TEL AVIV UNIVERSITY
Raymond and Beverly Sackler

Faculty of Exact Sciences
The Blavatnik School of Computer Science

Tools to aid OCR of Hebrew character
manuscripts

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
In
Computer Science
by
Alex Zhicharevich
Thesis Supervisor:

Professor Nachum Dershowitz

February 2011

Acknowledgments

I would like to thank my thesis advisor, Nachum Dershowitz for helping me focus on the
right problems, providing me with ideas and helpful insights when I needed and his
guidance throughout my work.

I would also like to express my appreciation to my wife Meital, my family and friends for

supporting me through the tougher moments.

Abstract

Digitalization of historical and cultural documents can provide researchers new options
for conducting research on variety of subjects. Although OCR systems are the common
method for digitalization processes, they are sometimes not enough due to the poor
performance of those on documents that include handwriting, low contrast, writing style
shifts and various other characteristics of manuscripts. For those documents, the OCR
needs to be post-processed to allow successful utilization of the data contained in the
documents.

The thesis proposes various methods for such post-processing, using techniques from the
field of natural language and statistical language modeling. The methods proposed for
language classification, document segmentation and text searching. The methods are
designed to handle very noisy texts and tuned to work on Hebrew language, as part of the
project of the digitalization of the Cairo Genizah — a collection of ancient and medieval

Jewish work. The methods are tested on both real and artificially reduced documents.

Table of Contents

ACKNOWIEAZMENTS......ccuiiiiieiiieiiecie ettt ete e e be e s aaesbeesneeens 2
AADSTTACE et e ———aaaaaaaans 3
Table OF CONLENTS ..o 4
LISt Of FIGUIES ...vviiiiieeiie ettt ettt e e ae e et e e snraeessbaeesnsaeenens 7
LIST OF TADIES .ottt ettt eeeeeeeeeeeeeeeeeeeeeeeeneneneennenes 8
INTRODUCTION 9
1.1 The Cairo GenizZahcooovieiiiiiiiie 10
1.2. Corpora COIECTION.ccuiiiiieiieeiie ettt ettt et 11
T3 REIAtE WOTK oo 12
Lo SETUCTULE .ot e e et e e e e e e e e e e ae e e e e e e e e enaeeeenaans 13
LANGUAGE CLASSIFICATION 14
2.1 N-Gram approach..........coceevuiiiiioiieiieiee et 14
2.1.1 Unknown ClasSIfICatIONuueueeeeeeeeeeiteeeee et eeeeeeeeeeeeeeeeees 17
2.1.2 Small and noiSy dOCUMENLSccuerveriiniieiinienieeeeeee e 19
2.2 Experiments and reSULILSccccuieeriiiiiiiieeieecieeere e 21
2.2.1 TSt SELLINES ..evvervriiieiieeieenteete ettt ettt sttt ettt s eaees 21
2.2.2 TSt RESUILS ..eeeeeteeee ettt et e e e e e e e eeeareeaeeeeeaees 22
2.2.3 "Unknown" clasSIfICAtION TESESeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaeaeaeaees 23
2.2 4 NOISY LEXLES 1eeuurireriireeirieesieeesteeesteeessreeassreesseeesseeesseeessseesssseesssseesnsses 25
SPLITTING BI-LINGUAL TEXTS 27
3.1 BaCKGIOUNoiiiiiieie ettt 27
3.2 Algorithm OULINEooouiiiiiiiiiiee e 28
3.2.1 SPIttING the tEXT...ccciuiiieiiieeiie et e e s 28
3.2.2 FEature EXtIactionN.......cooeeeeeieeeeieeeeeeeee e 29

3.2.3 Classification Phasec.cccveevieriieiieeiieeie et ete et eve et ebe e ens

3.2.4 POSE PIOCESSINE. ...eeecuvieeerieeeiieesieeesteeessaeeessaeeesseeesseeesseeesseeessseeesssees

3.3 Noise Reduction

3.4 Experiments and reSUILScccvieiiiieiiieeiee ettt e e e

34,1 TSt SELLINES ..veeniieeiiieiieeie ettt ettt ettt siaeeteeeaaeesbeesaaeenseenaneens

3.4.2 SUCCESS IMEASUTES. ...ttt e et e e e e e e e e e e e enans

3. 4.3 NaTVE SPIIEINGveieiieiieiiieiieeie ettt ettt sene e e saae e

3.4.4 Feature €VaAlUAtION coeeeeeeeeeee e e e e e e eaeeeeaeaes

3.4.5. SENLENCE ACCUTACY ...veierurieerurieeririeeriieeesiteeesereeesereessneesseeesneesssseessnseens

3.4.6. NOISE TEAUCTION .o e et e e e e e e e e e eeee e e e e e e e eeeeeeraaaeaeaeaaes

CORPUS SEARCHING ERROR CORRECTION

4.1 Background.......

411 EAIt-DISTAINICE. ..ttt eeeeeeeeeeeenenenenes

4.1.2 Approximate string matching methods............cccooviiiiniiniiinine

4.2 BEITOT TAtE ESTIMATION .evvveeeneeeeeeenenenennne

4.2.1 Single Letter ali@nment..........ccocuereererienienenieneeeeieseeie e

4.2.2 Multi Letter alignmentccceevveeeriiieeriieeriieeriee e

4.3 Proposed AlZOTithmcccoeiiiiiiiiiiiiiieieeeeee e
4.3.1 TRE INPUL c..eeeeiiieeiie et e e et e e st e e snbeeennes
4.3.2 The AIZOTTtRM....cc.eiiiiiiiiiiiiiice e

4.4 Testing...............

CONCLUSIONS AND FURTHER RESEARCH

5.1 Conclusions.......
5.2 Further research

REFERENCES

Appendix 1 — collected COTPOTacovuiriiriiriiiiiriiiieeteeteee e

51
51
52

55

57

57

57

59

List of Figures

Figure 1: The difference between the average cosine distance of correctly classified texts
and mistakenly classified tEXES.....ccuuiiiiiieiiie e e e 18
Figure 2: The average of the offset measure (the difference between the maximum

similarities to the average similarity) of correctly and mistakenly classified documents. 19

Figure 3: Classification accuracy of different n-grams...........ccccoceeevveenieiiiienieenieenieeieens 23
Figure 4: The success rate, the error rate and the classification score of every method of
UNKNOWN ClASSTEICATION. ...c..euviiiiiiiieiieiet ettt 24
Figure 5: The performance of all noise reduction methods on 40 character length
AOCUIMENILS ...ttt sttt ettt sae b e 25
Figure 6: The performance of all noise reduction methods on 100 character length
QOCUIMENILS ...ttt ettt ettt st et ettt et sbeebe e 25
Figure 7: The fragment count ratio of the algorithm with considering neighbors and
without them as a function of 1 (d was chosen to 1500).cceeceieviiriiieiieniieiecieees 37
Figure 8: The word percentage of the algorithm with considering neighbors and without
them as a function of 1 (d was chosen to 1500).........ccceevuieiiiiiiieiiieiierieee e 37
Figure 9: The word percentage of the classification for different values of N................. 38
Figure 10: The word percentage rate of the algorithm with and without a clustering phase.
... 40
Figure 11: The correct words percentage of the algorithm with and without post-
processing (the N value was set to N=5) as a function of 1cccccoiiiiiiiniiiiinnnn, 41
Figure 12: The algorithm word accuracy as a function of the noise rate P. Each line

shows the reduce in accuracy for every fragment length...............ccoooiiiiiiiiiiinie. 43
Figure 13: The performance of the correction methods above as for each error rate. 43
Figure 14: The number of possible matches for string masked by three different letters, as
a function of the string length.cccoiiiiiiiiiee e 48
Figure 15: The percentage of correct matches of the patterns with errors searched in the
bible as a function of the OCR error rate. The patterns are 200 characters long.............. 50
Figure 16: The percentage of a single match rates for a pattern in for various available
letter numbers as a function of fragment length.ccccoviiiiiiiiiniiie e, 51

file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394836
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394836
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394837
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394837
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394838
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394840
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394840
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394841
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394841
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394842
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394843
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394843
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394844
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394844
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394845
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394845

List of Tables

Table 1: Classification accuarcy of distance functioncceceevveeiiieniieeniienieecieeeee, 22
Table 2: The splitting results of artificially mixed texts from three languages. The d and /
parameters are the length of the document and the fragment respectively, and d// is the
average number of fragments in a document. For each d and / we calculated the average
EVALUALION TNEASUTIES. ...uveueieieiieiieetieteete st et e eteett e bt eateseee bt esteestesbeentesaeesaeenbesasenbeensesaeenee 36
Table 3: Fragments couples and their cosine similarity...........cccocvveevevieinciieeiieeeniee e 39
Table 4: The percentage of the sentences correctly identified by the algorithm, with and
without neighboring fragments data, compared to the percentage of correct words
PEICENEAZE. ..vveeeuiiieeuiieeeiieeeiteeeiteestteesateeeasteeeasteeeeteeensaeeansteesssteessseeensseeensseeenseesnseesneeas 42
Table 5: The percentage of correct matches of the patterns with errors searched in the
Bible. The second rows shows the average rank (in probability terms) of the correct string

Table 6: The algorithm results for several fragments. The columns show the original text,
the text as transcripted by the OCR, the transcript after the character omission, the
algorithm results and the best edit distance match of the string to the corpus.................. 56

CHAPTER 1

INTRODUCTION

The Cairo Genizah is a combination of important scholarly works, community records
and ledgers, business and marriage contracts, personal letters and more. Among them are
original manuscripts in the hand of famous medieval scholars and personalities. The
digitalization of those manuscripts can open various research possibilities for cultural and
historical researchers. Nonetheless, this process poses challenges to the traditional
digitalization processes of scanning and recognition of text by an optical character
recognition (OCR) engine. Although virtually all the documents written in Hebrew script,
the fact that the manuscripts are handwritten, when handwriting can vary in style and
clearance, presents a big challenge to OCR systems. Other properties of the documents,
such as poor quality of the manuscripts, multiple languages, incomplete pages and other
challenges, make it impossible for an OCR engine to produce results that can satisfy the
minimal demands for any research. Hence, common method for handling noisy texts is
using some statistical, language oriented post-processing on the result to increase
accuracy.

The post-processing of a text relies on properties of the language the text is written in.
The tools present a scale up in the level of processing of the text, from geometric features
of written figures to the linguistic meanings of those characters as building blocks for
words. It is common, for example, to correct erroneous words by matching them to some
known words in a known vocabulary or to measure the probability of some character
combination in a language. Identification of the text language is a preliminarily for those
methods, in case the language is not given and cannot be implied from the
script/encoding of the characters. In the case of the Cairo Genizah, the texts appear in a

variety of Hebrew-script languages, such as Aramaic, Hebrew, Judeo-Arabic, Ladino and

more. The degree of similarity between those languages also varies from languages
similar in style like Hebrew and Aramaic, to languages that share only the script with the
others, like Judeo-Arabic. Moreover, many of the documents are mixtures of paragraphs
in different languages, presenting a further challenge for the application of post-
processing tools on them since a straight forward classification of language cannot be
used.
Even after successful identification of the language of every part of the text, the
application of traditional correction methods is not straight forward. Due to the low
accuracy of the results produced by the OCR process, correction of text using single word
lookup is not satisfying. On the other hand, a significant part of the Genizah documents
are transcriptions of some known Jewish texts, which we can look for in pre-prepared
repositories. Therefore, an application of approximate string matching techniques for
searching the noisy text in this repository can be useful for such post-processing.
For the post-processing of OCR on Cairo Genizah documents we present a multi stage
scheme:

1. Identification of the document language.

2. Segmenting the document into monolingual fragments in the case of a multi-

lingual document.

3. Searching the text in a corpus according to language recognized.

1.1 The Cairo Genizah

The Cairo Genizah is a collection of over 350,000 Jewish manuscripts found in the loft of
the ancient Ben Ezra Synagogue in Fustat (medieval Cairo), to the south-west of the
modern city used as a repository between the 11th and 19th centuries. The dark, sealed
room in the arid Egyptian climate contributed to the preservation of the documents, the
earliest of which may date back to the eighth and ninth centuries. The Genizah texts are
written in various languages, especially Hebrew, Arabic and Aramaic, mainly on vellum

and paper, but also on papyrus and cloth. They represent the most important discovery of
10

http://www.bbc.co.uk/dna/h2g2/A2082818

new material for every aspect of scientific Hebrew and Jewish studies in the Middle
Ages. In addition to containing Jewish religious texts, such as Biblical, Talmudic and
later Rabbinic works (some in the original hands of the authors), the Genizah gives a
detailed picture of the economic and cultural life of the North African and Eastern
Mediterranean regions, especially during the 10th to 13th centuries. Its documents reveal
a wealth of information about this previously little known period in Jewish history.
Today, a large portion of the Genizah's documents are available at Cambridge University
Library and at the Jewish Theological Seminary in New York. Smaller collections are
spread out in university library collections across the globe, among them London,
Oxford, Manchester, Paris, Geneva, Vienna, Budapest, St Petersburg, New York,

Philadelphia, Washington and Jerusalem; some are housed in private collections.

1.2. Corpora collection

The algorithms proposed below use statistical properties of the languages in
which Genizah documents are largely written. A significant effort was made for
collecting statistics on those languages, which are not commonly used nowadays, and
digital copies of documents in those languages are not widespread. The corpora collected
for Hebrew contains the Torah — the Pentateuch, and the Mishnah - the first major written
redaction of the Jewish oral traditions, which is also the first major work of Rabbinic
Judaism. For Aramaic, the corpus contains the Jerusalem Talmud - a collection of
rabbinic notes on the Mishnah, which was compiled in the Land of Israel during the 4th-
Sth century. The Talmud, as a commentary on the Mishnah, contains significant number
of Hebrew quotes, so it is not pure Aramaic. Another Aramaic book is Targum Onkelos,

an official Aramaic translation of the Torah. For Judeo-Arabic, later works were collected

11

http://www.jewishvirtuallibrary.org/jsource/vjw/Englandtoc.html
http://www.jewishvirtuallibrary.org/jsource/vjw/France.html
http://www.jewishvirtuallibrary.org/jsource/vjw/Vienna.html
http://www.jewishvirtuallibrary.org/jsource/vjw/Budapest.html
http://www.jewishvirtuallibrary.org/jsource/US-Israel/phillyfed.html
http://en.wikipedia.org/wiki/Redaction
http://en.wikipedia.org/wiki/Oral_tradition
http://en.wikipedia.org/wiki/Rabbinic_literature
http://en.wikipedia.org/wiki/Rabbinic_literature
http://en.wikipedia.org/wiki/Rabbi
http://en.wikipedia.org/wiki/Mishnah
http://en.wikipedia.org/wiki/Land_of_Israel

such as More Nevuchim (The Guide for the Perplexed) by Maimonides, the Kuzari by
Rabi Yehuda Halevy, and Hamaspik Ovdey Hashem by Maimonides son.

Other collections were obtained for further experiments, among which are the
Zohar in Aramaic, which is the foundational work in the literature of Jewish mystical
thought known as Kabbalah, the Shulkhan Arukh which is the most authoritative legal
code of Judaism and other Jewish religious work. A full list of the components of the
corpora is listed in Appendix 1.

For the use of the collection as a statistical reference, it was processed to clean of
irrelevant characters, unneeded lines and various punctuation signs. It was then tokenized

and n-gram statistics were collected.

1.3 Related work

Much work has been conducted in the field of OCR post-processing, most using
statistical approaches over N-grams or vocabularies. The methods over vocabularies
contain approximate string matching techniques for searching lists of all known words of
a language such as proposed by Chen et al (2010). Statistical methods use probabilities
over character combinations for correcting OCR errors, combined with confusion
matrices (Kukish, 1992). Kolak and Resnik (2005) advice the use of statistical methods in
the case of low density languages, where massive document sets for producing
vocabulary are not available. Methods for using word n-grams for such a process were
also introduced. However, little work has been done on using those methods on
multilingual documents. Approximate string matching methods for strings against
corpora were surveyed by Navarro (2001) and include dynamic programming algorithms,

filtering techniques and approaches using final automata.

12

http://en.wikipedia.org/wiki/Kabbalah
http://en.wikipedia.org/wiki/Codification_%28law%29
http://en.wikipedia.org/wiki/Codification_%28law%29

Work on language classification has been widely studied (Hughes et al, 2006), mostly as
a classification problem. Two approaches dominate the work in this area, word based and
character based. Word-based approaches represent the text as a vector of words and use
supervised classification techniques for the identification of language. The character
based approaches do this by comparing n-gram probability distributions over each
language and the text (Hakkinen and Tian 2001).

The processing of multilingual documents was addressed by Giguet (1996), who
addressed the problem using grammatical words and end of word characters. The
processing was sentence-wise, and actually the segmentation process was not issued.
Related work on segmentation of text, usually of semantic nature, was pioneered by
Hearst (1993) and used sliding window techniques. Follow-up works utilized lexical

chains techniques, clustering, dynamic programming and other techniques (Choi, 2000).

1.4 Structure

The rest of this thesis is structured as follows: Chapter 2 describes the method for
language classification of documents. Chapter 3 describes the extension of the method for
segmenting multi-lingual documents into monolingual fragments. Chapter 4 presents the
algorithm for searching noisy texts in a corpus. Each of those chapters includes a short
background, description of the algorithm and experiments performed to test the
algorithm. Chapter 5 contains conclusions and discusses further possible research

directions.

13

CHAPTER 2

LANGUAGE CLASSIFICATION

An important step in the digitalization process of manuscripts is language identification.
Apart from using the language to help catalogue the manuscripts, recognizing the
language is a crucial part for OCR processes. An OCR post-processing algorithm
(described in further in this work) assumes knowledge of the language of the manuscript

for choosing the appropriate corpus to scan.

2.1 N-Gram approach

An obvious fact is that different languages, even if utilizing the same character set, have
different distributions of letter occurrences. Therefore, gathering statistics on the typical
distribution of letters in each language may lead us to reveal the language of a
manuscript, by comparing its letter distribution to the distributions of known. A simple
distribution of the letters may not be enough, so a common technique in NLP is using n-
grams which means computing the distributions of all possible combinations of n letters.
Obviously, the number of possible combinations grows exponentially with n, so usually

the value of n does not exceed 4.

The classification process can be described by the following procedure
1. Collect n-gram statistics for all relevant languages.
2. Compute n-gram distribution on the manuscript.
3. Compute the distance of the manuscript's distribution from each language
using some distance function.

4. Classify the manuscript as the language with the minimal distance.

14

The first task in computing the n-gram distributions is choosing n. In our experiments, we
tried unigram, bigram and trigram. The characters we considered were all Hebrew
alphabet letters, including “sofiot” (variants of letters that appear at the end of the words).
The only additional character used was the space character, under the assumption that
different languages can have different word lengths (for languages with shorter words the
space character will have higher appearance count) and that different languages tend to
have different letters ending a word (and then bigrams or trigrams containing those letters
followed by a space will appear more often). Specifically, when a human tries to identify
Aramaic texts, he may do it by looking for words ending by alef ('x'), a property strongly
correlated with this language. The probability function for an n-gram i is given by
Count(i)

Zjeall Ngrams Count (])

P() =

It is easy to see that the denominator, which is the sum of all appearances of all n-grams
in the text, is just the length of the text (minus n). The formula implies that an n-gram that
was not spotted in the text has a zero probability, a fact that can be true for some n-grams
(for example n-gram which contains a letter that appears only at the end of the word
followed by a character which is not space), but is not generally correct. There are
techniques that smooth the distribution function, giving unseen n-grams a probability
larger than zero, but we chose not to address this problem by smoothing but by adapting
the distance function to handle such distributions.
The second missing detail in the algorithm is the distance function. Let A be the alphabet
and A" the set of all n-grams over A. Since the distribution function is discrete, we can
actually represent it as a vector of probabilities over A™, and transform the problem into a
vector distance problem. We tried the following three distance functions:
e Cosine similarity — this function is basically the cosine of the angle between two
vectors, measuring how similar are the directions of the two vectors. The value is

computed using the formula

15

d1-d2 Yican(Pa1 (0) * Pgz (1))
“dl“ * |Id2“ \/ZiEAn(Pdl(i)) * \/ZieAn(sz(i))

Cosine(d1,d2) =

The function is a similarity measure rather than a distance measure, therefore
when classifying a manuscript, the language with the highest similarity value is
taken (opposed to the minimal distance for other functions). It is also symmetric

and normalized to values between zero and one.

KL Divergence - the Kullback—Leibler divergence, often referred to as
information gain, is a measure between two distributions, originated from

information theory. The function is defined as following

P 1 [
KL(d1,d2) = z (Pdl(i) x 1n(P228)>
ieA™

Note that there are several problems using this measure for classification
purposes. First, the function is not symmetric therefore we need to choose
whether d1 is the corpus language distribution or the manuscript distribution. It is
common to look at the KL divergence as a measure to how much a sample
distribution d2 differs from the “true” distribution, therefore, we used (after some

testing) d1 as the corpus distribution. Another challenge is the presence of zero

Pgq(D)
Pga (@)

probabilities. If P4;(i) =0 or Py(i) =0 then ln() is undefined. We

chose to ignore all n-grams not present in one of the distributions, which can of
course distort the distance (for example, if the manuscript and language have no
n-gram in common, the distance will be zero although it should be infinity) but

simplifies the function to match our needs.

16

e Euclidean distance — this is the straight forward approach for measuring

distances between vectors. Dist(d1,d2) = /Y ean(Paq (i) * Pyz (i))2

2.1.1 UNKNOWN CLASSIFICATION
For shorter fragments, we can expect poorer performance. On the other hand, if we

allow an “Unknown” classification, we can reduce the error rate for some such
fragments. To determine when the classification should be set to “Unknown” we need
some certainty measure for the classification. We can then set some threshold and
classifications with certainty above the threshold may be considered certain and
below the threshold will be considered uncertain or "unknown". This can be helpful
in many cases, especially when the classification precision is of high importance.
Using this method, "unknown" fragments can be further analyzed (maybe manually)
and classified fragments can enjoy very high certainty.

To get this certainty measure, we can look at the cosine similarities of fragments to
their closest language. We obviously expect them to grow as the fragment length

grows. For extracting the certainty measure we can use two methods:

Absolute distance — If the distance of the fragment to the classified language is very
high, we can be more certain of the classification. Here we assume that mistakenly
classified fragments will have lower similarity than the correct ones, as presented in
Figure 1. We then use regression to learn a function of the threshold dependency on
length. We tried establishing a linear logarithmic function of the form threshold =
a+ b xIn(c * length + d) where a, b, c and d are parameters to be determined by

regression.

17

o
[t}

0.8

|

right classification

/ average similarity

/ = \Wrong classification
average similarity

o
o

o
S

Average Similarity
o
(o)}

©
w

50 100 150 200 250 300 350 400 450

Document length

Figure 1: The difference between the average cosine distance of correctly classified texts and mistakenly
classified texts

We can see in Figure 1 that the accurately classified texts are classified with much higher
similarity then the mistaken ones so it looks possible to compute some threshold under
which we can say the classification is not certain.

Relative distance — Here we rely on the intuition that when a document is classified
correctly, its cosine similarity to the correct language is much higher than its similarity to
other languages. We can define a variable offset that will stand for the difference between
the cosine similarity of the fragment to the closest language and the document's average
similarity to all considered languages. More formally,

offset = max Cosine(l,document) — Average cianguages C0Sine(l, document)
lelanguages

Figure 2 shows that offsef indeed is significantly larger when the classification is correct,
so we can use it as the certainty threshold as we can see that for wrongly classified
documents the offset is always in the range of 0.04-0.05

Here, we will not set the threshold as a function of the length, but use the variance of the
similarity distances. For each document we can compute the standard deviation
std(document) of the cosine distances from each language. We will say that the

classification is certain if offser>a *std for some constant a.

18

0.09

0.07
§ / = right
&£ s
5 0.06 7 classification
® 0.05 average
e offset
> 0.04 wrong
< b ae
classification
0.03 average
0.02 offset

50 100 150 200 250 300 350 400 450 Document length

Figure 2: The average of the offset measure (the difference between the maximum similarities to the average
similarity) of correctly and mistakenly classified documents.

2.1.2 SMALL AND NOISY DOCUMENTS

Classifying OCR processed manuscripts poses several unique challenges not
encountered when handling traditional language classification of documents. One of
these challenges is handling a significant amount of noise in OCR outputs. Another
challenge is the frequency of extremely small texts, some with fewer than 50
characters. The significance of small documents classification rises when handling
the problem of multilingual document segmentation described below. The length of
the documents and the noise rates can make some statistic measures less efficient due
to distorted distributions or insignificance of statistics on small samples.

Several methods (Kukich, 1992) have been proposed for error correction using n-
grams and transition probabilities — the probabilities of one letter following another.
Here, we are not interested in error correction, but in the adjustment of the classifying
procedure to handle noisy texts. For noise representation we introduce the "8$”
character to stand for a character unrecognized by the OCR system. We do not
discuss error recognition here and assume that errors are recognized and represented
by "$". A conservative OCR system could only output characters which have high
probability of correctness and output the rest as "$", so all misidentification mistakes
can be reduced to this notion. There is also no assumption that the word boundaries

will not be misidentified, so "$" can be produced instead of a space character.

19

Several methods are proposed:

Ignoring unrecognized n-grams — Here we do not count the n-gram containing "$"
in the cosine similarity measures. This requires no change from the regular pattern
since those n-grams do not appear in the language model anyway. Here we assume
there are enough bigrams left in the text to successfully identify its language.

Remove unrecognized characters — We can also remove the "$" fragment from the
text before starting any analysis. On the one hand, it looks natural to ignore all noise,
but on the other hand we lose the information that noise was indeed produced. For
example, 'a$x' will transform to 'ax' which may distort the n-gram distributions.

Error correction — Given an unknown character we can try correcting it using
trigrams. When observing "$" surrounded by a character L on its left and R on its
right, we can look for the most common trigram in each language containing L in the
beginning and R at the end. It looks natural to do this and enhances the statistical
power of the n-gram distribution. On the other hand, it does not scale well for high
noise rates since there is no solution for two or more consecutive "$" characters.
Averaging n-gram probabilities — When encountering "$", we can use averaging to
estimate the probability of the n-gram containing it. For instance the probability of the
bigram '$x' will be the average probability of all bigrams starting with 'x' in a certain
language. This can of course scale to higher n-grams and integrates the noisy
information into the computation.

Replacing the '$' — We can try to replace '$' by some other character without relying
on the language model. We do that by looking at the character L before it, and
searching the given text for another appearance of it. The character appearing after L
in the closest appearance to the '$' character will be the one we will choose to replace
it with. This is a quite heuristic and is not a statistic error correction, relying on
replacing an unknown bigram can be predicted using similar bigrams close to it in the
text will enhance the statistical significance of recognized bigrams.

Top n-grams — When looking at noisy text, we can say that more weight should be
given to the corpus statistics since it is error free. Moreover, since the text is short we

20

expect to see only a small portion of the common n-grams in the text. Therefore we
may look only on the k most common n-grams in the corpus, assuming that they must
appear in the text regarding noise and length.

Higher or lower n-gram space — So far bigrams showed superior performance.
When the error rate rises and text length drops, the more distinctive n-grams such as
trigrams may produce higher success rates, while on the other hand, unigrams would

need shorter text sample for robust statistics so are also reconsidered.

2.2 Experiments and results

2.2.1 TEST SETTINGS

The success of language classification can depend heavily on the properties of the
test set. For the task of classifying manuscripts, there are several properties to be
considered:

Text length — manuscripts can be of different lengths, from a small number of
sentences up to a whole page that contains multiple paragraphs. It is clear that the
variance of the distributions of smaller texts is much higher, so the probability of a
statistical model extracted from a short text to differ from the language model is higher.
Therefore, we can expect a lower accuracy on shorter texts. For our experiments we

tested various text lengths to measure the influence of this parameter.

OCR error rate — Assuming that the classified text is a result of some noisy
process, we expect that high rate of noise will reduce the classification success rate. This

parameter was also tested and we present how we address highly erroneous documents.

Language set — Although our languages share the same character set, they can

still significantly differ from one another. For example, Hebrew and Judeo-Arabic are

21

completely different, with little chance that a Hebrew speaker will understand Judeo-
Arabic even a little. On the other hand, some languages can share the same character set
due to common origins, which will resemble in the high similarity between them that can
make the classification task more difficult. Such are Hebrew and Aramaic that have many
similar words or a word in one language that is some variant or cognate of a word in the
other language. Needless to say that as the set of languages grows the classification task

becomes more difficult.

2.2.2 TEST RESULTS

To test the distance function we begin by selecting 300 documents, 100 in each
language, and try to classify those using bigrams with each of the above mentioned
distance functions. For this purpose we use prepared error-free text. Each document is

300 characters long.

Cosine KL Euclidian
Overall 0.94 0.81 0.94
Hebrew 0.93 0.78 0.94
Aramaic 0.89 0.72 0.89
Judeo-Arabic 1.00 0.94 1.00

Table 1: Classification accuarcy of distance function

From the results two facts arise clearly: The cosine and Euclidean functions have higher
accuracy than KL and the Judeo-Arabic language is much easier to spot then Hebrew and
Aramaic.

Three hundred characters are about four sentences which is a pretty short text. For similar
languages like Hebrew and Aramaic, it may be too short to get a good classification. We

also want to try out trigrams in order to gain better statistics. To test this, we classified
22

texts of various lengths, using unigrams, bigrams and trigrams. We tried it only on

Hebrew and Aramaic since we saw that Judeo-Arabic is distinguishable pretty easily.

1

&
o /7&4_\/\
0.8 // e nigram

V bigram

e trigram
0.7 &

0-6 T T T T T T T T T T T T T T T T T T 1

200
350
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
2150
2300
2450
2600
2750
2900

Figure 3: Classification accuracy of different n-grams

From Figure 3, we can see that generally bigrams are the best method on all lengths.
For texts longer than 1000 characters the performance is perfect. On short texts
trigrams have low performance, which rises as the text size grows, but does not reach
the bigram performance even on long texts. Perhaps on really long texts, the
statistical power of trigrams would be more significant, but on page sized texts it is

inferior. Unigrams have poorer performance then bigrams even on the shortest texts.

2.2.3 "UNKNOWN"' CLASSIFICATION TESTS

By allowing classification to return an "unknown" result, we obviously reduce the
error rate. On the other hand, since the unknown classification is not a correct
classification, it also reduces the success rate. To establish a fair measure, we can score a
successful classification as 1, an unknown classification by 0 and wrong classification by
-1. It is a "neutral" score since right and wrong classifications weigh the same. For error

sensitive classification the weight of the error should increase.

23

For absolute threshold we estimated the threshold function as threshold = a + b *

In(c * length + d) where

a=>531E-02;
b=129E-01;
c=8.27E-01;
d=-118E+01;

Increasing a will make classification more error sensitive (lower error rate and lower
success rate) and decreasing it will give higher success rate (and error rate).
For relative threshold, we set threshold = a * std, where a=0.8. As a grows, the

classification is more error sensitive (lower error rate), and as a reduces the success rate

grows.

1

Score

2038 —
o
(8]
(7]
,E 06 No Unknown
=}
é 0.4 Absolute distance
2 / - Relative distance
o 0.2

0 T T T T T T T T 1

50 100 150 200 250 300 350 400 450 Documentlength

Figure 4: The success rate, the error rate and the classification score of every method of unknown classification

Naturally, "unknown" classification methods reduce both the error rate and success rate.
We can see that the relative distance method is superior to the absolute distance, with
significantly lower error rates on almost every length and equal success rate. We can also

notice that for neutral classification score, the regular classification is superior to all

24

methods. Only when we measure the classification with an error sensitive score, do the

"unknown" classification methods become relevant.

2.2.4 NOISY TEXTS

A test to measure the performance of all noise reduction methods was done on various
document lengths. The error rate was simulated using the '$' character, that randomly

replaced text characters according to some error rate.

M Ignoring 'S’ 0.8
M Error correction
® 100 ngrams 8 o 0.6
m 20 ngrams LR
. & 5 04 - B

M unigram 2 8

. ©
M trigram g 0.2 - N
I averaging probability
i deleting 'S’ 0 -

replacing reslut Noise Rate 0.15 0.3 0.45 0.6

Figure 5: The performance of all noise reduction methods on 40 character length documents

® Ignoring 'S 0.8
B Error correction 3 0.7 -

B 100 ngrams

(%}
©
5 0.6
[+
B 20 ngrams < 0.5 -
c
¥ unigram 2 04 1
. 8 0.3 -
H trigram &=
. @ 0.2 1
averaging probabilitys
o 0.1 -
u deleting '$' 0 -

“replacing reslut Noise Rate 0 0.15 0.3 0.45 0.6

Figure 6: The performance of all noise reduction methods on 100 character length documents

From Figures 5 and 6 we can see that usually, just ignoring the unrecognized character,
relying on the statistics of the recognized text, is the straightforward and best result.
Trigrams perform well only on short noise-free texts, and reducing the bigram to the top
100 performs well also, usually not very different by from the ignoring methods. Taking
the top 20 bigrams performs well only on very noisy texts as we can expect, presenting

poorer performance on other cases, it looks suitable only when the amount of noise is
25

extremely high. Error correction methods do not perform well, except the enhancement of
replacing '$' with a character of neighboring bigram, which seems like a useful feature for

high noise rates.

26

CHAPTER 3

SPLITTING BI-LINGUAL TEXTS

In the previous chapter we saw methods for language classification of manuscripts. The
methods work under the assumption that each manuscript is monolingual, and their
behavior on multilingual texts is unpredictable. As stated before, Genizah manuscripts
contain mixed texts which cannot be strictly classified to any one language. When we
look at texts of Jewish biblical philosophy or interpretation, we will usually find Aramaic
texts with lots of quotations in Hebrew. Classifying such texts as one language is rather
useless so instead of classification we are interested in a more general problem of

splitting the text into monolingual fragments, classifying each fragment to its language.

3.1 Background

The problem of fragmenting multilingual texts into monolingual fragments was not
addressed much, although it is a natural generalization of the language classification
problem (Hughes 2006). Several related methods can be useful for this type of
problems. The notion of structured learning is the generalization of the classification
task (Daume and Marcu, 2005) to extend the target to complex structures such as
sequences or trees. Theoretical general methods use Markov models or support vector
machines for such predictions, usually using massive datasets for learning. The
segmentation problem, as a simple case of structured learning, that results
classification sequences can be addressed using those very general methods.

More specific methods deal with segmentation of text, such as automatic paragraph
detection. All such methods use two modules, one classification model and a second
segment-boundary searching model. The most popular approach is the sliding-
window technique that looks for the most rapid change in classification scores for
detecting boundaries. The general scheme of the designed algorithm should not be

affected by noise unlike some sliding window approaches which apply classification

27

to very small windows, a technique shown to be inefficient for classification of noisy

documents.

3.2 Algorithm Outline

For the splitting task, we assume that no dictionary is available and only n-gram
statistics of each language are known. We want the algorithm to work even if the
language shifts every few sentences so we do not assume anything about the length of
each fragment (We of course cannot count several words as a language shift). In the
general case there is also no assumption that the sentences in the text are marked, so it
can be a one long sentence as well. The algorithm has 4 major steps:

1. Split the text to fragments.

2. Calculate characteristics for each fragment.

3. Classify each fragment.
4

Refine classification result and output final results.

3.2.1 SPLITTING THE TEXT
As stated, we do not assume the documents are split into sentences or paragraphs. So

the splitting is done in the naive way of segmenting the text into fixed size fragments.
Obviously, the language cannot shift in the middle of a word, so we do perform
adjustment of the fragments sizes to fall between words. If sentences are marked in
the text and we assume that the language cannot shift in the middle of the sentence,
then the adjustment described is done at the level of a sentence.

The selection of fragment size should depend on the language shift frequency.
Nonetheless, each fragment is classified using statistical properties, so it has to be
long enough to have some statistical significance. On the other hand, if it is too long,
the language transitions will be spotted less accurately, and if a fragment contains two
language shifts, the algorithm will not be able to classify the inner fragment (for

example if a fragment starts with Hebrew, shifts to Aramaic and ends in Hebrew, the

28

algorithm can classify it as Aramaic or Hebrew, or split it into two languages in the
post-processing stage but cannot spot all three fragments). Moreover, the post-
processing phase is computationally more expensive, and its complexity grows

proportionally with the fragment length so we cannot choose a long fragment size.

3.2.2 FEATURE EXTRACTION
The core of the algorithm is the classification of the fragments produced by the first

step of the algorithm. Classification problems are usually reduced to vector
classification, so there has to be a method of representing each fragment as a vector of
features. Naturally, the selection of features is critical for successful classification,

regardless of the classification algorithm.

N-gram distance — The first and obvious feature is the classification of the fragment
using the methods described in Chapter 2. However, the fragments are
significantly smaller than the texts that were classified in the previous chapter, so
we can expect the accuracy to be much lower. The features in this case will be the
cosine distance from each language model rather than a single feature with the
result language. This is rather natural, since we want to preserve the distances
from each language model in order to combine it with other features further on.
For each fragment f and language /, we can compute Distance; = Dist(l, f)
where Dist(l, f) represents the cosine distance of the bigram distributions of /

and f.

Neighboring fragments language — We expect that languages in a document are not
shifting too frequently. It is a reasonable assumption, since paragraphs tend to be
monolingual and usually at least several sentences in a row are in the same
language to present some idea. Therefore, if we are sure that a fragment is in
some language, there is a high chance that the adjacent fragment will be in the

same language as well. One way to express such dependencies is by post-

29

processing the results to reduce noise. Other way is by combining the
classification results of neighboring fragments as features in the classification of
the fragment. Of course, not only neighboring fragments can be considered, and
all fragments under some distance from the fragment can help in classification.
For example if we have a classification results of HHHAHHH (where H stands
for Hebrew fragment and A for Aramaic fragment), it looks possible that the A is
noise and should be H. On the other hand, if the result is HAHAHAH, there is no
reason to turn the middle A to H. Some parameter should be estimated to be the
threshold for the distance between fragments under which they will be considered
neighbors. We denote Neighbor(f,i) = if 1 is positive then the i'th fragment after f.
If 1 is negative the i'th fragment before f. If i=0 Neighbor(f,i) = f. So for each
fragment f and language [we can compute

NeighborDist, ;(i) = Dist(l, Neighbor(f,1))

Whole document language - Another feature to be considered is the cosine distance
of the whole document from each language model. This feature tends to smooth
and reduce noise from the classification output. Note that for a monolingual
document the algorithm is expected to output a single fragment (the whole
document) classified as the right language. So for each language / we calculate

DocumentDist; = Dist(l, text)

Clustering — a major drawback of the features presented so far is the fact that they
resemble statistical similarity between language models and very short text
fragments. To increase classification accuracy, we would like to classify longer
texts. In order to do so, we can cluster similar fragments together and then classify
the whole cluster as a single unit. It will obviously be longer than a single
fragment, so the classification will be more accurate, but there is no guarantee that

the clustered fragments will actually be monolingual.

30

The clustering is done using complete linkage hierarchical clustering. The idea is
to perform an iterative process where in each iteration we unify the two closest
clusters. Initially, all fragments are clusters containing only one fragment .In
every iteration, we unify the two closest clusters, where complete linkage stands
for the metric used for calculating distance between two clusters. The distance
between clusters is the maximal distance between any elements in the two

clusters. More formally Dist(C1,C2) = Maxsiecy prec2(Dist(f1, f2)) where

cleC1 stands for fragment f7 belong to cluster C/. We end this iterative process
when the minimal distance between two clusters rises above some threshold 7'
(which in turn means there are two fragments that the distance between them
exceeds the threshold). In the end of the process we can compute the distance
between each cluster and each language model. For a fragment / we denote the
cluster that contains f as Clus(f) and for each fragment f and language / we can
calculate features Clus; = Dist(l, Clus(f)). The threshold T for stopping the
clustering process represents the threshold between gaining bigger clusters which
can be better classified on one hand, and risking getting clusters that are not
monolingual on the other hand and is established empirically,

Since the point of clustering is to get a longer text for classification, then the
bigger the cluster gets the more positive we are in its classification. Therefore,
the size of the cluster is another feature we want to consider in order to give more
significance to the Clus; features for longer clusters. So, for each fragment / we
denote by ClusSize = |Clus(f)| the number of fragments assigned to the same

cluster as f.

3.2.3 CLASSIFICATION PHASE
After the features have been extracted, the classification step is rather straight-

forward. We can either use some known supervised learning method, such as learning

the problem on a test set and producing a classifier, or we can try establishing some

31

manual scoring formula using the features and classify by the language getting the

highest score.

3.2.4 POST- PROCESSING
We now want to refine the fragment splitting procedure. We do it in the following

way:

We look at the results of the splitting procedure and recognize all language shifts. For
each shift we try to find the position where the shift takes place (at word granularity).
We unify the two fragments and then try to re-split the fragment at N points. For
every such point we look at the cosine distance of the words before the point from the
language to which the first fragment was classified to and the cosine distance of the
words after the point to the language to which the second fragment was classified to.
For example, suppose the fragment A/...An was classified as Hebrew and the
fragment B/....Bm which appeared right after it in the text was classified as Aramaic.
We look at the text 47...4n,B1...Bm and try to split it at N points (say N =3). So we
try to split it into FI=AIl..A(m+m)/3 and to F2=A(m+m)/3...Bm (suppose
((n+tm)/3)<n). We look at cosine distance of F/ to Hebrew and /2 to Aramaic since
those were the languages to which the fragments were originally classified to. Then
we try to look at FI = Al...A(2*(n+m)/3) and F2 = A(2*(n+m)/3)...Bm, and so on.
We take the split point with the smallest product of the two values. The choice for N
is a tradeoff between accuracy and computation efficiency. When N is higher, we
check more transition points, but for large fragments it can be computationally

expensive.

3.3 Noise Reduction

As for language classification, the segmentation algorithm can be extended to handle
noisy documents. As the splitting and shift recognition phases are not expected to be

noise sensitive, the classification phase of each segment is the best stage for handling

32

noise. We test the segmentation success rate on all noise correction methods

presented in the noise handling section for classification.

3.4 Experiments and results

3.4.1 TEST SETTINGS
We want to test the algorithm with well-defined parameters and evaluation factors.

For this purpose we created artificially mixed documents, containing fragments from
two different languages (we can do it using Hebrew and Aramaic, which are difficult
to distinguish, Hebrew and Judeo-Arabic where classification is easy and the
fragmentation is the main challenge, or do it with three languages). The fragments
were produced using a procedure that accepts two parameters: The desired document
length d and the average fragment length / — where a fragment is a continuous text
block of only one language. Obviously [< d. The procedure iteratively chooses a
number in the range //-20,/+20] and takes a substring of this size from a corpus of
one language. The substring is adjusted to contain whole words only. It repeats this
on all corpora of all other languages and then restarts with the first language until the
whole text reaches the size of d.

Obviously / and d are of significance. For very small /, it will be very difficult to
fragment the document exactly, since the text blocks will not be long enough for

statistic tests. As for d, it is clear that the average number of fragments inside the
. d . . s .
document is n = T As n grows larger it is more difficult for the splitting algorithm to

be right for all fragments, and since n grows with d, we will expect to see a higher

absolute error rate.

3.4.2 SUCCESS MEASURES
Obviously, the splitting procedure will not be perfect, and we cannot expect it to

precisely split the document to the original fragments. Given that, we want to
establish some measures for the quality of the splitting result. We would like the

measure to produce some kind of score for the algorithm output, which can indicate

33

whether a certain feature or parameter in the algorithm improves it or not. However,
the result quality is not well defined since it is not clear what is more important:
detecting the fragment's boundaries accurately, classifying each fragment correctly or
even splitting the document into the exact number of fragments. For example, given
a long document in Hebrew with a small fragment in Aramaic, is it better to return
that it actually is a long document in Hebrew with an Aramaic fragment but
misidentify the fragment's location or rather recognize the Aramaic fragment
perfectly but classify it as Judeo-Arabic.

We established three evaluation measures, with which we test the algorithm accuracy:

Correct word percentage — The most intuitive measure is simply measuring the
percentage of words classified correctly. Since the "atomic" block of the text is words
(or sentences in some cases described further), which are certainly monolingual, this
measure will resemble the algorithm accuracy pretty good for most cases. It is
however not enough, since in some cases it does not reflect the quality of the
splitting. Assume a long Hebrew document with several short sentences in Aramaic.
If the Hebrew is 95% of the text, a result that classifies the whole text as Hebrew will
get 95%, but it is actually a pretty useless result and we may prefer a result that
identifies the Aramaic fragments but errs on more words (say classifies the two

Hebrew sentences before and after the Aramaic sentence also as Aramaic).

Fragment count ratio (FCR) — This measure estimates the algorithm sensitivity to
language shifts. It counts the difference between the real number of fragments to the
number of fragments returned by the algorithm. To normalize it is divided by the
number of real fragments. Obviously, FCR € [—1 ...1]. It will indeed resemble the
problem previously described, since if the entire document will be classified as
Hebrew the FCR score will be very low as the actual number of fragments is much

higher than one.

34

Splitting edit-distance (ED) — Counting the number of fragments (FCR) will allow
the evaluation of the sensitivity of the splitting in the algorithm. However, it does not
resemble the quality of the classification stage output. Going back to the same
example, FCR will return the same result even if the algorithm will recognize the
Aramaic fragment as Judeo-Arabic. In order to evaluate if the algorithm classifies
correctly, we define the following measure: label each language in the language set
by 1...n. such that each document can be represented by a vector representing the
languages of its fragments. The ED will be the edit-distance between the vectors of
the actual fragment decomposition to the vector produced by the split of the algorithm
(this measure is not normalized so it supposed to grow with d//). For instance, given a
document which contains Hebrew text, then Aramaic, then Hebrew and Judeo-
Arabic, it will be presented as HAHJ. If the algorithm misidentified the Aramaic
fragment it will return HJ so the ED will be the edit distance between HAHJ and HJ,
which is 2. If it will misclassify the Judeo-Arabic as Aramaic and produce HAHA, the
ED will be 1. We can notice that if the language set contains only two languages,
there is no point to the ED measure, since it will return the absolute value of the FCR
measure. Due to the fact that each character in the classification language vector is
different from the character following it (if they are the same they would be unified to
the same character), the edit distance on binary vectors is just the length difference up
to £1.

Therefore we will only use this measure when the language set contains more than

two languages.

3.4.3 NAIVE SPLITTING
To get a reference on each feature of the algorithm, we will run a naive algorithm on

the documents. The basic algorithm will simply split the document, classify each
fragment in the way documents are classified, and output the result. We want to test

how d and [affect each classification parameter using this naive scheme.

35

d d/1 Correct words FCR ED
500 50 10.00 0.729 1.24 1.36
500 100 5.00 0.827 -0.48 0.56
500 150 3.33 0.847 -1.33 1.33
500 200 2.50 0.869 -1.77 1.77
500 250 2.00 0.902 1.45 1.45

1000 50 20.00 0.729 -2.64 2.68
1000 100 10.00 0.824 -0.62 0.9
1000 150 6.67 0.856 -1.52 1.56
1000 200 5.00 0.850 -2.75 2.79
1000 250 4.00 0.880 -2.61 2.61
1500 50 30.00 0.718 4.4 4.48
1500 100 15.00 0.813 -1.1 1.42
1500 150 10.00 0.841 -2.21 2.33
1500 200 7.50 0.859 -3.67 3.69
1500 250 6.00 0.882 -3.46 3.5
2000 50 40.00 0.716 5.93 5.95
2000 100 20.00 0.818 -0.82 1.54
2000 150 13.33 0.838 -3.28 3.36
2000 200 10.00 0.860 -4.47 4.49
2000 250 8.00 0.874 -4.63 4.63

Table 2: The splitting results of artificially mixed texts from three languages. The d and / parameters are
the length of the document and the fragment respectively, and d// is the average number of fragments in a
document. For each d and / we calculated the average evaluation measures.

From Table 2 we can see how the measures behave on various document and

fragment lengths. First of all, it is easy to see that as / grows, the correct word

percentage grows as well, regardless of document length. This is rather intuitive,

since longer fragments are easier to recognize and classify. The FCR is obviously

strongly dependent on the number of fragments, and if the number of fragments in a

document grows it is harder to accurately estimate it. We can notice that, although the

algorithm splits the document into fragment of 40 characters, if the average fragment

length is 50 characters, the algorithm underestimates the number of fragments (splits

it into fewer fragments than needed). When the average fragment length is 100 or

more, the algorithm overestimates the number of fragments. The last observation is

36

that ED is very close to FCR, probably due to the low rate of misclassification, so
further test will consider only the correct word percentage and the fragment count

ratio.

3.4.4 FEATURE EVALUATION

3.4.4.1 Neighboring fragments

The first enhancement to consider is the way a fragment's classification is affected
by neighboring fragments. To do that, we begin by checking if adding the cosine distance

of the closest fragments will enhance the algorithm performance. We define Scores; =

Dist(l,f) + a* (NeighborDistl,f(l) + NeighborDistl_f(—l)). For the test, we set

a=0.4
1 N 14
HNo 0.9 NO. hb 12 +—
Neighbours (.8 eighbours 10 |
With 0.7 \IZIVIthb 8 41—
Neighbours 0.6 1 eighbours 6 |
.2
Correct &‘; 4 -
Words 2 5
Percenta 0.2 g 0 -
tge O
0.1 € 2
0 o
E.a
50 100 150 200 250 & .
=
Document Length Document length
Figure 8: The word percentage of the algorithm with Figure 7: The fragment count ratio of the algorithm
considering neighbors and without them as a function of with considering neighbors and without them as a
1 (d was chosen to 1500). function of 1 (d was chosen to 1500).

We can see that on long fragment lengths, the neighboring fragments improve
classification, while on shorter ones, classification without the neighbors was superior. It
is not surprising that by using neighbors the splitting procedure tends to split the text into

longer fragments, which has a beneficial effect only if fragments actually are longer. We

37

can also see from Fig. 7 that the FCR is now positive with /=/00 which means the
algorithm underestimates the number of fragments even when each fragment is 100
characters long. By further experiments, we can see that the a parameter is not
significant, and we fix it to be 0.3.

As expected, looking at neighboring fragment can improve results in most cases.

The next question to be asked is if farther neighbors can improve it also. We try the

following scoring function: Scorer; = Dist(l, f) + Z’,}’zl(%) (NeighborDistl,f(kl) +

NeighborDistl,f(—k)) . N stands for the longest distance of neighbors to consider in

the score. The parameter a is set to 0.3.

Word Percentage

1
B N=1 0.9
N=2 0.8
- 0.7
B N=3
- 0.6
B N=4 L 05

250 200 150 100 50

Figure 9: The word percentage of the classification for different values of N

We can see that increasing N does not have a significant impact on the algorithm
performance, and on shorter fragment lengths performance drops with N. We conclude
that there is no advantage at looking at distant neighbors and looking at the closest

fragments is enough.

3.4.4.2 Clustering

The next thing we test is how the clustering method described above can enhance
the algorithm. As stated before, the clustering refines a fragment's classification by
classifying similar fragments in the same document together which can allow for more

38

accurate classification, since texts are longer. There are several parameters to consider:
since the clustering method is hierarchical, there needs to be some similarity score below
which we stop clustering. We set this similarity to 0.55, meaning two fragments that have

lower similarity then 0.55 cannot be clustered together.

Cosine
Fragment 1 Fragment 2 N
similarity
AN N OITN 2% 170 DUTIN 2D
; v TOUT TN DO ON TNV 3V 30 INAIN 0 DN 0.56
N2y mwanT
Y3207 73797 N7 NDOY NN NP2 NDIPAND 0TI NI NNOY NTATHY 0.78
o7 NIV N3P)
70T DYPWAN 0D By 05 v 17ab N3 52 5y 90 77OV PRW VIR WY ADIN Yy 0.52
WY DY TN gl)
TN 937 T NI WY 213 1Yd
B0 SN N° 13PN 2199 30 NOPIT 9T NDOD .
PR 7300 YO0 0% NS 13PNY 0 X977 7 NDO 0.49
5D NN TNONY DN 1°3 DN STOONY TOON N3 2IN TN DINTT TOANT IN 0.61
I AN 290NN /d)

Table 3: Fragments couples and their cosine similarity

To gain some perspective Table 3 demonstrates fragment couples with their
cosine similarities. We can see that fragments with over 0.6 similarity usually have
common words (even long ones), a fact that makes it reasonable to assume they are in the
same language. When similarity drops, the fragments look more random and we do not

want to cluster them together for classification.

39

M Basic "
0.9 8
082§
neighbours : E;&;
- 07 @ ©
s &

B clustering (with - 06 8

neigbours) . 05

W clustering (no neighbours) 250 200 150 100 50
Document Length

Figure 10: The word percentage rate of the algorithm with and without a clustering phase.

As seen in Figure 10, the clustering phase does not modify results dramatically,
compared to the other features of the algorithm. It can be explained by the fact that
clustered fragments were already correctly classified, where the mistaken fragments that

needed their classification corrected were not clustered because of their anomaly.

3.4.4.2 Post-Processing

Another thing we test is the post-processing of the results splitting to refine the
initial fragment choice. We try to move the transition point from the original position to a
more accurate position using the technique described above. We note that it cannot affect
the FCR measure, since we only move the transition points without changing the
classification. As shown in Figure 4.5, it does improve the performance for every value

of .

40

H with
PostProceesing

0.9
Without Post 0.8
Processing 0.7
I — 06
T T T T 0-5

250 200 150 100 50

Correct Word Percentage

Document length

Figure 11: The correct words percentage of the algorithm with and without post-processing (the N value
was set to N=5) as a function of 1

3.4.5. SENTENCE ACCURACY

To test the success rate on sentences, we do the same procedure as for words, but the
classification and mixed fragment creation works at sentence granularity. For simplicity,
we mark 8 consecutive words of the same language as a sentence and mark the end of it
by " In the artificial test creation phase, each fragment contains several language of each
language (instead of creating fragments with the number of characters, we now create it
according to the number of sentences). In the splitting phase, we do not split it at arbitrary
word, since it is certain that each sentence is monolingual. Therefore, we skip the
refinement stage at the end of the algorithm and test how good the sentence rate
classification is (what percentage of the sentences were recognized correctly), and the
improvement of the algorithm using neighboring fragment data. We note that for short
fragment length documents each fragment contains only one sentence, so the most we can
expect on those documents is the accuracy of language classification on sentence length
(about 30 characters) texts. The results are given in Table 4, and we can see that for low /
values, the success rate is even lower than the word percentage, since it uses only

language classification of sentences (the neighboring data only decreases accuracy in this

41

case since neighbors are surely have different language). For longer fragments, the

classification rises above the words percentage.

Correct Correct sentence Correct sentence
1 words percentage (no percentage (with
percentage neighbors) neighbors)

50 0.72 0.68 0.59
100 0.81 0.84 0.81
150 0.84 0.87 0.88
200 0.86 0.87 0.92
250 0.88 0.88 0.93

Table 4: The percentage of the sentences correctly identified by the algorithm, with and without
neighboring fragments data, compared to the percentage of correct words percentage.

3.4.6. NOISE REDUCTION

To test the noise reduction, we artificially introduce noise in the text by randomly
replacing some letters with the "$" character. We denote the desired noise rate by P and
for each letter independently replace it with the "$" character with probability P. Since
the replacement of each character of the text is mutually independent, we can expect a
normal distribution of the error positions in the text and the correction phase described
above does not assume anything about the error creation process. The error creation does
not assign different probabilities for different characters in the text unlike natural OCR

systems or other noisy processing.

42

0.95
&
S
g 0.85
a
3 08 o=
§ —\\
= 0.75 —
g 0.7 T T T T 1
o 0.1 0.2 0.3 0.4 0.5

Noise Rate
=100 150 ==r=200 =¢=250

Figure 12: The algorithm word accuracy as a function of the noise rate P. Each line
shows the reduce in accuracy for every fragment length

Not surprisingly Figure 12 illustrates that the accuracy decreases as the error rate rises.
However, it does not significantly drop even for very high error rate, and obviously we
cannot expect that the error reducing process will perform better than the algorithm

performs on errorless text.

0.9

0.85 - & trigrams

e |gnoring
0.8 -

e error correction

0.75 e gvearge bigram

0.7 top 40 bigrams

0 0.1 0.2 0.3 0.4 0.5 ==t0p 10 bigrams

Noise Rate

Correct Words Percentage

Figure 13: The performance of the correction methods above as for each error rate.

Figure 13 illustrates the performance of each method. It seems that looking at the
most common n-grams does not help nor is correcting the unrecognized character.
Ignoring the unrecognized character, using either bigrams or trigrams, and estimating the

missing unrecognized bigram probability, show the best (and pretty similar) results.

43

CHAPTER 4

CORPUS SEARCHING ERROR CORRECTION

The ability to identify the language of documents opens possibilities for creating simple
catalogues and enhances search options for digitalized documents. As for text produced
by an OCR process, it opens up the option of post-processing the text to enhance OCR
accuracy. This is especially important for extremely noisy OCR processes, where the
produced text cannot be used without further improvement.

A common technique in OCR post-processing is approximate string matching. We
assume the text is a part of some big known corpus, and the problem is reduced to finding
the correct sub-text in the corpus that corresponds to the processed document. In
processing Hebrew manuscripts in the Genizah corpus, it highly likely that the
manuscript is part of some known book, and searching for it can reveal the text that the
OCR could not accurately recognize. Assuming we identified the language using the
techniques from the previous chapters, we can use those language models also to improve
the OCR result. This is relevant for extremely noisy texts, for which searching

approximate in the corpus may not provide with good results.

4.1 Background

String searching is a well-studied problem in computer science with many established
algorithms and strong theoretical background. The basic problem of finding a string
in a long text has well known solutions such as the Knuth-Morris-Pratt (KMP) and
Rabin-Karp algorithms, which are linear in the text size. The problem of approximate
string matching is a generalization of this problem, where the goal is to find a
substring of the text that best matches some search pattern, where matches are ranked

using some distance functions. Approximate string matching has applications in

44

variety of fields in computer science especially computational biology, information

retrieval and spell checking.

4.1.1 EDIT-DISTANCE

To deal with approximate matching, we first need to define what an approximate
match is. This of course depends on the application, but one of the most popular
similarity measures for strings is edit-distance, also known as Levenstein distance. The
edit distance between two strings is defined by the minimal number of edit operations
needed to be performed on one string for it to exactly match the other. The edit
operations allowed in the basic form of edit distance are insertion, deletion and
substitution of letters. For example, given the words “train” and “ruins” we can perform 3
edit operations: deleting the ‘t’ letter (getting rain), substitution of ‘a’ by ‘u’ (getting ruin)
and inserting the ‘s’ character at the end to get “ruins”. Hence, the edit distance is 3.

Edit distance is highly suitable for OCR correction purposes, since the allowed
edit operations are pretty consistent with the errors an OCR engine may perform. It is
frequent for an OCR to skip a character or to recognize some irrelevant symbol as a letter
(insertion and deletion operations), and of course confuse one character with another
(substitution). We can use edit distance to approximate the probability the OCR engine
will produce one string from the other, in the sense that the lower the edit distance is , the
higher the probability for the OCR to produce one string as an output on the second
string. A generalized version of the edit distance problem assigns different weights for
msertion of each character, deletion of each character and substitution of each character
with each other character. This can match the different probabilities of mistakes made by
the OCR engine (it is more likely for the OCR to replace two characters that have
geometric similarity). Other string distance functions do not reflect the nature of OCR

engines. The popular Hamming distance allows only substitution of letters, but gives
45

infinite distance for two strings with different lengths, which will assign zero probability
for an OCR to miscalculate the length of its input (which is way above zero obviously).
The generalization of Levenstein distance, Damerau-Levenstein, is popular in spelling
correction because of the additional edit operation of substitution of two letters. As
opposed to human typing, which have high probability of confusing character order, OCR
scans the text linearly, so this function does not suit our requirements. Other string
distance function popular in natural language processing usually use phonetic or semantic
word properties, while OCR usually uses geometric properties of characters.

The edit distance between two strings is usually computed using a dynamic
programming procedure. The computation complexity is O(n*m) where n and m are the

lengths of the two strings.

4.1.2 APPROXIMATE STRING MATCHING METHODS

There are several approaches to the approximate string matching problem. Some
of them are mainly theoretical in nature, where the practical ones are dynamic
programming, filtering and indexing.

Dynamic programming techniques are a search generalization of the distance
computation method, by trying to compute distance from every possible starting point in
the text. The run time of those methods is usually close to O(n*m) where n is the text
length and m is the pattern length. The main drawback of those methods is the large
space requirements that dynamic programming matrices need to manage. For large
corpora, this can make it inapplicable, since there are searches of patterns of thousands of
characters in texts of tens of millions of characters.

Filtering methods use heuristics to eliminate indexes in the text that cannot be the

best solution. There is usually some fast scanning of the text, which will make the search

46

phase more efficient. The search phase usually makes use of dynamic programming
techniques, so worst case scenarios will be similar to the dynamic programming
complexity. Those methods are much more convenient for our purpose.

Indexing methods preprocess the text, which in turn enhances the matching
procedure. Those methods are suitable for applications that perform multiple searches on
the same text. The indexing is usually computationally expensive and has high memory

consumption and the search algorithms are complex and difficult to modify.

4.2 Error rate estimation

Applying string matching techniques for correction of OCR process has unique
properties, due to the unknown accuracy of the OCR process. Although edit-distance is
suitable for estimating the probability of a string being produced by the OCR, there is still
no guarantee that the closest substring in a text in terms of edit distance is the actual
string. In other words, we want to estimate how efficient application of string matching
techniques to OCR correction problem is and what OCR accuracy is needed for it to be

efficient.

4.2.1 SINGLE LETTER ALIGNMENT

The first thing we test is the application of string matching techniques, under the
assumption the OCR can accurately recognize only one character of the alphabet. We
first try exact matching, meaning we assume the OCR recognizes the letter perfectly. For
this purpose, we choose an arbitrary string in the text, mask it, in the sense we leave only
one letter in the string and turn all other characters into the ‘$’ sign, and search for it back
in the text. We denote by Align;(n) the average number of alignments for substrings of

length n (over 500 random strings) which was masked to contain only the letter 1. We
47

used the Bible, which is 1505034 characters long, as the text to search in. We expect the

number of alignments to rise as the text grows.

Allign(n)
1000000

) 100000
/ / - 10000
—7 / /
. 1000
T / 100
/ 10
I .

N 182 162 142 122 102 82 62 42 22

Figure 14: The number of possible matches for string masked by three different

letters, as a function of the string length.
As shown in Figure 5.1, we can see that for frequent letters (such as ‘> which has 10%
frequency), the search yields a single match on strings longer than 110 characters. For
rare characters, even on 200 character strings, it still has over 1000 correct matchings,
making the search irrelevant. So if OCR recognizes only rare characters we demand

much longer documents.

4.2.1.1 Single letter with errors
After testing the straight forward approach of exact matching, we try to extend it to

inexact substrings. We still assume the availability of only one letter. Suppose the
substring is a copy of some fragment of the original text, while errors can be taken place
in the copying process. We can look at a probability matrix of copying errors. Suppose
we have a probability of P; to get a letter / in the copy even when the original text
contained something else. It means that we have a probability of only 1 —P; to get
another character (denote it by §) in the copy when there appeared § in the original text.

Symmetrically, we define by P, the probability of getting $ in the copy when the original

48

text contained /, and it means we only have 1 — P, probability to copy the letter /
correctly.

For the test, we set P/=0 and P2=0.05. This means that the OCR does not produce “false
positives” and identify / where it did not appear. It does have a 0.05 probability to miss a
character / and produce something else. For example given a string “x7axtix7ax7x” which
contains 4 occurences of the character 7', the probability of getting “$7$$7$$7$$7$” (exactly
correct OCR) is 0.95%* | since the probability of correct recognition of the letter is 0.95.
The probability for “$$$$7$$7$$78” is 0.953-0.05 (3 correct identifications and one
mistake). This can be the nature of a very conservative OCR, that identifies some
character only when there is very high probability it is actually it and therefore does not
produce false positives.

The test we produced selects an arbitrary string, leaving only a character 1 in the string,
while with probability P2 we replace the appearances of / into §. Then the new pattern is
searched in the text and the match with the highest probability (as defined above) is
returned. We are interested to know when the returned match is actually the string that
was selected and masked. We use the character ™' as /, which is an average letter with

0.05% appearance.

Pattern length Percen;';lie(: }(l)ﬁt;scorrect Average rsirrlil;;)f original
500 1.000 1.000
350 1.000 1.000
250 0.995 1.025
200 1.000 1.000
160 0.985 1.015
120 0.945 14.385
100 0.860 21.610

49

80 0.675 514.93

60 0.375 1760.85

Table 5: The percentage of correct matches of the patterns with errors searched in the Bible. The second rows
shows the average rank (in probability terms) of the correct string

As shown in Table 5, for fragments of 200 characters and longer, there is high probability
for the best match to actually be the correct fragment. For fragments longer than 100, the
results are reasonable; below that results are poor, so we cannot expect string matching to
show good performance. When the error rate rises, the success rate drops as shown in

Figure 15. The performance is reasonable for error rates below 25%.

Matching Success rate
1 —
0.9 \\
0.8 ~_
0.7
0.6 T T T T 1
0.05 0.15 0.25 0.35 0.45
Noise Rate

Figure 15: The percentage of correct matches of the patterns with errors searched in the bible
as a function of the OCR error rate. The patterns are 200 characters long

4.2.2 MULTI LETTER ALIGNMENT

When scaling to several letters, we obviously expect the searching success rate to
increase. It is obvious due to the higher rate of recognized characters but also due the
veracity of symbols needed to be matched. Figure 16 illustrates the success rate for
matching patterns containing various amounts of different letters, and we can see

accuracy increases with the increase in number of letters.
50

1.2

0s 7-7 —
06 / / /
/R
/
0 4/
20 40 60 80 100 120 140 160 180 200

Document Length

= oone letter two letters ====three letters four letters

Figure 16: The percentage of a single match rates for a pattern in for various available letter
numbers as a function of fragment length.

4.3 Proposed Algorithm

We propose an algorithm for post-processing OCR results by approximately
searching a corpus of text. The algorithm has to deal with relatively large patterns and
corpora, and the fact that the pattern is extremely noisy, so the search result may be

considerably different from the pattern.

4.3.1 THE INPUT

The corpus is a long text (several millions of characters) denoted by T. The OCR
results are given by the following: for each character in the OCR’ed text P,, we get a set
of characters Cy; ...Cj and a set of probabilities P(Ci,l) ... P(Cjx) which stand for the
probability that the character I of the pattern (the scanned text) is Cjx . Notice that the

K_1P(Cj,) do not necessary add to 1, since some of the probabilities are neglected. For

most characters only one option Cj is given.

51

We assume that the accuracy of the OCR is pretty low, which means that only
about half of the top scored letters produced by the OCR are correct. The probabilities of
each character are not high (most of them below 0.5, which is just a good guess), and in
addition insertions and deletions of characters can occur frequently. On the other hand,
the pattern is assumed to be quite long so, we can use that fact to perform a more accurate

search.

4.3.2 THE ALGORITHM

The proposed algorithm is actually a filter algorithm, where the filtering is
heuristic, and uses substring of the pattern. The length of the corpus and fragment makes
it very difficult to run a classic dynamic programming algorithm. The fact that the input
is so noisy will make most filter algorithms inefficient.

The algorithm proposed follows the following scheme:
1. Clean the corpus and the pattern from characters that are poorly
recognized.
2. Tteratively choose a substring of the pattern and search for it in the corpus

3. Combine the results into the one best result

The first stage handles the cleaning of the pattern from the noisy characters. We estimate
the probability of each character to be the average of the probabilities attached to the
character at all its occurences. More formally, P(I) = Average; P(Ci,k)lP(Ci’k) >
0 and C;i = 1. If the OCR engine proposed the character | as an option for the I'th place
of the pattern, we consider it in the average of the probabilities of 1. The estimation P(1) is
an approximation for how accurate the engine handles the character 1. The estimation is a
combination for the OCR recall and precision on the character. After the estimation of

accuracies for all characters we pick a threshold below which all letters will be neglected.
52

The threshold should be estimated empirically and depends on the accuracy of the OCR.
As shown in the previous section, even one character with reasonable error rate can be
enough for searching a fragment of even medium length. Therefore the threshold should
be set high enough for the extra recognized characters to increase rather than decrease the
success of the search. All characters below the threshold are replaced by an "unknown"
character both in the pattern and the corpus.
The second step is iterative search. In each iteration, we select a substring of the pattern
and search for it in the corpus. The length of the substring should be the shortest possible,
such that, using the characters chosen in step 1, the search is expected to return one result
only. In other words, we would like to search for a sub-pattern long enough so the search
will return match (or matches) in the corpus with high probability. When searching, we
use the dynamic programming technique, assuming the sub-pattern is relatively short for
efficient search. The result of each search is an interval [a..b], where a and b are the
starting and ending indexes of the match in the corpus. We define the following
variables:

I- the sub-pattern length, L- pattern length

r — the index of the sub-pattern in the pattern

a,b — the indexes in the corpus that define the match of the sub-pattern

Insert ratio - a parameter estimating the frequency of insertion mistakes made by

the OCR engine.

From a, b, we define an interval [il..i2] which will estimate the position of the whole
pattern in the string. Since the sub-pattern is in indexes [a..b] we naturally would expect
to find the whole pattern at indexes [a-r...b+(L-(r+1))], by extending the match of the

interval by the distance of the sub-pattern the pattern boundaries. Since we expect some

53

insertion mistakes we extend the interval to [a-(1+InsertRatio)*r...b+(1+InsertRatio)(L-
(r+1))] to estimate the alignment of the pattern with the mistakes. The estimated interval
is the result of each search iteration.

In the third step we combine all intervals into a single result. The combination algorithm

1s as follows:

1. Initialize IntervalsList « @
2. Foreach [il,..i2] in Results
2.1. If IntervalsList contains Interval such that Interval.union N [il1..i2] # @
2.1.1.Interval. union « Interval.union U [il ...i2]
2.1.2.Interval. intersection < Interval.intersection N [il...i2]
2.1.3.Interval. count « Interval.count + 1
2.2. Else
2.2.1.IntervalsList « IntervalsList U Interval(intersection =
[i1..i2], union = [il...i2], count = 1)
3. IntMax < The interval in IntervalList with maximal count
4. [a..b] = The search of pattern in Intmax.Intersection
5. Return [a..b]
The combination algorithm is based on the fact that the corpus is significantly longer than
the pattern. Given an interval returned, we compare it to all other intervals returned by
other searches. If two intervals intersect, they’re union is considered to be one (longer)
interval. If an interval does not intersect with others, it is considered new. The algorithm
tries to unify all intervals and counts the number of intervals joined in each union and we

expect only one interval to be counted a significant number of times and classify all

54

others as noise. We then search for the fragment back in the interval to return the final

result.

4.4 Testing

The testing was done on several outputs of an OCR system operated on Genizah

fragments. The input was as described in the section 2, where the number of iterations

was 20 and the sub-pattern length was 50. The minimum accuracy, under which

characters were omitted, was set to 0.5.

Original Text

OCR result

OCR output
with prob >
0.5

Algorithm
Output

Best Match

17 MyIRNININYD MY
ks U Biabtelak 'l
"N2NIRINNAITTI'IX
X170V TVINNYNN
IPNRNINYNAYTOMAN
MrITRALAIINN
¥NININ'ANNIDONNIN
NXJIATNIXIINYNT7INYN
INTNIXRNIPRNIN'DYIINY
TXININYIN'YIN0'MN
INNOINYDNININTINIP
nIYYYINTIM?TAIND
y7manintnNan7'yn
NXNINN'YOINX7N1DD"Y
‘NTA'220NKRNYNTINY
NIXINANINTMO? 7NN
NXMTRD'NINKNDNN

M7|VOYIRTIT70'0W
'PHXRATI?NTN?OTN
NYTNINYURINITT
WUODWATTIRTI7TOIV T
NOTDINNYYNXRTITY
22N1IRKIN'ONI'ITR
ITYIRX7INYUMXNINY!
NOINIT'DWAINYNAN]IA
NITIT'I'WOV7TIT'RIN
NMYIYONON' TXIT'T
IYYYIT'2YTITITION
NATIT'DD'NNO7'WI
XYIN'wInx7nooyh
YKR'72TYNTVOTO'WY
TOUNTIRATITAN 7T
YRR TXD'VION
rai

2513 $ TS $w
Xumrxotx'
15888 $ 1S T
$INTI7 10785 TSS T
n$$1$$TT$$ o $a
xS $rnrxI$T$$n
15815523 $1x$8
SRSTS ARG ISW
S SIS DwEENS
mT$$wsdrTiTN
Siwom P xi$ T
m$$$1851$:$:$$
onNn$$$Suvyw
$7ni$owr$$ T
15$1VSx$I1$$wES
$N 7R ENTES
$ExT19$ TS ST
TR Px12 TS S
28

20TRA7INIyIRNI
X7101770 D' nnnx
NNIXINNIT T
2vTVINNYNNM N
1MIANNN?IND
NIPNXRNINYNY
AI'712TRNLADINAN
22N1II99KXIPNM!
NXN7IXYUM¥NInm'
AUINXNDKR[IATNINNI
TMIRNIPZRNIN'DY
1nN'YoINLMMNIN
ANNNZRIPITYININ
NIN'D'XNONYWON
IYY'YINTIM?T
NINTDDNINT?'Y)
91NX7N'D"7u'7N2
TnRYNRNINN'Y
X'NTA'7220NKRNYN
INANINTMI97 TN
D'MINNNDNNNIY
NXMTR

R atalhihb
D'nnn X7 DX 1Y
T 90 KA 1T
N' 22 NN NIT
D71y TVI NNyn
DMK N 17
M7 DR DI Yyt
IITX 0N D NN
XN 'l

nin 72N 199X
IINYN 7INY YNl
NN [1211 DY
NN NIN' DY
nou7 AN NaX
'TXI DINY (12N 'w9)
NY 0NN AYKI
21 'M7T NN D'RNO
W91 Y Y'YIN
ma nmne o DNy
W91 NX7N 1D 1Y
|n "'V DX NInN
‘N "220 IR wnT
' 197 17nNN

TONA'NINNINTRA'NIY
IN'72'UXNNATIDTRN?D!
WIYOID'7V ' NI7INAN'DN
TIKIPRNIN'DYILINYUNN

O7RINTAID7URNINTT
ZNNMNNINT™MYaNRIny
I TAVIARDAINTIRITON
YNNNOINNXKATAVIN

AINTINNATNATR) 701N
XNIN'7YTINPRNIN' DY

T72'TNA'VTOXR'INTNO" Y
T722TIDOTRTT722TIDOTX
101"V TI7INAY' D TITUX
INTTITT'OWAINUNYIVIY
NATTATWURTIT'?7ITOXN
MN7TNMTTIT'YAIMY'?
AVIRTOVIRDTITINI'T
NT7017NNYNNRAATT
IXTIT'OWAITTINNATNAT
D7TTAIUNRTIT' 7Y TINAT

$3
$152:55x$15 18!
1818581150151
$$o>T1TwST$$STID0
$1$1w01'$$ SIS
SIS TS T SwaAIRWN
165150 T1$$ 155
TS Van$$7$$T
DTTERITEIHIST
S Ta$ xS X

ANIMKIRTRATY
naTDTXRN?'TON
nan7anin'auxn
NWIYoI™Y NI
APRNIN'DYAINYR
AD07URNIN'TITIN
WANP'INY'D7NINT
Ton7nnIMNnIN™M
TAVIRDANDINE
9 NNNATAVINY

22 1TON2 'MNX "IN
A'WN NN AT DTRN
MnI7man 73 ninty
NWUK NIWIY' 01D 7Y
XX NIN' DWAI
D7WUK NN M
a7 my 727 X nTa
NN NIt Yl
D AN MR 'T'oNY
TV X)TV "X

55

Ax¥NAMY'778nTA07Y
D7wN"oImanin'Mani
RANMNT TN
722D0MKN72ININAYD
270 MnRITONI 7Y
2210D0INYITINN700
o7V

1"2IWATITNTANINAIYY
07vwIdYATTITTINI0Y
TTRDTITYNRT??TTINT
TITTNOWIAITIZUNRT??
I'WYUKRIITONI'7U2210MIN
DOMINTDICTI?ITONY
NIITonI'?va$

ar$$71$17$$$1$$

$1$0uSITTISS

URTIT?$ TS 1SN

$251$52$5>7 11584
28wir21$$TITS

7Sw1D0$$S TS TS
1$511$:$$$77111$
SuI$P>$17$$F 7T
2933208315 17011$$
2$T10n$1r$SNTS S
$$20%5: 5151 165:$1
xi$$irs$

aTR)7"M0mnnn
IN'DYAINTINNATN
RNIN"7ITIRAPRN
my'757x1nT07Y
nANINMANNYNA
nN77nnwinmdI
wD'n7ININMNGY
220NN
IN'MARIITONI"7VN
ImnNI77nnv'n
D71v'7' 210NN
X'iITon

NNNS 1NN |2
naTx 17 Nom?
DAl NTIN AT
MT KN DI
NTA1 D7WUNR DN
nNxN1 my 737 xa
DOINA NN N
1790 0170 Dy
D'1a 72 NIt DX

1D D'MND 'O NNy
1TOoN 12'7V N2A
D721V7 nIn' NI
ITIn D' 1770

INNLON7N2PRA'WID

TIXNOINIXA'NIN'ANNA
XONYINKONAYWRWIT
YUMYKDIZNANKLN?NAN

TnNdNNZ7IN72UNnNXRLN
7V|NIIYy2AXNANRUNND
NT7INRIN7YANATANIN

NXINATANTIOXDWN

10I"YUNIY'0'NA7N'D

WIPAN'ANMINIRYY
NANNIIRAYINWI72VN
A PNTIMYTAYNY
NTIRNYINTIVUTIYINN
N7OXINATANITTO WIT
nni'ywo?

$38
1115555315158
3551551 $u58ES
$35555551555555
$5555555555'$
1555355555551
$355553555555%
ru$$$$S$15878S
$33

nyRAmnINKI?
TV INTINRIN
"WIIIYRwUnIXIn
DMIARNITRNNY
YR

VAWRIMIRIMMINR'INY
2UTKIVIUTRINYYY
NNNYRINNTININN
"RN7YIRINIAY

NP7IN7VyN0IENINXLNN
2y[NAIYa¥RINNTNON
THNKINYNNATANINR

NINATNNTIO7R)9W'NN

N0INNYWNRIT'0'NA7N DN
PninM7wnnarynan

N'IN"7NN2TANNdNN'Y
2011[ndNI"7YI921ININYN
DNII7N

T NIYATYARONN
INTIYIAT T 2Y(1Iya2N
I'NTMI0Y7K W INTDT
TTa%omwa'oa'
N7TATAINNIYA
PRlathhl

$$$$55538$
nwESS$|$$ 1811
$$$33$$$1$1$$$$
$$585 w5555
$$35$33135$55$
whrSESws $
$355555851$$18
'$$5$53$$

W77yniuNom
7D IRRPIPY
"nIYNIDRYYYR
INR1IYDIMEAN
Jalh 2N

IN7RYITAT

DII"ON7RYIT IR
17MNITNRINNYIDY
TN

NUYN2UNNATMNNOENI
NONIMYUI9IININNRVNNI
NXNXVNIYNINKONYTY|
27nn'nNn701In'7RAN
YNIRAINMATINNMNI|N
17un72ynnnHYIINXN
ININ"YTZANAAWANKLON
IRNIN'7IINWURNRN'AN

1ATIVNTYATATIOTMNI
AMmNRNTNIYAY[TIYY
Dt el nlah bbby alallvall
ROYTI7ZYN7001DWDINRN
2T

$1$3355535555S
3515555505555
1335553355585 1$
$351$351835511$%
335w $$3$$SEFS
1'$$$21535558v$$
1$71$$2183

NANNANTYIRNI
JIDINN97vwNi
2unsninoin7xNI
"MY7NINN'IDTMNNID
XY'NIXTNIR'D'D
N

'yavaRanwny
NN 720N 1" IRR
MANTNINDININNIN
7X7)'aNDN

Table 6: The algorithm results for several fragments. The columns show the original text, the text as
transcripted by the OCR, the transcript after the character omission, the algorithm results and the best edit
distance match of the string to the corpus

As seen in Table 6, the algorithm presents good results and approximates the original

fragment well for reasonable OCR performance. The results are similar to the best edit

distance matching. For extremely noisy OCR output, the results are not accurate, since

edit distance cannot be a good approximation for the result and other methods need to be

applied.

56

CHAPTER S
CONCLUSIONS AND FURTHER RESEARCH

5.1 Conclusions

This thesis presented methods for three slightly different but connected problems. A
statistical algorithm for language classification of Hebrew script documents was
presented, using bigram distributions. The algorithm showed over 95% accuracy for most
of the documents, rising to perfect 100% performance on documents longer than 800
characters. It also showed a method for higher precision the error rate by allowing the
classification algorithm to return an unknown result.

An algorithm for segmenting multilingual documents into monolingual fragments was
introduced, reaching about 90% percent accuracy on 100-200 character length language
shifts. The accuracy for more frequent language shifts was about 70%. Several methods
were presented and compared for generalizing the method to handle noisy texts.

Finally, a heuristic filter algorithm for approximate string matching was described. It
showed good accuracy results, running significantly faster than classic edit distance

algorithms.

5.2 Further research

While the language classification problem has well established methods, language
segmentation has many open questions. The algorithm proposed was extremely sensitive
to the language shift rate, so a method for approximating this rate can significantly
increase performance by smarter parameter tuning. Another method for increasing

performance can be a machine learning approach for parameter estimation, a method that

57

was not tried thoroughly enough in this work. A different direction can be to revise the
shift smoothing process, by trying a different way than trying constant shift points.

The probabilistic approximate search algorithm needs to be further tested on larger
datasets, with patterns of various lengths and noise rates. A more accurate selection of the
sub-patterns can be considered. Another direction can be an OCR ad hoc tuning such as
considering specific substitution matrixes and error rates and test the change in

performance.

58

REFERENCES

10.

11.

12.

13.

Hearst, Marti A. 1993. TextTiling: A quantitative approach to discourse segmentation. Technical
Report Sequoia 93/24, Computer Science Division,

Sylvain Lamprier, Tassadit Amghar, Bernard Levrat, Frédéric Saubion. On Evaluation
Methodologies for Text Segmentation Algorithms. In Proceedings of ICTAI (2)'2007. pp.19~26

F.Y.Y. Choi, "Advances in domain independent linear text segmentation”, in Proceedings of the
Ist North American chapter of the Association for Computational Linguistics conference, 2000,

pp-

Hakkinen, J. Jilei Tian .N-gram and decision tree based language identification for written
words. Automatic Speech Recognition and Understanding, 2001. ASRU '01.

X. Tong, D. Evans. A Statistical Approach to Automatic OCR Error Correction in Context. In
Proceedings of the Fourth Workshop on Very Large Corpora, pages 88-100,Copenhagen,
Denmark, August 1996

K. Kukich. Techniques for automatically correcting words in text. In ACM Computing Surveys,
vol. 24, no. 4, 1992.

Hughes B, Baldwin T, Bird S, Nicholson J, and MacKinlay A. Reconsidering language
identification for written language resources. In Proceedings of the 5th International Conference
on Language Resources and Evaluation (LREC 2006), 485-488, 2006, Genoa, Italy

Friedberg Genizah Project website, http://www.genizah.org/TheCairoGenizah.aspx

OCR Post-Processing for Low-Density Languages”, Okan Kolak, Philip Resnik, Proceedings of
HLT-EMNLP '05, 2005

S. Chen, D. Misra, and G. R. Thoma. Eficient automatic OCR word validation using word partial
format derivation and language model. In L. Likforman-Sulem and G. Agam, editors,Document
Recognition and Retrieval XVII, 2010.

E. Giguet. 1996. The stakes of multilinguality: Multilingual text tokenisation in natural language
diagnosis.In Proceedings of the PRICAI Workshop on Future Issues for Multilingual Text
Processing.

Navarro, Gonzalo 2001. "A guided tour to approximate string matching". ACM Computing
Surveys

Hal Daum’e III and Daniel Marcu. Learning as search optimization: Approximate large margin
methods for structured prediction. InInternational Conference on Machine Learning (ICML),
2005.

59

http://ieeexplore.ieee.org.proxy1.athensams.net/search/searchresult.jsp?searchWithin=Authors:.QT.Hakkinen,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.proxy1.athensams.net/search/searchresult.jsp?searchWithin=Authors:.QT.%20Jilei%20Tian.QT.&newsearch=partialPref
http://ieeexplore.ieee.org.proxy1.athensams.net/xpl/mostRecentIssue.jsp?punumber=8037
http://www.genizah.org/TheCairoGenizah.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.7225&rep=rep1&type=pdf

Appendix 1 — collected corpora

English name

Hebrew name

Targum Onkelus, Targum Unkelus

DI7P1R 21N

Jerusalem Talmud, Talmud Yerushalmi

MW TIN7N

Torah, Pentateuch, Five books of Moses wmn ,ann
Mishnah mwn
The Guide for the Perplexed, Moreh o°2121 77M
Nevukhim
Kozari ekt

Maspik Ovdei Hashem, A Comprehensive
Guide for the Servants of God

aw;t P7WY PPoond

Tanakh TN
Bible commentaries Mo
Chazal o"n
Zohar S
Geonim ONRY
Rishonim DO IWR
Achronim jal ATy
Mishnah commentaries Twn MIwID
Minhag, Customs books AT
Mizvot, Commandments book nnEn >0
Machshava, Thought books ghlvigle
Maimonides o2
Tur M

60

Shulchan Aruch (Code of Jewish Law)

W W

61

