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ABSTRACT
The purpose of this paper is to provide a bridge
between teérm rewriting theory in computer science and
proof theory in logic. It is shown that proof theoretic
tocls are very useful for analyzing two basic attributes of
term rewriting systems, the termination property and the

this study, we show that Knuth's
does mnot hold for conditional rewrite systems,
presenting a counterexample. Then we pregent two
restrictions on conditional systems under which the Critical
Pair Lemma holds. One is considered a generalization of
Bergstra-Klop's former result; the other is concerned with
a pgeneralization of Kaplan's and Jouannaud-Waldmann's
systems.

1  PROOF-THEORETIC ORDINALS AND TERM
REWRITING ORDERINGS

To show termination of a given rewrite system, the
typical method is to embed the reduction ordering of the
aystem intc an abetract ordering structure known to be
well-founded. In particular, if a rewrite system R consists
of a sst of (finite) rules (i.e., oriented equations between
first-order terms) of the form {ll—-rl, tz—-rz. tn—orn}.
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and any substitution o of terms for variables and which
has the monctonicity property: if s g b then fi...s.)

Y fr...t...) for all operators f of B. In other words, s >r

t if t may be obtained from s by one or more applications
of rules in R to replace subterrns matching a left-hand
side li with the corresponding right-hand side L By
T(F, C), we denote the set of variable-free terms
constructad from constants in C and operators F. Thus,
to show termination of a system R over a set of terms
T(F, C) (ie. that no infinite seqeunce of rewritings is
possible and <g well-founded), it is (necessary and)

sufficient to show for some well-founded monotonk ordering
<T(F, C), <> on terms one has Lo > ro for all i < n

and for any substitution o.

For this purpose various abstract ordering structures
have been proposed and studied in the literature of term
rewriting. Thoee include the “recursive path ordering™ of
[5], the “path of subterms ordering™ {25], the “recursive
decomposition ordering” [11], the “path ordering™ {16], the
“lexicographic-path  ordering™ (15}, the “semantic-path
ordering™ [4], etc. However, the size of those orderings
was not clear because of the lack of a suitable measure.
Also there was no systematic method of generating larger
and more general ordering structures, though such
orderings are sometimes degirable. For example, one of
the main causes of failures of the Knuth-Bendix completion
procedure (cf. (10, 17]) (of a given squational system Lo &
convergent rewrite systemn) is “incomparable terms”, which
is due to the lack of more general and larger orderings.
Alsc for a termination proof of a rewrite system whose
reduction ordering is incompatible with the subterm
property, the existing abstract orderings in the literature
of term rewriting theory do not work because virtually all
of them are in the class of simplification orderings (cf.
Dershowitz [4]) which have the subterm property. Here
the subterm property is the condition: if & is a subterm of
t then 8 < t for any terms s and t.

The purpose of this section is to link proof theoretic
ordinals with the orderings used in rewriting theory. We
present a generalized system of Ackermann’s ordinals [1]
(i.e., a generalized constructive notational system for the
Veblen hierarchy of set theoretic ordinals), and elucidate
its relationship with the “precedence” orderings used in
most implementations of the completion procedure to
guarantee  termination of  systems it generates.
(Precedence orderings are orderings on terms induced by
an ordering on the operators of the underlying signature.,
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Using this relationship we can express the size of
the different orderings (in rewriting theory) in terms of
ordinal numbers. It has sometimes been considercd
implicitly that the orderings used in rewriting theory are
not that large (e.g. less than ¢0) and the canonical
rewrite systems embeddable into those orderings have the
expressive power of a relatively small class of the
computational functions (such as the primitive recursive
functions or the co-ordinal recursive functioos). Our
resuits show, on the contrary, that the size of thoes
orderings and hence the expressive power of such systems
are much more than expected.

le.g. Backmann hierarchy,
Feferman-Schitte ordinal notations, Takeuti's
diagramas) than the Ackermann’s ordinals, it is desirable to
utilize such methods for term rewriting theory. Some
examples of the use of such higher proof theoretic ordinals
for termination proof of tree rewritings and term
rewritings may be found in [23] and its references. In
particular, cne can expect the following benefits with more
general and stronger orderings:

1. Areductioninﬁ‘equmyofflﬂunof_theeomphﬁm
procedure,

2. Termination proofs for a wider range of rewrite
systems (particularly those whose reduction ordering is
not compatible with the subterm property).

3. More powerful tools for ] termination and
related properties of conditional rewrits systems (see

§2 below).

4. Provision of stronger orderings oo proofs (i.e.,
orderings of proof-rewriting, instead of term-rewriting)
forthmﬁcalmdyﬁnofmnﬂmandofmpleﬁon
of term rewrite systems (. §2 for proof-rewriting
with some term rewrite systems; see alss [2]).

Now we introduce Ackermann's system {1] of ordinals
based on partial ordered sets, (cf [19]).
Definition: tmmo(genernlizedAskmmmmmAn(F.
C). Let F be a set of operators, C a set of constants.
Then
1) ichCthenceAn(F,C).
(2) ifal. aneAn(F. C, fe F.thanﬂal, s @)
€ A (F, C), and
3 if a
A F, O.
Ammofthoformﬂal....,an)orc(fueinC)(u
opposed to one of the form “1""”:::) is called a
‘M‘m;am.ﬂd“%m
connected is called “purely connectsd™; A'(F, C) denotes
the subset of purely connected terms in AP, O).
Definition <An(F. C), »> (The Ackermann ordering on
An(F,C).)IAthdChewdl-fomdedbyc

Case ) Ifs, tcC thena>tifs>tin
C,t €C, then s < t holds, but 3 > t doss Dot

o @y € AnCl'. C), them a *.% a €

Ife e

105

Case 2 lat 5 = ﬂtl, s ln). t = g(tl. e B Then s

-t

if (1) ni:tforwmei(ISiSn),

or (2) f>g,l>-t1, ....l>-tn.

or (3) f - g "~ t’l' o g "ti—l' . > ti’ s >~
ti+1,....l>~tn,fumax.15|5n.

where m means the permutative congruence.

Case 3 Iatnaclo...-c,t;tla...cte. Then

m
s > t iff {ll. I {tl. b, where »'> s the

multiset ordering indued by > , in the sense of

Dershowitz-Manna (6]. More precisely,
() X = {ll, e lm} > {tl, ves tt} - Y if
s > tjl' "j2' t]k for some i

X - {:i} > Y - {tjl' 32.

Remark The ordering oo multisets is essentially the same
as the ordering of natural sums a'...‘an for additive

1
pﬁncipdordinalnumbu-lai.

An{F.C)ilwel.l«fmmdedby>-. If F and C are
totallyordendby:—(hencawaﬂ-wdeﬁny), AnCF. C) is
also totally ordered, hence well crdered by ».

The above definition is easentially due to Ackermann
[1], though he only considered the total order case, and
only described As explicitly. A2({0}. {0 is the
Teferman-Schiitts system (cf. [29]) of ordinal notations less
than T,

0
Mmmdmmmnutthemurﬁvepath

ordering Dershowitz (5] over T(F U C) is the same as
A FO.

In other words, if we consider the connected terms of
AIG‘.C).tbemlisznkummm‘iltheume
uthemnutinpnthaduin‘,wﬂhatumﬂll.....tm)
inT(?uC)ianthmwmﬂtlt..nm)
inAIC!'.C).

In rewriti theory, one is mainly interested in finite
sets F and C, because one usually deels only with finite
rewrite systems. For any finite C and totally ordered P
afurdinaﬁtyn.thnudntmd'AlCl.C)'upHO(d‘

path of subterms ordering (Plaisted [350),

(Dershowits (5§D, recursive

(Jmnnaud-hunn-ﬂdn{ifsnllm.

and path ordering (Kapur-Narendran-Sivakumar , are

ofocdtrtmoupbpuo. In particular, for n distinct
the



The well-foundedrness of these orderings is provabls in

the systern of Implication-free Inductive Definition defined

in Okada [22] 13, which is a subsystem of the usual
systen  of (non-iterated) Inductive Dedfinition, hence &
subsystem of the second order arithmetic. Actually, the
critical ordinal (i.e., the first unprovable ordinal) of this
syltdmilpuﬁ.
Theorern The recursive path ordering, extendad to allow
arbitrary terms as operators (as in (4]), is of order type
|
0

Nownmdtbca::km:nnotder'ingdAn(F,C)
I:omedAU(r. o). TbeletAu(?.C)ofAckuma.nn
tarmaiadcﬁndinthomnyuAn{P.C).mpt

that for sach f € F, [ may have an unbounded, finite
number of argument, In other words, we have terms
ﬂal. - a_) for any m. ‘!‘heAckamanna-duing»rfor

Au@.mhdﬁndhthmnyubefm,m
when we compare !'(al. e @) with g8y, ﬂm) for n
< m, we re-interpret ﬂal. an) as ﬂo.m.:,ng. a5, e
a ), then follow the definition before.
L but we re-interpret ﬂal. veey an) as ﬁal,
.+ 0). Here 0 is a minimal slement of C.

A;(P,C)ildeﬁnedhthnmwayubefm, ie.,
the aet of purely connected terms.

;-tilt.houmeu

e @p 0,

The systam <Aw({0}. {0)},> > is essentiaily the same
as the Schiiite ordinals of §11 in [28).
Theorem The Ilexicographic path ordering (Kamin Levy
[15]mrmucanunmu¢;(r.m.>‘>.

(18] (which is
phic ordering with the
ucumvapnthudnrmg)omT(FuC)uﬂaumeu
<A(?C)>-?

We notse the following: < A;(P. G, »p is not
well-lounded even for singlston F and C. However,
<A (F, O), > is well-founded for svery n provided F and

C are. In other words, the lexicographic path ordering is
only well-founded when the number of arguments to each

f is bounded Also, <A>(F, C), >,> has the same order
typu«nﬂ.m.»?ﬁra]lnzswrmdc
mﬂM.w&Q;G.m.>r>hthm
F, C has the order typs «¢,.

The following is
the quasi-order version of the semantic path ordering.

Definition. (The semantic path ordering Let > b a
qunnardnnn;onAlPC)

Cape 2. m"ﬂ‘l.

> if
’I‘hanc_mt

s sn) and t - g{tl oo )

o} cizmt&rmi(lsi'_:n),a'

(2) s>t and s > t forall j (1 <j<a) or

fpe )

(3)s-t.and{31,...,s}>> {t

o TTspo

17 tn}.

Case 1 and Case 3 are the same as those in the
definition of the Ackermann's ordering.

Consider the following three orderings.

ﬂ:l y e an) <o g(t.1 y eees tn) on An(!‘. Oiff<g
in the precedencs F.

Mo, 2.0 8) < g, *pt ) om AT O iff

1)

@

(;) f<ginPF o

(i) f = g and {'1 . e 'n} Ssspo {tl, veer tm}.
whera << is the multiget extension of < .

spo spo

3) ﬂll A sn) Uex g(tl R R An(F. C g

] f<ginF, o

(&) LI T T SR R R S
for some i (1 < i € n), or

(idd) f-g.:l-tl....,ln-tn.n<m.

Thearem.

(D lfnuh<ofor<,tbm<’poonAw'(’F.C)iltbe
umeutbamupathordeﬁngonAl(F.C)

{(2) H we taka <. for <, then <

1 spoanAl(F.C)ilt.he

same as the recursive path ordering on Al(F. C).

3 Ifweuh<hfu'-<.t.h¢n

(D <,p°onAw(F.C)hthemneuthe

(i) < onA(FC)ut.heumeuthe

(iii) <monA(FC)il umnuﬂ:eracurlive
path ordering.




2 PROOF-NOEMALIZATION AND REWRITE SYSTEMS

In this section, we first outline the correspondence
between the paradigm of traditional peoof theory and the
paradigm of the “proof ordering® method
Bachmair-Dershowitz-Hsiang [2])  used
“completion procedures” for (unconditional}) rewrite systems
ilike the one in Knuth-Bendix [17]). Next we will show
howdxesnmepa:adigmcanbeapp!iedt.omeﬂworyof
conditional rewriting.

Unless otherwise stated, rewrite sysiems are
presumed to be terminating, ie., their reduction ordering
{the transitive closure of the rewrite relation) embeds in
gome well-founded structure. As discussed in the previous
section, in most cases termination is established by
embedding the given rewrite system in a segment of the
generalized Ackermann ordinals.

Traditional proof theory ia concerned with reduction
procedures that transforms a given proof into a “normal
proof”.  For that purpose, the following steps are
employed:

Ani@a{pmof-themeﬁc)ordindmeachpmoﬁ
Defire & “maximal formula® o an “essential cut” of
a proof. (A proof without maximal formula or
essential cut is called a “normal proof™.}

Define a reduction step which reduces one “marximal
formula™ or “essential cut®.
Suunlemma,ca]ledt.he“exiltmhmum’.chowing
theexistence of a reduction under certain
circumstances.

Show that each reduction step decreases the ordinal
of the proof.
’I‘heaimplutnpplicaﬁonafthilpuﬁigmhnwﬁh
theory is in proving that a rewrits system has the
Church-Rosser property (hence provides a decision procedure
fortheundu-lyingmﬂmblem)ifmuiﬁulp‘ir(in
the sense of Knuth-Bendix [17)) is “joinable®, i.e. both
terms in the pair rewrite to the identical termas.

Below.s-tstandlfm-thoumdmcfaqinﬁty
in equatinal gystems; s — t stands for one-step rewrite in

(1)
(2)

3)
(4)

&)

i.e.s—-'u'-—tformu;l-'

s =" tin & rewrits aystem if and only f s = ¢t in
mwmwmimﬁhﬂmnmb
be an equation). Actually, & switch of the direction of
one rewrite — of & proof § =
carresponds Lo one use of the
of 8 = t in the underlying equational system.

A proof of the form ¢ =° t is called an i
prool. Am«mmmim-wm

anﬁ?&&ohs-‘tbapﬂ?
of normal form ait is called “normalization®, If every

io?

Wemint.erested,then.inpmringatbeorunofum
following form.

Normalization_Theorem

For any equational proof, by successive reductions
(regardless of choice of maximal term (peak}), one can
reach a normal proof.

To achieve this, we need the following five steps:

{1} Ordinal assignment for proofs

The ordinal for an equational proof P is the multiset
of tarms occurring in P, Hence, if o is the order type of
thareductionordering,thenpmoﬁmauignedmdinah
loss than «” (See Section 1 for the definition of the
ordering on multisets) Eg., if P is of the form
ll—-lz'—la—°l4—vl5'—l6, then the multiset {sl. LI ‘6}
is the ordinal of P.

(2) Maxima! term
A‘poa.k':ra‘muimaltum'inlmriupmd‘il
an occwrrence of a tarm t in the form 8 — ¢ — u
Reduction step
Byamducﬁmofmequnt.iondpmufumnl
replacement of a sub-proof of the form s — t — u for &

peak t by a sub-proof of the form s =" v *— t for some
v (i.e., st} in the proof.

Existence lemmy
Hevuyaiﬁedpnbi:jdmble,mnon-normﬂ
proof allows at least one reduction.
(Aaitiedpnirhaspeddﬁndo{puk. A HAnite
ruwﬁtemtmhuonlylﬁniunumhu-duiﬁulpdn.l

3

(4)



Table 1 COMPARISON OF SIMPLE EXAMPLES OF NORMALIZATION
PARADIGM IN PROOF THEORY AND TERM REWRITING THEORY

Peanc Arithmetic Unconditionat
(Gentzen) Rewrite System

ordinal ordinals less multiset extengion of

assignment than % reduction ordering

maximal essential cut ordering peak

element (maximal formuls) {maximal term)

existencs holds for holds if every

lemma proofs of EY-formulae critical pair is joinable

E

it is equivalent to the
system E, ie, sit in R if and
also easily seen that for any
convergent, conditional rewrits
corresponding equational system E, 4
only if &« = t in E. We follow the
basic notions (including a “critical
rewrite theory (cf. {3, 7))

_M,if‘ keep

. tical -pair is joinable”,
the existence lemma does not hoid. In
Critical Pair Lemma of Knuth-Bendix 17]
does not carry over to standard conditional
cmhemn&omﬂwfoﬂo-mgmtu-example.

Counter-example (A):

hifla)) — ¢

hix) — kix)

¢ — kifla))

a—bh

¢ — kighh

k@B)IhifD) : fix) — gl

B

Here a peak kig) — kifla)) — k(b)) aliows
reduction. On the other hand, as easily seem,
critical pair is joinabls. (See [8} for further discussion
the counter-=xample.)

1

Ay )

/ A (@)
riga)) \\

¢ &{f (a)) kN

A @) T~ k(g (@)
~— £ ®) ~

Bergatn-mop'l‘mu.lt [3]; the second one is concerned with
a generalization of Kaplan's simplification systems [13)
and of Jouannaud-Waldmann'y reductive system [12).

(depth of a proof)
(N ’I'hedepthof:pmofofc—-tisoifs—-ththe
recult of an application of an unconditional rule.
The depth of a proof of 8 — t is cne more than the
maximum depth of subproofs for conditions vy,
univnifs-tisthemmltofan application of =»
eondiﬁmalmlewhichhulmhsﬁtutioninsmmof
the form ullvl, e WLV 1 8~

n’n
'l'hedept.hoflpmn'ofl——sl g T o ™ By
-v—tno—tlc—tilthemu:imumdepthof
'ubptwflfwl—-ll.ll—'lz,....lm—-\!.tn-'
L . tl——tz.t-tl,

Definition

2

@)

— 8

Definition For a critical pair (s, t) and
form 8 — u — t such that u — & has

depth less than or squal to n and s —"'
with depth less than or equal to m.

For & normal form (ie., irreducible term} N and a
term 8, & condition of the form s|N is called a “normal
condition® ora  “Bergstra-Klop condition™. A conditional
rewrits system in which every conditional rule is of the
form 111N1, . cniNn : & — r, for normal econditions
'i‘Ni' is called & “normal conditional system™.

Normal conditional systems were introduced by
Bergatra-Klop [3). First we consider extensions of the
following Theorem in Bergstra-Klop (3]. A “left-linear”
system: is a system in which a left-hand side ¢ of & rule
C:t—orallowumﬂyumocmnmformyvuiahle.

Bergstra Kiop's Theorem (3] For every lefi-linear (not
Decesparily terminating) normal conditional system with no
critical pair, every proof is normalizable.




We can relax the “no critical pair® condition of
Bergstra-Klop, at the expense of insisting on termination,
ag follows.

Existence lemma For any left-linear normal conditional
system, if every critical pair is shallow joinable then every
non-normal preof has a reduction.

The Existence lLemma is obtained via the following
lemma.

Substitution Lemma If Njris) is provable with depth n,
and if s—t is provable, then Nir(t} is algc provable with
depth at most n, where N is an irreducible term.

The proof is carried out by double induction on (n+m,
rig)), where m is the depth for s—t. (See {8] for
details.}

Theorem For any left-linear normal conditional system, if
every critical pair is ghallow joinable then every proof of
this system is normalizable. Hence such a system has
the Church-Rosser property.

Here we can take the same
asgignment for unconditional gystems.

Next we consider an alternative restriction to give an
exstence lemma. By the reduction ordering, we mean the
transitive closure of finite reductions in a given system.

A conditional system is called a “decremsing” system
if there exists a well-founded extension < of the reduction
ordering which satisfies the following properties:

(muitiset) ordinal

t1} For each conditional rule of the form llltl, lnltn
:t—-r.lia<bandtia<£aforaﬂi(lsis
n) and for all substitutions o.

(2) < has the subterm property, ie., if & is a proper
subterm of t then & < t.
Then a decreasing aystem has the following

properties;

1. the system is terminating
2. the basic notions are decidable, ie, for any terms &
and t, one step reduction 3 — t, a finite reduction

*t, 6lt, “s is & normal form” are all decidable.

We can readily see that Kapaln's simplification
systems {13] and Jouannaud-Waldmann's reductive systems
{12] are special cases of our decreasing systems.

The following “critical pair” lemma can be proved by
essentially the same argument as used by the above
authars.

Existence Lemma

For any decreasing system, i every critical pair is
joinable then every non-normal proof allows a reduction.

It should be remarked that the existence lemma does
not hold in general if we omit the sscond condition, the
“subterm property”, in our definition of decreasing
systems. In particular, counter-example (A) above satisfles
all the properties of decreasing systems, except for the
subterm property.

8 —

Now we show this. For this purpose, we utilize
systems of proof theoretic ordinals in logic, which provide
various well-founded orderings without the aub-term
property. Here we actually consider an embedding of our
counter-example into Takeuti's system (2, 1} of ordinal
diagrams, which is one of the two major systems of ‘proof
thecoretic ordinals.

The reduction ordering of this system is embeddable
into the ordering ‘e B 012, 1) (see eg. Okada [20] or

Okada-Takeuti [21] for the definitions “w and O(2, ),
by the following embedding o:

o(h(t) = {0, oft)e2)
olf(it)) = (1, oft)
ole) = (0, {1, 1)*1)
ofk(t)) = (0, oit)
ofa) = 1

ofb} = 0

olgit)) = (0, olt})

Also, e eatisfies the additional condition for the
decrensingness, i.e., each condition term d and hiflx) is

less than ths left-hand side fix} of the iast rule in the
senseof<°°.

lfwecomidendecrun‘ngayﬂ.eminwhid:evuy
eritical pair is joinable, then the same proof for the
Normalization Theorem holds, as before. Moreaver, with a
decreasing system, we can extend the Normalization and
Church-Rosser properties further. We introduce a stronger
form of Normalization and the Church-Rosser properties to

L Bya“ﬁﬂlymnnnl'pmdaf:-'tinagiven
natural conditional sysiem, we mean a normal proof

sit such that every lubpmd'uia-'

A decreasing natural system is » natural conditional
systern  which satisfies all the above conditions for
decreasing system.

Theorem (Full Normalization Theorem of. [24])

For any decreasing natural system, if every criti
pair is joinable, then every proof is fully ncrmalizable.
Hence such a system has the strong Church.
property.

-

1

The full normalization is carried out
normalizations from the surface proof to the

Mmm.&ummﬁnmmm s~
t to a normal form ajt in the given natural system.

‘I‘banwocnmidrthnimmdiuuomdiﬁmel -'dl.

{-ﬂ'
il



cn-°dnuaadfordnpmofsu,mdna-maliuthe

lurfacoplw(ofuchd'ﬂnntocildi. We repeat this
process. Each normalization procedure is exactly the same
as the case for unconditional systems before: For the
ordinal sssignment of a given conditional proof, we use
the multiset of terms occurring in the surface proof. We
use the following Existence Lemma for a natural

Existence lemma For any (not necessarlly decreasing)
natural conditional system, if critical pair is joinable, then
every surface proof which is not normal allows a
reduction.

It should be remarked that the above successive
normalization processes stop in finite steps because of the
decreasingness property (1).

The following
Corollary If a decreasing natural conditional system (with
oonditiomofuleformn-'t)ilconmmt(camnhl),
then the corresponding standard conditional systam (with
conditions of the form slt) is aiso a convergent {canonical)
decreasing system.

It should also be remarked that the converse of this
corollary is obvious for general case, i.s, if a standard
conditional system is convergent then the i
natural conditional syatem is also convergent (without any
assumption of decreasingness).

Further techniques for full normalization of conditicnal
equational proofs are studied in [24].

corollary is a direct consequence of the
Theorem.
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