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Rewriting is a computational process in which one term is derived from another by replacing a

subterm with another subterm in accordance with a set of rules. If such a set of rules (rewrite

system) has the property that no derivation can continue inde�nitely, it is said to be terminating.

Showing termination is an important component of theorem proving and of great interest in

programming languages.

Two methods of showing termination for rewrite systems that are self-embedding are pre-

sented. These \non-simple" rewrite systems can not be shown terminating by any of what are

called simpli�cation orderings. The �rst method of termination employs lexicographic combina-

tions of quasi-orderings including the ordering itself applied to multisets of immediate subterms

in a general path ordering. Two versions are presented. The well-founded and well-quasi general

path orderings respectively require their component orderings to be well-founded and well-quasi

orderings. The de�nitions are shown to result in well-founded and well-quasi orderings, respec-

tively. A general condition is presented for showing termination of a rewrite system with a

quasi-ordering. Conditions on the component orderings are presented which guarantee that

the general conditions are satis�ed. The well-quasi general path ordering is applied to several

examples to show termination.

The second method of showing termination is to use sets of derivations called the \forward

closures" of a rewrite system. New results are derived that give syntactic conditions under

which termination of the forward closures guarantees termination of the rewrite system. A
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theorem is presented that shows the relationship of forward closures with innermost rewriting.

If there is a class of rewrite systems for which innermost rewriting implies termination, then

termination of forward closures will imply termination as well. Restricting the set of forward

closures to derivations which satisfy some strategy such as choosing an innermost redex is

explored. Syntactic conditions are given for which termination of innermost or outermost

forward closures implies termination in general. The method of forward closures is then used

to show the termination of some example rewrite systems including the string rewriting system

0011! 111000.

A test for non-termination of a rewrite system using forward closures (FCT) is presented.

A previous method (MSP) using semi-uni�cation is analyzed and it is shown that certain kinds

of rewrite rules may be ignored without a�ecting the ability of MSP to detect non-termination.

Using this result one can also show that FCT will detect non-termination in every case that MSP

will, but not vice-versa. Results are also presented showing that information can be obtained

from forward closures about the termination of innermost derivations from terms of limited size

with all subterms in normal form. A method for computing innermost and outermost forward

closures is presented which avoids extra checking of earlier parts of the derivations to guarantee

the redexes remain innermost/outermost. Also given is a completion like method for generating

an innermost locally conuent rewrite system which preserves innermost derivations of a given

rewrite system.

Finally, there are appendices describing the interface to code written in common lisp which

implements the well-quasi general path ordering and showing its usage to prove termination of

a rewrite system for insertion sort.
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1 INTRODUCTION

Rewrite systems are sets of directed equations used to compute by repeatedly replacing terms in

a given formula with equal terms, as long as possible. The theory of rewriting is an outgrowth

of the study of the lambda calculus and combinatory logic, and has important applications

in abstract data type speci�cations, functional programming, symbolic computation, and auto-

mated deduction. For surveys of the theory of rewriting, see Dershowitz and Jouannaud [DJ90],

Klop [Klo92] and Plaisted [Pla93b].

If no in�nite sequences of rewrites are possible, a rewrite system is said to have the ter-

mination property. In practice, one usually guarantees termination by devising a well-founded

(strict partial) ordering � such that s � t whenever s rewrites to t (written, s ! t). As

suggested by Manna and Ness [MN70], it is often convenient to express reduction orderings

as a homomorphism from terms to an algebra equipped with a well-founded ordering. The

use, in particular, of polynomial interpretations which map terms into the natural numbers was

developed by Lankford [Lan79]. For a survey of termination methods, see Dershowitz [Der87].

The rule

x� (y + z) ! (x� y) + (x� z) (1.1)

is terminating. This can be shown by interpreting � as multiplication, + as �xy:x+ y+1, and

constants as 2. Since x � 2 implies x(y + z + 1) > xy + xz + 1, the rule is terminating. It

can also be proved terminating by considering the multiset of \natural" interpretations of all

products in a term, letting + and � stand for addition and multiplication, and assigning some

�xed value to constants; see Dershowitz and Manna [DM79] for similar examples. Syntactic

\path" orderings (see Dershowitz [Der87]) work in this case, too. Lipton and Snyder [LS77]

gave a particular method for proving termination with interpretations (order-isomorphic to !)

for which rules are \value-preserving", as this example is for the natural interpretation.

Virtually all orderings used in practice are simpli�cation orderings [Der82], satisfying the

replacement property, that s � t implies that any term containing s as a subterm is at least

as large (under �) as the same term with s replaced by t, and the subterm property, that any

term containing s is at least as large as s. Simpli�cation orderings are surveyed by Steinbach
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[Ste89]; their well-foundedness is a consequence of Kruskal's Tree Theorem. (See Dershowitz

[Der82].) A non-simple rewrite system (such as ffx! fgfx) is one for which no simpli�cation

ordering will show termination.

Knuth and Bendix [KB70] designed a particular class of well-orderings which assigns a

weight to a term that is the sum of the weights of its constituent function symbols. Terms of

equal weight and headed by the same symbol have their subterms compared lexicographically.

If they are headed by di�erent symbols, a \precedence" ordering determines which term is

larger. Another class of simpli�cation orderings, the path orderings were introduced around

1980. Plaisted in [Par78] de�ned the simple path ordering which mapped a term t to multiset

of paths in the term. The recursive path ordering introduced in Dershowitz [Der82], is based on

the idea that a term u should be bigger than any term that is built from smaller terms, all held

together by a structure of function symbols that are smaller in some precedence ordering than

the root symbol of u. The notion of path ordering was extended by Kamin and L�evy [KL80]

to compare subterms lexicographically and to allow for a semantic component; see Dershowitz

[Der87].

In the thesis quasi-orderings (reexive-transitive binary relations), rather than partial or-

derings, are used to prove termination of rewrite systems. If �� is a quasi-ordering and �
�
is its

inverse, then its strict part � (�� � �
�
) is a partial order. Its associated equivalence relation �

is de�ned as �� \ �
�
. A quasi-ordering is well-founded if it has no in�nite strictly descending

sequence of elements. A quasi-ordering is well-quasi if in addition to being well-founded it has

no in�nite set of incomparable elements.

A precedence is a well-founded quasi-ordering of function symbols. An ordering can be

called syntactic if it is based on a precedence and is invariant under shifts of symbols. In other

words, one requires that consistently replacing function symbols in two terms with others of the

same arity and with the same relative ordering has no e�ect on the ordering of the two. The

recursive path orderings [Der82; KL80; Les90] are syntactic; the Knuth-Bendix and polynomial

orderings are not.

Simpli�cation orderings cannot be used to prove termination of \self-embedding" systems,

that is, when a term t can be derived in one or more steps from a term t0, and t0 can be obtained

by repeatedly replacing subterms of t with subterms of those subterms. For example, consider

the following contrived system for computing factorial in unary arithmetic (expanding on one
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in Kamin and L�evy [KL80]):

p(s(x)) ! x

fact(0) ! s(0)

fact(s(x)) ! s(x)� fact(p(s(x)))

0� y ! 0

s(x)� y ! (x� y) + y

x+ 0 ! x

x + s(y) ! s(x+ y) :

(1.2)

It would be nice to be able to use a natural interpretation, but that does not prove termination,

since the rules preserve the value of the interpretation, rather than cause a decrease. Nor can

multisets of the values of the argument of fact be used, since some rules can multiply occurrences

of that symbol. Though path orderings have been successfully applied to many termination

proofs, they su�er from the same limitation as do all simpli�cation orderings: they are not

useful when a rule embeds as does fact(s(x))! s(x)� fact(p(s(x))).

What is needed is a way of combining the semantics given by a natural interpretation with a

non-simpli�cation ordering that takes the structure of terms into account. Two closely related

orderings are presented and will be called general path orderings. In Chapter 3, the well-quasi

general path ordering (WQGPO) is presented and is proven to be a a well-quasi ordering. In

Chapter 4 general conditions are given for showing termination of a well-founded quasi-ordering.

Speci�c conditions for composing component orderings are then given under which the WQGPO

can be use to show termination of rewrite systems (both simple and non-simple). In Chapter

5 it is shown that the WQGPO generalizes many of the above-mentioned orderings and a new

ordering called the natural path ordering is presented. In Chapter 6 extensive examples of

the use of the well-quasi general path ordering are given. Included is an example showing

termination of an insertion sort over natural numbers. The ordering used is unlike any of the

previously mentioned standard techniques for showing termination. Also included are some

conditional rewrite systems which make use of value-preserving orderings.

In Chapter 7 the second version of the general path ordering called the well-founded general

path ordering (WFGPO) is presented. It is less restrictive in that it allows orderings to be

combined which are well-founded, but not necessarily well-quasi. An additional restriction
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requiring orderings which examine all subterms is needed, however. The well-founded general

path ordering is shown to be a well-founded quasi ordering and the conditions under which

it can be applied are presented. Finally, comparisons are made between the two general path

orderings.

One under-used approach to termination is the use of restricted derivations [Der81; GKM83;

Geu89]. The forward closures of a given rewrite system are an inductively de�ned set of

derivations. The basic idea is to only consider derivations in which application of rules is in

that part of a term created by previous rewrites.

In general, termination of forward closures does not ensure termination of a rewrite system.

In this thesis results are presented which weaken the condition under which termination forward

closures are su�cient to show the termination of a rewrite system. One important result is a

theorem which shows the relation between forward closures and innermost termination of a

rewrite system.

Also investigated are restrictions to the set of forward closures based on rewrite strategies.

Popular strategies include restricting the position of a rewrite application to an innermost or

outermost redex. Syntactic conditions on rewrite systems are presented in Chapter 8 which

allow one to show termination via termination of a restricted set of forward closures.

In Chapter 9 an application of forward closures is investigated. Completion is the process

by which a set of equations is converted to an equivalent rewrite system which is conuent and

terminating. Typically the process of completion involves searching for a rewrite system which

allows the completion to orient all of the generated rules. This process can be using heuristics

to orient the rules independently of an ordering. In this thesis, a previous method of detecting

a non-terminating set of rules due to Purdom [Pur87] is analyzed. A new method using forward

closures is proposed which is shown to be strictly more powerful.

Termination of innermost forward closures is su�cient to guarantee innermost termination of

a rewrite system. This can be exploited in a number of cases. For example, many programming

languages are applicative, and hence innermost derivations may be all that one is interested in

when proving termination. In addition, restricting completion to innermost derivations has the

bene�t of severely limiting the number of possible critical pairs to be considered. Only overlaps

at the top position need to be considered [Pla93b]. In Chapter 10, using innermost forward

closures with completion are explored. It is shown that while the set of forward closures may
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be in�nite, innermost termination for terms of restricted size may be determined by examining

a �nite number of forward closures. In addition, methods for more e�ciently computing the

the innermost and outermost forward closures of a rewrite system are presented.
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2 BACKGROUND

This chapter presents the terminology and notation that will be used throughout the rest of

the thesis. Useful results are presented for well-quasi orderings.

2.1 Terminology

The following notation, de�nitions, and propositions are reasonably standard and usually con-

form with those presented by Dershowitz and Jouannaud in [DJ90].

2.1.1 Terms

Terms are constructed recursively from a set of function symbols F and a set of variables X .
Each function symbol f 2 F has an arity which is the number of subterms that the function

f has. Constants are those function symbols with an arity of zero. A unary function symbol

has an arity of one. A binary function symbol has an arity of two. The set of terms T (F ;X )
contains all the constants and variables. Any term t = f(t1; : : : ; tn) is also a member, provided

that f has arity n and each of the terms t1; : : : ; tn is also in T (F ;X ). Terms which are variable

free are denoted as ground terms. A term t with a subterm s will be denoted as t = C[s] where

C is the context of the subterm. The subterm s = tjp, where p is the position of the subterm.

Since a term can be represented as a �nite tree with all the internal nodes labeled with non-

constant function symbols, positions can be denoted as a path from the root of the tree. The

position p = � is the root of the tree. The subterm associated with the position p = p0:i is

the ith subterm of the subterm associated with p0. As convenience, the immediate subterms of

a term t are denoted t1; : : : ; tn and t = f(t1; : : : ; tn). To avoid confusion subscripting will be

reserved for indicating subterms of the terms t, s, u, and v. Proofs that use a sequence or set

of terms will use superscripting, e.g., t0; t1; t2; : : : is a sequence of terms.

The set of variables in a term is denoted by V ar(t). The letters a through h will be reserved

for function symbols, x, y and z are reserved for variables, and l,r,s, and t are reserved for terms.

Most terms will be written in a functional notation. For example, t = f(g(x; y); a; z) is a term

composed of the variables x, y, and z, the constant a, the function symbol g (with arity two),
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and the function symbol f (with arity three). The exceptions are that for function symbols

of arity one the parentheses will usually be dropped and for common binary mathematical

functions in�x notation will be used. For example, the term h(h(h(a))) would be written as

hhha, and the term �(x;+(y; z)) would be written as x� (y + z).

2.1.2 Substitutions and Uni�cation

A substitution is a set of mappings from variables to terms denoted as fx1 7! s1; : : : ; xn 7! sng.
Any variable term xi is replaced by the corresponding term si in the mapping. A substitution

is extended recursively to a term t = f(t1; : : : ; tn) by applying t� = f(t1�; : : : ; tn�). The

composition of two substitutions � and �, is denoted � � � and represents the composition of

the two mappings. Formally, t� � � = (t�)�. For convenience, this will usually be written as

just t��. A renaming substitution is one in which the terms s1; : : : ; sn are all pairwise di�erent

variables. For example, the substitutions �1 = fx 7! y; y 7! xg, �2 = fx 7! y; y 7! zg, and
�3 = fx 7! w; y 7! zg are all renaming substitutions.

Given sets of terms �t =
�
t1; : : : ; tn

	
and �s =

�
s1; : : : ; sn

	
, the substitution � is said to be a

uni�er if the following equations are satis�ed

t1� = s1�
...

tn� = sn� :

(2.1)

Typically, one is concerned with the special case of just two terms, in which case t is said to

unify with s provided that t� = s�. A substitution � is a most general uni�er if for any uni�er

�, there is some substitution � such that � = � � � . Note that the most general uni�er is not

unique. It is only unique up to a renaming substitution.

Sets of terms �t =
�
t1; : : : ; tn

	
and �s =

�
s1; : : : ; sn

	
match if there is a substitution � where

the following equations are satis�ed

t1� = s1

...

tn� = sn :

(2.2)
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Typically, one is concerned with the special case of just two terms, in which case t is said to

match s provided that t� = s for some substitution �. For example, the term t = fx matches

the term s = fga with the substitution � = fx 7! gag.
Sets of terms �t =

�
t1; : : : ; tn

	
and �s =

�
s1; : : : ; sn

	
semi-unify if there are substitutions �

and � where the following equations are satis�ed

t1�� = s1

...

tn�� = sn :

(2.3)

2.1.3 Rewrite Systems

An equation is an unordered pair of terms (s; t) denoted as s = t. If s and t contain variables

it is understood that they are universally quanti�ed. In other words, for every substitution �

the equation s� = t� is true. An equational theory is induced by a set of equations E and is

denoted by =E . Two terms u and v are equal under an equational theory u =E v if

1. u = s� and v = t� for some substitution � and equation s = t 2 E,

2. u = C[s] and v = C[t] and s =E t where C is a non-empty context, or

3. there is some term w such that u =E w and w =E v.

This is the standard algebraic notion that equals are replaced by equals. Suppose that one is

given the set of equations

E =

8>>>><
>>>>:

x+ 0 = x

x+ s(0) = x

x+ s(y) = s(x+ y)

9>>>>=
>>>>;

(2.4)

Since 0 =E 0 + s(0) =E s(0 + 0) = s(0) and s(0) =E s(0) + s(0) =E s(s(0) + 0) =E s(s(0)) it

is also the case that f(0) =E f(s(s(0)). Notice that in this case all of the terms si(0) are equal

under E.

A rewrite rule l! r is a directed equation such that the all variables on the right-hand side

are also on the left-hand side, i.e., V ar(r) � V ar(l). A rewrite system R is a set of rewrite

rules. A rewrite step or derivation step is obtained by application of a rule l ! r to a term

t. The rule can be applied if there is some subterm s of t such that l matches s (there is a
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substitution � where s = l�.) In this case the rule matches the redex s. The derivation step

is t = C[s] ! C[r�]. The rewrite relation on a set of terms associated with a rewrite system

R is denoted by !R. If there is only one rewrite system, or it is clear from the context which

rewrite system is being referred to this will be shortened to just !. The derivability relation

!� is the reexive, transitive closure of !. The notation t!� t0 indicates that t rewrites to t0

in zero or more steps. The notation t!+ t0 indicates that t rewrites to t0 in one or more steps.

A rewrite step t = C[s] = C[l�]! C[r�] is innermost with respect to R if there is no proper

subterm u = sjp of s such that u! u0 for some u0. In other words, every proper subterm of s is

in normal form (can not be rewritten). A rewrite step t = C[s] = C[li�]! C[ri�] is outermost

with respect to R if there is no subterm u = tjp of t where s is a proper subterm of u and

u! u0 for some u0. In other words, there is no redex above s.

A left-linear rewrite system has no repeated variables on the left-hand side of a rule. Sim-

ilarly, a right-linear system has no repeated variables on the right-hand side of a rule. A pair

of rules li ! ri and lj ! rj overlap if there is some non-variable subterm of li which uni�es

with lj . Essentially, this represents a situation where there is a term t in which both of the

rules can be applied and the redexes share context. A non-overlapping rewrite system is one

where no left-hand side of a rule uni�es with any non-variable subterm of the left-hand side of

another rule or with a non-variable proper subterm of itself when variables in the two rules are

renamed apart. An overlaying rewrite system is one whose only overlaps are at the topmost

position, that is, no left-hand side uni�es with a non-variable, proper subterm of any left-hand

side. A rewrite system is non-erasing if any variable on the left-hand side of a rule is also

on the right-hand side. An orthogonal rewrite system is non-overlapping and left-linear. A

ground rewrite system is one which has no variables. A locally conuent rewrite system is one

for which u ! s; t implies s; t !� v, for some v. A conuent rewrite system is one for which

u !� s; t implies s; t !� v, for some v. Note that local conuence does not imply conuence

in general. A rewrite system is said to have the unique normal form property if u !� n1; n2

where n1 and n2 are normal forms, implies n1 = n2. Certain symbols may be denoted as

constructors and must not be the topmost symbol on the left-hand side of any rule. A term

is constructor-based if all of its proper subterms have only free constructors and variables. A

rewrite system is constructor-based if its left-hand sides are constructor-based, and a forward

closure is constructor-based if its initial term is constructor-based.
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2.2 Termination

A term t is terminating (and is denoted by t 2 Tf) if all derivations from t are �nite; t is

non-terminating (and is denoted by t 2 T1) if some derivation from t is in�nite; and t is on

the frontier (and is denoted by t 2 FR) if t is non-terminating, but every proper subterm of

t is terminating. If a term has no frontier subterms, then it must be terminating. Conversely,

if a term has a frontier subterm, it is non-terminating. If no in�nite sequences of rewrites are

possible, a rewrite system is said to have the termination property.

An well-founded ordering is a partial ordering which has no in�nite descending sequences.

Such an ordering can be used to prove the termination of a rewrite relation, by showing that

the rewrite relation embeds within the well-founded ordering (and thus that every rewrite step

shows a decrease within the ordering).

Virtually all orderings used in practice are simpli�cation orderings [Der82], satisfying

� the replacement property, that s � t implies that any term containing s as a subterm is

at least as large (under �) as the same term with s replaced by t, and

� the subterm property, that any term containing s is at least as large as s.

Simpli�cation orderings are surveyed by Steinbach [Ste89]; their well-foundedness is a conse-

quence of Kruskal's Tree Theorem [Kru60].

De�nition 1. A term t is homeomorphically embedded in a term s written t � s if

1. t and s are identical,

2. t is homeomorphically embedded in si an immediate subterm of s (t � si), or

3. t and s have the same function symbol on top and the immediate subterms of t homeo-

morphically embed in the corresponding immediate subterms of s (t = f(t1; : : : ; tn) and

s = f(s1; : : : ; sn) and for each pair of subterms ti � si.)

This de�nition needs to be extended slightly if one wants to handle the possibility of variadic

function symbols, but in this thesis that possibility will be excluded. A rewrite derivation

t1 ! t2 ! : : :! ti : : : is said to be self-embedding if there are terms ti and tj where ti � tj and

i < j.
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Proposition 1 (Kruskal's Tree Theorem). If F is �nite set of function symbols, then any in-

�nite sequence t1; t2; � � � of terms in the set T (F) of terms over F contains two terms ti and tj

such that ti � tj and i < j.

This was shown by Kruskal in [Kru54] and [Kru60]. The special case where each of the function

symbols is of �xed arity was shown earlier by Higman in [Hig52].

Proposition 2. If a �nite rewrite system is non-terminating, then it is self-embedding.

Proof. This is due to Dershowitz in [Der82]. If the rewrite system R does not terminate then

there must be an in�nite derivation. Since there are only a �nite number of function symbols,

by Proposition 1 there must two terms ti and tj such that ti � tj and i < j. Therefore the

derivation self-embeds.

This gives one a necessary condition for termination, but it is not su�cient since there are

terminating rewrite systems which are self-embedding. For example, ffx ! fgfx is self-

embedding and terminating.

Proposition 3. Given a rewrite system R and two terms t and s such that t is homeomorphi-

cally embedded in s (t � s) and t ! s, R can not be shown terminating by any simpli�cation

ordering.

A simpli�cation ordering � extends the the relation � [Der82]. Thus, in the simpli�cation

ordering s � t and the derivation can not be shown to terminating.

2.3 Quasi-Orderings

This section reviews quasi-orderings. It contains several Propositions that will be used later in

the thesis.

A relation �� on a set S is a Quasi-ordering if it is transitive and reexive. The associated

equivalence relation on S is given by s � t if s �� t and t �� s. The associated partial ordering

� (the strict part of the Quasi-ordering) on S is given by s � t if s �� t but not t �� s.

The classic example is the set real numbers with respect to the relation greater than or

equal modulo n.
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A Quasi-ordering is well-founded if the strict part, � is well-founded. The previous example

is not well-founded since the sequence � > �=2 > �=4 > � � � is not well-founded. On the other

hand, if one restricts the set to the integers, it will be well-founded.

De�nition 2. An ordering on S is a well-quasi-ordering if for any in�nite sequence of of ele-

ments s1; s2; s3; : : :, there exist two elements si and sj such that, si �
�
sj and i < j.

This de�nition was �rst proposed by Kruskal in [Kru60]. Any well-quasi-ordering must also be

well-founded. In addition, there can not be an in�nite number of incomparable elements. For

a history of well-quasi orderings and a survey of their uses, see [Kru72].

Proposition 4. If �� is a well-quasi-ordering over S, then in any in�nite sequence of elements

s1; s2; s3; : : :, there is an in�nite subsequence si1 ; si2 ; si3; : : :, such that si1 �
�
si2 �

�
si3 �

�
: : : and

i1 < i2 < i3 < : : :.

Proof. This is the in�nite version of Ramsey's theorem. Assume that this is not the case.

Consider an arbitrary in�nite sequence of elements. By the de�nition of a well-quasi-ordering,

there must be a pair of elements si and sj such that si �
�
sj . From sj construct a sequence of

terms sj ; sj1 ; sj2 ; : : : ; sjn where sj �
�
sj1 �

�
sj2 �

�
: : : �

�
sjn . This sequence must be �nite by

assumption and sjn must be greater than or incomparable to all succeeding elements. Removing

the jn elements from the sequence leaves a new in�nite sequence for which a new subsequence of

elements can be found. Repeating this an in�nite number of times and taking the last element

in each subsequence, allows one to construct an in�nite sequence of terms, such that each one

is greater than or incomparable to all the succeeding terms. But this is a contradiction.

Proposition 5. If ��1;��2; : : : ;��n are well-quasi-orderings over S then any lexicographic com-

bination is a well-quasi-ordering as well.

Proof. Consider an in�nite sequence of terms s1; s2; s3; � � �. By the previous Proposi-

tion, an in�nite subsequence of terms can be constructed (call them t1; t2; t3; � � �) such that

t1 �
� 1t

2 �
� 1t

3 �
�
� � �.

Clearly, this process can be continued with each of the n orderings until a se-

quence of terms u1; u2; u3; � � � is obtained which is a subsequence of the original where

u1�� 1u2; u1�� 2u2; � � � ; u1�� nu2. But u1 is less than or equal to u2 under the lexicographic
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combination of the orderings and u1 occurs before u2 in the sequence, therefore the lexico-

graphic combination is also a well-quasi-ordering.

De�nition 3. An embedding relation ��� de�ned on the set of �nite sequences S� over the set
S by the quasi-order �� , is given by (s1; : : : ; sm) ��� (t1; : : : ; tn) if sij �� ti for all j = 1; : : : ; n

with 1 � i1 < i2 < : : : < in � m.

Proposition 6 (Higman's Lemma). An embedding relation ��� de�ned on the set of �nite

sequences S� over the set S is well-quasi ordered if, and only if, the ordering �� is a well-quasi

ordering over S.

This was shown by Higman in [Hig52] and shows that the embedding relation preserves the

well-quasi ordering. The proof proceeds by a minimal counter example.

Proposition 7. If �� is a well-quasi-ordering over S, the extension of �� to multi-sets �� M

is also a well-quasi-ordering.

Proof. This is a direct result of Higman's Lemma.
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3 THE WELL-QUASI GENERAL PATH ORDERING

(WQGPO)

In this chapter the de�nition of the well-quasi general path ordering is given.1 The well-quasi

general path ordering combines mappings from terms to well-quasi-ordered sets. It is shown that

the well-quasi general path ordering is, in fact, a well-quasi-ordering and hence is a candidate

for showing termination of rewrite systems.

3.1 De�nitions

In this section concepts are introduced for use with the either of the general path orderings.

Included are some basic kinds of component orderings used by a general path ordering. Finally

the de�nition of the well-quasi general path ordering is given.

De�nition 4 (Termination Function). A termination function � takes a term as argument and

is of one of the following types:

a. a homomorphism from terms to an algebra (set of values) A, where �(f(s1; : : : ; sn)) =
f�(�(s1); : : : ; �(sn)), and f� is a function from An to A for n-ary function symbol f ;

b. an extraction function from terms to multisets of selected immediate subterms, that is

�(f(s1; : : : ; sn)) = fsj1 ; : : : ; sjmg, such that j1; : : : ; jm 2 f1; : : : ; ng where the choice of

the subterms depends on the function symbol f .

We say that s �� t for terms s and t containing variables �x if s� �� t� for all ground (variable

free) substitutions � for the variables �x.

De�nition 5 (Component Order). Let T be a set of variable-free terms (over some alphabet).

A component order � = h�;�i consists of a termination function � : T ! A, from terms to an

algebra A along with an associated well-quasi-ordering � over A.

1The de�nition of the general path ordering given in [DH95] is a little di�erent. See Chapter 7 for a discussion.
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The following de�nitions are useful (' denotes the equivalence part of �):

� A homomorphism � is value-preserving with respect to the ordering � and rewrite system

R if �(l�) ' �(r�) for all rules l! r in R and substitutions �.

� A homomorphism � ismonotonic with respect to the ordering � if for all function symbols

f , f�(: : :x : : :) � f�(: : :y : : :) whenever x > y.

� A homomorphism � is strictly monotonic with respect to the ordering � if for all function

symbols f , f�(: : : x : : :) > f�(: : : y : : :) whenever x > y.

� A homomorphism � has the strict subterm property with respect to the ordering � if for

all function symbols f , f�(: : : x : : :) > x.

� An equivalence relation ' is a congruence with respect to a homomorphism � if for all

function symbols f , x ' y implies f�(: : : x : : :) ' f�(: : :y : : :).

� The multiset Ri(S) of terms of rank i (i � 0) with respect to the ordering � on terms in

a multiset of terms S, is inductively de�ned as

Ri(S) = fu : u is maximal with respect to � in Li(S)

where

Li(S) = S �
[

0<j<i

Rj(S):

De�nition 6. Some important classes of component orders are:

a. h�;�i is a precedence when � is a homomorphism which returns the outermost function

symbol of a term and � is a precedence ordering;

b. h�;�i is value-preserving when � is a value-preserving homomorphism with respect to �
and � is a well-quasi-ordering;

c. h�;�i is monotonic when � is a monotonic homomorphism with the strict subterm prop-

erty (with respect to �) and � is a well-quasi-ordering;

d. h�;�i is strictly monotonic when � is a strictly monotonic homomorphism with the strict

subterm property (with respect to �) and � is a well-quasi-ordering;
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e. h�;�i is multiset extracting when � is an extraction function which depending on the out-

ermost function symbol returns a multiset of the immediate subterms I(t) = ft1; t2; : : :g
of a term t, of the following types:

1. a multiset (including the emptymultiset) whose elements are the immediate subterms

at speci�ed positions K (PK(t) = fti : i 2 Kg),
2. a multiset whose elements are the immediate subterms of rank k,

Rk(I(t)), or
3. a multiset whose elements are the immediate subterms of rank k or less (R�k(I(t)) =Sk

i=1Rj(I(t)))

and � is the multiset ordering �� M induced by a well-quasi-ordering �� on terms. (See

Dershowitz and Manna [DM79] for more on multiset orderings.)

Simple examples of homomorphisms from terms to the natural numbers are size (number

of function symbols, including constants), depth (maximum nesting of function symbols), and

weight (sum of weights of function symbols). Size and weight are strictly monotonic; depth is

monotonic. A simple example of a precedence uses the ordering + > s > 0 with +� = �x:\+",

s� = �x:\s", and 0� = �x:\0". (The subterm property is guaranteed for strictly monotonic

homomorphisms into well-ordered sets [Der82].) An example of a multiset component ordering

is � = R1; it extracts the maximal immediate subterms in �. Another example is � = Pf1g

which gives the leftmost subterm.

De�nition 7 (Well-Quasi General Path Ordering). Let �0 = h�0;�0i, : : :, �k = h�k;
�ki be component orders, where for multiset extraction �x component orders, �x is the well-

quasi general path ordering �� itself. The induced well-quasi general path ordering �� is

de�ned as follows:

s = f(s1; : : : ; sm) �� g(t1; : : : ; tn) = t

if either of the two following cases hold:

(1) si �� t for some si, i = 1; : : : ; m, or

(2) s � t1; : : : ; tn and �(s) �lex �(t), where �(s) = h�0(s); : : : ; �k(s)i, and >lex is the

lexicographic combination of the component orderings >x.
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The equivalence part of the ordering is given by s � t if s �� t and t �� s.

3.2 Quasi-ordering Proofs

In this section a series of lemmata will be presented which allow one to prove that the well-quasi

general path ordering is a quasi-ordering.

Lemma 8 (Exclusion). If s � t then s �� t and t �� s are either both true by Case (1) or both

true by Case (2).

Proof. Suppose that s �� t by Case (1). Then there is an immediate subterm si of s such that

si �� t. If t �� s by Case (2) then for all immediate subterms si it must be that t � si. This is a

contradiction.

The other case is shown by a symmetric argument.

The notation tjp is used to refer to the subterm of t at position p and the notation u[s] (or

u[s]p) indicates that u contains s as a subterm (at position p).

In some cases, it is more convenient to give the position of a subterm in the following

manner. The notation si refers to the ith immediate subterm of s. The notation si:j refers to

the jth immediate subterm of the ith immediate subterm of s.

The following two lemmata must be shown by simultaneous induction over the height of a

term.

Lemma 9 (Strict Subterm). The well-quasi general path ordering satis�es the strict subterm

property s = f(: : : ; si; : : :) � si, for all i.

Proof. By inductive application of Reexivity si � si and therefore by Case (1) of the

ordering s �� si.

Now suppose that s � si. By the previous lemma (Exclusion) it must be that si �� s by

Case (1).

This implies that si:j �� s for some immediate subterm si:j of si. By induction si � si:j and

Case (1) of the ordering can be applied to show that s �� si:j . But this means that si:j � s and

by Exclusion that si:j �� s by Case (1).
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This implies that si:j:k �� s for some immediate subterm si:j:k of si:j . By induction si:j � si:j:k

and a series of applications of Case (1) of the ordering can be used to show that s �� si:j:k . But

this means that si:j:k � s and by Exclusion that si:j:k �� s by Case (1).

Eventually one reaches a subterm of height one where this argument fails and hence by

contradiction s 6� si leaving s � si.

Lemma 10 (Reexivity). The well-quasi general path ordering �� is reexive (s � s).

Proof. This can be shown by proving that s �� s.

By the previous lemma (Strict Subterm) it is known that s � si for all si. Case (2) can be

applied if �(s) ' �(t)

But this is true for the homomorphism components since they must be quasi-orders and

by application of induction on the immediate subterms returned by the extraction components

one has ti �� ti and therefore the multiset ordering on immediate subterms is reexive as well.

(ftj1 ; : : : ; tjmg �M ftj1 ; : : : ; tjmg for any j1; : : : ; jm 2 f1; : : : ; ng).
Therefore Case (2) applies.

Lemma 11. For the well-quasi general path ordering, s �� t implies u[s] � t for each non-empty

enclosing context u[�] of s.

Proof. Consider the subterm ujp which contains s as an immediate subterm. By Case (1),

ujp � t. Repeated application of the preceding argument leads to u[s] � t.

Lemma 12 (Transitivity). For terms s, t, and u and well-quasi general path ordering ��:

(i) s �� t �� u implies s �� u;

(ii) s �� t � u implies s � u;

(iii) s � t �� u implies s � u;

(iv) s � t � u implies s � u.

Proof. The proof proceeds by induction over the triple of terms hs; t; ui with respect to the

sum of the heights of the three terms.
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(i) Suppose that s �� t by Case (1) of the ordering, then si �� t for some i. Since t �� u, one

can apply induction on the triple hsi; t; ui to get si �� u. Therefore s �� u. by Case (1) of

the ordering.

Suppose that s �� t by Case (2) of the ordering, then s � t1; : : : ; tn and �(s) �lex �(t).

Now if t �� u by Case (1) of the ordering, then tj �� u for some j. But one may apply

induction to the triple hs; tj ; ui to show s � u. If t �� u by Case (2) of the ordering,

then t � u1; : : : ; um and �(t) �lex �(u). One may apply induction to each of the triples

hs; t; uki to show that s � uk for each k. If each of the component orders is transitive

then �(s) �lex �(u). When �x is a well-quasi-ordering there is no problem; when �x is

a multiset ordering on immediate subterms, the induction hypothesis is needed. Finally,

s �� u by application of Case (2).

(ii) By application of the Part (i), one knows that s �� u.

Suppose that s � u. Then u �� s. Combined with s �� t and applying Part (i), one gets

u �� t. But this contradicts the premise that t � u, hence s � u.

(iii) Essentially the same argument as for (ii).

(iv) Applying Part (i) for s �� t �� u and u �� t �� s results in s �� u and u �� s. Therefore, by

de�nition, s � u.

Theorem 13. The well-quasi general path ordering is a quasi-ordering.

Proof. By the previous lemmata �� is reexive and transitive.

3.3 Well-Quasi-Ordering Proof

This section contains the proof that the well-quasi general path ordering is a well-quasi-ordering.

First, however, some simple, but useful lemmas will be shown which give conditions under

which it is easy to determine if two terms are strictly ordered. An alternate de�nition for the

equivalence part of the relation is also presented.

Lemma 14 (Strictness of Case 1). If s �� t via case (1), then s � t.
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Proof. One needs to show that t 6�� s.

It must be the case that there is some subterm si of s such that si �� t. Therefore Case (2)

can not apply.

By the strict subterm property one has that s � si �� t � tj for every subterm tj of t. By

transitivity, one sees that for every immediate subterm tj of t it must be that tj � s and Case

(1) does not apply.

Lemma 15 (De�nition of Equivalence). The associated equivalence relation � is given by the

condition

s = f(s1; : : : ; sm) � g(t1; : : : ; tn) = t

if and only if s � t1; : : : ; tn, t � s1; : : : ; sm and �0(s) '0 �0(t); : : : ; �k(s) 'k �k(t):

Proof. If s � t, then s �� t and t �� s. But by the previous lemma, it can not be that s �� t

by Case (1). Therefore, Case (2) must have been applied in both directions.

Lemma 16. If s �� t by Case (2) and �(s) > �(t) then s � t.

Proof. Suppose that s � t, then by Lemma 8 it must be the case that t �� s by Case (2). But

since �(s) > �(t) Case (2) is not applicable, and by contradiction s � t.

Notice that Case (1) of the ordering is always strict. Case (2) of the ordering is always

strict if the lexicographical comparison is strict. When the terms are equivalent under the

lexicographical comparison, Case (2) of the ordering may result in the terms being either strict

or equivalent.

Theorem 17. The well-quasi general path ordering is a well-quasi-ordering.

Proof. Consider an in�nite sequence of terms t1; t2; t3; � � � which comprise a minimal counter

example (minimal in the sense that each of the terms is smallest in height that begins a counter

example).

Each of the subterms must be well-quasi-ordered with respect to �� or the sequence wouldn't

be minimal. Therefore, since � is composed of homomorphisms which are well-quasi-orderings

and extractions of subterms over which �� is also well-quasi-ordered, the lexicographic ordering

� is well-quasi-ordered over the terms in the minimal counter example.
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Therefore, in the sequence �(t1);�(t2);�(t3); � � � by Proposition 4 there must be an in�nite

subsequence such that �(s1) � �(s2) � �(s3) � � � �.
Now consider the multisets of the subterms of each of the terms si. By Proposition 7, the

ordering �� extended to the multisets of the immediate subterms is also well-quasi-ordered

(since �� is well-quasi-ordered with respect to the subterms themselves.) Therefore, there are

i and j such that i < j and
n
si1; : : : ; s

i
m

o
�
� M

n
sj1; : : : ; s

j
n

o
. Furthermore, for every subterm siq

of si there is some subterm sjr such that siq �� sjr. By application of the strict subterm property

one gets sj � sjq. Applying transitivity, one sees that every subterm siq of s
i satis�es sj � siq.

By construction �(sj) � �(si) and Case (2) is applied to get sj �� si. But this contradicts

the assumption that the original sequence of terms was a counterexample. Therefore �� is a

well-quasi-ordering.
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4 TERMINATION PROOFS

A general path ordering can be used to prove termination if certain general conditions are met.

The �rst lemma presented guarantees a strict decrease in the multiset ordering induced by a

quasi-ordering. Next a theorem is shown which gives general conditions under which a quasi-

ordering can be used to show termination of a rewrite system. Finally, the last theorem gives

speci�c conditions for the component orderings of a well-quasi general path ordering to ensure

that the the general conditions are satis�ed.

Lemma 18. If �� is a quasi-order with the strict subterm property,

s! t and s �� t imply f(: : : ; s; : : :) �� f(: : : ; t; : : :) ;

for all terms s, t, : : : and function symbols f , and l� � r� for all rules l! r and substitutions

�, then for any rewrite step u! v UM �M VM where �M is the multiset ordering induced by

�� , UM = ftjt is a subterm of ug, and VM = ftjt is a subterm of vg.

Proof. To begin, note that given a position p, the multiset of subterms can be split into three

parts: the subterms at or below p, the subterms above p, and the subterms disjoint from p.

If u! v then there is some subterm ujp of u such that ujp = l�. Therefore

u = u[l�]p ! u[r�]p = v:

By assumption l� � r�. In addition, repeated application of the strict subterm property with

transitivity gives r� � r�jp for all proper subterms of r�. Thus the subterm l� in UM is

replaced in VM by the strictly smaller r� and its subterms.

The only other subterms which are a�ected by the rewrite are those rooted at symbols on

the path from l� to the top of u. One can show that w[l�]p �� w[r�]p for all contexts w by

induction on the depth of position p in w. If w is the empty context, it is given that l� � r�.

Otherwise, let w = f(� � �s[l�]q � � �). By induction s[l�]q � s[r�]q, and by the given implication

w[l�]p = f(� � �s[l�]q � � �) �� f(� � �s[r�]q � � �) = w[r�]p:
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Theorem 19 (General Termination). Let �� be a general path ordering. A rewrite system R
terminates if

� l� � r� for all rules l! r in R and substitutions � and,

� s! t and s �� t implies f(: : : ; s; : : :) �� f(: : : ; t; : : :).

Proof. Since the general path ordering is a quasi-order with the strict subterm property,

by Lemma 18 one knows that each rewrite results in a strict decrease in �M. Since � is a

well-quasi-order it is well-founded as well. Therefore, �M is also well-founded and termination

follows.

Theorem 20 (Speci�c Termination). Let �0; : : : ; �i�1 (i � 0) be monotonic, all but possibly

the last strict, and let �i; : : : ; �k be precedence, value-preserving, or multiset extraction compo-

nent orders. A rewrite system terminates if l� � r� in the corresponding general path ordering

�� for all rules l! r and ground substitutions �, provided

(i) if �x = Rk there is some y < x such that �y = Rk�1 or �y = R�k�1; and

(ii) 'x is a congruence for each homomorphism �x.

Note that whenever �x is a partial-order, congruence is guaranteed.

4.1 Examples

Before giving a proof, consider the following examples illustrating the need for restrictions on

the components: (Parentheses are omitted for the unary function symbols 0, 1, f , g.)

Consider the non-terminating two rule rewrite system

0011x ! 111000x

0x ! 11x :
(4.1)

A well-quasi general path ordering with �rst component, the precedence 0 > 1, and the second,

the strictly monotonic homomorphism which counts the number of symbols in a term, shows

a decrease for both rules. But this violates the condition requiring monotonic homomorphisms

to precede the other types of component orderings.
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Consider the non-terminating two rule rewrite system

ffx ! fgfx

gx ! x :
(4.2)

A well-quasi general path ordering with �rst component, a monotonic homomorphism �ff which

counts the number of pairs of f 's, and second, the precedence f > g, shows a decrease for both

rules. But this violates the condition requiring that homomorphisms be congruences, since

�ff (f(g(a))) 6= �ff (f(f(a))) even though �ff (g(a)) = �ff (f(a)).

Consider the non-terminating two rule rewrite system

h(a; b) ! h(a; a)

a ! b :
(4.3)

A well-quasi general path ordering with �rst component, the precedence f > a > b, and second,

the multiset extraction of rank two, shows a decrease for both rules, since fbg > ;. But this

violates the condition requiring that the rank extracting component be preceded by a rank

extracting component which extracts terms of rank one.

4.2 Proof of Termination of GPO with Restrictions

The following is the proof of Theorem 20. It proceeds by considering � and � separately.

Proof. By Theorem 19, it su�ces to show

s! t and s �� t imply u = f(: : :s : : :) �� f(: : : t : : :) = v ;

for all terms s, t, : : : and function symbols f .

Consider the case that s � t. To complete the proof it will be shown that u � v. If s � t,

then by lemma 15 s � t1; : : : ; tm and t � s1; : : : ; sn and �(s) 'lex �(t). For each of the

subterms vi 6= t, it is the case that ui = vi. For the subterm t itself, s � t, and consequently

u = f(: : : s : : :) � vi for each i by Case (1) of the ordering. Similarly, v = f(: : : t : : :) � uj for

each j. One just needs to show that �x(u) 'x �x(v) for each component order so that lemma

15 can be applied.
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For precedence and value-preserving component orders this is trivial. For monotonic compo-

nent orders, the extra condition guarantees that 'x is a congruence and hence �x(f(: : :s : : :)) =

f�x (: : :�x(s) : : :) 'x f�x(: : :�x(t) : : :) = �x(f(: : : t : : :)).

For �i that return multisets, one needs to consider each of the extraction functions sepa-

rately:

1. Extract subterms at positions K. If s 6= uk for any k 2 K, then each uk = vk and

PK(u) = PK(v). Otherwise, the multisets are identical except that s is replaced by t and

therefore PK(u) �M PK(v).

2. Extract subterms of rank k. Since s is equivalent to t, they have the same rank. Therefore

Rk(IS(u)) �M Rk(IS(v)) for all k.

3. Extract terms of rank k or less. By the same argument as in the previous case,

R�k(IS(u)) �M R�k(IS(v)).

The proof now turns to the strict case, s � t. As before one can show that u � vi for each

i. It just remains to be shown that �(u) �lex �(v) in order to apply Case (2) of the well-quasi

general path ordering. Note that for the recursive de�nition to give s � t, there must be some

subterm (possibly non-proper) sjp of s such that sjp �� t by Case (2) of the ordering and hence

�(sjp) �lex �(t). Consider a monotonic homomorphism �x. There are two cases:

Case A (sjp = s): Suppose that �y with y � x is the �rst monotonic homomorphism which

shows an increase. For each of the preceding homomorphisms �z(s) 'z �z(t) and therefore

�z(f(: : : ; s; : : :)) 'z �z(f(: : : ; t; : : :)) by congruence for z � y, while for the yth homomorphism

�y(s) >y �y(t). If the homomorphism is strict, this implies �y(f(: : : ; s; : : :)) >y �y(f(: : : ; t; : : :))

and the lexicographic comparison is strictly greater. If the homomorphism is not strict, then

�y(f(: : : ; s; : : :)) �y �y(f(: : : ; t; : : :)) and the status of the lexicographical comparison may de-

pend on the succeeding component orderings.

Case B (sjp 6= s): Consider �0. By repeated application of the strict subterm property of

the monotonic homomorphism components, one has �0(s) >0 �0(sjp) �0 �0(t). If �0 is strict,

this implies �0(f(: : : ; s; : : :)) >0 �0(f(: : : ; t; : : :)) and the lexicographic comparison is strictly

greater. If �0 is not strict, then �0(f(: : : ; s; : : :)) �0 �0(f(: : : ; t; : : :)) and the status of the

lexicographical comparison may depend on the succeeding component orderings.
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In either case, any component orderings following a non-strict homomorphism need not

show an increase for s or sjp, respectively, compared with t. As a consequence, none of the

succeeding component orderings may safely rely on the lexicographic status of s or its subterms.

In addition, since the monotonic homomorphisms depend on the lexicographical status of sub-

terms, it is not safe to have other types of component orders preceding. This is the reason for

the restrictions:

� there may only be one non-strict monotonic homomorphism and each of the strict mono-

tonic homomorphisms must precede it, and

� no other type of component ordering may precede a monotonic homomorphism.

Consider now a value-preserving homomorphism and a rewrite s = c[l�]

! c[r�] = t. It is given that �(l�) 'x �(r�). Combined with congruence of the ordering

this results in �(f(: : : ; s; : : :)) 'x �(f(: : : ; t; : : :)).

When the termination function is a precedence, its value does not depend on subterms and

trivially �(f(: : : ; s; : : :)) 'x �(f(: : : ; t; : : :)).

Now consider component orderings that compare multisets of subterms:

1. Extract subterms at positions in K. If s 6= uk for all k 2 K, then each uk = vk and

PK(u) = PK(v). Otherwise the multisets are identical except that s is replaced by t and

therefore PK(u) �M PK(v).

2. Extract subterms of rank k. Suppose that s 2 Ri(IS(u)). Then there is no change in

multisets of rank less than i. For the multiset of rank i, the only possible new members

are t and terms from Ri+1 that were dominated by s. Thus Ri(IS(u)) �M Ri(IS(v)).
If k > i, there may be an increase, but it is guaranteed that either Ri or some R�j

containing rank i is before �x lexicographically, and either of these will show an increase.

3. Extract subterms of rank less than or equal k. Suppose s 2 Ri(u). By an argument similar

to that above, R�k(IS(u)) = R�k(IS(v)) for k < i and R�k(IS(u)) �M R�k(IS(v))
for k = i. One just needs to consider the case k > i. Think of the process of going from

R�k(IS(u)) to R�k(IS(v)) as adding t to the set of immediate subterms then removing

s. When t is added other terms may move to higher rank, but not lower rank. So the only

possible new term in R�k(IS(u)[ftg) is t. When s is removed, terms may be added from
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rank k+1 (note that terms may only move one rank position when a single term is added

or deleted). Consider a term w of rank j + k + 1 which is a member of R�k(IS(v)), but
was not a member of R�k(IS(u) [ ftg). It must have been added because a term xk of

rank k moved to rank k� 1 and xk � w. Inductively, a chain of terms can be constructed

such that xi � xi+1 � � � � � xk � w. But there was only the single term s which was

removed at level i and therefore s = xi � w. In combination with s � t, it must be that

R�k(IS(u)) �� R�k(IS(v)).

Whereas only lexicographic and multiset mappings are used in the general path orderings,

in [KL80], Kamin and L�evy consider the more general case of orderings based on a mapping

� from well-founded quasi-orderings to well-founded quasi-orderings. They allow a component

order �t = ht1; : : : ; tni and � =��, where � recursively makes �nitely many comparisons of

subterms. In particular, one can use weighted multisets, as in Martin [Mar89].
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5 INSTANCES OF THE WELL-QUASI GENERAL PATH

ORDERING

In this chapter it is shown that several common orderings are speci�c instances of the well-quasi

general path ordering. A new kind of ordering called the \Natural Path Ordering" is de�ned

which is a instance of a General Path Ordering. It combines precedence with a value-preserving

homomorphism. An example of its use is then presented.

5.1 Existing Simpli�cation Orderings

The following simpli�cation orderings are special cases of the well-quasi general path ordering

for which the conditions of Theorem 20 hold. The only caveat is that the precedences used in

the orderings must be well-quasi-orderings instead of just well-founded. The precedence used in

the recursive path ordering is well-quasi-ordered since it is required to be total. For the other

orderings, as long as the signature of the rewrite system is �nite, one can restrict the precedence

to those symbols and it will be well-quasi-ordered. Therefore, they can then be applied to any

�nite rewrite system.

Knuth-Bendix ordering (Knuth and Bendix [KB70]) �0 gives the sum of (non-negative inte-

ger) \weights" of the function symbols appearing in a term; �0 is the � ordering on the natural

numbers; �1 gives a (total) precedence; �2; : : : ; �n+1 give (a permutation of) the immediate

subterms.

Polynomial path ordering (Lankford [Lan79]) �0 is a strict monotonic homomorphismwith

each f� a polynomial with positive integer coe�cients; �0 is the � ordering on the natural

numbers; �1 gives a precedence; �2; : : : ; �n+1 give a permutation of the immediate subterms.

Multiset path ordering (the original version of the \recursive path ordering", Dershowitz

[Der82]) �0 is a precedence; �1 extracts the multiset of immediate subterms.
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Extended path ordering (Dershowitz [Der82]) �0 extracts one of the immediate subterms;

�1 extracts a multiset of the remaining immediate subterms.

Lexicographic path ordering (Kamin and L�evy [KL80]) �0 is a precedence; �1; : : : ; �n give

a permutation of the subterms.

Recursive path ordering (\with status", Lescanne [Les90]) �0 is a total precedence;

�1; : : : ; �n give a permutation of the subterms or multisets of subterms, depending on the

function symbol.

5.2 The Natural Path Ordering

The following is not a simpli�cation ordering or an instance of the well-quasi general path

ordering, but it is an instance of the well-founded general path order (to be discussed in Chapter

7).

Value-preserving path ordering (Plaisted [Pla79], Kamin and L�evy [KL80]) � is a value-

preserving homomorphism and � is a well-founded quasi-order; �0 is a precedence; �1 is �

applied to the �rst subterm and �1 is �; �2 is � applied to the second subterm and �2 is �;
and so forth.

As an example of the use of the value-preserving path ordering, consider System 1.2. The

precedence is fact >0 � >0 + >0 s; �1 interprets everything naturally: fact as factorial, s as

successor, p as predecessor, � as multiplication, + as addition, and 0 as zero. The ordering �1

is the well-founded greater-than relation on natural numbers. Let all constants be interpreted

as natural numbers, making all terms non-negative. Each rule causes a strict decrease with

respect to the general path ordering and the rewrite system terminates. This approach works

for primitive-recursive functions in general.

Note that to use a natural interpretation, one must always make sure that all terms and

subterms in any derivation are interpretable as natural numbers; otherwise a rule like fact(x)!
fact(p(x)) would give pretense of being terminating.

The idea embodied in the value-preserving ordering is enlarged in the followingway, intended

to mirror the standard structural induction proof method for recursive programs:
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De�nition 8 (Natural Path Ordering). A natural path ordering is a special case of the well-

quasi general path ordering with two component orderings: �0 is a precedence and �1 is de�ned

for each f (of arity n), as �1f(t1; : : : ; tn) = f�1(�1t1; : : : ; �1tn), where �1 is a value-preserving

homomorphism to some arbitrary algebraA, and f�1 a mapping fromAn to a well-quasi-ordered

set (W;�).

Theorem 19 applies.

As an example, consider the following rewrite system for computing the average of two

integers:

a(sx; y) ! a(x; sy)

a(x; sssy) ! sa(sx; y)

a(0; 0) ! 0

a(0; s0) ! 0

a(0; ss0) ! s0 :

(5.1)

A multiset path ordering will not work for the arguments of a in the �rst rule and a lexicograph-

ical path ordering will not work for the �rst two rules. The natural path ordering is su�cient

for proving termination with �0 as a >0 s >0 0 and �1 given by �1(a(x; y)) = 2�(x) + �(y),

where � is the value-preserving homomorphism: a� = �xy:bx+y2 c, s� = �x:x+1, and 0� = �x:0.
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6 WQGPO EXAMPLES

In this section several examples are presented applying the well-quasi general path ordering to

speci�c rewrite systems to prove termination. The examples are self-embedding, so the standard

simpli�cation orderings do not work. The �rst example is an insertion sort over the natural

numbers. It is shown to be terminating without the use any semantic interpretation of terms.

This allows for an easier proof of termination without the need for any inductive arguments or

arguments over the natural numbers. The next two examples are conditional rewrite systems

and use value-preserving homomorphisms with the well-quasi general path ordering. The third

example is an insertion sort over the integers and can be shown to decrease with a monotonic

homomorphism combined with a precedence and an extraction.

6.1 Insertion Sort for Natural Numbers

The following rewrite system sorts a list of natural numbers into decreasing order via an insertion

sort:

sort(nil) ! nil (5.6.1)

sort(cons(x; y)) ! insert(x; sort(y)) (5.6.2)

insert(x; nil) ! cons(x; nil) (5.6.3)

insert(x; cons(v; w)) ! choose(x; cons(v; w); x; v) (5.6.4)

choose(x; cons(v; w); y; 0) ! cons(x; cons(v; w)) (5.6.5)

choose(x; cons(v; w); 0; s(q)) ! cons(v; insert(x; w)) (5.6.6)

choose(x; cons(v; w); s(p); s(q)) ! choose(x; cons(v; w); p; q) : (5.6.7)

Note that these rules are locally conuent since there are no critical pairs, and the proof of

termination will imply that they are conuent as well.

31



Four component orders are used. They are

�0 = the precedence sort > insert ' choose > cons

�1 = the extraction based on the outermost symbol f

�1 =

8>>>><
>>>>:

Pf1g f = sort

Pf2g f = choose; insert

; otherwise

�2 = the precedence sort > insert > choose > cons

�3 = the extraction based on the outermost symbol f

�3 =

8>>>>>>><
>>>>>>>:

Pf1g f = sort

Pf2g f = insert

Pf3g f = choose

; otherwise .

The ordering interleaves precedences with recursive comparisons of subterms and thus is unlike

either the semantic path ordering [KL80] or semantic labeling [Zan92b]. No semantic interpre-

tation of the function symbols is required to prove termination in this example.

If one were to use an ordering just based on the precedence �2, all of the rules except for

the sixth would be oriented in the appropriate direction. Unfortunately, the fourth and sixth

rules interact with each other. In particular, there is a choose and an insert on opposite sides of

each rule. The precedence �0 is chosen to guarantee a decrease in the lexicographical part when

ordering Rule 6 by Case (2) of the well-quasi general path ordering while leaving Rule 4 equal.

Since Rule 6 is ordered by Case (2) of the ordering with a strict decrease in the lexicographical

comparison, Lemma 16 applies and the decrease is strict for application of Rule (6). The �rst

condition for Case (2) requires that the left-hand side of Rule 6 be strictly greater than each of

the two subterms on the right. The non-trivial comparison is choose(x; cons(v; w); 0; s(q)) with

insert(x; w). These terms are equal under the precedence ordering �0, but by selecting the

second subterm of both choose and insert a strict decrease in the lexicographic part is achieved.

This allows us to conclude via Lemma 16 that choose(x; cons(v; w); 0; s(q)) � insert(x; w).

Therefore, Rule 6 is correctly ordered.
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Now consider Rule 4. Fortunately, the second subterm on both sides of Rule 4 is identical,

leaving the lexicographical order una�ected. The precedence ordering �2 breaks that tie and

guarantees a decrease via Lemma 16. Verifying the �rst condition of Case (2) for Rule 4 is easy.

Rule 1 is a trivial application of Case (1). Rule 2 is nearly as trivial. The only observation

to make is that the �rst condition for Case (2) requires sort(cons(x; y)) � sort(y), which itself

requires an application of Case (2) where the lexicographic part requires the extraction and

comparison of cons(x; y) with y which gives a strict decrease in the lexicographic comparison.

Rules 3 and 5 are also straightforward.

Rule 7 meets the �rst conditions for Case (2), but is equal for the lexicographical part with

respect to the �rst three component orderings. The addition of a fourth component breaks the

tie by extracting the third subterm for choose (the fourth subterm would also have worked).

Therefore, by the well-quasi general path ordering, this system of rules terminates.

6.2 Using Extraction Components Non-Recursively with Conditional Rules

A conditional rule is an equational implication in which the conclusion is a rewrite rule. The

following system incorporates both conditional and unconditional rules:

p0 ! 0

psx ! x

pos? sx ! true

pos? 0 ! false

f0 ! 0

pos? x ' true ) fx ! fpx

(6.6)

In general, if the conditions of a rule,

u1 = v1 ^ � � � ^ un = vn ) l ! r;

are satis�ed for a particular instance of the left-hand side, the rule rewrites any term containing

the instance. The conditions are satis�ed if ui� ! � � � ! w and vi� ! � � � ! w (for some w),

for each condition ui = vi and for substitution �.
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Verifying termination of conditional systems can be considerably more di�cult than for most

unconditional systems. More often than not, purely syntactic approaches fail. Consider the

very simple system above. To prove termination, one needs to �nd a measure � that decreases

with each rule application. In particular, it must be that �(x) > �(px) for all x satisfying the

condition in the last rule. For that, one must �rst characterize those x such that pos? x rewrites

to true. This is in contrast to the unconditional case [Der87], in which termination can usually

be separated from other aspects of correctness.

In the following examples, a value preserving homomorphism will be used when showing

termination. The value preserving homomorphism is exploited by the joinability condition.

If the terms are joinable, they must have the same interpretation under the value-preserving

homomorphism, and this will be used when showing that the rule decreases. In particular,

it is convenient to extract a multiset of subterms and compare with the value preserving ho-

momorphism. This case, however, is not covered by the standard de�nition of the well-quasi

general path ordering since it only allows comparisons recursively in the general path ordering.

Therefore, it must be shown that with a value-preserving homomorphism that Theorem 19 will

be satis�ed.

Theorem 21. Let �0; : : : ; �k be component orderings and R be a rewrite system that satisfy the

conditions of Theorem 20 (speci�c termination) with the exception that certain position based

extraction components are compared in � which is not �� but some homomorphism �vp. If

�vp is value-preserving with with respect to R, then R terminates.

Proof. As in the proof of speci�c termination, given that

u = f(: : : s : : :) �� f(: : : t : : :) = v ;

and s! t, one just needs to show that �x(u) �x �x(v) for the extraction components.

Since �vp is value preserving with respect to R and it is a congruence, it must be the case

that if s ! t then s �vp t. Any position based extraction component will extract the same

terms with the possible exception that s is replaced by t. In �x, which is the multiset extension

of �vp, the multisets are equivalent and hence �x(u) �x �x(v).
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The next two examples are conditional rewrite systems and use value-preserving homomor-

phisms with an extraction component in the well-quasi general path ordering.

6.2.1 Greatest Common Divisor (GCD)

In this section there related conditional rewrite systems are presented for computing the greatest

common divisor. Each is shown to be terminatingwith related instances of the well-quasi general

path ordering using value preserving homomorphisms.

Consider the following recursive program for computing the greatest common divisor:

function gcd(x; y)

begin

if y = 0 then x

elseif y > x then gcd(y; x)

else gcd(x� y; y)

end.

This program can be translated into the following (in�nite) conditional rewrite system:

y gt x # t gcd(x; y) ! gcd(y; x)

x ge s(y) # t gcd(x; s(y)) ! gcd(x� s(y); s(y))

gcd(x; 0) ! x

s(x) gt s(y) ! x gt y

si(0) gt 0 ! t i � 1

s(x) ge s(y) ! x ge y

si(0) ge 0 ! t i � 0

s(x)� s(y) ! x� y

x � 0 ! x :

(6.7)

Notice that without the conditions this rewrite system is non-terminating. In addition, the

left-hand side of the second rule embeds in the right-hand side, so no simpli�cation ordering

can be used to show termination. Hence, one wants to try interpretations where x� s(y) is less

than x.
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The reason for using an in�nite set of rewrite rules schematically represented by si(0) for

gt and ge is so that a value-preserving homomorphism can be constructed easily. The more

natural rule, s(x) gt 0! t, permits terms which do not have interpretations as natural numbers

to be greater than zero. Alternatively, one could use membership or sorts to express the above

restriction.

To show that the conditional rewrite system is terminating, the well-quasi general path

ordering will be used with a value-preserving homomorphism, �H which maps to a well-founded

set. The range of the homomorphism consists of the natural numbers, true, and ? (this set

will be denoted as NAT ?;true). The well-founded ordering, >H, is the standard greater than

ordering on the natural numbers combined with, 0 > ?, and ? > true. The homomorphism is:

gcd :: �x; y: if x = ? or y = ? then ?
elseif x = true or y = true then true

else gcd(x; y):

� :: �x; y: if x = ? or y = ? then ?
elseif x = true or y = true then true

elseif x � y then x� y

else ?:
gt :: �x; y: if x = ? or y = ? then ?

elseif x = true or y = true then ?
elseif x > y then true

else ?:
ge :: �x; y: if x = ? or y = ? then ?

elseif x = true or y = true then ?
elseif x � y then true

else ?:
s :: �x: if x = ? then ?

elseif x = true then true

else x+ 1:

0 :: 0:

t :: true:

(6.8)
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The component orderings are combined in the following way:

�0 = the precedence gcd > gt > ge > � > s > 0 > t:

�1 = the extraction based on the outermost symbol f

�1 =

8><
>:

Pf1g f = �; gt; or ge
; otherwise

with >1=� (applied recursively):

�2 = the extraction based on the outermost symbol f

�2 =

8><
>:

Pf2g f = gcd

; otherwise

with >2=>H:

�3 = the extraction based on the outermost symbol f

�3 =

8><
>:

Pf1g f = gcd

; otherwise

with >3=>H

(6.9)

First, one must verify that the homomorphism �H is value-preserving for each of the rewrite

rules. Of particular interest are the three rules for gcd. The �rst rule is value-preserving

independent of the condition. For the second rule, the joinability of the two terms in the

condition requires that the interpretations be the same (provided that all the rules are value-

preserving). In this case, the interpretation of x ge s(y) is true only if �H(x) �H �H(y) + 1

with both �H(x) and �H(y) natural numbers. With this condition and knowledge of the gcd

function, one can then show that the rewrite rule is value preserving if the condition is met.

The third rule is easily shown to be value preserving and is the reason that gcd(t; 0) is mapped

to true instead ? (as one might have expected).

The proof of termination with the well-quasi general path ordering using the component

orderings speci�ed above proceeds as for the unconditional case with the following exceptions.

First, the conditions on the interpretation may be used in the proofs of termination for the

rules. Second, the left-hand side of the rule must be larger than each of the terms in the

condition. (The second term in each of the conditions is a ground term in normal form, so for

this particular rewrite system one need only consider the �rst term.)
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All of the non-conditional rules are handled by the precedence or Case (1) of the well-

quasi general path ordering. For the �rst rule, the left and right-hand sides are equal under

precedence. With the second component ordering, one compares �H(y) with �H(x). Normally,

one would not be able to prove this, but, the joinability of the conditional part gives �H(y) >H

�H(x). For the second rule, the left and right-hand sides are equal under both the precedence

and the second component ordering. With the third component ordering, one compares �H(x)

with �H(x�s(y)). By the condition, one knows that both �H(x) and �H(y) are natural numbers,
so one needs to show that �H(x) >H �H(x) � �H(y) � 1. By the condition, it must be that

�H(x) �H �H(y) + 1. Thus, one only needs to show �H(y) + 1 >H 0, but �H(y) is a natural

number, so this is true. (Note, one could have argued that if �H(x) <H �H(y) + 1 then

�H(x� s(y)) = ?, which is less than any natural number.)

An alternative formulation of the conditional rewrite system for gcd is obtained by noticing

that the rules for gt and ge are nearly the same as the rules for subtraction.

y � x # si(0) gcd(x; y) ! gcd(y; x) i � 1

x � s(y) # si(0) gcd(x; s(y)) ! gcd(x� s(y); y) i � 0

gcd(x; 0) ! x

s(x)� s(y) ! x� y

x� 0 ! x :

(6.10)

One needs an in�nite set of rules for similar reasons. Now the well-founded set for the value

preserving homomorphism, �H2
, only needs the addition of ?. The homomorphism is:

gcd :: �x; y: if x = ? or y = ? then ?
else gcd(x; y):

� :: �x; y: if x = ? or y = ? then ?
elseif x � y then x� y

else ?:
s :: �x: if x = ? then ?

else x + 1:

0 :: 0:

(6.11)
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The component orderings are as they were before except that the precedence does not need t,

gt, and ge; and the ordering used for the components which extract subterms of gcd is >H2
.

(Notice that the old ordering, >H, is an extension of >H2
.) The termination argument is

similar.

The �nal version of gcd replaces the rule schemata with a condition which tests a term to

see if it is an natural number.

nat(y � s(x)) # t gcd(x; y) ! gcd(y; x)

nat(x� s(y)) # t gcd(x; s(y)) ! gcd(x� s(y); y)

gcd(x; 0) ! x

s(x)� s(y) ! x� y

x� 0 ! x

nat(0) ! t

nat(s(x)) ! nat(x) :

(6.12)

As in the original version, the well-founded set used with the value preserving homomor-

phism, �H3
, will include true. The homomorphism is:

gcd :: �x; y: if x = ? or y = ? then ?
elseif x = true or y = true then true

else gcd(x; y):

� :: �x; y: if x = ? or y = ? then ?
elseif x = true or y = true then true

elseif x � y then x� y

else ?:
nat :: �x: if x = ? or x = true then ?

else true:

s :: �x: if x = ? then ?
elseif x = true then true

else x+ 1:

0 :: 0:

t :: true:

(6.13)
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The component orderings are as they were before except that the precedence is gcd > � >

nat > s > 0 > t; and the ordering used for the components which extract subterms of gcd is

>H3
. The termination argument, though slightly more complicated, is similar.

6.2.2 The \91" Function

One well know example of a recursive function is the \91" function given by:

F91(x) = if x > 100 then x� 10

else F91(F91(x+ 11)) :
(6.14)

This recursive function returns 91 if x � 100, otherwise it returns x� 10.

A conditional rewrite system corresponding to this recursive function is:

nat(x � 101) # t F (x) ! x� 10

nat(100� x) # t F (x) ! F (F (s11(x)))

s(x)� s(y) ! x� y

x� 0) ! x

nat(0) ! t

nat(s(x)) ! nat(x)

(6.15)

A value preserving interpretation of this rewrite system can be constructed over the set of

natural numbers augmented by ? and true. The mapping H from terms to NAT ?;true is

given by the following de�nitions:
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F :: �x: if x = ? or x = true then ?
elseif x � 100 then 91

else x� 10:

� :: �x; y: if x = ? or y = ? then ?
elseif x = true or y = true then true

elseif x � y then x� y

else ?:
s :: �x: if x = ? or x = true then ?

else x+ 1:

nat :: �x: if x = ? or x = true then ?
else true:

0 :: 0:

t :: true:

(6.16)

In this case, a su�cient well-founded ordering over NAT ?;true is given by >H = true <

? < 0 < 1 < 2 < : : : An instance of the well-quasi general path ordering which proves that the

conditional rewrite system (6.15) is terminating is given by:

�0 = the precedence F > � > s > 0 > nat > t

�1 = extract Pf1g for � and nat with � applied recursively

�2 = extract Pf1g for F

and use the value preserving homomorphismH with >H :

(6.17)

6.3 Insertion Sort over Integers

As a �nal example, consider the following conditional rewrite systemwhich sorts a list of integers

into ascending order via an insertion sort. It is a modi�cation of the rewrite system presented
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earlier for sorting natural numbers.

p(s(x)) ! x

s(p(x)) ! x

s(x) eq s(y) ! x eq y

p(x) eq p(y) ! x eq y

p(x) eq y ! x eq s(y)

x eq p(y) ! s(x) eq y

0 eq 0 ! t

s(x) gt s(y) ! x gt y

p(x) gt p(y) ! x gt y

p(x) gt y ! x gt s(y)

x gt p(y) ! s(x) gt y

si(0) gt 0 ! t i > 0

sort(nil) ! nil

sort(cons(x; y)) ! insert(x; sort(y))

insert(x; nil) ! cons(x; nil)

x gt y # t insert(x; cons(y; z)) ! cons(y; insert(x; z))

x eq y # t insert(x; cons(y; z)) ! cons(x; cons(y; z))

y gt x # t insert(x; cons(y; z)) ! cons(x; cons(y; z)) :

(6.18)

With an appropriate value-preserving interpretation, it can be shown that the conditions on the

�nal three rules are mutually exclusive. Hence, the entire rewrite system is locally conuent.

The rules for gt include one in�nite schema. In this case, completion is easier to do with the

rule schema than the other approaches mentioned earlier. Notice also, that if one is willing

to forego conuence, the rule p(x) gt y ! x gt s(x) and the corresponding rule for eq may

be discarded. In that case, termination can be shown by the standard recursive path ordering

alone with right-to-left lexical status for both gt and eq.

With the additional two rules for gt and eq, the recursive path ordering with status is

insu�cient for showing termination. This is due to the combination of p(x) gt y ! x gt s(x)

with the rule x gt p(y)! s(x) gt y. For one rule, there is a decrease in the �rst argument, and

for the other the decrease is in the second. Unfortunately, with either multiset or lexicographic
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status, neither rule decreases. After a little consideration, it is apparent that both of these rules

decrease the number of p's. The following components allow one to show termination with the

well-quasi general path ordering:

�0 = the strictly monotonic homomorphism �0

with >0 the usual greater-than for natural numbers

�1 = the precedence sort > insert > gt > eq > cons > nil > p > s > t > 0

�2 = the extraction based on the outermost symbol f

�2 =

8>>>><
>>>>:

Pf1g f = sort; gt; eq

Pf2g f = insert

; otherwise ;

with � applied recursively.

(6.19)

The monotonic homomorphism �0 counts p's in a term and is given by:

cons :: �x; y: x+ y

insert :: �x; y: x+ y

gt :: �x; y: x+ y

ge :: �x; y: x+ y

sort :: �x: x

s :: �x: x

p :: �x: x+ 1

0 :: 0

t :: 0

nil :: 0 :

(6.20)

This homomorphism is strict in its arguments and maps to the natural numbers. As speci�ed

above, the corresponding well-founded component ordering is the usual greater-than for natural

numbers. The proof of termination proceeds with no di�culties.
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7 THE WELL-FOUNDED GPO

In [DH95] a slightly di�erent version of the general path ordering was presented. It di�ers in

the following ways:

� It requires that the homomorphism components are well-founded quasi-orderings but not

necessarily well-quasi-orderings.

� The de�nition gives separate de�nitions for the strict and equivalence parts of the ordering.

� The ordering is more restrictive in what it allows to be comparable.

� There is an extra condition required for Theorem 20 (Speci�c Termination) which gives

speci�c conditions on the components which guarantee termination of the rewrite system.

To avoid confusion in this thesis, the \general path ordering" presented in [DH95] is referred

to as the well-founded general path ordering and and symbolically the ordering will be denoted

with a dot as shown here by ��� and �� . The component orderings associated with a well-

founded general path ordering (which must themselves be well-founded) will also be denoted

with a dot as shown by �� and
:
=.

De�nition 9 (Well-Founded General Path Ordering). Let �0 = h�0; ��0i, : : :, �k = h�k;
��ki be component orders, where for multi set extraction �x component orders, ��x is the

well-founded general path ordering ��� itself. The induced well-founded general path ordering

��� is de�ned as follows:

s = f(s1; : : : ; sm) �� g(t1; : : : ; tn) = t

if either of the two following cases hold:

(1) si ��� t for some si, i = 1; : : : ; m, or

(2) s �� t1; : : : ; tn and �(s) �>lex�(t), where �(s) = h�0(s); : : : ; �k(s)i, and �>lex is the

lexicographic combination of the component orderings �>x,
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while

s = f(s1; : : : ; sm)
�� g(t1; : : : ; tn) = t

in the well-founded general path ordering if

(3) s �� t1; : : : ; tn, t �� s1; : : : ; sm and �0(s)
:
=0 �0(t); : : : ; �k(s)

:
=k �k(t):

Note that ��� is the union of �� and �� , which are mutually recursive.

Lemmas 27, 28, 29 and 30 (below) guarantee that �� is the strict part of ��� , while �� is

the equivalence part.

7.1 Quasi-Ordering Proofs

To show that ��� is indeed a well-founded quasi-ordering requires the following lemmata. The

content of these proofs is fairly di�erent from those associated with the well-quasi general path

ordering. It is shown here that the de�nitions for �� and �� are compatible and that their

union is a quasi-ordering. In addition, it will be shown that ��� is well-founded.

Lemma 22 (Symmetry). If s �� t then t �� s.

Proof. This is trivial, since
:
=x is reexive for the component quasi-orders ��x. When

:
=x is

the multiset extension of �� , induction on the combined size of the terms s and t is required.

Lemma 23. For the well-founded general path ordering, s ��� t implies s �� tjp for each proper

subterm tjp of t.

Proof. Assume that the lemma holds for any pair of terms smaller in combined size than

hs; ti.
Suppose s �� t by Case (1) of the well-founded general path ordering. Then for some i,

si ��� t. By the induction hypothesis, however, si �� tjp. One may then apply Case (1) resulting

in s �� tjp.
Suppose s ��� t by Case (2) or (3). Thus it is known that s �� t1; : : : ; tn. Suppose that tjp is

a subterm of some ti. Then induction can be applied on the pair hs; tii:
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The following two lemmata must be shown by simultaneous induction over the height of a

term.

Lemma 24 (Subterm). The well-founded general path ordering satis�es the strict subterm

property f(: : : ; si; : : :) �� si, for all i.

Proof. By inductive application of reexivity (Lemma 25) to the subterm si one obtains

si
�� si, and Case (1) applies.

Lemma 25 (Reexivity). The well-founded general path ordering ��� is reexive.

Proof. Assume that ��� is reexive for all terms with height less than k. Consider a

term f(t1; : : : ; tn) of height k. By the strict subterm property (Lemma 24) for terms of height

k, f(t1; : : : ; tn) is strictly greater than each of its subterms. Therefore, the �rst and second

conditions for equivalence are satis�ed. Since each of the �'s is a function, �f (t1; : : : ; tn)
:
=x

�f (t1; : : : ; tn) as long as each of the component orderings is reexive. The only non-trivial

case is the multiset ordering on immediate subterms. But by the induction hypothesis, ti ��� ti

for every subterm ti, and therefore the multiset ordering on immediate subterms is reexive

(ftj1 ; : : : ; tjmg �� Mftj1 ; : : : ; tjmg for any j1; : : : ; jm 2 f1; : : : ; ng). Consequently, the third

condition is satis�ed and f(t1; : : : ; tn)
�� f(t1; : : : ; tn).

Lemma 26. For the well-founded general path ordering, s ��� t implies u[s] �� t for each non-

empty enclosing context u[�] of s.

Proof. Consider the subterm ujp which contains s as an immediate subterm. By Case (1),

ujp �� t. Repeated application of the preceding argument leads to u[s] �� t.

Lemma 27 (Transitivity). For terms s, t, and u and well-founded general path ordering ��� :

(i) s �� t �� u implies s �� u;

(ii) s �� t �� u implies s �� u;

(iii) s �� t �� u implies s �� u;

(iv) s �� t �� u implies s �� u.
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Proof. The proof proceeds by induction over the triple of terms hs; t; ui with respect to the

sum of the heights of the three terms.

(i) Suppose that s �� t by Case (1) of the well-founded general path ordering, then si ��� t for

some i. Now if t �� u, one can apply induction on the triple hsi; t; ui to get si �� u. Thus,

s �� u by Case (1) of the well-founded general path ordering.

Suppose that s �� t by Case (2) of the well-founded general path ordering, then

s �� t1; : : : ; tn and �(s) ��lex�(t). Now if t �� u by Case (1) of the well-founded gen-

eral path ordering, then tj �� u for some j. But induction may applied to the triple

hs; tj ; ui to show s �� u. If t �� u by Case (2) of the well-founded general path ordering,

then t �� u1; : : : ; um and �(t) ��lex�(u). One may apply induction to each of the triples

hs; t; uki to show that s �� uk for each k. If each of the component orders is transitive

then �(s) ��lex�(u). When ��x is a well-founded quasi-order there is no problem; when

��x is a multiset ordering on immediate subterms, the induction hypothesis is needed.

(ii) We know that s �� t1; : : : ; tm and �(s)
:
=lex �(t).

Suppose that t �� u by Case (1) of the well-founded general path ordering, then ti ��� u for

some i. By induction on the triple hs; ti; ui, one obtains s �� u.

Suppose that t �� u by Case (2) of the well-founded general path ordering, then

t �� u1; : : : ; tm and �(t) ��lex�(u). But, s �� uk for each triple hs; t; uki.

To show s �� u, one merely needs to demonstrate the second condition of Case (2). But

this holds for the quasi-orders and multiset orders by induction.

(iii) Essentially the same argument as for (i).

(iv) We know that t �� s1; : : : ; sl, �(s)
:
=lex �(t), t �� u1; : : : ; un, and �(t)

:
=lex �(u). For

each triple hs; t; uii one can apply (ii) to get s �� ui. For each triple hu; t; sji one can apply
(ii) to get u �� sj . The lexicographic part holds for the quasi-orderings and, by induction,

for the multiset orderings. Therefore, all three conditions of Case (3) hold and s �� u.

Lemma 28 (Irreexivity). For any s, s 6�� s.
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Proof. Apply induction on the height of terms. Assume, on the contrary, that s �� s for some

s.

Suppose that s �� s by Case (1) of the well-founded general path ordering, then si ��� s for

some i. But by transitivity and the strict subterm property one obtains si �� si. By induction

si 6�� si, which is a contradiction.

One cannot have s �� s by Case (2) of the well-founded general path ordering, since �(t)
:
=lex

�(u), (using induction for the multiset components).

Therefore, neither case is applicable and s 6�� s.

Lemma 29. If s �� t then t 6�� s.

Proof. Were t �� s, then by transitivity s �� s contradicting the previous lemma (Lemma 28).

The converse follows from:

Lemma 30. If s �� t, then t 6��� s.

Proof. Were t ��� s, then by transitivity s �� s, contradicting Lemma 28.

Theorem 31. The well-founded general path ordering is a quasi-ordering.

Proof. By the previous lemmata ��� is reexive and transitive.

Theorem 32. The well-founded general path ordering ��� is well-founded.

Proof. To prove the well-foundedness of �� , suppose the contrary and consider a minimal

in�nite descending sequence t1 �� t2 �� � � �, minimal in the sense that from all proper subterms

of each term in the sequence there are only �nite descending sequences. (By the subterm

property, any term in a descending sequence can be replaced by any proper subterm that

initiates an in�nite descending sequence. Thus, a minimal descending sequence can always be

constructed from an arbitrary descending sequence.) Case (1) of the de�nition of �� cannot be

the justi�cation for any pair tj �� tj+1, since then tj�1 �� tj jp �� tj+2, for some proper subterm

tj jp of the jth term in the example, and the example would not be minimal. Therefore, every

pair must use Case (2) and consequently �(tj) �>lex�(tj+1). But a lexicographic combination

of well-founded orderings (including �� on multisets of proper subterms which by assumption

are well-founded), is well-founded, and the descending sequence cannot be in�nite.
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7.2 A Comparison of the Di�erent Versions of GPO

Theorem 33. Given a well-founded general path ordering ��� and a well-quasi general path

ordering �� which use the same component orderings, if s �� t then s � t and also if s �� t then

s � t.

Proof. The proof proceeds via simultaneous induction on the sum of the height of the terms

s and t.

In the base case, both s and t are terms with no subterms. If s �� t, it must be because of case

(3) of the well-founded general path ordering and thus �(s)
:
= �(t). But any homomorphism

component will give the same order on s and t and the multiset extraction components will

match since there are no subterms, so �(s) ' �(t). Case (2) of the well-quasi general path

ordering applies in both directions, giving s � t. Similarly, if s �� t, then s � t.

Now consider the inductive case. If s �� t due to case (3) of the well-founded general path

ordering, then s �� ti for all i and t �� sj for all j and �(s)
:
= �(t). By induction s � ti for all

i and t � sj for all j. Any homomorphism component will give the same order on s and t. By

induction, the extraction components will match, so �(s) ' �(t). Therefore, case (2) of the

well-quasi general path ordering applies in both directions and s � t.

If s �� t by case (1) of the well-founded general path ordering, there is some subterm sjp
such that sjp ��� t. By induction sjp �� t and Case (1) of the well-quasi general path ordering

applies. By Lemma 14, it is strict and s � t.

If s �� t by Case (2) of the well-founded general path ordering, then s ��� ti for all i and

�(s) �>�(t). By induction s �� ti for all i. Any homomorphism component will give the same

order on s and t and, by induction, the extraction components will match, so �(s) > �(t).

Therefore, case (2) of the well-quasi general path ordering applies. Since the lexicographical

comparison is strict, Lemma 16 applies and s � t.

In other words, given well-quasi ordered homomorphism components, if two terms are or-

dered under the well-founded general path ordering, they will have the same ordering under the

well-quasi general path ordering. If two terms are incomparable under the well-founded general

path ordering, they may be either comparable or incomparable under the well-quasi general

path ordering.
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7.3 Termination of Rewrite Systems for the Well-Founded GPO

The argument for the Theorem 20 (Speci�c Termination) for the well-founded general path

ordering is essentially similar to that for the well-quasi general path ordering with one impor-

tant exception. For any non-strict monotonic homomorphism (including precedence) or value

preserving homomorphism, one can not guarantee that f(: : : s : : :) ��� f(: : : t : : :) because when

�(s)
:
= �(t) it may not be the case that t �� si for all i.

The consequence of this is that the proof of Speci�c Termination in [DH95] does not apply

to the well-founded general path ordering.

Consider the following simple rewrite system:

a ! b

f(x) ! g(x) :

While it is clearly terminating, it does not satisfy the conditions for Theorem 19 (General

Termination) with the following well-founded general path ordering with a single component

order.

�0 = the precedence f �>g; and a �>b

Consider the following terms in order:

� [a versus b] Trivially a �� b by Case (2).

� [b versus f(a)] Since a ��� b, then f(a) �� b by Case (1).

� [a versus f(b)] Since b 6 ��� a, Case (1) is not applicable. In addition, �0(a) = a is

incomparable to f = �0(f(b)) so Cases (2) and (3) don't apply either. Therefore, a and

f(b) are incomparable.

� [f(a) versus f(b)] Since a and f(b) are incomparable, Case (1) is not applicable. Case (2)

is not applicable either since �0(f(a)) = f = �0(f(b)). Finally, Case (3) is not applicable

since f(b) 6�� a. Therefore, f(a) 6��� f(b).

But Theorem 19 requires that if s ! t and s �� t then f(: : : ; s; : : :) ��� f(: : : ; t; : : :). In our

example, a! b and a �� b, but f(a) 6��� f(b).
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To solve this problem one can add conditions on the component orderings for Theorem 20

when used with the well-founded general path ordering. Two possibilities, either of which will

solve the problem are:

� (Subterms Constraint) Guarantee that there is always a component which must show a

decrease.

� (Well-Quasi Constraint) Force the non-extraction components to be well-quasi orderings.

7.4 Addition of the Subterms Constraint

The problem with the proof of Theorem 20 for the well-founded general path ordering is that

if there is a homomorphism component where �i(f(: : : ; s; : : :))
:
= �i(f(: : : ; t; : : :)), then all the

other components may also be
:
= and Case (2) will not apply. Unfortunately, one can not

guarantee that f(: : : ; t; : : :) �� t, and Case (3) need not apply either. One possibility is to

require that there be at least one component ordering that will show a decrease for f(: : : ; s; : : :)

with respect to f(: : : ; t; : : :), whenever there is a homomorphism that is not strict. One method

of doing this is to add extraction components such that all subterms are extracted by some

component. This guarantees that there is at least one component that shows a decrease and

Case (2) of the well-founded general path ordering will apply.

Consider the previous example once more. One can add the following component to the

ordering:

�1 = the extraction based on the outermost symbol q

�1 =

�
Pf1;:::;ng where q has n subterms

Now Case (2) is applicable since �0(f(a)) = f = �0(f(b)) and �1(f(a)) = fag ��M fbg =

�1(f(b)). Therefore, f(a) �� f(b).

7.4.1 Speci�c Orderings Covered

All of the previous speci�c orderings except for the Natural Path Ordering are covered by

the well-founded general path ordering with the addition of the Subterms Constraint. Those

orderings that use a precedence, e.g. the recursive path ordering, will now also be applicable

to rewrite systems with an in�nite signature.
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In addition, the following three path orderings are covered. (They are not covered by the

Well-Quasi General Path Ordering since they use component orderings that are well-founded,

but not well-quasi-orderings.)

Semantic path ordering (Kamin and L�evy [KL80]) �0 is the identity homomorphism; ��0

is a well-founded ordering; �1; : : : ; �n give a permutation of the subterms.

For this ordering, one must separately insure that s! t implies s ��0 t. Indeed any termi-

nating system can be (uninterestingly) proven terminating in this way [KL80], by taking ��0

to be the reexive-transitive closure of !.

Extended Knuth-Bendix ordering (Dershowitz [Der82], Steinbach and

Zehnter [SZ90]) �0 is a monotonic interpretation; �1 is a precedence;

�2; : : : ; �n+1 give the subterms in order, permuted, or multisets of immediate subterms, de-

pending on the function symbol.

For a system like

fsx ! shdfx

f0 ! 0

d0 ! 0

dsx ! ssdx

hssx ! shx ;

(7.1)

a precedence (f �>h �>d �>s �>0) ought to be considered �rst, before looking at subterms, as

with a lexicographic path ordering.

The next special case is not a simpli�cation ordering, but the conditions of Theorem 20

hold for it as well.

Value-preserving path ordering (Plaisted [Pla79], Kamin and L�evy [KL80]) � is a value-

preserving homomorphism and � is a well-founded quasi-order; �0 is a precedence; �1 is �

applied to the �rst subterm and ��1 is �; �2 is � applied to the second subterm and ��2 is �;
and so forth.

As an example of the use of the value-preserving path ordering, consider System 1.2. The

precedence is fact �>0 � �>0 + �>0s; �1 interprets everything naturally: fact as factorial, s as
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successor, p as predecessor, � as multiplication, + as addition, and 0 as zero. The ordering ��1

is the well-founded greater-than relation on natural numbers. Let all constants be interpreted

as natural numbers, making all terms non-negative. Each rule causes a strict decrease with

respect to the general path ordering and the rewrite system terminates. This approach works

for primitive-recursive functions in general.

7.5 Addition of the Well-Quasi-Order Constraint

The other option is to require that all of the homomorphisms be well-quasi ordered. In that

case, one can appeal to Theorem 33 to show that the well-founded general path ordering is a

sub-ordering of some well-quasi general path ordering. Therefore, this ordering with the results

presented in this thesis can then be used to show termination.

This is often not too much of a burden. As was mentioned earlier, precedence is relatively

benign. If there are a �nite number of symbols in the signature of the rewrite system, then

precedence will map to a �nite set of values, and is well-quasi-ordered. This will apply for any

�nite rewrite system. Once again, if one considers our simple example, the component �0 is

well-quasi-ordered for the symbols f , g, a, and b. Therefore, the rewrite system terminates for

terms made from those symbols. It is well known that if one can show termination of a rewrite

system for a given alphabet, it is also terminating for extensions of that alphabet that do not

include any symbols in the rules [Der95]. Therefore the above rewrite system terminates in

general.

Other commonly used well-founded orderings used to prove termination are total. In this

case, as well, the ordering is a well-quasi ordering. An example of this is the standard ordering

� applied to the set of natural numbers.

7.6 Incrementality of the General Path Ordering

There is a practical advantage to using the well-founded ordering whenever possible. Since the

de�nitions of �� and �� do not involve any negative conditions, the following theorem can be

shown.

Theorem 34 (Incrementality). If a well-founded general path ordering ��� with a component

ordering �i = h�; ��i proves termination of a set of rules R, then the well-founded general path
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ordering ���0 which is the same as ��� except for �0i = h�; ��0i, where ��0 is an extension of the

ordering ��, also proves termination of R.

Proof. For any termination proof that uses the ith component ordering, the same proof can

be constructed, since the mapping is identical and orderings �� and ��0 are the same for any

pair of values �(t1) and �(t2) used to show termination.

Incrementality is important when an ordering is sought to orient a set of equations. Thus,

as a special case, with a precedence one can delay deciding whether f �>g, or f �<g, or f :
= g

until necessary to establish the ordering of two terms, (as for the standard recursive path

ordering). In general, one can successively re�ne the well-founded ordering of a homomorphism

component.

Unfortunately, for the well-quasi general path ordering incrementality no longer holds. This

is due to the de�nition of s � t which is true if s �� t is true but t �� s is not. The addition of

the negative condition causes incrementality to break down.

As an example, consider the terms f(a) and g(b) with the well-quasi general path ordering

with a single precedence component ordering:

�0 = the precedence f ' g > b

(the symbol a is incomparable with all the others.)

Consider the following terms in order:

� [a versus b] Trivially, a is incomparable to b.

� [f(a) versus b] Since b has no subterms �0(f(a)) = f >0 b = �0(b) is su�cient for the

application of Case (2) and f(a) �� b. Application of Lemma 16 results in f(a) � b.

� [g(b) versus a] Since b is incomparable to a, Case (1) can not be applied. Since g is

incomparable to b in �0, Case (2) can not be applied in either direction. Therefore, g(b)

is incomparable to a.

� [f(a) versus g(b)] Since f(a) � b and �(f(a)) = f '0 g = �(g(b)), Case (2) applies in the

forward direction giving f(a) �� g(b). In the other direction, however, Case (2) does not
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apply since g(b) 6� a. Case (1) can not apply either or Lemma 8 is violated. Therefore,

f(a) � g(b).

But, if the precedence is extended to:

�0 = the precedence f ' g > b ' a

One �nds that f(a) � b and g(b) � a via Case (1) and Lemma 14. Case (2) will now apply in

both directions and now f(a) � g(b) violating incrementality.

It is interesting to note that if the original precedence is used with the well-founded general

path ordering then the comparison of terms proceeds as:

� [a versus b] Trivially, a is incomparable to b.

� [f(a) versus b] Since b has no subterms �0(f(a)) = f �>0b = �0(b) is su�cient for the

application of Case (2) and f(a) �� b.

� [g(b) versus a] Since b is incomparable to a, Case (1) can not be applied. Since g

is incomparable to b in �0, Cases (2) and (3) can not be applied in either direction.

Therefore, g(b) is incomparable to a.

� [f(a) versus g(b)] Since �(f(a)) = f
:
=0 g = �(g(b)) only Case (3) can be applied. But

this is not possible since g(b) is not comparable to a. Therefore, f(a) is incomparable to

g(b).

As expected from Theorem 33, the problem arises with terms that are unordered by the well-

founded general path ordering, but are ordered by the well-quasi general path ordering.

7.7 Reconciling Well-Quasi and Well-founded General Path Orderings

One question that will remain unanswered in this paper is whether one must require that the

component orderings be well-quasi-orderings (i.e., whether Theorem 3 (Special Termination) in

the [DH95] is in fact true, if not proven so.) While this chapter shows that for many common

cases it will be true, there is no guarantee. If it can be shown, then the well-founded general

path ordering can be used to the exclusion of the well-quasi general path ordering.
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8 FORWARD CLOSURES

In this chapter a second approach to showing the termination of (potentially non-simple) rewrite

systems is presented. The forward closures of a rewrite system are a possibly in�nite set of

selected derivations. In certain cases, the ability to show that each of the forward closures

terminates is enough to show that the rewrite system in general terminates. Syntactic conditions

are given under which the termination of the forward closures su�ces. An important result is

presented that relates the forward closures to the innermost derivations of a rewrite system.

It is shown that the forward closures of a rewrite system terminate if, and only if, the rewrite

system is innermost terminating.

Since the number of forward closures of a rewrite system may be in�nite, it may be desirable

to further restrict the the forward closures to just those derivations that satisfy some rewrite

strategy. (A typical strategy is allow rewriting only at outermost redexes.) With these kinds

of restrictions on the forward closures, syntactic conditions for showing general termination are

given.

8.1 Introduction

Consider a recursive de�nition like

f(x) = if x > 0 then f(f(x� 1)) + 1 else 0 :

By a straightforward use of structural induction, one can prove that the least �x point (over

the natural numbers) is the always-de�ned identity function. This de�nition translates into the

rewrite system:

fsx ! sffpsx

f0 ! 0

psx ! x :

(8.1)

It would be nice to be able to mimic the proof for the recursive function de�nition in the

rewriting context, but several issues arise:
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1. In the functional case, one can show that call-by-value terminates, which implies that

all �x point computation rules also terminate. It will be seen under what conditions the

same holds for rewriting.

2. For rewriting in general, one must consider the possibility that the x to which the de�nition

of f(x) is applied is itself a term containing occurrences of the de�ned function f (or

of mutually-recursive de�ned functions), something usually ignored in the (su�ciently

complete) functional case.

3. One cannot use a syntactic simpli�cation ordering like the simple path ordering [Pla78],

since the �rst rule is embedding. In fact, terminationmust be combined with the semantics

(f(x) = x), as is done for the functional proof.

First a few de�nitions: A non-overlapping system is one where no left-hand side of a rule

uni�es with any non-variable subterm of the left-hand side of another rule or with a non-variable

proper subterm of itself, with variables in the two rules renamed apart. A left-linear system

has no repeated variables on the left-hand side of a rule. Similarly, a right-linear system has no

repeated variables on the right-hand side of a rule. An orthogonal system is non-overlapping

and left-linear. An overlaying system is one whose only overlaps are at the topmost position,

that is, no left-hand side uni�es with a non-variable proper subterm of any left-hand side.

As an example of an orthogonal system, consider:

fsx ! sfpsx

f0 ! 0

psx ! x :

(8.2)

The general path ordering works with component orders �0 and �1, where �0 is a precedence

with f >0 s; p, and �1 is a natural interpretation with f� = �x:x, p� = �x:x� 1, s� = �x:x+1,

and 0� = �x:0.
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The following rewrite system is overlaying and locally conuent (see de�nition in the next

section):

x� 0 ! 0

x� sy ! (x� y) + x

x+ 0 ! x

0 + x ! x

x+ sy ! s(x + y)

sx + y ! s(x + y) ;

(8.3)

8.2 Locally Conuent Overlaying Systems and Termination

A locally conuent system is one for which u ! s; t implies s; t !� v, for some v, where !�

is the reexive transitive closure of the rewrite relation.

Proposition 35 (Gramlich [Gra92]). A locally conuent overlaying system is terminating if,

and only if, innermost rewriting always leads to a normal form.

An innermost derivation is one in which the redex chosen at every rewrite step contains

no rewritable proper subterm. In particular, orthogonal systems are locally conuent and

have no (non-trivial) overlays; the proposition for this case was shown by O'Donnell [O'D77].

Geupel [Geu89] showed that left-linearity is unnecessary, that is, a non-overlapping system is

terminating if, and only if, innermost rewriting always leads to a normal form.

An alternate proof to the one in [Gra92] is presented. (See also Middeldorp [Mid94].) It is

similar in style to Geupel's proof [Geu89] that forward closures su�ce for showing termination

of non-overlapping rewrite systems.

Proof. A term t is terminating (written as t 2 Tf) if all derivations from t are �nite; t is

non-terminating (t 2 T1) if some derivation from t is in�nite; and t is on the frontier (t 2 FR)
if t is non-terminating, but every proper subterm of t is terminating. If a term has no frontier

subterms, then it must be terminating. Conversely, if a term has a frontier subterm, it is

non-terminating.

For a locally conuent rewrite system, any terminating term t has a unique normal form

t̂ by Newman's Lemma [New42]. The inner normalization function N for a locally conuent
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rewrite system is de�ned as follows:

N(t) =

8><
>:

f(N(t1); : : : ; N(tn)) if t = f(t1; : : : ; tn) 2 T1
t̂ if t 2 Tf .

Clearly, t!� N(t).

If the rewrite system is non-terminating, an in�nite derivation can be constructed as follows:

Let t1 = s1 be a frontier term. It initiates an in�nite derivation of the form

t1 = s1 !�
below top s

10 !at top t
2 ! � � � ;

where all the steps in s1 ! : : : ! s1
0

are below the top position and t2 contains a frontier

subterm s2 at some position p2. Continuing in this way, the in�nite derivation

t1 !+ t2 !+ t3 !+ � � �

is found where ti = u2[u3[� � �ui[si]pi � � �]p3 ]p2 , each si is a frontier subterm of ui, and

si !�
below top s

i0 !at top u
i+1[si+1]qi+1 ;

where pi+1 = pi �qi+1. (This is a constricting derivation �a la Plaisted [Pla93a], making the proof

a little simpler.)

Notice that each redex in the in�nite derivation is either terminating (those below pi in s
i)

or on the frontier (at pi in si). Let us consider these cases separately.

� The redex is a terminating subterm: Since each of the terms in si !� si
0

is on an in�nite

path, the position of the frontier is una�ected and hence by local conuence N(si) =

N(si
0

). Since both si and si
0

are nonterminating, by the de�nition ofN one hasN(ti[si]) =

N(ti[si
0

]).

� The redex is a frontier subterm: In this case

si
0 ! ui+1[si+1]qi+1 with some rule g(c1; : : : ; cn) ! r and substitution �. Since si

0

is

on the frontier, each of its subterms must be terminating and therefore each of the terms

in the image of � is terminating as well. Since the rewrite system is overlaying, each
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of the contexts c1; : : : ; cn is in normal form, so the rewrites below pi are all within the

terminating terms introduced by �. In other words, N(si) = g(c1; : : : ; cn)b�, where b� is �

with each of the terms in its image rewritten to normal form. By application of the same

rule N(si)! rb�.
Consider ui+1[si+1] = r�. Since the terms in the image of � are terminating, by the

de�nition of N one has N(r�) = N(rb�). (By de�nition, it is known that rb� !� N(rb�).)
Since both si and ui+1[si+1] are frontier terms (in ti and ti+1, respectively), one sees that

N(ti[si])!+ N(ti+1[si+1]).

Thus from the in�nite derivation t1 !+ t2 !+ t3 !+ � � � another in�nite derivation

N(t1) !+ N(t2) !+ N(t3) !+ � � � can be constructed. Each of the rewrite steps corre-

sponding to a frontier redex in the original derivation will be innermost after the application of

N . The remaining steps are all under the position of the immediately preceding frontier step

and are applied to terminating subterms. By local conuence, these rewrites can be rearraged

to be innermost as well. Thus, from any in�nite derivation some innermost in�nite derivation

can be constructed.

Notice that given any non-terminating term v, the above construction can be used to obtain

the derivation v[t1]!+ v[N(t1)]!+ v[N(t2)]!+ � � � and so each term is terminating if and

only if it is innermost terminating.

As an example of the use of Proposition 35, consider System 8.3. It must be shown that,

under the assumption that variables are bound to normal forms, each rule leads to a normal

form. Consider the second rule. If x and y are in normal form, then after applying the rule

the innermost redex is the newly produced multiplication. But it can be shown that this will

terminate since its second argument is smaller. Addition can be considered separately from

multiplication, and it too terminates regardless of changes in the �rst summand. Therefore,

every innermost derivation terminates, and hence the system terminates.

8.3 Introduction to Forward Closures

The question of when termination of ground constructor instances of left-hand sides su�ces for

establishing termination in all cases is now considered.
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De�nition 10. The forward closures of a given rewrite system are a set of derivations induc-

tively de�ned as follows:

� Every rule l! r is a forward closure.

� If c ! � � � ! d is a forward closure and l ! r is a rule such that d = u[s] for nonvariable

s and s� = l� for most general uni�er �, then c� ! � � � ! d�[l�] ! d�[r�] is also a

forward closure.

The idea, �rst suggested by Lankford and Musser [LM78], is to restrict application of rules

to that part of a term created by previous rewrites. Innermost (outermost) forward closures

are de�ned as those closures which are innermost (outermost) derivations. More generally,

arbitrary redex choice strategies may be captured in an appropriate forward closure. A forward

closure which has a right most term which initiates a non-terminating sequence of rewrites will

be denoted as an in�nite forward closure. (It corresponds to a in�nite derivation in the limit.)

For example, the forward closures of System 8.2 are

fsnx !+ snfpsx n > 0

fsn0 !+ sn0 n � 0

fsnx !+ snfx n > 0

psx ! x :

In fact, since there is only one possible redex in every forward closure, these are the innermost

and outermost forward closures as well.

For an example where the innermost and outermost forward closures are not identical,

consider the rewrite system:

fsx ! sfpsfx

f0 ! 0

psx ! x :

(8.4)

The forward closure

fssx ! sfpsfsx! sffsx ! sfpsfx
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is outermost, but not innermost. The forward closure

fssx! sfpsfsx ! sfpssfpsfx

is innermost, but not outermost.

Proposition 36 (Dershowitz [Der81]). A right-linear rewrite system is terminating if, and

only if, there are no in�nite forward closures.

In particular, forward closures su�ce for string-rewriting systems.

Thus, for a system like

fsx ! ssfpsx

f0 ! 0

psx ! x ;

(8.5)

we can restrict our attention to forward closures. (This is not exactly a string rewriting system

since the second rule applies only at the end of a string.) Since f 's won't nest, termination can

be shown by comparing the argument on the left, sx, with the one on the right, psx, using a

natural semantic comparison.

Proposition 37 (Geupel [Geu89]). A non-overlapping rewrite system is terminating if, and

only if, there are no in�nite forward closures.

This improves the result in [Der81] for orthogonal systems. In general, though, a rewrite system

need not terminate even if all its forward closures do [Der81].

Consider the following rewrite system for symbolic di�erentiation with respect to t:
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D t ! 1

D z ! 0 z does not contain t

D (x+ y) ! D x + D y

D (x � y) ! y �D x + x �D y

D (x� y) ! D x � D y

D (�x) ! �D x

D (x=y) ! D x=y � x �D y=y2

D (ln x) ! D x=x

D (xy) ! y � xy�1 �D x + xy � (lnx) �D y :

(8.6)

It is orthogonal, so the above method applies. Since D's are not nested on the right, forward

closures cannot have nested D's. Since the arguments to D on the left are always longer than

those on the right, all forward closures must lead to terminating derivations. Hence, regardless

of the rewriting strategy and initial term, rewriting terminates.

8.4 The Relation of Forward Closures to Innermost Termination

The following theorem establishes the connection between forward closures and innermost

derivations. In particular, if one has some set of conditions for which innermost termination

su�ces to show termination, then forward closures will show termination for rewrite systems

satisfying that set of conditions.

Theorem 38. A rewrite system has an in�nite innermost derivation if, and only if, it has an

in�nite innermost forward closure.

Proof. Consider a term t which has an in�nite innermost derivation. It must have a subterm

tjp which has an in�nite innermost derivation such that the top position is eventually rewritten:

tjp = s0 ! s1 ! � � � ! si !top s
i+1 ! � � � :

But for the top of si to be rewritten all of its immediate subterms must be in normal form.

Consider this term. The �rst rewrite step from si must be at the top. Every rewrite afterwards

must be applied in context created by previous rules since an application anywhere else would
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be to a redex that is a proper subterm of si, which were all in normal form. If one considers

l ! r, the rewrite rule applied in the �rst step from si, there must be some substitution � such

that l� = si. Each time the forward closure is extended, a substitution �j must be applied and

the �rst term in the forward closure is given by l�1�2 � � ��j .
If every substitution after a certain point in the derivation corresponds to a match, then one

has found an in�nite forward closure. For this not to be true, one of two possibilities had to have

occurred at an in�nite number of rewrite steps. The �rst possibility is that the substitution

did not correspond to a match because of an equality constraint on variables. For example, if

the right most term is q(x; y) and the left hand side of the rule is q(z; z) the substitution will

be something like fx 7! z; y 7! zg. Notice though, that the number of variables remaining in

the terms of the extended forward closure has been reduced. The second possibility is that the

substitution wasn't a match because there was some symbol on the left hand side of the rule

which wasn't in the rightmost term of the forward closure. For example, if the right most term

is q(x; y) and the left hand side of the rule is q(a(w); z) the substitution will be something like

fx 7! a(w); y 7! zg. In this case, after the substitution the number of symbols in the leftmost

term of the forward closure has increased.

Consider the number of symbols in l� = si minus those in l�1�2 � � ��j paired with the

number of variables in l�1�2 � � ��j . At each step corresponding to one of the two possibilities,

one or the other of these is reduced and therefore, there can not not be an in�nite number of

substitutions that are not matches. Thus, the derivation from si is an instance of an in�nite

innermost forward closure.

The set of forward closures can be restricted even more.

Theorem 39. A rewrite system has an in�nite innermost derivation if, and only if, it has an

in�nite leftmost/rightmost innermost forward closure.

Proof. The proof is essentially the same. One just needs to show that one can reorder

the derivation steps so that they are leftmost/rightmost as well as innermost. Clearly, this is

possible and the proof proceeds as before.
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8.5 Overlay Rewrite Systems with Forward Closures

In this section, syntactic conditions will be presented which guarantee that the termination of

forward closures su�ces to show termination of the rewrite system.

Theorem 40. A locally-conuent overlaying rewrite system is terminating if, and only if, it

has no in�nite leftmost/rightmost innermost forward closure.

In particular, non-overlapping, and hence orthogonal, systems satisfy the prerequisites for appli-

cation of this termination test; one need only prove termination of such innermost derivations.

Proof. From Proposition 35 if the rewrite system is non-terminating it will have an inner-

most non-terminating derivation. But by Theorem 39 this implies the existence of an in�nite

innermost forward closure.

This method applies to most of the previous examples. Since one only needs to consider

innermost derivations, it can be assumed that problematic expressions like psx on the right

of System 1.2 rewrite immediately to x (and that the x is in normal form). Since only the

forward closures need to be considered, it can be assumed that x contains no function symbols

other than s and 0, without having to show that fact is su�ciently complete (which it would

not be were the rule fact(0)! s0 omitted). By \su�ciently complete", it is meant that every

ground term containing the symbol fact and constructors reduces to a term containing only

constructors.

For System 8.1, one can compare the multiset of right-hand side arguments ffpsx; psxg of
the recursive function symbols with that of left-hand side, fsxg. Semantics are necessary for

this comparison. If we let psx = x and fx = x (just as would be done when using �0 with a

natural path ordering), we have fsxg greater (in the multiset ordering) than fx; xg. But one
must ensure that the semantics are consistent with the rules (which is analogous to showing that

f(x) = x is a �x point of the de�nition). This can be done using standard rewriting techniques

(\proof by consistency"; see Bachmair and Dershowitz [BD94]). Indeed, adding fx ! x to

System 8.1 yields a terminating conuent overlay system.
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It is instructive to compare the above examples with the following nonterminating rewrite

system:

fsx ! ssffpsx

f0 ! 0

psx ! x :

(8.7)

It is the rewriting analogue of the recursively-de�ned function

f(x) = if x > 0 then f(f(x� 1)) + 2 else 0 ;

which does not terminate for 2. Indeed, f(x) = x would be inconsistent with the rules (allowing

one to prove s0 = ss0).

Lemma 41. If a left-linear rewrite system is constructor-based, then all of its forward closures

begin with constructor-based instances of left-hand sides of rules.

A term is constructor-based if all of its proper subterms have only free constructors and variables.

A rewrite system is constructor-based if its left-hand sides are constructor-based, and a forward

closure is constructor-based if its initial term is constructor-based.

Proof. Since forward closures are only extended via substitution, a trivial induction shows

that every forward closure's initial term is an instance of the left-hand side of some rule.

Consider the inductive de�nition of forward closures. For the base case, each rule is a

forward closure which, trivially, is constructor-based. Assume that c[~x] ! � � � ! d[~x] is a

constructor-based forward closure. It is extended by applying the substitution �, found by

unifying the left-hand side of a rule, f(k1[~y]; : : : ; kn[~y]), with some subterm of d. Suppose that

the extension is not constructor based. This can only happen if the substitution, �, maps

some xi 2 ~x to a term with a function symbol in it. The term f(c1[~x]; : : : ; cn[~x]) is uni�ed

with f(k1[~y]; : : : ; kn[~y]). Since the rule itself is constructor-based, the only source of a function

symbol is one of the contexts, ci, from d. But these can only unify with variables, ~y, from the

rule. Since the rules are left-linear, each occurrence is distinct and therefore, the only mappings

in � which have function symbols are for variables in ~y, not ~x. This is a contradiction, and the

extension is constructor based.
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As a counter-example illustrating the need for left-linearity, consider the rewrite system:

f(x; x) ! f(ga; x)

gb ! c :
(8.8)

It is constructor-based, but the forward closure f(ga; ga)! � � � ! f(ga; ga) is not.

A left-linear, locally conuent, constructor-based rewrite system is overlaying, and hence,

by Theorem 40, is terminating if and only if its innermost forward closures are terminating.

But by Proposition 41, all its forward closures begin with constructor-based instances of left-

hand sides. Thus, termination proofs need not consider initial terms containing nested de�ned

function symbols (even when the symbol is not completely de�ned). That makes proving

termination of such systems no more di�cult than proving termination of ordinary recursive

functions: the instances of rule variables can be presumed to be in normal form and the context

can be ignored.

8.6 Non-erasing Systems and Forward Closures

Let us now consider non-erasing rewrite systems. Recall that a system is non-erasing if any

variable on the left-hand side of a rule is also on the right-hand side.

Proposition 42 (O'Donnell [O'D77]). A non-erasing orthogonal system is terminating if, and

only if, it is normalizing (every term has a normal form).

Therefore, the �rst rule of System 8.2 (which has a self-embedding) may be immediately

followed by an application of the last rule, e�ectively replacing the former with fsx ! sfx.

Now termination can be shown with a standard recursive path ordering with precedence f >0 s,

demonstrating that the original system is normalizing, and, hence, terminating.

The previous proposition can be improved.

Lemma 43. If a term has an in�nite derivation in a non-erasing non-overlapping system, then

all derivations from that term are in�nite.

Note that both non-overlapping string systems and non-erasing orthogonal rewrite system

are special cases covered by this lemma.
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Proof. The inner normalization function N is used. From the proof of Proposition 35, if

t is a frontier term, then N(t) is also non-terminating. As a consequence, for an arbitrary

non-terminating term t, it must be that N(t) is non-terminating as well.

Consider an arbitrary non-terminating term t and an arbitrary rewrite step applied to that

term at redex s. The rewrite must occur in one of the following positions:

� The redex s = l� is a terminating term. But t[l�] ! t[r�] !� N(t) by local conuence

and since N(t) is non-terminating, t[r�] is as well.

� The redex is a frontier term. It must be that there is exactly one rule, l ! r, applicable

at that redex. From the proof of Proposition 35 presented in this thesis, one knows that

the rule will still be applicable to N(s). In addition, N(s[r�]) is still non-terminating.

Suppose that there was some other rule, l0 ! r0, which was applicable, but led to a

terminating term. This rule would also be applicable to N(s). But since N(s) is an

instance of the right-hand sides of both rules they overlap, which is a contradiction.

Therefore, t[s[l�]]! t[s[r�]]! N(t[s[r�]]) and N(t[s[r�]]) is non-terminating.

� The redex is non-terminating, but is not a frontier term. There must be some subterm

sjp which is the frontier. Suppose that the rule, l! r has the top symbol of sjp as part of
its context c[�]. Consider applying N to the entire term. The subterms of the context c[�]
are terminating, so they must be preserved; the top symbol of c[�] heads the subterm rjp
and won't be rewritten, either. Since N maps terminating terms to their unique normal

forms, repeated variables will observe the same rewrite and the applicability of the rule

is una�ected by N . But there is some other rule, l0 ! r0, which is applicable at the top

of N(sjp). But that means there is an instance to which both rules apply and overlap.

Therefore, the rule may only bind sjp by a variable. Since the system is non-erasing, the

frontier term sjp must also be in the result of the rewrite, t[r�], which consequently must

also be non-terminating.

Since there is no rule application which can lead to a term that is terminating, every

derivation from a non-terminating term must be in�nite.
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The following non-overlapping rewrite system shows that the non-erasing property is nec-

essary:

gx ! a

b ! gb:
(8.9)

Clearly, the term b has both in�nite and terminating derivations.

To see that this result can not be extended to non-erasing, locally-conuent overlaying

systems consider:

a ! a

a ! b:
(8.10)

Unfortunately, the term a has both in�nite and terminating derivations.

The following generalizes Proposition 42.

Theorem 44. A non-erasing non-overlapping system is terminating if, and only if, it is nor-

malizing.

This is a corollary of Lemma 43. Gramlich [Gra94] gives an independent proof of this.

Theorem 45. A non-erasing non-overlapping system is terminating if, and only if, no right-

hand side of an arbitrary strategy basic forward closure initiates an in�nite derivation.

A basic forward closure l� ! r� ! � � � is one for which the substitution �, used in the �rst

step of the closure, is irreducible.

Proof. Suppose the system has an in�nite derivation. Then by Theorem 40, there is a

innermost forward closure leading to an in�nite derivation. But the left-hand side of the in�nite

forward closure is a term which has an in�nite derivation, and hence all derivations from it must

be in�nite as well (by Lemma 43). Furthermore, all derivations from it are instances of basic

forward closures. Therefore, for an arbitrary strategy there is a corresponding in�nite basic

forward closure of the appropriate type.

As an example, consider the following system:

fsx ! psffx

f0 ! 0

psx ! x :

(8.11)
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Its outermost forward closures are:

fsnx !+ fn�1psffx n > i

fsnx !+ fn+1x n > i

fsn0 !+ fm0 n � 0; n � m

psx ! x :

For a forward closure which is an instance of fsnx!+ fn�1psffx; one only needs to consider

the extension with the rule psx ! x; since any other choice would not lead to an outermost

forward closure. Veri�cation of termination is easy now. Terms of the form fn�1psffx derive

in one step fn+1x which is in normal form. Terms of the form fm0 derive 0 in m steps. Since

no right-hand side admits a non-terminating rewrite sequence, the system is terminating.

System 7.1 can be shown terminating via similar reasoning (though the expressions for the

forward closures are more complicated).

8.7 Example of Using Forward Closures to Prove Termination

Zantema's Problem [Zan92a] is to prove termination of the following one-rule string-rewriting

system:

1100! 000111; (8.12)

corresponding to the term-rewriting rule 1100x! 000111x. (Theorem 44 applies as well, since

string rewriting systems are non-erasing and this rule is non-overlapping.)

First note that for any term of the form �00�, if �00 is a normal form then any term derived

from �00� must have the form �00. Consider the right-hand side of the rule. It has the above

form with su�x � = 111. There are two ways to construct a new outermost forward closure

from 111:

�0011100! �001000111 = �000111

and

�00111100! �0011000111:
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Since there is a redex (underlined) in the right hand side of the second forward closure, any

outermost forward closure extending it must rewrite the redex:

�00111100! �000001110111 = �0001110111:

This gives us a new possibility � = 1110111, which can be used to construct a new outermost

forward closure as:

�00111011100! �0011101000111 = �000111

and

�001110111100! �00111011000111:

As before, one needs to reduce the right hand side for any outermost forward closure:

�001110111100 ! �0011100001110111

! �001000111001110111

! �00100010001111110111 = �0001111110111 :

The third possibility is � = 1111110111, which can be used to construct a new outermost

forward closure as:

�00111111011100! �0011111101000111 = �000111

and

�001111110111100! �00111111011000111 :

The second of these has a redex which must be rewritten:

�001111110111100 ! �0011111100001110111

! �001111000111001110111

! �00110001110111001110111

! �0000011101110111001110111

! �000001110111010001111110111

= �0001111110111 :
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For termination, it must be the case that no right-hand side of an outermost forward

closure initiates a non-terminating derivation. Each of the right-hand sides of the form

�00111, �001110111, and �001111110111 are already in normal form. Consider the right-

hand side �00111011000111. It has only one possible derivation, leading to the normal form

�001111110111. The right-hand side �0011111100001110111 is a little more complicated. The

next term in the sequence is �001111000111001110111, which has two possible rewrites. But

notice that each of the succeeding terms in the outermost derivation preserve the inner rewrite.

Therefore, they can be performed independently and �0001111110111 is the �nal form of all

possible rewrites. None of the right-hand sides initiates an in�nite rewrite, so the system is

terminating.

Note that all derivations of a non-overlapping string-rewriting system have the same length.

Hence, it has been shown (as Zantema conjectured) that 2n is an upper-bound on the length

of any derivation from a string of size n (in worst case six steps are needed to decrease the size

of the su�x � by three). Other solutions to this problem are due to Geser [Ges93] and Bittar

[Bit93]. See also McNaughton [McN94] who considers termination of semi-Thue systems such

as this example.

72



9 FORWARD CLOSURES AND COMPLETION

In the following chapter an application of forward closures for determining if a rewrite system

terminates is examined. It is considered in the context of completion of an equational theory.

One particular viewpoint of completion is as a search over rule orientations via an ordering. In

this approach the ordering is replaced by a non-termination test.

9.1 Completion as Search

In the classical Knuth-Bendix completion process [KB70], one starts with a set of equations.

Before beginning an ordering is chosen. Equations are oriented into rewrite rules via the ordering

(typically one at a time). Critical pairs are computed for the rewrite rules, and any which are

not joinable are added to the set of equations. Unfortunately, an equation may be found which

can not be ordered, causing the method to fail. A modi�cation of the above allows pairs of

terms which can not be ordered to be kept as an equation and applied in either direction,

provided that for the particular instance there is a decrease based on the ordering [HR86].

One can view the completion process as a search through orientations of the equations,

where one is looking for a rewrite system which is

� terminating,

� locally conuent, and

� �nite.

Note that completion can be used for computation, even if the resulting set of rules is not �nite,

as long as the completion process is fair (no equation is ignored forever).

Typically, however, one desires a �nite rewrite system as the result of completion. Via the

above process, one often is in the position of guessing an ordering and then starting over with

a new ordering when an equation which can not be ordered is encountered, or it looks like the

completion process is not going to generate a �nite set of equations. One way to attempt to deal

with this problem is to use a path ordering (typically the recursive path ordering [Der82] seen
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in Section 5.1) which is only partially speci�ed. When two terms are encountered which are

incomparable, the completion process presents the user with extensions to the ordering (if they

exist) which will orient the pair. If the user has some idea as to which direction an equation

should have as a rewrite rule, then this may require less searching through orderings during

completion. Unfortunately, there is still a search involved and controlling it are the orderings

chosen.

In addition, simpli�cation orderings which are probably among the easiest to understand

and apply have a serious defect. They can not be used to show the termination of any rewrite

system which has an \embedding". As an example, consider the single rewrite rule:

ff(x) ! fgf(x) (9.1)

Since the left-hand side embeds in the right hand side there is no simpli�cation ordering which

can show that this rewrite system terminates.

The desired goal is to allow for the decoupling of the search process embedded in completion

with determining an ordering for the rewrite system. Partial completion would proceed as a

search over rule orientations without an ordering and, hopefully, a �nite set of rules would

be produced. This requires a heuristic method for grading a particular orientation of a set

of equations. The result of partial completion would be a �nite, locally conuent rewrite

system. To show that the rewrite system was in fact conuent would require a separate proof

of termination.

One obvious advantage to the search approach is that there are often equations which can

only be oriented in one direction. Three basic kinds of equations which are easily oriented are:

1. Equations where a variable only occurs in one term. For example, the equation f(x; a) =

gb can only be oriented as f(x; a)! gb.

2. Equations where one of the terms matches a proper subterm of the other term. For

example, the equation x+ 0 = x can only be oriented as x+ 0! x.

3. Equations where one of the terms has a constructor symbol at the top. For example, if s

is a constructor, the equation fsx = sfx can only be oriented as fsx! sfx.
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One potential disadvantage of the search approach is that the current orientation of equa-

tions may give a non-terminating rewrite system. Hence, one will need to guard against non-

termination when the joinability of critical pairs is considered. For standard completion, this

was not a problem since the rules always showed a decrease in the given ordering.

9.2 Previous Approaches for Avoiding Non-termination

There are two previous approaches to this problem. The �rst, by Plaisted [Pla86], proposes

that during any derivation, a check for embeddings be employed. The other, by Purdom

[Pur87], proposes a speci�c test for detecting non-termination of a rewrite system. Both of

these approaches are examined in more detail in this section.

9.2.1 Plaisted's Approach

The approach introduced by Plaisted [Pla86] was to check for embeddings. If an embedding

is found, then there may be a non-terminating derivation. On the other hand, if there is no

embedding, then the rewrite system must be terminating as the following theorem by Kruskal

shows.

Proposition 46. Suppose t1, t2, : : :, is an in�nite sequence of ground terms over a �nite set

of function symbols. Then there exist an i and a j with i < j, such that ti is homeomorphically

embedded in tj .

Unfortunately, to use this as a proof of termination requires that one show that all derivations

do not have an embedding. As employed by Plaisted, only derivations arising from critical

pair computations are checked. An extension mentioned by Plaisted is to choose some set of

terms V . For these terms, the embedding relation for each pair is pre-computed. As equations

are turned into rewrite rules, the derivability relation between terms is maintained. If at some

point derivability and embedding both relate two terms in the set V , then one would backtrack

from this particular orientation of equations.

The rationale for not allowing a set of rule orientations which has an embedding is that if an

embedding exists, there is no simpli�cation ordering which will allow one to show termination.

Plaisted considers this desirable since, in practice, non-simpli�cation orderings are di�cult to

understand.
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One potential problem with this approach is that even if a set of equations can be oriented

and passes Plaisted's test, there still may not be any simpli�cation ordering which will show

termination. This is because only selected derivations have been tested and found free of

embeddings. In fact, the rewrite systemmay be non-terminating, or require a non-simpli�cation

ordering in order to show termination.

This method's most serious defect when employed as a heuristic to guide search is that it

may discard orientations of rules which are, in fact, terminating.

9.3 Purdom's Approach

Purdom proposed in [Pur87] that instead of checking for embeddings, one should employ a test

for non-termination. The basic idea is that one is allowed to make arbitrary instantiations of

the rules. Then one checks to see if there is a sequence of instantiated rules, each of which

matches a subterm of the previous such rule in the sequence.

9.3.1 Single Derivation Step

The simplest test which Purdom gave was that one would check a sequence consisting of a

single rule application.

De�nition 11. [Single Step Purdom (SSP)] A set of rules,R, has a non-terminating derivation

if there exist substitutions � and � and a position p such that for some rule li ! ri in R, the
following equation is satis�ed:

li�� = (rijp)�: (9.2)

In the above de�nition, the substitution � gives one the instantiation of the rule and explains

why one does not rename variables apart for li and (rijp). The substitution � is the match. Solv-

ing problems of the form ti�� = si� is called semi-uni�cation. The proof that this demonstrates

non-termination is trivial.

One should note that even if the rewrite system consists of a single rule, there is no general

method for showing termination, since one is able to simulate a Turing machine with a single rule

[Dau89]. The non-decidability of the halting problem for a Turing machine then corresponds to

the non-decidability of termination of rewrite systems. But even for a single left-linear, right-

linear, non-erasing, non-overlapping, overlaying rule with unary function symbols, Purdom's
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method may not discover non-termination. This is disappointing since it covers most of the

common syntactic categorizations of rewrite systems. This is demonstrated by the following

example:

fgx ! ggffx : (9.3)

This rewrite system has the non-terminating derivation fggx ! ggffgx ! ggfggffx !
: : :, but SSP will not discover this derivation. This is due to the fact that SSP requires that

there be a \replication" after just a single application, whereas this derivation needs two steps.

Lemma 47. If s and t are terms such that s is equal to a proper subterm of t, then there are

no substitutions � and � such that the equation t�� = s� is satis�ed.

Proof. Consider the size of a term t (denoted jtj) given by counting the symbols and variables.
If s is equal to a proper subterm of t, then for any arbitrary instantiation �, jt�j > js�j. In

addition, one knows that for any match � jt��j � jt�j. By transitivity, one has jt��j > js�j,
and hence they can not be equal.

Lemma 47 can be used to show that SSP fails to detect non-termination for System 9.3.

Each of the possible positions shall be considered in turn. With p the top, fgx�� 6= ggffx�,

since the outermost symbols f and g don't match. Similarly, each of the subterms until fx also

fail. Now to solve fgx�� = fx�, one must be able to solve gx�� = x�. But by Lemma 47,

this can not be done. The last possibility is fgx�� = x�, but Lemma 47 applies directly, and

there is no solution. Hence, SSP can not demonstrate the non-termination of System 9.3.

9.3.2 Multiple Derivation Steps

To address problems such as System 9.3 and to allow considering rewrite sequences with more

than a single rule, Purdom generalized SSP to allow for multiple derivation steps.

De�nition 12. [Multiple Step Purdom (MSP)] A set of rules,R, has a non-terminating deriva-

tion if there exist substitutions � and � and k positions pi such that for rules lni ! rni in R
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(ni ranges over the rules), the following equations are satis�ed:

ln1�� = (rnk jpk)�
ln2�� = (rn1 jp1)�

...

lnk�� = (rnk�1 jpk�1)� :

(9.4)

In this case, the variables between each of the rules lni ! rni are renamed. Thus, again

the substitution � corresponds to instantiating the selected rules, and � gives the matches.

Purdom's original method, SSP, is just the special case for k = 1.

There are a couple of problems with this method.

1. Each rewrite step in the non-terminating derivation must be at or below a previous step.

2. The presence of certain kinds of rules in a rewrite system have no e�ect in determining

the outcome of MSP. In particular, collapsing rules can not contribute usefully to a non-

terminating derivation.

3. MSP requires the use of semi-uni�cation. While work has been done in [KMNS88] to

improve the e�ciency of the decidability of semi-uni�cation to polynomial time, it is still

desirable to avoid its use if possible.

As an example of the �rst problem, consider the following rewrite system:

f(0; 1; a) ! f(a; a; a)

a ! 0

a ! 1 :

(9.5)

Notice that the above rewrite system is variable free. This makes it easier to show that the non-

terminating derivation f(0; 1; a)! f(a; a; a)! f(0; a; a)! f(0; 1; a) can not be discovered by

MSP, since the substitutions can be ignored.

Suppose that either of the last two rules is the ith step in the derivation. Then 0 or 1 must

be equal to the left-hand side of one of the rules. But this is not possible, so neither of the last

two rules can be in the derivation. This leaves just the �rst rule. Now either f(a; a; a) or a must

match the left-hand side of the �rst rule. But, neither one does, so the �rst rule can not be in
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the derivation as well and MSP fails. Notice that in the above non-terminating derivation, two

steps were done in parallel and therefore MSP failed to detect non-termination.

It is not necessary that there be steps in parallel for MSP to fail. Consider the following

rewrite system:

f(1; a) ! f(a; a)

a ! 1 ;
(9.6)

which is closely related to the previous one. It has the non-terminating derivation f(1; a) !
f(a; a)! f(1; a). By reasoning similar to that for System 9.5, one can show that MSP fails for

this rewrite system as well. In this case, the second step in the derivation was above the �rst

one.

9.3.3 Rule Removal

In this section, it will be shown that the presence of certain kinds of rules can not contribute

to the success or failure of Purdom's method.

9.3.3.1 Semi-Uni�cation

First, a lemma will be shown that allows one to essentially consider each of the rules separately

with regard to the matching substitution � when doing semi-uni�cation.

Lemma 48. Given � and � which solve

ln1�� = (rnk jpk)�
ln2�� = (rn1 jp1)�

...

lnk�� = (rnk�1 jpk�1)� ;

(9.7)

there exist �0 and �0 which also solve the equations such that given rewrite rule lni ! rni with

renamed variables �xi, �
0 maps �xi to a terms over a unique set of variables �yi, and �0 maps �yi

to terms over �yf(i) where f(i) = i� 1 except for f(1) = k.

Proof. Proof by construction. Suppose that � is the mapping �x1 7! �T1[�y]; : : : ; �xk 7! �Tk[�y],

where �y contains all the variables in the contexts �T1; : : : ; �Tk, and the substitution � is the

mapping �y 7! �Q[�y].
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Construct �0 in the following manner. For each rule, construct the mapping �xi 7! �Ti[�yi]

where �yi is a renaming of �y to unique variables. Construct �0 as the mappings �yi 7! �Q[�yf(i)].

Consider the equation

ln1�� = (rnk jpk)� : (9.8)

The two terms ln1� and ln1�
0 di�er only in that each variable in �y is replaced by its renamed

equivalent from �yi. Lets call this context A and write ln1� = A[�y]. Similarly, the two terms

(rnk jpk)� and (rnk jpk)�0 di�er only in that each variable in �y is replaced by its renamed equiv-

alent from �yk . Lets call this context B and write (rnk jpk)� = B[�y].

By the equation, it is known that A[�y�] = B[�y]. Now consider A[�y1�] = B[�yk ]. Notice

that �0 maps the renamed variables to the terms �Q[�yf(i)], and therefore, the only possible

di�erence between A[�y1�] and B[�yk ] is in the variable positions. Again consider the original.

By construction, if a variable yi 2 �y appears, it came from replacing some variable yj 2 �y by

�Qj [�y] 2 �Q, which for �0 means that a variable y0i 2 �yk came from replacing some variable y0j 2 �y1

by �Qj [�yk] 2 �Q, but these will match the variables in B[�yk ] and therefore, the variables all match

as well and �0 and �0 are solutions to each of the equations.

9.3.3.2 Example

As an example of the above manipulation of � and �, consider the following rewrite system:

fx ! r(x; x)

r(y; z) ! fs(h(y; y); z)

s(w; v) ! fgw

(9.9)

with the substitutions

� =

8>>>>>>>>>>><
>>>>>>>>>>>:

x 7! s(p; q)

y 7! y

z 7! s(m;n)

w 7! p

v 7! q

9>>>>>>>>>>>=
>>>>>>>>>>>;

(9.10)
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and

� =

8>>>>>>>>>>><
>>>>>>>>>>>:

y 7! s(p; q)

p 7! h(y; y)

q 7! s(m;n)

m 7! p

n 7! q :

9>>>>>>>>>>>=
>>>>>>>>>>>;

(9.11)

These satisfy the equations

fx�� = fs(h(y; y); s(m;n)) = fgw�

r(y; z)�� = r(s(p; q); s(p; q)) = r(x; x)�

s(w; v)�� = s(h(y; y); s(m;n)) = s(h(y; y); z)� :

(9.12)

In this case, the set of variables �y is fy; p; q;m;ng. The renamings (one for each rewrite rule)

are �y1 = fy0; p0; q0; m0; n0g, �y2 = fy00; p00; q00; m00; n00g, and �y3 = fy000; p000; q000; m000; n000g.
The new substitutions are

� =

8>>>>>>>>>>><
>>>>>>>>>>>:

x 7! s(p0; q0)

y 7! y00

z 7! s(m00; n00)

w 7! p000

v 7! q000

9>>>>>>>>>>>=
>>>>>>>>>>>;

(9.13)
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and

� =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

y0 7! s(p000; q000)

p0 7! h(y000; y000)

q0 7! s(m000; n000)

m0 7! p000

n0 7! q000

y00 7! s(p0; q0)

p00 7! h(y0; y0)

q00 7! s(m0; n0)

m00 7! p0

n00 7! q0

y000 7! s(p00; q00)

p000 7! h(y00; y00)

q000 7! s(m00; n00)

m000 7! p00

n000 7! q00 :

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(9.14)

It is easy to verify that these substitutions solve the equations.

9.3.3.3 The Main Theorem

Now it will be shown that certain kinds of subterms of the right hand sides of the rewrite rules

need not be considered when attempting to solve the MSP equations.

Theorem 49. Given a sequence of rules n1; n2; : : : ; nk (each of which satisfy the condi-

tion that all variables on the right-hand side are also on the left-hand side) and positions

pn1 ; pn2 ; : : : ; pnk, which satisfy the equations

ln1�� = (rnk jpk)�
ln2�� = (rn1 jp1)�

...

lnk�1�� = (rnk�2 jpk�2)�
lnk�� = (rnk�1 jpk�1)� :

(9.15)
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if the subterm (rnk jpk) of the kth rule is identical to a proper subterm of its left-hand side lnk ,

then there is a proper subsequence of the rules excluding the kth rule for which MSP is satis�ed.

Proof. First consider the case where k is one. By direct application of Lemma 47, it is known

that there are no substitutions � and � which solve the equation.

If k is greater than one, then �rst by Lemma 48, � and � will be converted to �0 and �0,

where the variable sets for each of the rules are denoted �xi, the terms in � and � are over �y,

and the terms in �0 and �0 are over �yi.

It is given that there is some non-trivial q such that lnk jq = rnk jpk . It must be that

ln1�
0�0 = (rnk jpk)�0

= lnk jq�0 :
(9.16)

In addition, since

lnk�
0�0 = (rnk�1 jpk�1)�0 ; (9.17)

one must be able to extract the subterms at position q on both sides of the equation giving

lnk jq�0�0 = ((rnk�1 jpk�1)�0)jq : (9.18)

A little manipulation yields

ln1�
0�0�0 = ((rnk�1jpk�1)�0)jq : (9.19)

First, notice that since �0 only maps the variables in �y1 to terms containing the variables in

�yk , and variables in �yk to terms containing the variables in �yk�1, a new matching substitution

�00 can be constructed which drops mappings from �yk , changes the mappings from �y1 to be

those from the substitution �0 � �0, and leaves the others unchanged. This new matching �00

with �0 will satisfy the k � 2 equations remaining that don't involve rule nk.

Now, if rnk�1 jpk�1 contains position q, then one can �nd a new position ~pk�1 = pk�1:q where

ln1�
0�00 = (rnk�1 j~pk�1)�0 (9.20)

thus showing that a proper sequence of length k � 1 had a solution.
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If rnk�1 jpk�1 does not contain position q, then one must remove the next rule as well. In

this case, there must have been some variable x 2 �xk�1 such that

ln1�
0�00 = (x�0)jq0 (9.21)

where q0 is the position of some proper subterm.

Now consider the equation

lnk�1�
0�0 = (rnk�2 jpk�2)�0 : (9.22)

There must be a occurrence of the (x�0)j0q at some proper subterm q2 of lnk�1�
0�0. Extracting

that subterm, one arrives at

ln1�
0�00�0 = ((rnk�2jpk�2)�0)jq2 : (9.23)

As before, one can construct a new matching substitution. One is also faced, once again,

with the question of whether q2 is in rnk�2 jpk�2 or not. If not, one continues the process of

removing rules. Eventually, one must either �nd a proper subterm of the right hand side of a

rule which works, or one is left with a single rule which must satisfy the equation

ln1�
0�k = (x0�0)jq00 (9.24)

where x0 2 �xn1 , �
k is the substitution �0 applied k times, and q00 is some non-trivial position.

But this is clearly unsatis�able, since jln1�0j > jx0�0j, and therefore, the process must have

halted at one of the previous rule deletions leaving a proper subsequence.

Corollary 50. A rewrite system R (each rule satis�es the constraint that any variable on the

right-hand side is also on the 1eft-hand side) with a rewrite rule li ! ri where the right-hand

side is equal to a proper subterm of the left-hand side can be shown non-terminating by MSP if

and only if the rewrite system R� fli ! rig can be shown non-terminating by MSP.

Proof. Since the right-hand side matches the left-hand side, one knows that this will hold

true for any instantiation of the rule with any subterm of the left-hand side. By Theorem 49,

if the rule is part of a non-terminating sequence for MSP, it can be removed and there is still
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a non-terminating sequence. Hence, there is a non-terminating sequence for MSP with the

smaller rewrite system.

One particular class of rules which is covered by Corollary 50 are collapsing rules, e.g. hgx! x.

So if a rewrite system has a collapsing rule, it may be removed when testing for non-termination

with MSP. Other simple examples of rules which may be removed are fgx! gx and ga! a.

9.3.3.4 Example

As an example of rule removal, consider the following rewrite system:

fx ! hhfx

hy ! ghy

hhfgz ! fgz :

(9.25)

Substitutions which allow one to show non-termination are

�0 =

8>>>><
>>>>:

x 7! gx0

y 7! hfgy00

z 7! z000

9>>>>=
>>>>;

(9.26)

and

�0 =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

x0 7! z000

y0 7! x000

z0 7! y000

x00 7! z0

y00 7! x0

z00 7! y0

x000 7! z00

y000 7! x00

z000 7! y00

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

(9.27)
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which satisfy the equations

fx�0�0 = fgz000 = fgz�0

hy�0�0 = hhfgx0 = hhfx�0

hhfgz�0�0 = hhfgy00 = hy�0 :

(9.28)

By MSP one knows that there is an non-terminating derivation. Notice that the subterm hy of

ghy is being used for the right hand side of the third equation.

According to Corollary 50, since fgz is identical to a proper subterm of hhfgz, one should

be able to remove the third rule. There must be a subterm of hhfgy00 (from the right-hand

side of the second rule) which is identical to fgz000�0 = fgy00. There is. Unfortunately, it does

not correspond to any position of ghy, but is in the substitution for y.

This leaves us with the new set of equations

fx�0�0�0 = fgy00 = (y�0)j1
hy�0�0 = hhfgx0 = hhfx�0 :

(9.29)

Now one must remove the second rule as well. There must be an occurrence of the term

fx�0�0�0�0 = fgx0 in hy�0�0 = hhfgx0 and therefore, it is a subterm of hhfx�0 as well. This

time, however, the position of fgx0 is in the context of the right-hand side of the �rst rule. This

leaves us with the single equation

fx�0�0�0�0 = fgx0 = fx�0 : (9.30)

The �nal substitutions (ignoring irrelevant mappings) are � = fx 7! gx0g and � = fx0 7! x0g.
So the third rule was successfully removed from the non-terminating derivation. While this is

not the most general substitution which will show non-termination, it does show that a solution

exists.

If one were using MSP to detect non-termination with the rules in rewrite system 9.25,

one could ignore the third rule entirely. For the �rst and second rules the only subterms that

Theorem 49 applies to are the variable subterms x and y. One can not ignore fx for the �rst

rule, for example, because it is not a proper subterm of the left hand side.
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9.4 Using Ground Approximation to Detect Non-Termination

Before giving a test for non-termination using forward closures, another approach is briey

considered. One tempting idea for determining if a rewrite system is non-terminating is to

construct a series of ground rewrite systems, each of which is better approximation to the

original rewrite system.

De�nition 13. Given a rewrite systemR, the ith �nite ground approximation Ri of R is given

by applying to each rule all substitutions mapping to ground terms of height i or less.

For example, given the following rewrite system:

a ! b

f(x; y) ! g(x);
(9.31)

the initial approximation consists of all the ground rules in the rewrite system. In this case:

a ! b : (9.32)

The next approximation is the union of the previous approximation with ground instances

of the rules where the variables are replaced by ground terms of height one. In this case:

a ! b

f(a; a) ! g(a)

f(a; b) ! g(a)

f(b; a) ! g(b)

f(b; b) ! g(b) :

(9.33)
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The next approximation is:

a ! b

f(a; a) ! g(a)

f(a; b) ! g(a)

f(b; a) ! g(b)

f(b; b) ! g(b)

f(a; g(a)) ! g(a)

f(a; g(b)) ! g(a)

f(a; f(a; a)) ! g(a)

f(g(a); f(a; a)) ! g(g(a))
...

(9.34)

Huet and Lankford showed that termination is decidable for ground rewrite systems [HL78].

More recently, it has been shown that this problem has a polynomial time algorithm [GNP+93].

Alternately, to show decidability, one can employ forward closures [Der81]. Each of the forward

closures must start from the left-hand side of one of the rules. Consider the forward closures

resulting from some left-hand side li. If that left-hand side is ever replicated, the rewrite system

is non-terminating. As a derivation step is taken, label the position of the redex with the rule

applied. Any labels below the position of the redex are erased. If a redex is ever found for a rule

which is below a position with a label for that rule, then the rewrite system is non-terminating.

Such a labeling can not be continued forever, however, so the rewrite system either terminates

or an instance of non-termination is discovered. As a consequence, the termination properties of

each of the �nite approximations is decidable. Unfortunately, as the following example shows,

there are non-terminating rewrite systems for which all �nite approximations terminate.

f(x) ! f(g(x)) : (9.35)

The �rst approximation is empty. The second approximation is

f(a) ! f(g(a)) : (9.36)
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Notice that this terminates. The next approximation is given by:

f(a) ! f(g(a))

f(f(a)) ! f(g(f(a))

f(f(a)) ! f(g(g(a)) :

(9.37)

Once again, this terminates. If a term is viewed as a string of symbols, it must be some f 's or

g's with a single a on the right. The second and third rules can only be applied at the end of

a term and in both cases do not leave something which can be rewritten again by those rules.

Only the �rst rule could be applied, but it also can only be applied once.

Notice that for this rewrite system the in�nite derivations are all instances of:

f(x)! f(g(x))! f(g(g(x))) : : : (9.38)

In every step of the in�nite derivation, the rule is applied at the top of the term and the

term grows in height by one after each rewrite step. Therefore, the in�nite derivation requires

arbitrarily large ground instances on the right hand sides of the rules. Hence, any �nite ap-

proximation will terminate.

But not all non-terminating rewrite systems pose this di�culty. In fact, if the rewrite system

has a cycle, then some �nite approximation will uncover a non-terminating derivation.

Theorem 51. If R is a rewrite system which cycles, then for some n, the �nite ground ap-

proximations Ri with i greater than n are non-terminating.

Proof. Consider a cycle of R with m terms t1, t2, : : : , tm. If t1 has variables, then construct

an arbitrary ground substitution �g. Application of the substitution to the terms in the cycle

does not prevent application of the rules. Consider each of the terms in the ground cycle

t1�g, t2�g, : : :, tm�g. One of them must be of some maximum height given by n. Now since

each of the terms is of height less than or equal to n, each of the redexes must be in the nth

approximation to R.

The above suggests a hierarchy of non-termination.

1. There is a non-terminating derivation with a cycle.
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2. There is a non-terminating derivation which replicates a ground term.

3. There is a non-terminating derivation which replicates a term with variables.

4. There is a non-terminating derivation which has a homeomorphic embedding.

Finite approximations are su�cient for the �rst two categories only. Unfortunately, the method

of detecting non-termination with forward closures given in the next section does not �t neatly

into this hierarchy. There are rewrite systems with cycles it will not work with, but it will work

for System 9.35.

9.5 Using Forward Closures to Detect Non-termination

In this section, the use of forward closures to detect non-terminating rewrite sequences is ex-

amined.

De�nition 14. [Forward Closure Test (FCT)] A rewrite system is non-terminating if

1. the initial term of a forward closure matches a subterm of the last term in a forward

closure,

2. there is a rule which has a variable on the right-hand side which is not on the left-hand

side, or

3. there is a rule of the form x! x.

The proof that this �nds a non-terminating derivation is trivial.

9.5.1 Comparison to Purdom

There are de�nite similarities between Purdom's method and using forward closures. Notice

that by Lemma 49, in MSP one can not choose the subterm of the right-hand side of a rule

to be just a variable. As a consequence, MSP will only apply rules in context created by a

previous rule application (as is the case for forward closures). The di�erence, however, is that

MSP requires the rule to be applied in the context created by just the previous rule, whereas

forward closures can use context created by any previous rule.
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Theorem 52. FCT can show non-termination of any rewrite system R for which MSP can

show non-termination.

Proof. If there is a rule with a variable on the right-hand side which isn't on the left-hand

side, then FCT will �nd it. Therefore, one only needs to consider rewrite systems where none of

the rules have a variable on the right-hand side that isn't on the left. Given a sequence of such

rules for which MSP can show non-termination, by Theorem 49 one can �nd a subsequence (of

some length k) which also show non-termination which does not use any variable subterms on

the right-hand sides (the trivial case of non-termination from the rule x! x is found by explicit

checking of FCT and can be ignored). There will be some forward closure which corresponds

to the subsequence of the rules. One �nal application of the �rst rule in the sequence gives one

a forward closure of length k + 2 where the initial term is replicated in the k + 1 term. Since

the k� 1 remaining rules in the sequence can be applied without changing the initial term, the

resulting �nal term will have a subterm which the initial term matches and the FCT detects a

non-terminating derivation.

9.5.2 Advantages of Using Forward Closures

One advantage of using forward closures is that with partial information one can get some

information about the innermost termination properties of the rewrite system.

Lemma 53. If all of the forward closures of a rewrite system R whose initial terms are of size

less than or equal to k terminate, then a term t of size less than or equal to k whose proper

subterms are in normal form is innermost terminating.

Proof. Suppose, on the contrary, that there is an in�nite innermost derivation from some

such t. Since the subterms are in normal formal form, the �rst rule must be applied at the top

and subsequent rules must be applied in the created context. Therefore, the in�nite innermost

derivation must be an instance of a forward closure, but all forward closures of that size termi-

nate, hence the term must be terminating too.

Typically, however the set of forward closures of a rewrite system is in�nite. As a conse-

quence, one can only check a �nite number of the forward closures, and innermost termination

of the rewrite system can only rarely be guaranteed.
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When doing partial completion with FCT, one wants to be able to use the rewrite system

while attempting to join critical pairs. Avoiding non-termination is not a problem in regular

completion since the set of rules is always terminating. But in partial completion this is no

longer guaranteed. But notice that as one generates forward closures, the size of the initial

term never decreases. This means that the forward closures can be enumerated in increasing

size and partial information about the innermost termination properties of the rewrite system

can be extracted. In particular, knowing that the system is innermost terminating for terms

(whose subterms are in normal form) up to a given size can relieve one of the need to guard

against non-termination in some cases.

In addition, if one �nds a �nal rewrite system, one can use the results from the forward

closures to safely compute for terms of limited size.

The following counter-example shows that one can not conclude that all terms less than a

given size k are innermost terminating even if the forward closures starting from terms of size

less than k terminate. Consider the rewrite system:

hx ! qx

qfx ! hrx

rfx ! fgx

ga ! fa

b ! ffa :

(9.39)

It has the innermost derivation hb! hffa ! qffa ! hrfa ! hfga! hffa ! : : :, which is

non-terminating. Yet all of the forward closures from terms of size two or less terminate. It is

not until initial terms of size four are encountered, that a non-terminating forward closure is

generated. (Since system 9.39 is right-linear, forward closures are guaranteed to be terminating

if and only if the rewrite system is terminating by Proposition 36.)

9.5.3 Heuristic Value

When one extends a forward closure, one of three cases can arise.

1. The initial term of the forward closure remains the same (up to a renaming of the vari-

ables).
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2. The initial term of the forward closure remains the same except that one or more di�erent

variables are renamed to the same variable.

3. The initial term of the forward closure is extended in size.

Given the following rewrite system:

f(x; y) ! g(x; y)

g(x; y) ! a

g(x; x) ! b

g(a; y) ! c :

(9.40)

The forward closure f(x; y)! g(x; y) can be extended in each of the three di�erent ways.

1. With the rule g(x; y)! a, one gets the new forward closure f(x; y)! g(x; y)! a.

2. With the rule g(x; x)! b, one gets the new forward closure f(x; x)! g(x; x)! b.

3. With the rule g(a; y)! c, one gets the new forward closure f(a; y)! g(a; y)! c.

In particular, if the right hand side of a forward closure leads to non-termination, there

must be extensions of the �rst and second kinds only (each of the uni�cations is also a match).

In addition, there can only be a �nite number of applications of the second kind.

The approaches (heuristics) given by Plaisted and Purdom are all or nothing. Either the

set of rules passes the test or it doesn't. The forward closures method (FCT) o�ers a potential

way to grade di�erent sets of rule orientations by comparing of the length of forward closures

with the size of the initial starting term. In general, rewrite systems with shorter derivations

would be preferred. For example, a rewrite system whose derivations were linear with respect

to the size of a term would be preferred to one which was quadratic.

9.5.4 Computational Issues

One potential problem with computing the forward closures of a rewrite system is that it can

be computationally intensive. It is not di�cult to create rewrite systems that will generate an

exponential number of forward closures with respect to the derivation length. For example,

93



consider the following rewrite system:

fa ! h(fa; fa) (9.41)

Its forward closures of length i all end in binary trees with spines consisting of h's along

with i+ 1 a's as leaves. It is well known that the number of such trees, Ti, is

Ti =
1

i+ 1

0
B@ 2i

i

1
CA =

4ip
�i3

(1 +O(1=i))

which is clearly exponential. This just represents a lower bound on the number of forward

closures. Each of the two following derivations is a forward closure of length three:

fa ! h(fa; fa) ! h(h(fa; fa); fa)) ! h(h(fa; fa); h(fa; fa))

fa ! h(fa; fa) ! h(fa; h(fa; fa)) ! h(h(fa; fa); h(fa; fa))

But, they both end in the same term.

Analyzing the above system, one �nds that the total number of derivations is given by the

recurrence relation

Di = iDi�1

with initial condition D1 = 1, which has the

Di = i! =
p
2�n

�
n

e

�n �
1 +O

�
1

n

��
:

Clearly, if one is not careful about discarding alternate derivations which end in the same term,

one can do worse than exponential.

Let's make a very rough estimate of the number of derivations. Suppose that there is a

rule li ! ri, and that there are L di�erent pairs of positions p and rules lj ! rj such that lijp
uni�es with lj . Each of these represents, more or less, the loss of a position at which a uni�er

can be found that will extend the forward closure. Similarly, one can compute R for the right

hand side of rule i, which represents a gain in positions. If � is the average di�erence in R�L

for all the rules, one might expect that the number of derivations of length i is approximately

N�ii!, where N is the number of rules in the rewrite system.
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Notice that this rough analysis did not take into account the possibility that the number of

ways in which a forward closure can be extended

1. increases due to replication of a subterm because of repeated variables on the right-hand

side of a rule,

2. increases due to the substitution increasing the size of the forward closure because of

repeated variables on the left-hand side of a rule (or the last term of the forward closure),

or

3. decreases due to the fact that the application of the rule at a position p a�ects a possible

extension of the forward closure at a position above p.

9.6 Summary

The application of forward closures provides a method for detecting non-termination of rewrite

systems. In comparison with Purdom's method it does not require the use of semi-uni�cation,

while being strictly more powerful in the sense that it will detect non-termination in all cases

that Purdom's method will. Another advantage is the ability to extract partial information

about the termination properties of terms of limited size. A disadvantage is the need to keep a

potentially large set of terms representing forward closures of the rewrite system. It would be

expected that any implementation of forward closures must have a means of avoiding multiple

(forward closures) derivations ending in the same term.

95



10 RESTRICTING REWRITING TO INNERMOST

DERIVATIONS

Theorem 38 guarantees that the termination of (innermost) forward closures, is su�cient to

guarantee innermost termination of a rewrite system. This can be exploited in a number of cases.

For example, many programming languages are applicative, and hence innermost derivations

may be all that one is interested in when proving termination.

Another advantage is seen for showing the termination of modular rewrite systems. Toyama,

Klop and Barendregt [TKB89] showed that termination is a modular property of left-linear

conuent terminating rewrite systems. Unfortunately, conuence and termination alone are not

su�cient to show termination of the combined system. But innermost termination is modular.

(Innermost rewriting can be used to show that weak normalization is modular. See [Mid90] for

more information on this and other modularity topics.)

A �nal advantage is that restricting completion to innermost derivations severely limits the

number of critical pairs which need to be considered.

10.1 Modularity

Using forward closures, it is easy to show the modularity of innermost termination and even

extend it to rewrite systems with shared constructor symbols. For a di�erent proof of this see

Gramlich [Gra93].

Theorem 54. If R1 and R2 are rewrite systems which only share constructors and are inner-

most terminating, then their union is also innermost terminating

Proof. Since both R1 and R2 are innermost terminating their innermost forward closures are

also innermost terminating. But since one may only extend a forward closure by rewriting in

produced context, none of the rules in R1 can extend a forward closure from R2 and vice-versa.

Hence, the set of innermost forward closures for the combined rewrite system is just the union

of the innermost forward closures of the individual systems, and must also be terminating.
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For example, consider the following rewrite system:

f(0; 1; x) ! f(x; x; x)

h ! 0

h ! 1 :

(10.1)

It can be decomposed into the sum of two rewrite systems, one consisting of the �rst rule, and

the other of the remaining two rules. Each of those systems is terminating, and therefore, the

combined systemmust be innermost terminating. If one actually computes the forward closures

for the combined system, the only forward closures are the rules themselves!

10.2 Critical Pairs and Local Conuence

When computing critical pairs, only overlaps at the top position need to be considered [Pla93b].

Overlaps at proper subterms need not be considered since one of the redexes will be below the

other, and hence only one rule can be applied. Disjoint innermost rule applications can be

applied independently in any order and local conuence holds. (For outermost derivations,

however, disjoint outermost rule applications may not be applicable in any order, since the

application of one rule can create a new outermost redex.)

For example, consider the following rewrite systems:

f(a) ! f(a)

a ! b ;
(10.2)

and

f(a) ! f(c)

a ! b :
(10.3)

Both of these rewrite systems have no overlaps at the top and must be innermost locally-

conuent. To show innermost termination, one can examine the innermost forward closures.

For both rewrite systems, the only innermost forward closure is a! b. Since this is terminating,

the two systems must be innermost terminating as well. Innermost conuence then follows from

Newman's lemma [New42].

97



10.3 Innermost Conuence without Termination

One reason that orthogonal rewrite systems are studied in depth is that they are conuent

(regardless of whether they terminate or not.) This, in turn, guarantees that they have the

unique normal form property and thus compute partial functions. In addition, if a term has a

normal form, an outermost strategy for rewriting will derive the normal form.

A similar situation exists when restricted to innermost derivations.

Lemma 55. A rewrite system with no overlaps at the top is conuent for innermost deriva-

tions.

Proof. The only possible critical pairs arise from disjoint innermost redexes. These critical

pairs are all strongly locally conuent (are joinable in a single step), and hence innermost

rewriting is conuent.

So for rewrite systems with no overlaps at the top, innermost rewriting has unique normal forms.

Of course, innermost rewriting will �nd that normal form. Note, that the rewrite system may

have other normal forms if non-innermost derivations are considered, e.g. System 10.3.

10.4 Implementing Innermost Forward Closures

For a rewrite system with top overlaps, one would want to complete it and show innermost

termination. Innermost forward closures provide a method for showing innermost termination.

Unfortunately, as the following example shows, forward closures may not terminate when the

rewrite system is innermost terminating.

f(a; x) ! g(x; x)

g(a; b(y)) ! f(a; b(y))

b(a) ! a :

(10.4)

The forward closures for the above include

g(a; b(y)) ! f(a; b(y)) ! g(b(y); b(y))

g(a; b(a)) ! f(a; b(a)) ! f(a; a)

g(a; b(a)) ! f(a; b(a)) ! g(b(a); b(a)) :

(10.5)
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The third of these leads to an in�nite forward closure, but when restricted to innermost deriva-

tions, both the second and third are disallowed. None of the other forward closures lead to

non-termination; and the above rewrite system is innermost terminating. (It is also an example

in which shared rewriting terminates.)

Thus, if one wants to show innermost termination, restricting forward closures to innermost

derivations may be necessary.

10.4.1 Extending Innermost Forward Closures

One needs to know how to extend innermost forward closures. In particular, can an innermost

forward closure ever arise from a forward closure which isn't innermost? Additionally, are there

syntactic conditions which allow us to extend innermost forward closures without checking to

make sure that previous derivations steps remain innermost?

While outermost forward closures have a more limited range of applicability, they will be

considered as well for completeness.

Theorem 56. If s! � � � ! t is a forward closure of a rewrite system, but is not an innermost

(outermost) forward closure then any extension s� ! � � � ! t� ! u is also not innermost

(outermost).

Proof. Consider the rewrite step which is not innermost (outermost). There must be a second

redex below (above) which is innermost (outermost). Since extension of the forward closure

can only substitute terms for variables uniformly, the viability of the second redex can not be

a�ected.

Thus one only needs to consider innermost (outermost) forward closures as candidates for

extension when generating innermost (outermost) forward closures. Unfortunately, as the fol-

lowing rewrite system shows, the extension of an innermost forward closure need not be inner-

most, even if the rule application is innermost.

qx ! fgx

fx ! hx

g(a) ! b

(10.6)
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As one can see, this rewrite system is overlaying, non-overlapping, left-linear, right-linear,

non-erasing, and has unary function symbols. This virtually exhausts the standard syntactic

categories for rewrite systems. It has the innermost forward closure qx ! fgx ! hgx. Its

extension qa! fga! hga! hb is not innermost because of the redex ga in the second term.

On the other hand, for outermost forward closures the situation is not quite as bad.

Theorem 57. If s! � � � ! t is an outermost forward closure of an overlaying rewrite system

with unary function symbols, then any extension s� ! � � � ! t� ! u is also outermost provided

that t� ! u is an outermost rewrite.

Proof. Suppose there is some rewrite step that is outermost in the original forward closure, but

is no longer outermost after the extension. Its context must be included in the new outermost

redex as a proper subterm. But this contradicts the assumption that the rewrite system is

overlaying.

In particular, string rewriting systems are unary, and non-erasing. By Proposition 45 non-

overlapping string rewrite systems are terminating if their outermost forward closures are ter-

minating. By the previous theorem, such systems have the desirable characteristic that when

one is computing outermost forward closures, only the last term in the forward closures need

to be remembered. An example of this is given in Section 8.7.

10.5 Computing Innermost Forward Closures

To compute innermost forward closures, one needs to check that when a forward closure is ex-

tended, each of the previous innermost rule applications remains innermost. This back checking

can potentially lead to a lot of extra work. In general, one wants to avoid as much of the extra

work as possible.

When extending an innermost forward closure t0(�x) : : :! : : : tn(�x) via the substitution �,

the following check must be made:

� If rule l! r is applied at position p of ti(�x), then no rule can match ti(�x)� at a position

below p.

The following is an algorithm for extending the innermost forward closure t0(�x) ! : : : !
: : : tn(�x), by a set of rules lj ! rj :
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1. For each subterm v of tn(�x) starting at the bottom, check to see if lj uni�es with v

resulting in the substitution �. (One must rename the variables in lj �rst.)

(a) If some subterm of v� matches a rule, discard �.

(b) If � is a match, do not check above v for extensions.

2. Check each of the previous terms ti to see if a redex has been added below the rule

application for ti�. If so, discard �.

3. Extend the forward closure to t0� ! : : :! tn[v]�! tn[r]�.

Notice that the uni�cations done before previous extensions of the forward closure are at

positions that one needs to check for a match. So there are two things one wants to be able

to do. First, one wants to be able to determine if a uni�er is a match. Second, one wants to

use the work done in previous uni�cations to check for matches. Both requirements can be

met easily with a slight modi�cation (denoted as r-uni�cation for restricted uni�cation) of the

standard uni�cation algorithm which employs a conditional rewrite system [MMR86].

De�nition 15. When r-unifying a term v(x̂) with the left-hand side of a rule l(ŷ), do not add

a variable in x̂ to the substitution if there is any other uni�cation rule applicable.

A restricted uni�cation is a match for l(ŷ) if there is a substitution for each variable in ŷ and

nothing else.

Lemma 58. If � is a uni�er of a term v(x̂) with the left-hand side of a rule l(ŷ) and � is

a substitution applied to v(x̂), then l(ŷ) matches v(x̂)� if E(�0)� r-uni�es to a match for the

remaining variables of ŷ in �0, where �0 contains the substitutions from � for variables in x̂, and

E(�) is the set of equations obtained by converting all of the substitutions in � into equations.

Proof. When r-unifying v(x̂)� with l(ŷ) the same rule applications can be used to produce

the substitutions for the variables in ŷ as before. But if one considers these substitutions as

equations, they can never lead to a failure of restricted uni�cation due to the substitution �.

There are only two ways that restricted uni�cation can fail;

1. There is an occur check. But for each substitution yi 7! t there must be only one

occurrence of yi (otherwise it wouldn't have been part of the substitution). Since � will

not use yi, there can be no occur check for yi = t.
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2. There is a mismatch of function symbols f(: : :) = g(: : :). But since no substitution for yi

will be made in yi = t, this can not happen either.

Therefore, there is a match if �0 with the substitution � applied to it r-uni�es to a substitution

for the variables of ŷ remaining in �0.

For example, consider the following rewrite system:

q(x) ! r(f(h(x); a))

h(a) ! c

r(x) ! b

f(x; y) ! h(x) :

(10.7)

The derivation q(x) ! r(f(h(x); a)) is an innermost forward closure. To extend this, one

would r-unify �rst with the terms h(x) and a. h(x) r-uni�es with the second rule giving the

restricted uni�er �1 = fx 7! ag. This can then be used to extend the forward closure. Notice

that �1 is not a match, so one would also attempt to r-unify with f(h(x); a). This r-uni�es

with the last rule giving �2 = fx2 7! h(x); y2 7! ag, where x2 and y2 are the renamed versions

of the variables in the rule. Since this is a match, no extensions can result from uni�cations

above this term.

The uni�er �2 gives the extension q(x)! r(f(h(x); a))! r(h(x)). To extend this forward

closure, one would �rst r-unify with h(x). This gives the restricted uni�er �3 = fx 7! ag. To
check that this is a valid extension, one computes the substitution E(�1) = fx = ag. Applying
�3 to this results in fa = ag. This r-uni�es to the empty substitution. Therefore, by Lemma

58, one has a match and �3 does not result in a valid extension.

10.6 Modifying Completion for Innermost Derivations

The completion process needs to be modi�ed a little to handle innermost derivations. First, of

course, only critical pairs at the top of rules need to be calculated.

Another change is illustrated by the following rewrite system:

hfx ! ghfx

fx ! a :
(10.8)
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The �rst rule in the rewrite system can never be an innermost redex since the second rule

matches a subterm. Therefore, the �rst rule should be discarded.

A more serious change is illustrated by the rewrite system:

f(ha; ga) ! b

q ! ha

q ! ga :

(10.9)

The only critical pair is ha = ga. No matter which direction one orients the equation, the

�rst rule will be a�ected. In the original rewrite system there was an innermost derivation

f(ha; ga)! b, but in the extended rewrite system with the rule ha! ga added, the derivation

is no longer innermost. One must rewrite the left-hand side of the �rst rule to preserve the

derivation, resulting in the new rewrite system:

f(ga; ga) ! b

q ! ha

q ! ga

ha ! ga :

(10.10)

A slightly more complicated example is the rewrite system:

fgx ! hx

c ! ga

c ! a :

(10.11)

The only critical pair is ga = a, which must be oriented as ga ! a to ensure termination. In

the original system there was an innermost derivation fga! ha, so to preserve this derivation
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one must add the rule fa! ha, giving:

fgx ! hx

fa ! ha

ga ! a

c ! ga

c ! a :

(10.12)

Notice that the rewrite rule fgx ! hx needs to be kept to maintain the innermost derivation

fgb ! hb. The original innermost derivation fga ! ha, is now fga ! fa ! ha, and is

completely handled by the new rewrite rules without any interference from the original rule.

Given a set of rewrite rules fli ! rig, the steps to be followed in innermost completion are:

1. Discard any rule li ! ri, if there is some other rule lj ! rj which matches a proper

subterm of li.

2. Compute all of the critical pairs for overlaps at the tops of rules.

3. Repeat the following until there are no critical pairs:

(a) Choose a critical pair.

(b) Orient the critical pair to a rewrite rule lk ! rk.

(c) Revise the rewrite system with the new rule.

To revise a rewrite system with a new rule lk ! rk do the following:

1. Check to see if lk uni�es with a non-variable subterm s of the left-hand side of each rule

li = t[s]. The uni�er is �.

2. If so construct a new rule, n ! ri�, where li� has an innermost derivation of n in the

original rewrite system with the new rule added.

3. If uni�er � corresponded to a match, remove the rule li ! ri.

4. Revise the new rewrite system with each of the constructed rules n! ri�.
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Consider the following rewrite system:

tx ! gx

tx ! fx

fa ! gb

gb ! ga

ga ! fb :

(10.13)

It demonstrates that it is not always possible to construct an innermost complete system for

a rewrite system which preserves the original innermost derivations. It has the critical pair

gx = fx. Orienting this equation in either direction will lead to non-termination. E�ectively,

this is like �xing an ordering in the original Knuth-Bendix completion, since one is preserving

innermost derivations of a given rewrite system. Of course, if one does not care if the original

innermost derivations of a rewrite system are preserved, then just use the standard Knuth-

Bendix completion to �nd a canonical rewrite system. Since that system is terminating, it is

innermost terminating as well.
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11 SUMMARY AND FUTURE WORK

The general path ordering is a powerful general purpose tool for demonstrating termination of

rewrite systems. It can be applied in situations in which the more familiar simpli�cation order-

ings cannot, as when the rewrite system is self-embedding. It encompasses virtually all popular

methods, including polynomial (and other) interpretations, the Knuth-Bendix ordering and its

extensions, and the recursive path orderings and its variants. Geser [Ges94] has suggested a

weakening of the subterm conditions, thereby strengthening the general path ordering.

Two versions of the general path ordering were presented in this thesis. One requires that

the component orderings be well-founded quasi-orderings. It was shown that this de�nition

has the advantage that it satis�es an incrementality property (it is stable under extensions

of its component orderings). The other ordering uses well-quasi orderings for the component

orderings. This version does not require that all the subterms of a term be examined by the

lexicographical portion of the ordering. Unfortunately it is not incremental.

One question left to be answered is whether the well-founded general path ordering requires

the addition of the subterm condition as detailed in Section 7.4 for Theorem 20 to be valid.

Several examples, including 6.1, were mechanically veri�ed by the general path ordering

termination code (Gpotc). The implementation supports termination functions for prece-

dence, term extraction (given and maximum), and homomorphisms. Interpretations involving

addition, multiplication, negation, and exponentiation are expressible. Currently, the burden

of proving that functions are either value-preserving or monotonic is placed on the user. As

is usual for such functions, one often ends up needing to know if a given function is positive

over some range. When the functions are rational polynomials, this is decidable, but time

consuming. The code does not attempt a full solution, but merely applies some quick and dirty

heuristics, such as testing the function at endpoints and checking coe�cients of polynomials. In

cases where the code cannot make a determination, it will query the user for an authoritative

answer. The part of the code that does this testing could be upgraded to provide heuristics

such as those described in Lankford [Lan79], Ben Cherifa and Lescanne [CL87], or Steinbach

and Zehnter [SZ90].

106



Forward closures provide a more specialized method for showing termination, applicable to

locally-conuent overlaying or right-linear systems. Special cases of interest are orthogonal and

string rewrite systems which are terminating whenever their forward closures are. In addition,

when the rewrite system is non-erasing (as for string systems) the set of forward closures can

be restricted to just the innermost forward closures, easing proof of termination. Furthermore,

if the system is non-overlapping, any rewrite strategy will su�ce to restrict the set of forward

closures. One important result of this work was the demonstration of the connection between

forward closures and the termination of the innermost derivations of a rewrite system. If one

can �nd some condition such that innermost termination of a rewrite systems implies general

termination, then the termination of forward closures implies general termination of the rewrite

system.

An interesting question is whether there are analogous theorems that can be shown for

rewrite systems with the addition of an equational theory, such as Associativity and/or Com-

mutativity. In the presence of such an equational theory, the notion of an innermost derivation

is no longer a simple matter. In addition, if an analog to forward closures is found, there are

serious implementation issues to consider. For example, AC-uni�cation is very time consuming

and while it is guaranteed to produce a �nite set of uni�ers, in general, the number of such

uni�ers can be exponential in the number of variables. One technique for dealing with AC is to

delay solving for the uni�er and keep a set of constraints. But standard forward closures will

unify rules with the non-variable parts of a term, which may have been produced as part of the

uni�cation, so one probably can not completely delay the uni�cation.

Both of the methods for showing termination presented in this thesis can often lead to

more natural proofs, using arguments similar to those used for recursive de�nitions. Often

with forward closures, some property of the derivations (for example, all forward closures have

exactly one occurrence of a given function symbol) allows one to use a simpler argument to

complete the proof of termination.

Also presented in this thesis was an application of forward closures for detecting non-

termination of a rewrite system. A previous method MSP due to Purdom was analyzed and

certain restrictions on the ability of MSP to detect non-terminating derivations were presented.

The main result showed that certain subterms of the right-hand sides of rules could not con-

tribute to a non-terminating sequence. An important instance of this showed that any vari-
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able subterm does not contribute. Using this result, one can show that any non-terminating

derivation that MSP detects will also be found by the test using forward closures. Similarly,

one can show that there are non-terminating rewrite systems MSP will not discover a non-

terminating derivation, but the forward closures does. A simple example is the rewrite system

fffx! fgfx; gx! xg. The second rule can not be used an any derivation for MSP and

since the �rst rule by itself is terminating, MSP will not �nd a non-terminating derivation.

On the other hand, the almost trivial forward closure ffx ! fgfx ! ffx demonstrates

non-termination for this rewrite system.

It is also shown in the thesis that the forward closures method (FCT) has other advantages as

well in the context of completion. In particular, the forward closures can give some information

about the innermost termination properties of terms of limited height where the subterms are

all in normal form. This potentially allows one to not check for termination when computing

the joinability of critical pairs during completion.

Innermost and outermost forward closures are also useful, but require some thought to

implement correctly. It is shown that an extension of an innermost/outermost forward closure

may not itself be an innermost/outermost derivation. A method is presented for avoiding extra

work in checking back along a forward closure for such violations. In general, the number of

forward closures may be exponential in the length of the derivation, potentially limiting the

length of derivations that one could check automatically. One can avoid some of the problems

by discarding forward closures that duplicate the last term in the derivation. Even that checking

can be costly and methods for reducing it should be considered.

Finally, some results are presented which show the usefulness of forward closures when you

restrict your rewrite system to innermost derivations only. In particular, generating a rewrite

system that is innermost locally conuent and preserves innermost derivations is examined

and a method similar to completion is presented. If the rewrite system is innermost termi-

nating then it will be innermost conuent as well. Forward closures are a natural method for

showing innermost termination. This has potential application for use with most programming

languages, since innermost computation strategies are common.
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A DESCRIPTION OF GPO CODE

There is code available which implements parts of the well-quasi general path ordering described

in this thesis. The most recent version can be obtained by e-mailing a request the author. The

following gives a brief description of the functions available in the interface.

The code was developed in Macintosh Common Lisp and just uses functions/special forms

as described in Steele [Ste90]. The code uses packages for modularity and information hiding.

A.1 General Description of the System for GPO

Before running the general path ordering, you will need to adjust the path names for the �les

in the �le Start.Lisp. Once this has been done, the system can be started by loading the �le

Start.Lisp. It will load the source �les in an appropriate order. Once this is done, the user

should de�ne a set of rules and an ordering. The system is then ready.

(init-genord) sets the value of all global variables to their default values. (Start.Lisp

invokes this function automatically.) This version of the general path ordering uses the Well-

Quasi de�nition. You must guarantee that all of the component orderings used are well-quasi

orderings.

(print-rule rule stream) prints a single rule in a readable format.

(print-list-of-rules rules stream) prints a list of rules using (print-rule).

(term-cond productions comp) applies the ordering comp to each of the rules in the list

productions. The result is a list of values, one for each rule, indicating whether the right-hand

side was greater than the left-hand side. If all the results are GR and the components are

acceptable, the rewriting system terminates.

(back-cond productions comp) similar to the previous, but the left-hand side is compared

to the right-hand side, e�ectively examining a system in which all the rules are reversed.

(toggle-show-causes) switches the global variable *genord-show-partial-results* be-

tween t and nil. This variable controls whether the results to each call of the general ordering

and the lexical component are displayed.
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A.2 De�ning a Rule

Each rule is stored in a production struct which has two components; a left hand side (lhs)

and a right hand side (rhs). These are constructed from constant symbols, function symbols

and variables. A constant symbol is indicated to the system with a !. A function is constructed

using parenthesis and uses pre�x notation. The function symbol itself is indicated with a !. A

variable is indicated with a ?.

Function and constant symbols can be nearly any string of contiguous non-space characters.

The only caveat is that upper and lower case are indistinguishable. !ConsT and !cONSt are the

same symbol. The same criteria applies to variables.

To make a production the built-in structure construction should be used. For example the

rule

f(a; h(x))! 0 (A.1)

would be created by

(make-production :lhs '(!f !a (!h ?X)) :rhs '!0).

A.3 De�ning an Ordering

An ordering function accepts two terms as arguments and returns one of three values: GR, EQ,

or UN. GR indicates that the �rst argument was greater in the ordering than the second. EQ

indicates that the two argument were equal. UN indicates that either the �rst argument was

less than the second or that the two arguments were incomparable.

(makeorder name complist) is a macro which creates an ordering function with the given

name using the list of component orderings. A component ordering is a function from terms to

elements of a well-founded set. The components are evaluated lexicographically from �rst to

last in the list.

A.3.1 Precedence Component

(make_prec_comp q-ordering) is a macro which creates a precedence ordering on symbols.

q-ordering is a list of symbols with the highest precedence �rst. A sublist is used to make two

or more symbols with equal precedence. The following makes an ordering with + > g = h > �.

110



(make_prec_comp '(!+ (!g !h) !*) )

A.3.2 Subterm Extraction Component

(make_subterm_comp num-of-term gen) is a macro which creates a component to extract a

given subterm. Terms are numbered from 1 going left to right. gen is an ordering to be applied

to the extracted subterms. It is intended that this be a recursive call to the ordering that this

component is being used in. For other orderings termination is not guaranteed and the user is

responsible for verifying that the appropriate conditions are met. An example which �rst uses

the precedence ordering given above then extracts leftmost subterms (on g and h) is:

(makeorder AnOrder (list

(make_prec_comp '(!+ (!g !h) !*) )

(make_subterm_comp 1 AnOrder)))

A.3.3 Maximum Subterm Extraction Component

(make_maxsubterm_comp gen) is a macro which creates a comp to extract the maximum sub-

term using the ordering gen. It is intended that this be a recursive call to the ordering that this

component is being used in. For other orderings termination is not guaranteed and the user

is responsible for verifying that the appropriate conditions are met. Since this just extracts a

single term, the user should verify that the general path ordering is total �rst.

A.3.4 Homomorphism Components

Homomorphism and monotonic functions are supported with a single macro. The functions

which are supported are constants, addition, multiplication, exponentiation and evaluation of

subterms. The user is responsible for verifying that the particular function he de�nes meets

conditions for termination.

(make_function_comp FNdefs) is a macro which creates a component to evaluates sub-

terms using the de�nitions in the list FNdefs. Each de�nition is a pair associating a symbol of

the rewriting system with a function.

� constant: any value such as -1, 0, 2, etc.
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� addition: (+ ...)

� multiplication: (* ...)

� exponentiation: (^ base exponent)

� subterm: (arg number)

For example, the following associates f [X; Y ] with the function X � Y + 2, g[X ] with the

function 2X , and c[] with the constant function 1.

(make_function_comp (

(!f (+ (* (arg 1) (arg 2)) 2))

(!g (^ 2 (arg 1)))

(!c 1)))

When the macro is evaluated the user is queried for the minimum value which a term can

attain. In the previous example this is 1, the value of the constant c.

A.3.5 Determining Positiveness

In evaluating function components, the question of whether a particular term is positive arises.

In particular, the question is \Is the term strictly greater than zero when evaluated for all values

of the variables greater than the minimum?"

There are a number of heuristics incorporated in the system for determining if a polynomial

is positive. Since, few of the heuristics apply to exponentiation, one should only use it if it is

required. For example, use (* (arg 1) (arg 1)) instead of (^ (arg 1) 2). In those cases,

where the system is unable to make a determination, the user is prompted for a response. The

allowed responses are P for strictly positive over the domain of interest, Z for identically zero

over the domain, and N for negative or zero at some point in the domain.

The system stores away such determinations for future use. All determinations are added to

the list held by the variable *genord-all-positiveness-results* while only those supplied

by the user are added to *genord-user-provided-positiveness-results*. Since cons is

used to add to the list, items will be in reverse order with respect to when they were encountered

by the system.
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(init-positiveness-checking) resets the global variables containing the positiveness re-

sults to nil.

(show-user-positiveness-results) displays all of the terms for which the user was

queried along with response the user gave.

(show-all-positiveness-results) displays all of the terms for which a determination

was made. The result which was obtained is given along with a reason.

A.4 Examples Files

The example �les are all in the subdirectory Examples. There are a number of functions which

are de�ned in the example �les for your convenience in running them.

(load-example aFile &optional quiet) attempts to load the �le in the sources directory

with the name ".example" appended on the string given by aFile. Normally, the rules and

the ordering will be displayed with (show-rules) and (show-order) as the �le is loaded. If

the optional argument quiet is t this will be suppressed.

If there is a homomorphismcomponent de�ned in the �le, you will be queried for a minimum

value at this point.

(go-forward) Is rede�ned for each of the examples to invoke the function (term-cond

productions comp)with the set of productions and comparison ordering de�ned in the example

�le.

(go-backward) Is rede�ned for each of the examples to invoke the function (back-cond

productions comp) with the set of productions (rules) and comparison ordering de�ned in the

example �le.

(show-rules) will print the productions de�ned in the example �le with a brief descrip-

tion/comment.

(show-order) will print a pretty printed version of the code de�ning the ordering used for

the example.
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B USING GPOTC TO SHOW TERMINATION OF

INSERTION SORT

The following is a Lisp Session in which the insertion sort example given in 6.1 is mechanically

examined with the well-quasi general path ordering code.

? (load "Internal Mirror:Lisp Files:GPO:Start-GenOrd.lisp")

Loading files for general path ordering

Initialization for General Ordering Termination Code complete

For information and help open the file README

#P"Internal Mirror:Lisp Files:GPO:Start-GenOrd.lisp"

? (load-example "insertionSort")

Rules for insertion sort

RULE 1: sort(nil) --> nil

RULE 2: sort(cons(X, Y)) --> insert(X, sort(Y))

RULE 3: insert(X, nil) --> cons(X, nil)

RULE 4: insert(X, cons(V, W)) --> choose(X, cons(V, W), X, V)

RULE 5: choose(X, cons(V, W), 0, 0) --> cons(X, cons(V, W))

RULE 6: choose(X, cons(V, W), s(P), 0) --> cons(X, cons(V, W))

RULE 7: choose(X, cons(V, W), 0, s(Q)) --> cons(V, insert(X, W))

RULE 8: choose(X, cons(V, W), s(P), s(Q)) --> choose(X, cons(V, W), P, Q)

Rule listing completed

The lisp code for the ordering is given by:

(MAKEORDER ORD1

(LIST (MAKE_PREC_TAU SYMORD2)

(MAKE_SUBTERM_TAU ((sort 1) (choose 2) (insert 2)) ORD1)

(MAKE_PREC_TAU SYMORD1)

(MAKE_SUBTERM_TAU ((sort 1) (choose 3) (insert 2)) ORD1)))
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The symbol ordering SymOrd1 is defined by:

(SETF SYMORD1 '(sort insert choose cons))

The symbol ordering SymOrd2 is defined by:

(SETF SYMORD2 '(sort (insert choose) cons))

;Compiler warnings :

; Undeclared free variable SYMORD1 (2 references), in an anonymous lambda

form inside GENORD::WQO-COMPARE inside ORD1.

; Undeclared free variable SYMORD2 (2 references), in an anonymous lambda

form inside GENORD::WQO-COMPARE inside ORD1.

T

? (go-forward)

(:GR :GR :GR :GR :GR :GR :GR :GR)

? (toggle-show-causes)

T

? (go-forward)

sort(nil) --> nil

sort(nil) > nil by case (1)

| nil is syntactically equal to term nil

sort(cons(X, Y)) --> insert(X, sort(Y))

sort(cons(X, Y)) > insert(X, sort(Y)) by case (2)

Case 2a: Check that the LHS > all subterms of the RHS:

| sort(cons(X, Y)) > X by case (1)

| | cons(X, Y) >= X by case (1)

| | | X is syntactically equal to term X

| |

| sort(cons(X, Y)) > sort(Y) by case (2)

| Case 2a: Check that the LHS > all subterms of the RHS:

| | sort(cons(X, Y)) > Y by case (1)

| | | cons(X, Y) >= Y by case (1)

| | | | Y is syntactically equal to term Y
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| Case 2b: Check that the LHS > RHS via lexicographic comparison:

| | 1:sort(cons(X, Y)) >= sort(Y) by basic ordering of a precedence

| | |

| | 2:immediate subterms sort|1 with sort|1: cons(X, Y) > Y

| | | cons(X, Y) > Y by case (1)

| | | | Y is syntactically equal to term Y

Case 2b: Check that the LHS > RHS via lexicographic comparison:

| 1:sort(cons(X, Y)) > insert(X, sort(Y)) by basic ordering of a precedence

insert(X, nil) --> cons(X, nil)

insert(X, nil) > cons(X, nil) by case (2)

Case 2a: Check that the LHS > all subterms of the RHS:

| insert(X, nil) > X by case (1)

| | X is syntactically equal to term X

| |

| insert(X, nil) > nil by case (1)

| | nil is syntactically equal to term nil

Case 2b: Check that the LHS > RHS via lexicographic comparison:

| 1:insert(X, nil) > cons(X, nil) by basic ordering of a precedence

insert(X, cons(V, W)) --> choose(X, cons(V, W), X, V)

insert(X, cons(V, W)) > choose(X, cons(V, W), X, V) by case (2)

Case 2a: Check that the LHS > all subterms of the RHS:

| insert(X, cons(V, W)) > X by case (1)

| | X is syntactically equal to term X

| |

| insert(X, cons(V, W)) > cons(V, W) by case (1)

| | cons(V, W) is syntactically equal to term cons(V, W)

| |

| insert(X, cons(V, W)) > X by case (1)

| | X is syntactically equal to term X

| |

| insert(X, cons(V, W)) > V by case (1)

| | cons(V, W) >= V by case (1)

| | | V is syntactically equal to term V
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Case 2b: Check that the LHS > RHS via lexicographic comparison:

| 1:insert(X, cons(V, W)) >= choose(X, cons(V, W), X, V) by basic ordering of a

precedence

| |

| 2:immediate subterms insert|2 with choose|2: cons(V, W) >= cons(V, W)

| | cons(V, W) is syntactically equal to term cons(V, W)

| |

| 3:insert(X, cons(V, W)) > choose(X, cons(V, W), X, V) by basic ordering of a

precedence

choose(X, cons(V, W), 0, 0) --> cons(X, cons(V, W))

choose(X, cons(V, W), 0, 0) > cons(X, cons(V, W)) by case (2)

Case 2a: Check that the LHS > all subterms of the RHS:

| choose(X, cons(V, W), 0, 0) > X by case (1)

| | X is syntactically equal to term X

| |

| choose(X, cons(V, W), 0, 0) > cons(V, W) by case (1)

| | cons(V, W) is syntactically equal to term cons(V, W)

Case 2b: Check that the LHS > RHS via lexicographic comparison:

| 1:choose(X, cons(V, W), 0, 0) > cons(X, cons(V, W)) by basic ordering of a

precedence

choose(X, cons(V, W), s(P), 0) --> cons(X, cons(V, W))

choose(X, cons(V, W), s(P), 0) > cons(X, cons(V, W)) by case (2)

Case 2a: Check that the LHS > all subterms of the RHS:

| choose(X, cons(V, W), s(P), 0) > X by case (1)

| | X is syntactically equal to term X

| |

| choose(X, cons(V, W), s(P), 0) > cons(V, W) by case (1)

| | cons(V, W) is syntactically equal to term cons(V, W)

Case 2b: Check that the LHS > RHS via lexicographic comparison:

| 1:choose(X, cons(V, W), s(P), 0) > cons(X, cons(V, W)) by basic ordering of a

precedence

choose(X, cons(V, W), 0, s(Q)) --> cons(V, insert(X, W))
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choose(X, cons(V, W), 0, s(Q)) > cons(V, insert(X, W)) by case (2)

Case 2a: Check that the LHS > all subterms of the RHS:

| choose(X, cons(V, W), 0, s(Q)) > V by case (1)

| | cons(V, W) >= V by case (1)

| | | V is syntactically equal to term V

| |

| choose(X, cons(V, W), 0, s(Q)) > insert(X, W) by case (2)

| Case 2a: Check that the LHS > all subterms of the RHS:

| | choose(X, cons(V, W), 0, s(Q)) > X by case (1)

| | | X is syntactically equal to term X

| | |

| | choose(X, cons(V, W), 0, s(Q)) > W by case (1)

| | | cons(V, W) >= W by case (1)

| | | | W is syntactically equal to term W

| Case 2b: Check that the LHS > RHS via lexicographic comparison:

| | 1:choose(X, cons(V, W), 0, s(Q)) >= insert(X, W) by basic ordering of a

precedence

| | |

| | 2:immediate subterms choose|2 with insert|2: cons(V, W) > W

| | | cons(V, W) > W by case (1)

| | | | W is syntactically equal to term W

Case 2b: Check that the LHS > RHS via lexicographic comparison:

| 1:choose(X, cons(V, W), 0, s(Q)) > cons(V, insert(X, W)) by basic ordering

of a precedence

choose(X, cons(V, W), s(P), s(Q)) --> choose(X, cons(V, W), P, Q)

choose(X, cons(V, W), s(P), s(Q)) > choose(X, cons(V, W), P, Q) by case (2)

Case 2a: Check that the LHS > all subterms of the RHS:

| choose(X, cons(V, W), s(P), s(Q)) > X by case (1)

| | X is syntactically equal to term X

| |

| choose(X, cons(V, W), s(P), s(Q)) > cons(V, W) by case (1)

| | cons(V, W) is syntactically equal to term cons(V, W)

| |

| choose(X, cons(V, W), s(P), s(Q)) > P by case (1)
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| | s(P) >= P by case (1)

| | | P is syntactically equal to term P

| |

| choose(X, cons(V, W), s(P), s(Q)) > Q by case (1)

| | s(Q) >= Q by case (1)

| | | Q is syntactically equal to term Q

Case 2b: Check that the LHS > RHS via lexicographic comparison:

| 1:choose(X, cons(V, W), s(P), s(Q)) >= choose(X, cons(V, W), P, Q) by basic

ordering of a precedence

| |

| 2:immediate subterms choose|2 with choose|2: cons(V, W) >= cons(V, W)

| | cons(V, W) is syntactically equal to term cons(V, W)

| |

| 3:choose(X, cons(V, W), s(P), s(Q)) >= choose(X, cons(V, W), P, Q) by basic

ordering of a precedence

| |

| 4:immediate subterms choose|3 with choose|3: s(P) > P

| | s(P) > P by case (1)

| | | P is syntactically equal to term P

(:GR :GR :GR :GR :GR :GR :GR :GR)

?
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