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Abstract

“Semantic matching” is the process of generating a basis set of substitutions (of terms for variables)
that makes one term equal to another in a specified theory. We restrict ourselves here to matching
problems in equational theories that can be presented as programs in the form of convergent rewrite
systems, that is, finite sets of equations that compute unique output values when applied (from left-to-
right) to input values (a generalization of functional programs).

Decidable matching can help in program verification and synthesis. We describe a new class of
programs for which matching is decidable, which—with some negative results—provide a finer charac-
terization of decidability than was available before.



1 Introduction

Equation solving is the process of finding a substitution (of terms for variables) that makes two terms equal
in a given theory, while semantic unification is the process which generates a basis set of such unifying
substitutions. For any solution to a given goal, the basis set must contain an element that is equivalent
in the underlying theory to one that is at least as general. A simpler version of this problem, semantic
matching, restricts the substitution to apply only to one of the terms (called the pattern). While semantic
unification is used in some theorem provers for performing deductions modulo an equational theory (the
theory of associativity and commutativity is a prime example), semantic matching has potential applications
in pattern-directed languages and in their verification. For example, in a functional language, we may define
append (@) and reverse (r) on lists (constructed with : and €) using the following equations:

cQr = =z r(e) = ¢

(z:y)@z = z:(yQz) r(z:y) = r(y)Qz:ni)

Given these equations, we might wish to ask questions such as whether the reverse of a non-empty list can
be empty. Or, for the system

pop(x 1 y) = = pop(e) = L
push(z,e) = x:¢ pop(l) = L
push(z,y:2) = wx:(y:z) push(e, L) = L

one may ask whether pop(push(xz,y)) can yield L for any # and y. To answer such questions a matching
algorithm is appropriate.

A rewrite system is convergent (technically, ground convergent) if every ground term has exactly one
normal form. For such systems, every reducible substitution is equivalent in the theory to an irreducible one;
hence, one can ignore reducible solutions to semantic unification and matching problems. For example, for

a goal like (1: 2)@(2 : ¢€) Z1:2: ¢, in the theory of append, the only solution of interest is # — € (and not
z — €Qe, and so forth). Tt is well-known that any strategy for finding a complete set of matchings with respect
to a given theory may not terminate, even when the theory is presented as a finite and convergent (terminating
and confluent) set of rewrite rules; see, for example, [Heilbrunner and Holldobler, 1987; Bockmayr, 1987].
On the other hand, for some special classes of theories—associativity, for instance—semantic matching is
decidable.

In this paper, we are interested in matching in theories that have a convergent presentation. Since
the general matching problem with convergent systems is known to be undecidable, we are interested in
characterizing restricted convergent systems (using syntactic criteria) for which either the matching problem
is decidable, which constitutes the positive cases (i.e., restrictions over and above convergence results in
decidability), or or for which it remains undecidable, which constitutes negative results. As such, we are
not interested in specific theories such as associativity and commutativity. Rather, our aim is to be able to
characterize classes of rewrite systems with a decidable matching problem.

Given a set F of function symbols and a (denumerable) set X' of variables, the set of (first-order)
terms T (F,X) is the smallest set containing X such that f(¢1,...,%,) is in T(F,X) whenever f € F
and t; € T(F,X)fori=1,...,n. A term ¢ is said to be linear in a variable z if # occurs exactly once in ¢,
while a term is linear if it is linear with respect to each of its variables, for example, 2+ (s(y) x z). The depth
of a term is the number of nodes in the longest path in its tree representation (so a constant or variable has
depth one). A substitution o is a special kind of replacement operation, uniquely defined by a mapping from
variables to terms which is equal to identity almost everywhere, and written out as {#1 > s1,...,Zm > S }.
If ¢ is a term containing variables, the to is ¢ with each occurrence of z; replaced by s;.

A rewrite rule is an ordered equation between terms, written as [ — r, for terms [ and r. A rule is
(left-) right-linear is its (left-) right-hand side is linear, it is linear if it is both left- and right-linear, and
i1s non-erasing if every variable in [ also appears in 7. A rewrite system is a finite set of rewrite rules. We
use — to denote a single step of derivation (application of a rewrite rule), and —* as its reflexive-transitive
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closure. A term s is said to be irreducible or in normal form if there i1s no term ¢ such that s — ¢. We write
s —'tif s —* ¢ and ¢ is in normal form, and we say that ¢ is the normal form of s. A rewrite relation (—) is
terminating if there exists no infinite chain of rewrites of the form t; — t9 — ... — 5 .... A rewrite relation
is (ground) confluent if, whenever u —* s and u —* ¢ there is a term v such that s, —=* v. A rewrite
system which is both terminating and (ground) confluent is said to be (ground) convergent. Convergence is
a reasonable requirement for most functional programs. In this paper we only concern ourselves with such
systems.

It is sometimes convenient to partition F into two disjoint sets: defined functions and constructors. For
our purpose any function symbol that appears at the top of the left-hand side of a rule is defined, while all
others are constructors. A term is said to be flat if it has at most one defined function with no function
symbol nested below the defined function. Also, we will say that a rewrite system has a property (for
example, left-linearity) if each of its rules has the said property.

A matching goal is written as s —7 N (where N is a normal form) and has a solution ¢ if s¢ —' N. For
convergent systems, in general, semantic matching is as difficult as unification. For example, solving the

unification goal s Ztina convergent theory R is equivalent to solving the goal eq(s,t) =" true in the theory
RUeq(x,z) = true. For non-erasing and left-linear rewrite systems matching is simpler than unification;
we show how to match in Section 3. However, these restrictions themselves do not suffice for decidable
matching in such theories; and in Section 4 we introduce additional restrictions on the rules such that
matching becomes decidable, and show that each restriction is necessary. We start in Section 2 by showing
that in general matching is undecidable, even for linear flat systems.

Missing definitions can be found in the survey [Dershowitz and Jouannaud, 1990].

2 Undecidable Matching

Linearity and flatness are simple, easy-to-check syntactic restrictions on rewrite rules. Such restrictions
have been used extensively in the study of properties such as modular termination and confluence of rewrite
systems. Tt is known that matching is undecidable even in convergent theories presented as (left- and right-)
linear rewrite systems [Heilbrunner and Holldobler, 1987]. On the other hand, matching is decidable if the
system is left-flat [Christian, 1992]. However, rewrite systems with flat left-hand sides are truly restrictive,
and do not allow any recursively defined functions.

We show below that matching is undecidable in the right-flat linear case. Although linearity and flat
right-hand sides do not suffice, matching becomes decidable with the additional restriction that for each
defined function there is at most one rule with a non-constructor right-hand side, and that side must be flat
and have only one occurrence of defined functions [Dershowitz and Mitra, 1993].

Theorem 1. There is no decision procedure for the matching problem in a (left- and right- ) linear convergent
rewrite system, in which every right-hand side is flat.

Proof. We reduce semantic matching in such theories to the undecidable Post Correspondence Problem

(PCP).
An instance of PCP consists of two lists A = w1, ..., wg and B = z1, ..., zg, of strings over some alphabet
3. This instance has a solution if there exists a sequence of integers i1,..., ¢y, m > 1, such that

Wiy ooy Wi, = Ljqyy ooy Ly

The following example illustrates how semantic matching can be used to generate solutions to a particular
instance of the Post Correspondence Problem:

Example 1. Let ¥ = {s,p}, while A = (w;); and B = (z;); are as given below:



1 Wy s
1 s s8s
2  spsss  sp
3 sp p

We construct the following convergent rewrite system R:

eq(s(x), s(y) eq(z,y)
eq(p(x), p(y) eq(x,y)
Ale €
(1 x

L A A A AN
<

)
)
)
)
)
(3 )
B(e)
)
)
)

B(l:y s(s(s(B(y))))
B(2:y s(p(B(v)))
B3y p(B(y))

It is easy to see that this instance of PCP has a solution if and only if the matching goal

o

eq(A(x 1 y), B(x 1 y)) > eqle, €)
1s satisfiable.

From the construction, it is evident that, given any instance of PCP, we can similarly construct a convergent
rewrite system with the required syntactic restrictions, such that the matching problem described above
has a solution if and only if the instance of PCP under consideration has one. The proof of convergence of
the resulting rewrite system is based on the fact that no two left-hand sides unify, and that the system is
terminating which can be shown using the recursive path ordering with the following precedence: A > B >
s > p > €. Therefore, a decision procedure for matching (and thus unification) in such rewrite systems could
be used to decide the Post Correspondence Problem. d

3 Complete Matching

For convergent systems, the unification (and therefore matching) problem is recursively enumerable. In other
words, there exists a procedure that can find a unifier (match) whenever one exists. See [Jouannaud and
Kirchner, 1991] for a survey of unification.

If we restrict ourselves to convergent rewrite systems that are, additionally, either non-erasing or left-
linear, then the non-deterministic transformation rules of Table 1 constitute a complete set for the matching
problem:

Theorem 2 (Completeness). Let R be either a left-lincar or a non-erasing convergent rewrite system. If
the goal s —" N has a solution 0 (that is, s —'' N, for normal form N ), then there is a derivation of the

form {s =" N} o 1, such that p 1s a substitution at least as general as 6.
Proof. In full version. O

For non-erasing systems, Bind can be further simplified, as shown in [Mitra, 1994].



Eliminate {z ="t}
el
{e— 1}
where x is a free-variable that does not occur in ¢
Bind {z—="s,2t}
el
= s, mgu(s,t)
if # does not occur in s

Mutate {f(s1,...,8n) ="t}
v d
{s1 =711, . 8p = 1y, r—="1}
where f(l1,...,l,) = ris a renamed rule in R
Decompose {f(s1,. -y sn) =" f(t1, . ta)}
v d
{81 —>?t1,...,8n —>?tn}

Table 1: Transformation rules for semantic matching with left-linear or non-erasing convergent systems

4 Decidable Matching

For convergent systems, in general, semantic matching is as difficult as semantic unification. For example,

solving the goal s Ztina convergent theory R is equivalent to solving the goal eq(s,t) —7 true in the theory
RUeq(x,z) = true, for a new function symbol eq and constant true; the augmented theory is convergent
since eq 1s a new symbol, not in R. A natural question is: Under what conditions is matching decidable
(independent of unification)? The rewrite system constructed to simulate PCP in Example 1 is linear and
non-erasing; therefore, linearity and non-erasing are not enough to guarantee decidability of matching.

Theorem 3. Let R be a convergent left-linear rewrite system. If for every rule f(ly,...,lp) = r in R
1. each l;,1 <1 < mn, s of depth at most two,
2. r 1s either a variable or has a constructor at the root, and
3. whenever at least one l; has depth greater than one, r has depth greater than one,
then the semantic matching problem s decidable for R.
Proof. In appendix. d

Example 2. The following definition of squaring using + and x obeys all the syntactic restrictions of
Theorem 3, and therefore has a decidable matching problem:

0O+ — = (1)
s(x)+y —  s(x+y) (2)
Oxe — (3)
rx0 — (4)
s(e) xs(y) = s(y+(z xs(y))) (5)
sq(0) — 0
sq(s(z)) = s(sq(x) + (s(s(0)) x x))



Example 3. As another example, consider inserting a number in its correct place, in a list of numbers:
min(z,0) — 0
min(0,2) — 0
min(s(z),s(y)) —  s(min(z,y))

max(x,0) — &
maxz(0, z)

max(s(z),s(y)) —  s(max(z,y))

J
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insert(z,e) — ¥ ¢
insert(z,y:z) —  min(x,y) :insert(max(z,y), z)

Each of the restrictions in Theorem 3 is necessary for decidability: If we drop the requirement of left-
linearity, then we get undecidability by encoding unification for left-linear systems as a matching problem
for non-left-linear systems. In the remaining cases, we show that matching of certain goals would result in
unification in the theories of addition (+) and multiplication (x). (Notice that the definitions of 4+ and x
in Example 2 obey all the syntactic restrictions of Theorem 3. Thus, the matching problem is decidable
for this system. However, its unification problem is undecidable, due to the undecidability of the Hilbert’s
Tenth Problem.)

Example 4. First we relax Condition 3, that is, we allow subterms of depth greater than one below the
root on the left-hand side, without requiring that the right-hand side be of depth at least two. Consider the
rewrite system consisting of the rules for addition and multiplication (rules 1-5) together with the following
rewrite rules (the collective system can be proved convergent):

sy =1 (6)

(1) = 1 (7)
g(L1) = s(1) (8)
9(s(z),5(y))  —  s(f(g(z,9))) (9)

Rule 7 is the only one which violates Condition 3.
We have g(z,y) = s(1) if and only if x = y = s"(1) (in the theory of + and x) for some n > 0. We have

g(s" (1), " (1) =" (sH)" (g(s™ (1), 1)) =0 ()" (s(1)) =" s(1)
Theorem 4. The matching problem is undecidable if Condition 3 does not hold.

Proof. Suppose t and t' are general terms involving + and x alone. Therefore, a goal of the form
g(t',t) =" s(1), would, in general, be undecidable, since a decision procedure for this problem could be
used to solve Hilbert’s Tenth Problem, which is impossible. d

Example 5. To relax Condition 2, by allowing defined functions to appear as the root of the right-hand
sides, consider the convergent rewrite system consisting of the rules for addition and multiplication, together
with the following additional rewrite rules:

-1 (10)
g(L,1)  — 1 (11)
9(s(@),s(y)) = [flo(z,y)) (12)

Rule 12 is the only one that violates Condition 2. We have:

g(z,y) = 1ifand only if # = y = s"(1),n > 0.



Theorem 5. The matching problem is undecidable if Condition 2 does not hold.

Example 6. Finally, we relax Condition 1, and allow depths greater than two below the root function on
left-hand sides of rules (but in order to make sure that the last condition not be violated, we would insist
that whatever depth we have on the left-hand side must show up on every path on the right-hand side, by
way of leading constructors). We encode f from Example 4 using new rules:

F(s(z)) — s(1) (13)
G(s(s(1)),s(s(x))) —  s(s(s(x))) (14)
9(1,1) = s(s(1)) (15)
g(s(x),s(y)) —  s(F(Glg(x,y),s(s(1))))) (16)

None of the rules have an immediate subterm on the left-hand side that is of greater depth than the depth
of the corresponding right-hand side. However, Rule 13 erases x; while Rule 14 is the only one that violates
the depth criterion for left-hand sides (it allows immediate subterms of depth 3 on its left-hand side). We
have F(G(s(s(1)),s(s(x)))) — F(s(s(s(z)))) = s(1), and

g(z,y) = s(s(1)) if and only if x =y = s"(1),n > 0.

Theorem 6. The matching problem is undecidable if Condition 1 does not hold.

5 Conclusion

Semantic matching is useful for verifying some properties of functional programs, for incorporating logic-
programming capabilities in a functional language, for constraint based systems and for theorem proving,
in general. Even when a system admits a convergent presentation, the usual case in verification, the corre-
sponding unification or matching procedure may be undecidable.

We have studied restricted convergent systems for which matching is decidable. This result complements
one given in [Dershowitz et al., 1992] for restricted non-erasing systems. The main difference between the
two is that in this paper we use the purely syntactic property of depth, while [Dershowitz et al., 1992]
used a semantic property. Recently [Aguzzi and Modigliani, 1994] have extended the decidability criterion
of [Dershowitz el al., 1992] by introducing the notion of positional-increase to replace increase. By using
positional information, it is possible to handle certain rewrite systems that does not have leading constructors
on the right-hand sides of rules (for example, the usual presentation of x contains rules {x x0 — 0, s(z) xy —
y+ (x x y)}, instead of the 3 rules of Example 2). We believe that a similar refinement (positional depth) is
possible for the positive result in this paper. With this extension we should be able to handle insertion sort
by adding the following rules to those of Example 3: sort(e) — ¢, sort(z : y) — insert(z, sort(y)).

Linearity and flatness of rewrite rules are common syntactic properties which have been used for many
different characterizations of rewrite systems (for example, confluence and termination). In this paper we
have shown how these criteria affect matching. In most cases the results turn out to be negative, as was the
case with the new result of this paper. However, with this new information, we have been able to complete
the characterization of matching for systems with these two syntactic restrictions. Comon et al. [1991], use
the idea of proving termination of a system of transformation rules for characterizing decidable unification,
but with no assumption of convergence. In their case, both sides of the given equations must satisfy a
slightly different non-nesting requirement than that of flatness as described here. (Since equations can be
used in either direction, it is intuitive to use the restriction on both sides.) The resulting theories are
simpler than the ones for convergent systems with flat right-hand sides (in fact, they bear similarity to the
systems that are convergent and left-flat, for which a positive result was proved in [Christian, 1992]). Other
characterizations of decidable unification appear in [Kapur and Narendran, 1987] (every right-hand side of
a rule must be a proper subterm of the corresponding left-hand side) and [Hullot, 1980] (every right-hand
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side must be a variable or a ground term). Unfortunately, none of these systems are powerful enough to
capture truly recursive functions. Decidability results for unification in convergent systems was extended in
[Dershowitz and Mitra, 1993], where the problems considered could potentially have infinite solutions, which
were captured as indexed terms, along the lines of [Comon, 1992]. The important difference between the
requirements of [Dershowitz and Mitra, 1993] and the one presented here is that we allow multiple flat terms
with defined functions as right-hand sides for rules defining a given function. For instance, the definition of
eq, in Example 1, used two rules, each of which has eq (a defined function) on its right-hand side, which
would not be allowed by [Dershowitz and Mitra, 1993].

Appendix

The proof of completeness of the rules for matching (in the full version; see [Mitra, 1994]) uses a particular
selection strategy for picking which subgoals to solve: after mutation, we always solve the r —" ¢ subgoal
first, before solving the s; =" [; in any order; after decomposition we could solve the new subgoals in any
order. We presuppose that selection strategy here.

Lemma 7. The most general unifier computed in Bind need only deal with linear terms.

Proof. We may have to use bind because the rewrite rules may have non-linear variables on its right-hand
sides, and since the left-hand side of the starting goal may be non-linear.

Suppose we start with the goal S =7 N, for a ground normal-form N | use the selection strategy mentioned
before, and apply transformation rules. Furthermore, consider the sequence of transformation rules before
the first application of Bind. In this sequence, the generated substitutions should have been produced using
Eliminate alone. Therefore, each term bound to a variable in this substitution must be linear (such terms
must have come from N or from the left-hand sides of applied rules). Therefore, both s and ¢ of Bind must be
linear, and of independent variables. Thus, the computed mgu would again be a linear term. Furthermore,
any of the linear variables in either s or ¢ that gets bound during the mgu computation can be removed, since
they do not appear anywhere else in either goals or substitutions, due to left-linear rules and the selection
strategy. d

We now state a proof of Theorem 3:

Proof. Due to left-linearity, we only need to solve goals of the form s — ¢, where any variable z in ¢ is linear

in ¢ and does not occur in the right-hand side of any other subgoal (this is true because we have directed

goals, and terms on the right-hand sides of goals could either be left-hand sides of (left-linear) rules from

previous mutations, or subterms of the ground term N, when solving for a initial goal of the form s’ —" N).
Let = be the well-founded ordering on goals such that s; =7t = s9 0"ty if either:

o depth(ty) > depth(ts), or
o depth(ty) = depth(t2) and sz is a proper subterm of s;.

The proof proceeds by picking a subgoal (say s—7t) from the remaining ones (following the selection
strategy mentioned before). We show by induction on the multiset extension of the ordering = that any
solution to this goal is bounded in depth by that of ¢, and every application of a transformation rule decreases
the complexity of goals in this ordering.

If the goal is of the form z —"1 (z being a variable) then there are two cases, either Eliminate applies
(in which case the proposition is trivially true, since the goal gets removed from the collection and a binding
gets added, but our ordering does not consider bindings) or Bind applies. In the latter case, given Lemma 7,
we need only compute the most general unifier of two linear terms with independent variables. Therefore,
the computed mgu is linear; furthermore, the depth is bounded by that of the deeper of the two terms for
which the mgu is being computed. For the other cases, let s = f(s1,...,s,) and ¢ = N[Z]. (We use the



notation N[z] to denote a term linear in variables & and for which no other subgoal in the current set has
any of these variables on the right-hand side; it can be shown that considering such goals is sufficient.) There
are several cases to be considered:

o If N[z] is a variable, then it can be shown that we do not have to solve this goal any further. Therefore,
the only solution to this goal is an indeterminate (unbound variable) for each variable of f(s1,...,s,).
Thus, the solution is of depth one, which is the same as that of N[z].

o If N[z] is a constant, then for decomposition to work, f(si,...,s,) must be the identical constant,
which gives the empty substitution as the only solution, and therefore the hypothesis holds in this case.
Decrease in complexity is caused by the removal of the subgoal under consideration.

Next, consider mutation of the goal f(si,...,s,)— N[Z], N[Z] a constant, using a rule of the form
f(li, ..., 1) = r. The only time such a rule could work is if depth(r) = 1. (For any other rule, by the
assumption of the theorem, there has to be a constructor at the root of r, which would lead to failure
when solving the r —" N[z] subgoal.) Furthermore, since r has depth one, by the assumption of the
theorem, each /;, 1 < ¢ < n, must be of depth one also (Condition 3). If r is a constant (it also has to
be a constructor, by Condition 2), then the only possible solution to the goal » —" N[z] is the empty
substitution (¢ = {}). However, if r is a variable, say z, then this goal has a unique solution of depth
one (the solution is o = {# — NJ[z]}). Therefore, the derivation looks like:

f(s1,..,80) =" N[E] ~* s1="lLo, - 8p— lho0
In either case, each of the subgoals s; —"lo, -+, 8, — l,o is smaller than the original goal
f(s1,...,5,) =" N[z] (since each [; is either a variable or a constant, thus depth(l;0) = 1), and the

proposition follows by induction on these smaller subgoals.

e For any other case, the depth of N[Z] is at least two; let N[Z] = ¢(N1, ..., Ny). Were we to decompose
the goal, then each of the subgoals thus generated would be smaller in the ordering . Thus, for
decomposition, the proposition holds by induction on each of the smaller subgoals. Finally, consider
mutation of this goal using a rule of the form f(l1,...,0,) = r:

? _ ? ? ? _
F(s1,...,80) = N[Z] ~Mutate 51 =11, 80— ln, 7= N[Z],
there are further cases:

— If we require r to be of depth one, then r must be a variable, say z. (A constant for » does not
work, since the constant must be a constructor by the requirements of the theorem, and therefore,
the goal »—" N[z] has no solution.) In this case the subgoal r —* N[z] (that is, z—" N[z])
is trivially solvable, and the solution is bounded in depth by that of N[z]. Furthermore, by the
assumption of the theorem, each l;,1 < i < n, has depth one (given Condition 3, since we assumed
r to be of depth one). Suppose ¢ is the (unique) solution to the goal z —" N[z]. Therefore, as in
the previous case, we have depth(l;0) < depth(N[z]),1 < ¢ < n. Thus, the proposition holds by
applying the hypothesis on the smaller subgoals s; =" 10, -, s, = 0.

— If r has depth greater than one, then it must have a leading constructor (by assumption of
the theorem). Suppose r = g(r1,...,7m), where ¢ is a constructor (if the root function of r
is different from g, then we get failure, so this is the only case to be considered). Thus, it is
possible to decompose the goal r —7 N[z] at least once, leading to smaller subgoals of the form
1= Ni, ... rm =" Ny (that is, f(s1,...,8,) =" N[Z] = —7 N;, 1 < i < m). Furthermore, let
depth(N[z]) = d > 2, which means that maxz(depth(N;)) =d — 1,1 <i < m. Although we could
solve these subgoal in any order, for clarity of presentation, let us assume that we solve them in
left-to-right sequence. In other words, we first solve 71 = Ny, to get a solution oy (which, by
inductive hypothesis, must be bounded in size by d — 1). Next, we solve 7, =" Nyoy. Due to
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the linearity requirements on N[z], Nao; = N, and therefore, we could still use the inductive
hypothesis on this goal. Eventually, we would solve r,, —7 Nppom—1, where o,,,_1 is the collective
solution from solving r; = N;, 1 < i < m — 1, and we again apply the same technique, to get the
solution o,,, which again should be bounded by d — 1. Notice that o, is indeed a solution to
r—7 N[z]: therefore, we have demonstrated that any solution to »—* N[z] would be bounded in
depth by d — 1. Let ¢ be such a solution, which gives us the new set of subgoals as:

f(sl,...,sn)—>7N[i‘] ~* s = e, sy — oo

where [;0,1 < ¢ < n, is bounded in depth by d (only those terms which contain variables become
deeper after instantiation; however, when we substitute a variable, which could occur at at most
below one function, by a term bounded in depth by d — 1, we could get a term of depth at most
d). Thus, each of the new subgoals is smaller (in =) than the original, and the proposition follows
by induction on these smaller goals.
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