lists, in a manner parallel to that of the previous
section.

Theorem 4. For normalized lists ` and `0, `0 � ` if and only if [[`0]] � [[`]].

Proof. There are three cases derived from the above mapping:

1. �� � �� if and only if � � �.

2. !� + � � � if and only if � � � � � � .

3. !� + � � !�0

+ �0 if and only if � > �0 or (� = �0 and � � �0).

Corollary. For rational trees t and t0, t0 � t if and only if [[t0]] � [[t]], where
[[t]] is the ordinal assigned to the normalized list equivalent to t.

Theorem 5. Normalized lists `1 and `2 can be compared in time O(j`1j �
j`2j).

Proof. Use the mapping in the above proposition and induction over j`1j
and j`2j.

Theorem 6. An arbitrary list ` can be normalized in time O(j`j2).
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Returning to the riddle, we interpret a as 0, and b as a self-loop. Then,
we have [[cons(b; b)]] = ������ and, in all cases (except a and b), f gives a
smaller ordinal:

[[f(z)]] =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

0 if [[z]] = 1,

!!!
���
!

if [[z]] = �0,
n if [[z]] = !,
��:::�0

if [[z]] = ������ ,

!!���

�[[f(y)]]+[[y]]
+[[y]]+[[y]] + [[y]] if [[z]] = �[[y]],

![[x]]n+ ![[f(x)]]+1 if [[z]] = ![[x]]+1, [[x]] > 0,

!predn([[x]]) � n if [[z]] = ![[x]] for limit ordinal [[x]],

![[x]] + [[f(y)]] if [[z]] = ![[x]] + [[y]] and [[y]] > 0.

3.3 Embedding Theorem

Nash-Williams' version of the Embedding Theorem [Nash-Williams, 1965]

also holds for in�nite ordered trees: In any in�nite sequence ftigi<! of (�nite
or in�nite) binary trees, there must be two trees tj and tk (j < k) such that
tj is homeomorphically embedded in tk . Since our ordering contains the
embedding relation, we have:

Theorem 7. The Embedding Theorem for in�nite (rational) binary trees
su�ces to prove the well-ordering of ������ + 1.

A similar analysis of in�nite, not necessarily rational, binary trees may
also be possible.

4 Bigger Ordinals

The epsilon number ������ is �2(0) in the Veblen-Feferman-Sch�utte hier-
archy [Veblen, 1908; Feferman, 1968; Schmidt, 1976]. Less natural or-
derings on (nonbinary) ordered trees correspond to much larger ordinals
in that hierarchy. In particular, some orderings based on Kruskal's Tree
Theorem [Kruskal, 1960] correspond to the �rst impredicative ordinal, �0,
and even to larger ones [Friedman, 19??; Simpson, 1985; Smory�nski, 1986;
Dershowitz, 1987; Gallier, 1991]. The signi�cance of �0 for computer science
is discussed in [Gallier, 1991].
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5 Conclusions

It has been argued [Gries, 1979] that the natural numbers su�ce for termi-
nation proofs, since the (maximum) number of iterations of any terminating
deterministic (or bounded nondeterministic) program loop is �xed, depend-
ing only on the values of the variables and inputs when the loop is begun.
This begs the issue, however, since the proof that such a function exists
may require trans�nite induction with much larger ordinals than !. As we
have seen, the termination of the problem given in the introduction requires
induction up to �2(0). As phrased, the \function" f makes nondeterministic
choices, but (like the Battle of Hercules and Hydra) can be made determin-
istic by adding to the recursion an integer argument k, which increases by
a �xed amount with each recursive call, and which determines the number
of repetitions. Though one can de�ne an integer-valued function �(x) that
counts how many steps it takes to reduce x to a, proving that � acts as a
termination (\variant" [Dijkstra, 1976]) function, decreasing with each re-
cursive call, requires a much stronger principle of induction than provided
by the Peano Axioms.
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