Trees, ordinals and termination®

Nachum Dershowitz
Department of Computer Science

University of Illinois The Weizmann Institute of Science
Urbana, IL 61801 Rehovot 76100
U.S.A. Israel

nachum@cs.uiuc.edu

Know that one is the secret and source of all the cardinals.
— Abraham ibn Ezra (1153)

Abstract
Trees are a natural representation for countable ordinals. In particular, finite trees provide
a convenient notation for the predicative ones. Processes that transform trees or terms can

often be proved terminating by viewing the tree or the tree representation of the term as an
ordinal.

1 Introduction

Cantor invented the ordinal numbers

0,1,2,.. . w,w+1,...w2,...wn,
Wi Wt W w e,

€0
€0y v € see€ly.nibeyy. .., el

The notation a T n represents a tower of n as. Each ordinal is larger than all preceding ones,
and is typically defined as the set of them all. Specifically:

w = the set of natural numbers
a+1=aU{a} ordinal a
wn = Ujew (W(n—1)4+1) new
w? = Unew wn

w" = Uey Wl o new

w¥ = Upep W"

€ =wO =Upe, w | n

€1 = Upew €0] 1

Infinite sets cannot provide a notation for ordinals. In Section 2 we look for bijections
between natural classes of finite trees and initial segments of the countable ordinals.

Turing [1950] and Floyd [1967] suggested using ordinals for proving termination of programs.
Earlier, in 1938, Gentzen used an ¢y ordering to show that Peano Arithmetic is consistent, by
showing the termination of a proof-tree transformation process. In Section 3, we give some
examples of termination proofs that follow directly from tree representations of ordinals.

*Research supported in part by the U. S. National Science Foundation under Grants CCR-90-07195 and CCR-
90-24271 and by a Meyerhoff fellowship at The Weizmann Institute of Science.

°This is a slightly corrected version of an invited paper, presented at the Fourth International
Joint Conference on Theory and Practice of Software Development, held in Orsay, France (April 1993), and
appearing in Lecture Notes in Computer Science 668 (Springer-Verlag, Berlin), pp. 243—250.

2 Trees as ordinals

Finite rooted trees correspond one-to-one with the ordinals up to €y: the one-node tree is 0; a
tree with subtrees corresponding to aq,...,a, corresponds to the natural (commutative) sum
w9+ -4+ w. This ordering is natural in that trees are larger than their subtrees and replacing
a subtree by a smaller one gives a smaller tree. Moreover, replacing a subtree with any finite
number of smaller trees results in a smaller tree. Ordered this way, finite trees give all ordinals
up to €. (See [Dershowitz and Manna, 1979] for well-founded orderings of multisets.)

One can, alternatively, consider ordered trees and use the same interpretation, except for
substituting noncommutative addition. This is not a bijection, but if, in addition, we insist that
subtrees are listed in non-ascending order, then this is just another way of writing an ordinal
less than ¢y in Cantor normal form.

The standard correspondence between ordered trees and binary trees leads to the following
interpretation of the latter: a tree is no smaller than either of its immediate subtrees; replacing
one of the subtrees with one no larger, gives something no larger; if the left branch of tree ¢ is
larger than that of s and the whole of ¢ is larger than the right branch of s, then ¢ is larger than
s. See Table 1 for some examples.

Going farther, one can associate the countable ordinals with infinite binary trees in which no
path has infinitely many left turns. The empty binary tree is 0; if the right branch is infinite, the
tree corresponds to the limit of the ordinals obtained by truncating the right branch at deeper
and deeper points; otherwise, one gets w® + y for the binary tree whose left branch corresponds
to z and right branch to y, unless w* + y = 2, in which case we add one. This is analogous to
tree ordinals as defined in [Dennis-Jones and Wainer, 1983]: 0 is a tree ordinal; if a is then so
is @+ 1;if a,, (n € N) are, then the w-sequence ag, aq, ... (representing their limit) also is.

Rational binary trees (trees with only finitely many different subtrees) can be represented
finitely (as cyclic graph structures) and—with a natural extension of the ordering on finite
trees—give all ordinals up to (and including) €. . The effect is essentially the same as allowing
leaves to be labeled by trees (themselves having such leaves). A leaf containing something is
larger than trees with smaller leaves and corresponds to the epsilon number indicated by the
contents of the leaf. In general, a tree corresponds to w¥+y, where « is the ordinal corresponding
to the left branch and y corresponds to the right branch, unless z is an epsilon number ¢,, in
which case one gets + y — z (— is ordinal difference). An infinitely bifurcating rational tree
corresponds to the critical ordinal ¢, . See [Dershowitz and Reingold, 1992].

Labeled rooted trees also provide a natural notation for much larger ordinals. A supertree is
a tree whose nodes can themselves be supertrees. Supertrees with identical roots are compared
as were rooted trees above. But if tree s has a larger root than ¢, and s is larger than each of
the subtrees of ¢, then s is larger than ¢. See Table 2.

Let ¢'(0),¢%(1),... enumerate the epsilon numbers, and ¢°(3) enumerate the fixpoints
@*(B) = B3 that are common to all p < a. (See [Schmidt, 1976].) Then we extend the mapping
of trees to ordinals by making s greater than ¢ if the root of s is greater than the root of ¢t and
s is greater than the subtrees of . This maps a tree with root corresponding to a and subtrees
Biy.eey B to @%(P1 4 -+ + By) (the sum is commutative), or to ¢*(#1 + ---+ 3, + 1) when
¢ (Br+ -+ By)=B1+ -+ B, (that is, when n = 1 and) = ¢7(8), a < 4).} This gives all
(the predicative) ordinals up to I'g, the first ordinal whose definition requires “things infinite.”

One can also consider ordered trees with ordinary nodes, treating its leftmost subtree as the
root in the supertree ordering.

See Gallier [1991] for an exposition on properties of these ordinals.

!This patches the order-preserving mapping given in [Dershowitz, 1987]. An embedding of trees into I'g is
given by [Gallier, 1991] and others. It avoids supernodes, but ignores all subtrees but the two largest.

Ordinal

Ordered tree

Binary tree

Ordinal H w? Wit w w™ wv wln
Ordered tree }
.

Binary tree

Table 1: Ordinals and trees

Ordinal H € e +1 €1 €y $2(0) @ow ‘

were |0 & P O @ ?
Super leaves | [0] @’% NEo- -

Table 2: Big ordinals and supertrees

NN

BEFORE AFTER

Figure 1: Hercules versus Hydra.

All the orderings described in this section are simplification orderings [Dershowitz, 1982]: a
tree is greater than any homeomorphically embedded tree. It has been shown [Okada and Steele,
1988] that all such orderings on finite trees are initial segments of Ackermann’s notation (what
we got with supertrees), which itself can be proved well-ordered by appealing to Kruskal’s Tree
Theorem. The well-orderings of rational and infinite trees are consequences of generalizations
of the Tree Theorem, but their proof-theoretic strength is unknown.

3 Trees for termination

The contest “Hercules vs. Hydra” was designed [Kirby and Paris, 1982] to be terminating, but
not provably so in Peano Arithmetic. Hydra is a bush-like creature with multiple heads. Each
time Hercules hacks off a head of hers, Hydra sprouts many new branches identical to the
weakened branch that used to hold the severed head, and adjacent to it. If he chops off a head
coming straight out of the ground, no new branches result. It cannot be shown by elementary
means that Hercules always defeats Hydra, reducing her to nothing, but it can be shown by ¢
induction. See Figure 1.

The appendix contains code for doing arithmetic with ordinals up to €y, representing them as
binary trees in the manner described in the previous section. The nth chop and regrowth steps
reduces Hydra’s value as an ordinal to its nth predecessor. The code can be used to calculate
ordinals used in termination proofs.

Floyd [personal communication] gave the following problem on a Ph.D. qualifying exam at
Carnegie-Mellon University in 1967 (expecting the students to use ordinals to solve it): Show
that repeatedly applying the rules

Dt — 1

Da — 0
D(z+y) — Dz + Dy
D(z-y) — y-Da + z-Dy

D(z—-y) — Dz — Dy

for symbolic differentiation to an arbitrary expression always ends with a term to which no rule
applies. The proof of termination is complicated by the fact that one is allowed to apply a
rule at any time to any subexpression of any of the given patterns, rewrite the subexpression
accordingly. Termination follows by using the superleaf ordering, viewing expressions as operator
trees, but with D as a leaf containing its argument.

The following transformation system was included as an example by Iturriaga [1967] (one
of the students solving the above-mentioned “qual” question), but no proof of termination was
given therein:

-—r —
-(zVy) — -z Ay
-(zAy) — -z V -y

(yvz) — (zAy) VvV (zA2)

(yvz) ANz — (yAz)V (zAz)
To see that it terminates, use supertrees, viewing = as 2, A as 1, V and constants as 0.

Boyer used the following transformation in his theorem prover and circulated an electronic
message (in 1977) soliciting proofs of its termination:

i (if (2, y,2),u,0) = if (2, (y, u,v), if (2,0, 0))

This follows directly from Ackermann’s original three-place notation. We can view if(z,y, z)
as a tree with z as its root and y and z as its two subtrees. The supertree ordering shows
termination.

The following set of rewriting rules, an extension of the Hydra contest which allows the tree
to grow in height as well as breadth, is designed to mimic I'p-induction:

G, — Gppippx
<$ Y,z > - <$v?7pn2>
pn+1<A Y,z > - <Avpn+1yvrn<Bv<A7y72>72>>
prl,y,2) — 7
PulB.y,2) — ru(B,y,2)
Tn+1<B Y,z > - <B7pn+1yvrn<va72>>
rol,y,2) — %
<$ y7 > - <$7y7 Z>

“A nodes” are lexicographic; “B nodes” are sums, summands of which r duplicates for p to
reduce; G stands for “Gremlin”; the bar keeps track of what p has done. Even bigger battles—
and their associated ordinals—are described in [Okada, 1988].

4 Conclusion

We conclude with the function f of Figure 2 (a repaired riddle from [Dershowitz and Reingold,
1992]): Show that the sequence

o) SU@) e 1)
always ends in a leaf starting with any finite binary tree ¢ with foliage of two kinds: & and &.

£
* .
&% &%
f (&%) - WIO) / (AA”) - f(A)jg\

Figure 2: Hybrid tree (triangles and diamonds are arbitrary non-leaf trees)

Note

The IATRX tree-drawing macros used here (co-authored with E. M. Reingold) are available by
anonymous ftp on emr.cs.uiuc.edu as /pub/tex/tree.sty. They require M. J. Wichura’s
piclatex.sty.

Acknowledgement

I thank Mitsu Okada and Ed Reingold for their collaboration on aspects of this work.

References

[Dennis-Jones and Wainer, 1983] E. C. Dennis-Jones and S. S. Wainer. Subrecursive hierarchies
via direct limits. In M. M. Richter, et al., editors, Computation and Proof Theory: Proceedings
of the Logic Colloquium, Part I, pages 117-128, Aachen, 1983. Lecture Notes in Mathematics
1104, Springer-Verlag.

[Dershowitz and Manna, 1979] Nachum Dershowitz and Zohar Manna. Proving termination
with multiset orderings. Communications of the ACM, 22(8):465-476, August 1979.

[Dershowitz and Reingold, 1992] Nachum Dershowitz and Edward M. Reingold. Ordinal arith-
metic with list expressions. In A. Nerode and M. Taitslin, editors, Proceedings of the Sympo-
sium on Logical Foundations of Computer Science, pages 117-126, Tver, Russia, July 1992.
Vol. 620 in Lecture Notes in Computer Science, Springer-Verlag, Berlin.

[Dershowitz, 1982] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279-301, March 1982.

[Dershowitz, 1987] Nachum Dershowitz. Termination of rewriting. J. of Symbolic Computa-
tion, 3(1&2):69-115, February/April 1987. Corrigendum: 4, 3 (December 1987), 409-410.
[Floyd, 1967] Robert W. Floyd. Assigning meanings to programs. In Proceedings of Symposia
in Applied Mathematics, XIX: Mathematical Aspects of Computer Science, pages 19-32, Prov-

idence, RI, 1967. American Mathematical Society.

[Gallier, 1991] Jean Gallier. What’s so special about Kruskal’s Theorem and the ordinal T.
A survey of some results in proof theory. Annals of Pure and Applied Logic, 53(3):199-260,
September 1991.

[Iturriaga, 1967] R. Iturriaga. Contributions to mechanical mathematics. Ph.D. Thesis, De-
partment of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1967.

[Kirby and Paris, 1982] Laurie Kirby and Jeff Paris. Accessible independence results for Peano
arithmetic. Bulletin London Mathematical Society, 14:285-293, 1982.

[Okada and Steele, 1988] Mitsuhiro Okada and Adam Steele. Ordering structures and the
Knuth-Bendix completion algorithm. In Proceedings of the Allerton Conference on Com-
munication, Control, and Computing, Monticello, 1L, 1988.

[Okada, 1988] Mitsuhiro Okada. Note on a proof of the extended Kirby-Paris game on labeled
finite trees. Furopean Journal of Combinatorics, 9:249-253, 1988.

[Schmidt, 1976] Diana Schmidt. Built-up systems of fundamental sequences and hierarchies of
number-theoretic functions. Arch. Math. Logik, 18:47-53, 1976.

[Turing, 1950] Alan M. Turing. Checking a large routine. In Report of a Conference on High
Speed Automatic Calculating Machines, pages 67-69, Institute of Computer Science, Univer-
sity of Toronto, Toronto, Ontario, Canada, January 1950.

Appendix

The following is a Common Lisp implementation of ordinals up to €. Included also is
the Battle of Hydra and Hercules, played by calling hydra(h,one), where h (typically
>(w(w...(w omega)...))) is the initial Hydra.

(defconstant zero nil)
(defconstant one (1list zero))
(defconstant omega (1ist one))

(defun leq? (x y) ; is x less than or equal to y7?

(cond ((equal x zero) t)
((equal y zero) nil)
((equal (car x) (car y)) (1eq? (cdr x) (cdr y)))
(t (leq? (car x) (car y)))))

(defun w (x) ; omega to the x
(list x))

(defun cplus (x y) ; commutative sum of x and y

(cond ((equal x zero) y)
((equal y zero) x)
((1eq? (car x) (car y)) (cons (car y) (cplus (cdr y) x)))
(t (cplus y x))))

(defun ctimes (x y) ; commutative product of x and y

(cond ((equal x zero) zero)
((equal y zero) zero)
((equal (cdr x) zero) (cons (cplus (car x) (car y))
(ctimes x (cdr y))))
(t (cplus (ctimes (w (car x)) y)

(ctimes (cdr x) y)))))

(defun succ? (x) ; is x a successor?

(cond ((equal x zero) nil)
((equal (cdr x) zero) (not (car x)))
(t (succ? (cdr x)))))

(defun pred (x n) ; nth predecessor of limit ordinal x
; predecessor of successor ordinal x

(cond ((equal x one) zero)
((not (equal (cdr x) zero)) (cons (car x) (pred (cdr x) n)))
((succ? (car x)) (ctimes (w (pred (car x) n)) n))
(t (w (pred (car x) n)))))

(defun hydra (x n)
(if (null x)
’Hercules-wins
(hydra (pred x n) (cplus n one))))

