
 1

TEL AVIV UNIVERSITY

Raymond and Beverly Sackler

Faculty of Exact Sciences
The Blavatnik School of Computer Science

Tools to aid OCR of Hebrew character

manuscripts

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
In

Computer Science

by

Alex Zhicharevich

Thesis Supervisor:

Professor Nachum Dershowitz

February 2011

 2

Acknowledgments

I would like to thank my thesis advisor, Nachum Dershowitz for helping me focus on the

right problems, providing me with ideas and helpful insights when I needed and his

guidance throughout my work.

I would also like to express my appreciation to my wife Meital, my family and friends for

supporting me through the tougher moments.

 3

Abstract

Digitalization of historical and cultural documents can provide researchers new options

for conducting research on variety of subjects. Although OCR systems are the common

method for digitalization processes, they are sometimes not enough due to the poor

performance of those on documents that include handwriting, low contrast, writing style

shifts and various other characteristics of manuscripts. For those documents, the OCR

needs to be post-processed to allow successful utilization of the data contained in the

documents.

The thesis proposes various methods for such post-processing, using techniques from the

field of natural language and statistical language modeling. The methods proposed for

language classification, document segmentation and text searching. The methods are

designed to handle very noisy texts and tuned to work on Hebrew language, as part of the

project of the digitalization of the Cairo Genizah – a collection of ancient and medieval

Jewish work. The methods are tested on both real and artificially reduced documents.

 4

Table of Contents

Acknowledgments..2

Abstract ..3

Table of Contents ...4

List of Figures ..7

List of Tables ...8

INTRODUCTION 9

1.1 The Cairo Genizah ...10

1.2. Corpora collection ...11

1.3 Related work ..12

1.4 Structure ...13

LANGUAGE CLASSIFICATION 14

2.1 N-Gram approach...14

2.1.1 Unknown Classification ...17

2.1.2 Small and noisy documents ...19

2.2 Experiments and results ...21

2.2.1 Test settings ...21

2.2.2 Test Results ..22

2.2.3 "Unknown" classification tests ..23

2.2.4 Noisy texts ...25

SPLITTING BI-LINGUAL TEXTS 27

3.1 Background ..27

3.2 Algorithm Outline ..28

3.2.1 Splitting the text ...28

3.2.2 Feature extraction...29

 5

3.2.3 Classification phase ...31

3.2.4 Post processing...32

3.3 Noise Reduction ...32

3.4 Experiments and results ...33

3.4.1 Test settings ...33

3.4.2 Success Measures...33

3.4.3 Naïve splitting ..35

3.4.4 Feature evaluation ..37

3.4.5. Sentence accuracy ...41

3.4.6. Noise reduction ...42

CORPUS SEARCHING ERROR CORRECTION 44

4.1 Background ..44

4.1.1 Edit-Distance..45

4.1.2 Approximate string matching methods ..46

4.2 Error rate estimation ..47

4.2.1 Single Letter alignment ..47

4.2.2 Multi Letter alignment ...50

4.3 Proposed Algorithm ...51

4.3.1 The input ..51

4.3.2 The Algorithm ..52

4.4 Testing..55

CONCLUSIONS AND FURTHER RESEARCH 57

5.1 Conclusions ..57

5.2 Further research ...57

REFERENCES 59

Appendix 1 – collected corpora ...60

 6

 7

List of Figures

Figure 1: The difference between the average cosine distance of correctly classified texts

and mistakenly classified texts.. 18
Figure 2: The average of the offset measure (the difference between the maximum

similarities to the average similarity) of correctly and mistakenly classified documents. 19
Figure 3: Classification accuracy of different n-grams ... 23
Figure 4: The success rate, the error rate and the classification score of every method of

unknown classification.. 24
Figure 5: The performance of all noise reduction methods on 40 character length

documents ... 25

Figure 6: The performance of all noise reduction methods on 100 character length

documents ... 25
Figure 7: The fragment count ratio of the algorithm with considering neighbors and

without them as a function of l (d was chosen to 1500). .. 37
Figure 8: The word percentage of the algorithm with considering neighbors and without

them as a function of l (d was chosen to 1500). .. 37
Figure 9: The word percentage of the classification for different values of N 38
Figure 10: The word percentage rate of the algorithm with and without a clustering phase.

... 40
Figure 11: The correct words percentage of the algorithm with and without post-

processing (the N value was set to N=5) as a function of l .. 41
Figure 12: The algorithm word accuracy as a function of the noise rate P. Each line

shows the reduce in accuracy for every fragment length .. 43

Figure 13: The performance of the correction methods above as for each error rate. 43
Figure 14: The number of possible matches for string masked by three different letters, as

a function of the string length. .. 48
Figure 15: The percentage of correct matches of the patterns with errors searched in the

bible as a function of the OCR error rate. The patterns are 200 characters long 50
Figure 16: The percentage of a single match rates for a pattern in for various available

letter numbers as a function of fragment length. .. 51

file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394836
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394836
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394837
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394837
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394838
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394840
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394840
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394841
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394841
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394842
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394843
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394843
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394844
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394844
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394845
file:///C:/Users/azhicharevich/Desktop/Thesis%20-%20Final%20-%20captions.docx%23_Toc334394845

 8

List of Tables

Table 1: Classification accuarcy of distance function .. 22
Table 2: The splitting results of artificially mixed texts from three languages. The d and l

parameters are the length of the document and the fragment respectively, and d/l is the

average number of fragments in a document. For each d and l we calculated the average

evaluation measures. ... 36
Table 3: Fragments couples and their cosine similarity .. 39
Table 4: The percentage of the sentences correctly identified by the algorithm, with and

without neighboring fragments data, compared to the percentage of correct words

percentage. .. 42

Table 5: The percentage of correct matches of the patterns with errors searched in the

Bible. The second rows shows the average rank (in probability terms) of the correct string

... 50
Table 6: The algorithm results for several fragments. The columns show the original text,

the text as transcripted by the OCR, the transcript after the character omission, the

algorithm results and the best edit distance match of the string to the corpus.................. 56

 9

CHAPTER 1

INTRODUCTION

The Cairo Genizah is a combination of important scholarly works, community records

and ledgers, business and marriage contracts, personal letters and more. Among them are

original manuscripts in the hand of famous medieval scholars and personalities. The

digitalization of those manuscripts can open various research possibilities for cultural and

historical researchers. Nonetheless, this process poses challenges to the traditional

digitalization processes of scanning and recognition of text by an optical character

recognition (OCR) engine. Although virtually all the documents written in Hebrew script,

the fact that the manuscripts are handwritten, when handwriting can vary in style and

clearance, presents a big challenge to OCR systems. Other properties of the documents,

such as poor quality of the manuscripts, multiple languages, incomplete pages and other

challenges, make it impossible for an OCR engine to produce results that can satisfy the

minimal demands for any research. Hence, common method for handling noisy texts is

using some statistical, language oriented post-processing on the result to increase

accuracy.

The post-processing of a text relies on properties of the language the text is written in.

The tools present a scale up in the level of processing of the text, from geometric features

of written figures to the linguistic meanings of those characters as building blocks for

words. It is common, for example, to correct erroneous words by matching them to some

known words in a known vocabulary or to measure the probability of some character

combination in a language. Identification of the text language is a preliminarily for those

methods, in case the language is not given and cannot be implied from the

script/encoding of the characters. In the case of the Cairo Genizah, the texts appear in a

variety of Hebrew-script languages, such as Aramaic, Hebrew, Judeo-Arabic, Ladino and

 10

more. The degree of similarity between those languages also varies from languages

similar in style like Hebrew and Aramaic, to languages that share only the script with the

others, like Judeo-Arabic. Moreover, many of the documents are mixtures of paragraphs

in different languages, presenting a further challenge for the application of post-

processing tools on them since a straight forward classification of language cannot be

used.

Even after successful identification of the language of every part of the text, the

application of traditional correction methods is not straight forward. Due to the low

accuracy of the results produced by the OCR process, correction of text using single word

lookup is not satisfying. On the other hand, a significant part of the Genizah documents

are transcriptions of some known Jewish texts, which we can look for in pre-prepared

repositories. Therefore, an application of approximate string matching techniques for

searching the noisy text in this repository can be useful for such post-processing.

For the post-processing of OCR on Cairo Genizah documents we present a multi stage

scheme:

1. Identification of the document language.

2. Segmenting the document into monolingual fragments in the case of a multi-

lingual document.

3. Searching the text in a corpus according to language recognized.

1.1 The Cairo Genizah

The Cairo Genizah is a collection of over 350,000 Jewish manuscripts found in the loft of

the ancient Ben Ezra Synagogue in Fustat (medieval Cairo), to the south-west of the

modern city used as a repository between the 11th and 19th centuries. The dark, sealed

room in the arid Egyptian climate contributed to the preservation of the documents, the

earliest of which may date back to the eighth and ninth centuries. The Genizah texts are

written in various languages, especially Hebrew, Arabic and Aramaic, mainly on vellum

and paper, but also on papyrus and cloth. They represent the most important discovery of

http://www.bbc.co.uk/dna/h2g2/A2082818

 11

new material for every aspect of scientific Hebrew and Jewish studies in the Middle

Ages. In addition to containing Jewish religious texts, such as Biblical, Talmudic and

later Rabbinic works (some in the original hands of the authors), the Genizah gives a

detailed picture of the economic and cultural life of the North African and Eastern

Mediterranean regions, especially during the 10th to 13th centuries. Its documents reveal

a wealth of information about this previously little known period in Jewish history.

Today, a large portion of the Genizah's documents are available at Cambridge University

Library and at the Jewish Theological Seminary in New York. Smaller collections are

spread out in university library collections across the globe, among them London,

Oxford, Manchester, Paris, Geneva, Vienna, Budapest, St Petersburg, New York,

Philadelphia, Washington and Jerusalem; some are housed in private collections.

1.2. Corpora collection

The algorithms proposed below use statistical properties of the languages in

which Genizah documents are largely written. A significant effort was made for

collecting statistics on those languages, which are not commonly used nowadays, and

digital copies of documents in those languages are not widespread. The corpora collected

for Hebrew contains the Torah – the Pentateuch, and the Mishnah - the first major written

redaction of the Jewish oral traditions, which is also the first major work of Rabbinic

Judaism. For Aramaic, the corpus contains the Jerusalem Talmud - a collection of

rabbinic notes on the Mishnah, which was compiled in the Land of Israel during the 4th-

5th century. The Talmud, as a commentary on the Mishnah, contains significant number

of Hebrew quotes, so it is not pure Aramaic. Another Aramaic book is Targum Onkelos,

an official Aramaic translation of the Torah. For Judeo-Arabic, later works were collected

http://www.jewishvirtuallibrary.org/jsource/vjw/Englandtoc.html
http://www.jewishvirtuallibrary.org/jsource/vjw/France.html
http://www.jewishvirtuallibrary.org/jsource/vjw/Vienna.html
http://www.jewishvirtuallibrary.org/jsource/vjw/Budapest.html
http://www.jewishvirtuallibrary.org/jsource/US-Israel/phillyfed.html
http://en.wikipedia.org/wiki/Redaction
http://en.wikipedia.org/wiki/Oral_tradition
http://en.wikipedia.org/wiki/Rabbinic_literature
http://en.wikipedia.org/wiki/Rabbinic_literature
http://en.wikipedia.org/wiki/Rabbi
http://en.wikipedia.org/wiki/Mishnah
http://en.wikipedia.org/wiki/Land_of_Israel

 12

such as More Nevuchim (The Guide for the Perplexed) by Maimonides, the Kuzari by

Rabi Yehuda Halevy, and Hamaspik Ovdey Hashem by Maimonides son.

Other collections were obtained for further experiments, among which are the

Zohar in Aramaic, which is the foundational work in the literature of Jewish mystical

thought known as Kabbalah, the Shulkhan Arukh which is the most authoritative legal

code of Judaism and other Jewish religious work. A full list of the components of the

corpora is listed in Appendix 1.

For the use of the collection as a statistical reference, it was processed to clean of

irrelevant characters, unneeded lines and various punctuation signs. It was then tokenized

and n-gram statistics were collected.

1.3 Related work

Much work has been conducted in the field of OCR post-processing, most using

statistical approaches over N-grams or vocabularies. The methods over vocabularies

contain approximate string matching techniques for searching lists of all known words of

a language such as proposed by Chen et al (2010). Statistical methods use probabilities

over character combinations for correcting OCR errors, combined with confusion

matrices (Kukish, 1992). Kolak and Resnik (2005) advice the use of statistical methods in

the case of low density languages, where massive document sets for producing

vocabulary are not available. Methods for using word n-grams for such a process were

also introduced. However, little work has been done on using those methods on

multilingual documents. Approximate string matching methods for strings against

corpora were surveyed by Navarro (2001) and include dynamic programming algorithms,

filtering techniques and approaches using final automata.

http://en.wikipedia.org/wiki/Kabbalah
http://en.wikipedia.org/wiki/Codification_%28law%29
http://en.wikipedia.org/wiki/Codification_%28law%29

 13

Work on language classification has been widely studied (Hughes et al, 2006), mostly as

a classification problem. Two approaches dominate the work in this area, word based and

character based. Word-based approaches represent the text as a vector of words and use

supervised classification techniques for the identification of language. The character

based approaches do this by comparing n-gram probability distributions over each

language and the text (Hakkinen and Tian 2001).

The processing of multilingual documents was addressed by Giguet (1996), who

addressed the problem using grammatical words and end of word characters. The

processing was sentence-wise, and actually the segmentation process was not issued.

Related work on segmentation of text, usually of semantic nature, was pioneered by

Hearst (1993) and used sliding window techniques. Follow-up works utilized lexical

chains techniques, clustering, dynamic programming and other techniques (Choi, 2000).

1.4 Structure

The rest of this thesis is structured as follows: Chapter 2 describes the method for

language classification of documents. Chapter 3 describes the extension of the method for

segmenting multi-lingual documents into monolingual fragments. Chapter 4 presents the

algorithm for searching noisy texts in a corpus. Each of those chapters includes a short

background, description of the algorithm and experiments performed to test the

algorithm. Chapter 5 contains conclusions and discusses further possible research

directions.

 14

CHAPTER 2

LANGUAGE CLASSIFICATION

An important step in the digitalization process of manuscripts is language identification.

Apart from using the language to help catalogue the manuscripts, recognizing the

language is a crucial part for OCR processes. An OCR post-processing algorithm

(described in further in this work) assumes knowledge of the language of the manuscript

for choosing the appropriate corpus to scan.

2.1 N-Gram approach

An obvious fact is that different languages, even if utilizing the same character set, have

different distributions of letter occurrences. Therefore, gathering statistics on the typical

distribution of letters in each language may lead us to reveal the language of a

manuscript, by comparing its letter distribution to the distributions of known. A simple

distribution of the letters may not be enough, so a common technique in NLP is using n-

grams which means computing the distributions of all possible combinations of n letters.

Obviously, the number of possible combinations grows exponentially with n, so usually

the value of n does not exceed 4.

The classification process can be described by the following procedure

1. Collect n-gram statistics for all relevant languages.

2. Compute n-gram distribution on the manuscript.

3. Compute the distance of the manuscript's distribution from each language

using some distance function.

4. Classify the manuscript as the language with the minimal distance.

 15

The first task in computing the n-gram distributions is choosing n. In our experiments, we

tried unigram, bigram and trigram. The characters we considered were all Hebrew

alphabet letters, including “sofiot” (variants of letters that appear at the end of the words).

The only additional character used was the space character, under the assumption that

different languages can have different word lengths (for languages with shorter words the

space character will have higher appearance count) and that different languages tend to

have different letters ending a word (and then bigrams or trigrams containing those letters

followed by a space will appear more often). Specifically, when a human tries to identify

Aramaic texts, he may do it by looking for words ending by alef ('א'), a property strongly

correlated with this language. The probability function for an n-gram i is given by

 ()
 ()

∑ ()

It is easy to see that the denominator, which is the sum of all appearances of all n-grams

in the text, is just the length of the text (minus n). The formula implies that an n-gram that

was not spotted in the text has a zero probability, a fact that can be true for some n-grams

(for example n-gram which contains a letter that appears only at the end of the word

followed by a character which is not space), but is not generally correct. There are

techniques that smooth the distribution function, giving unseen n-grams a probability

larger than zero, but we chose not to address this problem by smoothing but by adapting

the distance function to handle such distributions.

The second missing detail in the algorithm is the distance function. Let be the alphabet

and the set of all n-grams over . Since the distribution function is discrete, we can

actually represent it as a vector of probabilities over , and transform the problem into a

vector distance problem. We tried the following three distance functions:

 Cosine similarity – this function is basically the cosine of the angle between two

vectors, measuring how similar are the directions of the two vectors. The value is

computed using the formula

 16

 ()

‖ ‖ ‖ ‖

∑ (() ())

√∑ (()) √∑ (())

The function is a similarity measure rather than a distance measure, therefore

when classifying a manuscript, the language with the highest similarity value is

taken (opposed to the minimal distance for other functions). It is also symmetric

and normalized to values between zero and one.

 KL Divergence - the Kullback–Leibler divergence, often referred to as

information gain, is a measure between two distributions, originated from

information theory. The function is defined as following

 () ∑ (() (
 ()

 ()
))

Note that there are several problems using this measure for classification

purposes. First, the function is not symmetric therefore we need to choose

whether d1 is the corpus language distribution or the manuscript distribution. It is

common to look at the KL divergence as a measure to how much a sample

distribution d2 differs from the “true” distribution, therefore, we used (after some

testing) d1 as the corpus distribution. Another challenge is the presence of zero

probabilities. If () or () then (
 ()

 ()
) is undefined. We

chose to ignore all n-grams not present in one of the distributions, which can of

course distort the distance (for example, if the manuscript and language have no

n-gram in common, the distance will be zero although it should be infinity) but

simplifies the function to match our needs.

 17

 Euclidean distance – this is the straight forward approach for measuring

distances between vectors. () √∑ (() ())

2.1.1 UNKNOWN CLASSIFICATION

For shorter fragments, we can expect poorer performance. On the other hand, if we

allow an “Unknown” classification, we can reduce the error rate for some such

fragments. To determine when the classification should be set to “Unknown” we need

some certainty measure for the classification. We can then set some threshold and

classifications with certainty above the threshold may be considered certain and

below the threshold will be considered uncertain or "unknown". This can be helpful

in many cases, especially when the classification precision is of high importance.

Using this method, "unknown" fragments can be further analyzed (maybe manually)

and classified fragments can enjoy very high certainty.

To get this certainty measure, we can look at the cosine similarities of fragments to

their closest language. We obviously expect them to grow as the fragment length

grows. For extracting the certainty measure we can use two methods:

Absolute distance – If the distance of the fragment to the classified language is very

high, we can be more certain of the classification. Here we assume that mistakenly

classified fragments will have lower similarity than the correct ones, as presented in

Figure 1. We then use regression to learn a function of the threshold dependency on

length. We tried establishing a linear logarithmic function of the form

 () where a, b, c and d are parameters to be determined by

regression.

 18

Figure 1: The difference between the average cosine distance of correctly classified texts and mistakenly

classified texts

We can see in Figure 1 that the accurately classified texts are classified with much higher

similarity then the mistaken ones so it looks possible to compute some threshold under

which we can say the classification is not certain.

Relative distance – Here we rely on the intuition that when a document is classified

correctly, its cosine similarity to the correct language is much higher than its similarity to

other languages. We can define a variable offset that will stand for the difference between

the cosine similarity of the fragment to the closest language and the document's average

similarity to all considered languages. More formally,

 () ()

Figure 2 shows that offset indeed is significantly larger when the classification is correct,

so we can use it as the certainty threshold as we can see that for wrongly classified

documents the offset is always in the range of 0.04-0.05

 Here, we will not set the threshold as a function of the length, but use the variance of the

similarity distances. For each document we can compute the standard deviation

std(document) of the cosine distances from each language. We will say that the

classification is certain if offset>a*std for some constant a.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 S
im

ila
ri

ty

Document length

right classification
average similarity

wrong classification
average similarity

 19

Figure 2: The average of the offset measure (the difference between the maximum similarities to the average

similarity) of correctly and mistakenly classified documents.

2.1.2 SMALL AND NOISY DOCUMENTS

Classifying OCR processed manuscripts poses several unique challenges not

encountered when handling traditional language classification of documents. One of

these challenges is handling a significant amount of noise in OCR outputs. Another

challenge is the frequency of extremely small texts, some with fewer than 50

characters. The significance of small documents classification rises when handling

the problem of multilingual document segmentation described below. The length of

the documents and the noise rates can make some statistic measures less efficient due

to distorted distributions or insignificance of statistics on small samples.

Several methods (Kukich, 1992) have been proposed for error correction using n-

grams and transition probabilities – the probabilities of one letter following another.

Here, we are not interested in error correction, but in the adjustment of the classifying

procedure to handle noisy texts. For noise representation we introduce the "$"

character to stand for a character unrecognized by the OCR system. We do not

discuss error recognition here and assume that errors are recognized and represented

by "$". A conservative OCR system could only output characters which have high

probability of correctness and output the rest as "$", so all misidentification mistakes

can be reduced to this notion. There is also no assumption that the word boundaries

will not be misidentified, so "$" can be produced instead of a space character.

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 O
ff

se
t

Document length

right
classification
average
offset
wrong
classification
average
offset

 20

Several methods are proposed:

Ignoring unrecognized n-grams – Here we do not count the n-gram containing "$"

in the cosine similarity measures. This requires no change from the regular pattern

since those n-grams do not appear in the language model anyway. Here we assume

there are enough bigrams left in the text to successfully identify its language.

Remove unrecognized characters – We can also remove the "$" fragment from the

text before starting any analysis. On the one hand, it looks natural to ignore all noise,

but on the other hand we lose the information that noise was indeed produced. For

example, $ב'א' will transform to 'אב' which may distort the n-gram distributions.

Error correction – Given an unknown character we can try correcting it using

trigrams. When observing "$" surrounded by a character L on its left and R on its

right, we can look for the most common trigram in each language containing L in the

beginning and R at the end. It looks natural to do this and enhances the statistical

power of the n-gram distribution. On the other hand, it does not scale well for high

noise rates since there is no solution for two or more consecutive "$" characters.

Averaging n-gram probabilities – When encountering "$", we can use averaging to

estimate the probability of the n-gram containing it. For instance the probability of the

bigram '$א' will be the average probability of all bigrams starting with 'א' in a certain

language. This can of course scale to higher n-grams and integrates the noisy

information into the computation.

Replacing the '$' – We can try to replace '$' by some other character without relying

on the language model. We do that by looking at the character L before it, and

searching the given text for another appearance of it. The character appearing after L

in the closest appearance to the '$' character will be the one we will choose to replace

it with. This is a quite heuristic and is not a statistic error correction, relying on

replacing an unknown bigram can be predicted using similar bigrams close to it in the

text will enhance the statistical significance of recognized bigrams.

Top n-grams – When looking at noisy text, we can say that more weight should be

given to the corpus statistics since it is error free. Moreover, since the text is short we

 21

expect to see only a small portion of the common n-grams in the text. Therefore we

may look only on the k most common n-grams in the corpus, assuming that they must

appear in the text regarding noise and length.

Higher or lower n-gram space – So far bigrams showed superior performance.

When the error rate rises and text length drops, the more distinctive n-grams such as

trigrams may produce higher success rates, while on the other hand, unigrams would

need shorter text sample for robust statistics so are also reconsidered.

2.2 Experiments and results

2.2.1 TEST SETTINGS

The success of language classification can depend heavily on the properties of the

test set. For the task of classifying manuscripts, there are several properties to be

considered:

Text length – manuscripts can be of different lengths, from a small number of

sentences up to a whole page that contains multiple paragraphs. It is clear that the

variance of the distributions of smaller texts is much higher, so the probability of a

statistical model extracted from a short text to differ from the language model is higher.

Therefore, we can expect a lower accuracy on shorter texts. For our experiments we

tested various text lengths to measure the influence of this parameter.

OCR error rate – Assuming that the classified text is a result of some noisy

process, we expect that high rate of noise will reduce the classification success rate. This

parameter was also tested and we present how we address highly erroneous documents.

Language set – Although our languages share the same character set, they can

still significantly differ from one another. For example, Hebrew and Judeo-Arabic are

 22

completely different, with little chance that a Hebrew speaker will understand Judeo-

Arabic even a little. On the other hand, some languages can share the same character set

due to common origins, which will resemble in the high similarity between them that can

make the classification task more difficult. Such are Hebrew and Aramaic that have many

similar words or a word in one language that is some variant or cognate of a word in the

other language. Needless to say that as the set of languages grows the classification task

becomes more difficult.

2.2.2 TEST RESULTS

To test the distance function we begin by selecting 300 documents, 100 in each

language, and try to classify those using bigrams with each of the above mentioned

distance functions. For this purpose we use prepared error-free text. Each document is

300 characters long.

Table 1: Classification accuarcy of distance function

From the results two facts arise clearly: The cosine and Euclidean functions have higher

accuracy than KL and the Judeo-Arabic language is much easier to spot then Hebrew and

Aramaic.

Three hundred characters are about four sentences which is a pretty short text. For similar

languages like Hebrew and Aramaic, it may be too short to get a good classification. We

also want to try out trigrams in order to gain better statistics. To test this, we classified

 Cosine KL Euclidian

Overall 0.94 0.81 0.94

Hebrew 0.93 0.78 0.94

Aramaic 0.89 0.72 0.89

Judeo-Arabic 1.00 0.94 1.00

 23

texts of various lengths, using unigrams, bigrams and trigrams. We tried it only on

Hebrew and Aramaic since we saw that Judeo-Arabic is distinguishable pretty easily.

Figure 3: Classification accuracy of different n-grams

From Figure 3, we can see that generally bigrams are the best method on all lengths.

For texts longer than 1000 characters the performance is perfect. On short texts

trigrams have low performance, which rises as the text size grows, but does not reach

the bigram performance even on long texts. Perhaps on really long texts, the

statistical power of trigrams would be more significant, but on page sized texts it is

inferior. Unigrams have poorer performance then bigrams even on the shortest texts.

2.2.3 "UNKNOWN" CLASSIFICATION TESTS

By allowing classification to return an "unknown" result, we obviously reduce the

error rate. On the other hand, since the unknown classification is not a correct

classification, it also reduces the success rate. To establish a fair measure, we can score a

successful classification as 1, an unknown classification by 0 and wrong classification by

-1. It is a "neutral" score since right and wrong classifications weigh the same. For error

sensitive classification the weight of the error should increase.

0.6

0.7

0.8

0.9

1
2

0
0

3
5

0

5
0

0

6
5

0

8
0

0

9
5

0

1
1

0
0

1
2

5
0

1
4

0
0

1
5

5
0

1
7

0
0

1
8

5
0

2
0

0
0

2
1

5
0

2
3

0
0

2
4

5
0

2
6

0
0

2
7

5
0

2
9

0
0

unigram

bigram

trigram

 24

For absolute threshold we estimated the threshold function as

 () where

a = 5.31E-02;

b = 1.29E-01;

c = 8.27E-01;

d = -1.18E+01;

Increasing a will make classification more error sensitive (lower error rate and lower

success rate) and decreasing it will give higher success rate (and error rate).

For relative threshold, we set , where a=0.8. As a grows, the

classification is more error sensitive (lower error rate), and as a reduces the success rate

grows.

Figure 4: The success rate, the error rate and the classification score of every method of unknown classification

Naturally, "unknown" classification methods reduce both the error rate and success rate.

We can see that the relative distance method is superior to the absolute distance, with

significantly lower error rates on almost every length and equal success rate. We can also

notice that for neutral classification score, the regular classification is superior to all

0.3

0.5

0.7

0.9

50 100 150 200 250 300 350 400 450
Document length

Success rate

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300 350 400 450
Document length

Error rate

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450

C
la

ss
if

ic
at

io
n

 S
co

re

Document length

Score

No Unknown

Absolute distance

Relative distance

 25

methods. Only when we measure the classification with an error sensitive score, do the

"unknown" classification methods become relevant.

2.2.4 NOISY TEXTS

A test to measure the performance of all noise reduction methods was done on various

document lengths. The error rate was simulated using the '$' character, that randomly

replaced text characters according to some error rate.

Figure 5: The performance of all noise reduction methods on 40 character length documents

Figure 6: The performance of all noise reduction methods on 100 character length documents

From Figures 5 and 6 we can see that usually, just ignoring the unrecognized character,

relying on the statistics of the recognized text, is the straightforward and best result.

Trigrams perform well only on short noise-free texts, and reducing the bigram to the top

100 performs well also, usually not very different by from the ignoring methods. Taking

the top 20 bigrams performs well only on very noisy texts as we can expect, presenting

poorer performance on other cases, it looks suitable only when the amount of noise is

0

0.2

0.4

0.6

0.8

0 0.15 0.3 0.45 0.6

C
la

ss
if

ic
at

io
n

ac

cu
ra

cy

Noise Rate

Ignoring '$'

Error correction

100 ngrams

20 ngrams

unigram

trigram

averaging probability

deleting '$'

replacing reslut

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.15 0.3 0.45 0.6

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

Noise Rate

Ignoring '$'

Error correction

100 ngrams

20 ngrams

unigram

trigram

averaging probability

deleting '$'

replacing reslut

 26

extremely high. Error correction methods do not perform well, except the enhancement of

replacing '$' with a character of neighboring bigram, which seems like a useful feature for

high noise rates.

 27

CHAPTER 3

SPLITTING BI-LINGUAL TEXTS

In the previous chapter we saw methods for language classification of manuscripts. The

methods work under the assumption that each manuscript is monolingual, and their

behavior on multilingual texts is unpredictable. As stated before, Genizah manuscripts

contain mixed texts which cannot be strictly classified to any one language. When we

look at texts of Jewish biblical philosophy or interpretation, we will usually find Aramaic

texts with lots of quotations in Hebrew. Classifying such texts as one language is rather

useless so instead of classification we are interested in a more general problem of

splitting the text into monolingual fragments, classifying each fragment to its language.

3.1 Background

The problem of fragmenting multilingual texts into monolingual fragments was not

addressed much, although it is a natural generalization of the language classification

problem (Hughes 2006). Several related methods can be useful for this type of

problems. The notion of structured learning is the generalization of the classification

task (Daume and Marcu, 2005) to extend the target to complex structures such as

sequences or trees. Theoretical general methods use Markov models or support vector

machines for such predictions, usually using massive datasets for learning. The

segmentation problem, as a simple case of structured learning, that results

classification sequences can be addressed using those very general methods.

More specific methods deal with segmentation of text, such as automatic paragraph

detection. All such methods use two modules, one classification model and a second

segment-boundary searching model. The most popular approach is the sliding-

window technique that looks for the most rapid change in classification scores for

detecting boundaries. The general scheme of the designed algorithm should not be

affected by noise unlike some sliding window approaches which apply classification

 28

to very small windows, a technique shown to be inefficient for classification of noisy

documents.

3.2 Algorithm Outline

For the splitting task, we assume that no dictionary is available and only n-gram

statistics of each language are known. We want the algorithm to work even if the

language shifts every few sentences so we do not assume anything about the length of

each fragment (We of course cannot count several words as a language shift). In the

general case there is also no assumption that the sentences in the text are marked, so it

can be a one long sentence as well. The algorithm has 4 major steps:

1. Split the text to fragments.

2. Calculate characteristics for each fragment.

3. Classify each fragment.

4. Refine classification result and output final results.

3.2.1 SPLITTING THE TEXT

As stated, we do not assume the documents are split into sentences or paragraphs. So

the splitting is done in the naïve way of segmenting the text into fixed size fragments.

Obviously, the language cannot shift in the middle of a word, so we do perform

adjustment of the fragments sizes to fall between words. If sentences are marked in

the text and we assume that the language cannot shift in the middle of the sentence,

then the adjustment described is done at the level of a sentence.

The selection of fragment size should depend on the language shift frequency.

Nonetheless, each fragment is classified using statistical properties, so it has to be

long enough to have some statistical significance. On the other hand, if it is too long,

the language transitions will be spotted less accurately, and if a fragment contains two

language shifts, the algorithm will not be able to classify the inner fragment (for

example if a fragment starts with Hebrew, shifts to Aramaic and ends in Hebrew, the

 29

algorithm can classify it as Aramaic or Hebrew, or split it into two languages in the

post-processing stage but cannot spot all three fragments). Moreover, the post-

processing phase is computationally more expensive, and its complexity grows

proportionally with the fragment length so we cannot choose a long fragment size.

3.2.2 FEATURE EXTRACTION

The core of the algorithm is the classification of the fragments produced by the first

step of the algorithm. Classification problems are usually reduced to vector

classification, so there has to be a method of representing each fragment as a vector of

features. Naturally, the selection of features is critical for successful classification,

regardless of the classification algorithm.

N-gram distance – The first and obvious feature is the classification of the fragment

using the methods described in Chapter 2. However, the fragments are

significantly smaller than the texts that were classified in the previous chapter, so

we can expect the accuracy to be much lower. The features in this case will be the

cosine distance from each language model rather than a single feature with the

result language. This is rather natural, since we want to preserve the distances

from each language model in order to combine it with other features further on.

For each fragment f and language l, we can compute ()

where () represents the cosine distance of the bigram distributions of l

and f.

Neighboring fragments language – We expect that languages in a document are not

shifting too frequently. It is a reasonable assumption, since paragraphs tend to be

monolingual and usually at least several sentences in a row are in the same

language to present some idea. Therefore, if we are sure that a fragment is in

some language, there is a high chance that the adjacent fragment will be in the

same language as well. One way to express such dependencies is by post-

 30

processing the results to reduce noise. Other way is by combining the

classification results of neighboring fragments as features in the classification of

the fragment. Of course, not only neighboring fragments can be considered, and

all fragments under some distance from the fragment can help in classification.

For example if we have a classification results of HHHAHHH (where H stands

for Hebrew fragment and A for Aramaic fragment), it looks possible that the A is

noise and should be H. On the other hand, if the result is HAHAHAH, there is no

reason to turn the middle A to H. Some parameter should be estimated to be the

threshold for the distance between fragments under which they will be considered

neighbors. We denote Neighbor(f,i) = if i is positive then the i'th fragment after f.

If i is negative the i'th fragment before f. If i=0 Neighbor(f,i) = f. So for each

fragment f and language l we can compute

 () (())

Whole document language - Another feature to be considered is the cosine distance

of the whole document from each language model. This feature tends to smooth

and reduce noise from the classification output. Note that for a monolingual

document the algorithm is expected to output a single fragment (the whole

document) classified as the right language. So for each language l we calculate

 ()

Clustering – a major drawback of the features presented so far is the fact that they

resemble statistical similarity between language models and very short text

fragments. To increase classification accuracy, we would like to classify longer

texts. In order to do so, we can cluster similar fragments together and then classify

the whole cluster as a single unit. It will obviously be longer than a single

fragment, so the classification will be more accurate, but there is no guarantee that

the clustered fragments will actually be monolingual.

 31

 The clustering is done using complete linkage hierarchical clustering. The idea is

to perform an iterative process where in each iteration we unify the two closest

clusters. Initially, all fragments are clusters containing only one fragment .In

every iteration, we unify the two closest clusters, where complete linkage stands

for the metric used for calculating distance between two clusters. The distance

between clusters is the maximal distance between any elements in the two

clusters. More formally () (()) where

 stands for fragment f1 belong to cluster C1. We end this iterative process

when the minimal distance between two clusters rises above some threshold T

(which in turn means there are two fragments that the distance between them

exceeds the threshold). In the end of the process we can compute the distance

between each cluster and each language model. For a fragment f we denote the

cluster that contains f as Clus(f) and for each fragment f and language l we can

calculate features (()). The threshold T for stopping the

clustering process represents the threshold between gaining bigger clusters which

can be better classified on one hand, and risking getting clusters that are not

monolingual on the other hand and is established empirically,

 Since the point of clustering is to get a longer text for classification, then the

bigger the cluster gets the more positive we are in its classification. Therefore,

the size of the cluster is another feature we want to consider in order to give more

significance to the features for longer clusters. So, for each fragment f we

denote by | ()| the number of fragments assigned to the same

cluster as f.

3.2.3 CLASSIFICATION PHASE

After the features have been extracted, the classification step is rather straight-

forward. We can either use some known supervised learning method, such as learning

the problem on a test set and producing a classifier, or we can try establishing some

 32

manual scoring formula using the features and classify by the language getting the

highest score.

3.2.4 POST- PROCESSING

We now want to refine the fragment splitting procedure. We do it in the following

way:

We look at the results of the splitting procedure and recognize all language shifts. For

each shift we try to find the position where the shift takes place (at word granularity).

We unify the two fragments and then try to re-split the fragment at N points. For

every such point we look at the cosine distance of the words before the point from the

language to which the first fragment was classified to and the cosine distance of the

words after the point to the language to which the second fragment was classified to.

For example, suppose the fragment A1….An was classified as Hebrew and the

fragment B1….Bm which appeared right after it in the text was classified as Aramaic.

We look at the text A1…An,B1…Bm and try to split it at N points (say N =3). So we

try to split it into F1=A1…A(n+m)/3 and to F2=A(n+m)/3…Bm (suppose

((n+m)/3)<n). We look at cosine distance of F1 to Hebrew and F2 to Aramaic since

those were the languages to which the fragments were originally classified to. Then

we try to look at F1 = A1…A(2*(n+m)/3) and F2 = A(2*(n+m)/3)…Bm, and so on.

We take the split point with the smallest product of the two values. The choice for N

is a tradeoff between accuracy and computation efficiency. When N is higher, we

check more transition points, but for large fragments it can be computationally

expensive.

3.3 Noise Reduction

As for language classification, the segmentation algorithm can be extended to handle

noisy documents. As the splitting and shift recognition phases are not expected to be

noise sensitive, the classification phase of each segment is the best stage for handling

 33

noise. We test the segmentation success rate on all noise correction methods

presented in the noise handling section for classification.

3.4 Experiments and results

3.4.1 TEST SETTINGS

We want to test the algorithm with well-defined parameters and evaluation factors.

For this purpose we created artificially mixed documents, containing fragments from

two different languages (we can do it using Hebrew and Aramaic, which are difficult

to distinguish, Hebrew and Judeo-Arabic where classification is easy and the

fragmentation is the main challenge, or do it with three languages). The fragments

were produced using a procedure that accepts two parameters: The desired document

length d and the average fragment length l – where a fragment is a continuous text

block of only one language. Obviously . The procedure iteratively chooses a

number in the range [l-20,l+20] and takes a substring of this size from a corpus of

one language. The substring is adjusted to contain whole words only. It repeats this

on all corpora of all other languages and then restarts with the first language until the

whole text reaches the size of d.

Obviously l and d are of significance. For very small l, it will be very difficult to

fragment the document exactly, since the text blocks will not be long enough for

statistic tests. As for d, it is clear that the average number of fragments inside the

document is

. As n grows larger it is more difficult for the splitting algorithm to

be right for all fragments, and since n grows with d, we will expect to see a higher

absolute error rate.

3.4.2 SUCCESS MEASURES

Obviously, the splitting procedure will not be perfect, and we cannot expect it to

precisely split the document to the original fragments. Given that, we want to

establish some measures for the quality of the splitting result. We would like the

measure to produce some kind of score for the algorithm output, which can indicate

 34

whether a certain feature or parameter in the algorithm improves it or not. However,

the result quality is not well defined since it is not clear what is more important:

detecting the fragment's boundaries accurately, classifying each fragment correctly or

even splitting the document into the exact number of fragments. For example, given

a long document in Hebrew with a small fragment in Aramaic, is it better to return

that it actually is a long document in Hebrew with an Aramaic fragment but

misidentify the fragment's location or rather recognize the Aramaic fragment

perfectly but classify it as Judeo-Arabic.

We established three evaluation measures, with which we test the algorithm accuracy:

Correct word percentage – The most intuitive measure is simply measuring the

percentage of words classified correctly. Since the "atomic" block of the text is words

(or sentences in some cases described further), which are certainly monolingual, this

measure will resemble the algorithm accuracy pretty good for most cases. It is

however not enough, since in some cases it does not reflect the quality of the

splitting. Assume a long Hebrew document with several short sentences in Aramaic.

If the Hebrew is 95% of the text, a result that classifies the whole text as Hebrew will

get 95%, but it is actually a pretty useless result and we may prefer a result that

identifies the Aramaic fragments but errs on more words (say classifies the two

Hebrew sentences before and after the Aramaic sentence also as Aramaic).

Fragment count ratio (FCR) – This measure estimates the algorithm sensitivity to

language shifts. It counts the difference between the real number of fragments to the

number of fragments returned by the algorithm. To normalize it is divided by the

number of real fragments. Obviously, []. It will indeed resemble the

problem previously described, since if the entire document will be classified as

Hebrew the FCR score will be very low as the actual number of fragments is much

higher than one.

 35

Splitting edit-distance (ED) – Counting the number of fragments (FCR) will allow

the evaluation of the sensitivity of the splitting in the algorithm. However, it does not

resemble the quality of the classification stage output. Going back to the same

example, FCR will return the same result even if the algorithm will recognize the

Aramaic fragment as Judeo-Arabic. In order to evaluate if the algorithm classifies

correctly, we define the following measure: label each language in the language set

by 1…n. such that each document can be represented by a vector representing the

languages of its fragments. The ED will be the edit-distance between the vectors of

the actual fragment decomposition to the vector produced by the split of the algorithm

(this measure is not normalized so it supposed to grow with d/l). For instance, given a

document which contains Hebrew text, then Aramaic, then Hebrew and Judeo-

Arabic, it will be presented as HAHJ. If the algorithm misidentified the Aramaic

fragment it will return HJ so the ED will be the edit distance between HAHJ and HJ,

which is 2. If it will misclassify the Judeo-Arabic as Aramaic and produce HAHA, the

ED will be 1. We can notice that if the language set contains only two languages,

there is no point to the ED measure, since it will return the absolute value of the FCR

measure. Due to the fact that each character in the classification language vector is

different from the character following it (if they are the same they would be unified to

the same character), the edit distance on binary vectors is just the length difference up

to ±1.

Therefore we will only use this measure when the language set contains more than

two languages.

3.4.3 NAÏVE SPLITTING

To get a reference on each feature of the algorithm, we will run a naïve algorithm on

the documents. The basic algorithm will simply split the document, classify each

fragment in the way documents are classified, and output the result. We want to test

how d and l affect each classification parameter using this naïve scheme.

 36

Table 2: The splitting results of artificially mixed texts from three languages. The d and l parameters are

the length of the document and the fragment respectively, and d/l is the average number of fragments in a

document. For each d and l we calculated the average evaluation measures.

From Table 2 we can see how the measures behave on various document and

fragment lengths. First of all, it is easy to see that as l grows, the correct word

percentage grows as well, regardless of document length. This is rather intuitive,

since longer fragments are easier to recognize and classify. The FCR is obviously

strongly dependent on the number of fragments, and if the number of fragments in a

document grows it is harder to accurately estimate it. We can notice that, although the

algorithm splits the document into fragment of 40 characters, if the average fragment

length is 50 characters, the algorithm underestimates the number of fragments (splits

it into fewer fragments than needed). When the average fragment length is 100 or

more, the algorithm overestimates the number of fragments. The last observation is

d l d/l Correct words FCR ED

500 50 10.00 0.729 1.24 1.36

500 100 5.00 0.827 -0.48 0.56

500 150 3.33 0.847 -1.33 1.33

500 200 2.50 0.869 -1.77 1.77

500 250 2.00 0.902 1.45 1.45

1000 50 20.00 0.729 -2.64 2.68

1000 100 10.00 0.824 -0.62 0.9

1000 150 6.67 0.856 -1.52 1.56

1000 200 5.00 0.850 -2.75 2.79

1000 250 4.00 0.880 -2.61 2.61

1500 50 30.00 0.718 4.4 4.48

1500 100 15.00 0.813 -1.1 1.42

1500 150 10.00 0.841 -2.21 2.33

1500 200 7.50 0.859 -3.67 3.69

1500 250 6.00 0.882 -3.46 3.5

2000 50 40.00 0.716 5.93 5.95

2000 100 20.00 0.818 -0.82 1.54

2000 150 13.33 0.838 -3.28 3.36

2000 200 10.00 0.860 -4.47 4.49

2000 250 8.00 0.874 -4.63 4.63

 37

that ED is very close to FCR, probably due to the low rate of misclassification, so

further test will consider only the correct word percentage and the fragment count

ratio.

3.4.4 FEATURE EVALUATION

3.4.4.1 Neighboring fragments

The first enhancement to consider is the way a fragment's classification is affected

by neighboring fragments. To do that, we begin by checking if adding the cosine distance

of the closest fragments will enhance the algorithm performance. We define

 () (() ()). For the test, we set

a=0.4

We can see that on long fragment lengths, the neighboring fragments improve

classification, while on shorter ones, classification without the neighbors was superior. It

is not surprising that by using neighbors the splitting procedure tends to split the text into

longer fragments, which has a beneficial effect only if fragments actually are longer. We

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 150 200 250

Correct
Words

Percenta
tge

Document Length

No
Neighbours

With
Neighbours

-6

-4

-2

0

2

4

6

8

10

12

14

50 100 150 200 250

Fr
ag

m
e

n
t

C
o

u
n

t
R

at
io

Document length

No
Neighbours

With
Neighbours

 Figure 8: The word percentage of the algorithm with

considering neighbors and without them as a function of

l (d was chosen to 1500).

Figure 7: The fragment count ratio of the algorithm

with considering neighbors and without them as a

function of l (d was chosen to 1500).

 38

can also see from Fig. 7 that the FCR is now positive with l=100 which means the

algorithm underestimates the number of fragments even when each fragment is 100

characters long. By further experiments, we can see that the a parameter is not

significant, and we fix it to be 0.3.

As expected, looking at neighboring fragment can improve results in most cases.

The next question to be asked is if farther neighbors can improve it also. We try the

following scoring function: () ∑ (

) (()

 ()) . N stands for the longest distance of neighbors to consider in

the score. The parameter a is set to 0.3.

We can see that increasing N does not have a significant impact on the algorithm

performance, and on shorter fragment lengths performance drops with N. We conclude

that there is no advantage at looking at distant neighbors and looking at the closest

fragments is enough.

3.4.4.2 Clustering

The next thing we test is how the clustering method described above can enhance

the algorithm. As stated before, the clustering refines a fragment's classification by

classifying similar fragments in the same document together which can allow for more

0.5

0.6

0.7

0.8

0.9

1

50100150200250

Word Percentage

N=1

N=2

N=3

N=4

Figure 9: The word percentage of the classification for different values of N

 39

accurate classification, since texts are longer. There are several parameters to consider:

since the clustering method is hierarchical, there needs to be some similarity score below

which we stop clustering. We set this similarity to 0.55, meaning two fragments that have

lower similarity then 0.55 cannot be clustered together.

Table 3: Fragments couples and their cosine similarity

To gain some perspective Table 3 demonstrates fragment couples with their

cosine similarities. We can see that fragments with over 0.6 similarity usually have

common words (even long ones), a fact that makes it reasonable to assume they are in the

same language. When similarity drops, the fragments look more random and we do not

want to cluster them together for classification.

Fragment 1 Fragment 2
Cosine

similarity

לעני אלהים סח יב אדני יתן אמר
 המבשרות צבא

 0.56 את תמר אחתו יג לג ועתה אל ישם אדני המלך

אישתא עלתא הוא קורבן דמתקבל
 ברעווא קודם

למדבחא עלתא הוא קודם לאתקבלא ברעווא
 0.78 קורבנא

לבדו מת כי על פי אבשלום היתה
 שומה מיום ענתו

בתי על אדמת עמי קוץ שמיר תעלה כי על כל
 משוש

0.52

לעיני בני עמי יהבתה לך קבר מיתך
 0.49 כספא דמי חקלא סב מיני ואקבר ית מיתי תמן וסגיד אברהם

אל בית ישראל ואפתח את פי
 ויאכילני את המגלה

את המגלה הזאת אשר אני נתן אליך ואכלה
 0.61 ותהי

 40

 Figure 10: The word percentage rate of the algorithm with and without a clustering phase.

As seen in Figure 10, the clustering phase does not modify results dramatically,

compared to the other features of the algorithm. It can be explained by the fact that

clustered fragments were already correctly classified, where the mistaken fragments that

needed their classification corrected were not clustered because of their anomaly.

3.4.4.2 Post-Processing

Another thing we test is the post-processing of the results splitting to refine the

initial fragment choice. We try to move the transition point from the original position to a

more accurate position using the technique described above. We note that it cannot affect

the FCR measure, since we only move the transition points without changing the

classification. As shown in Figure 4.5, it does improve the performance for every value

of l.

0.5

0.6

0.7

0.8

0.9

1

50100150200250

C
o

rr
e

ct
 W

o
rd

s
P

e
rc

e
n

ta
ge

Document Length

Basic

neighbours

clustering (with
neigbours)

clustering (no neighbours)

 41

3.4.5. SENTENCE ACCURACY

To test the success rate on sentences, we do the same procedure as for words, but the

classification and mixed fragment creation works at sentence granularity. For simplicity,

we mark 8 consecutive words of the same language as a sentence and mark the end of it

by '.'. In the artificial test creation phase, each fragment contains several language of each

language (instead of creating fragments with the number of characters, we now create it

according to the number of sentences). In the splitting phase, we do not split it at arbitrary

word, since it is certain that each sentence is monolingual. Therefore, we skip the

refinement stage at the end of the algorithm and test how good the sentence rate

classification is (what percentage of the sentences were recognized correctly), and the

improvement of the algorithm using neighboring fragment data. We note that for short

fragment length documents each fragment contains only one sentence, so the most we can

expect on those documents is the accuracy of language classification on sentence length

(about 30 characters) texts. The results are given in Table 4, and we can see that for low l

values, the success rate is even lower than the word percentage, since it uses only

language classification of sentences (the neighboring data only decreases accuracy in this

0.5

0.6

0.7

0.8

0.9

1

50100150200250 C
o

rr
e

ct
 W

o
rd

 P
e

rc
e

n
ta

ge

Document length

Without Post
Processing

with
PostProceesing

Figure 11: The correct words percentage of the algorithm with and without post-processing (the N value

was set to N=5) as a function of l

 42

case since neighbors are surely have different language). For longer fragments, the

classification rises above the words percentage.

3.4.6. NOISE REDUCTION

To test the noise reduction, we artificially introduce noise in the text by randomly

replacing some letters with the "$" character. We denote the desired noise rate by P and

for each letter independently replace it with the "$" character with probability P. Since

the replacement of each character of the text is mutually independent, we can expect a

normal distribution of the error positions in the text and the correction phase described

above does not assume anything about the error creation process. The error creation does

not assign different probabilities for different characters in the text unlike natural OCR

systems or other noisy processing.

l

Correct

words

percentage

Correct sentence

percentage (no

neighbors)

Correct sentence

percentage (with

neighbors)

50 0.72 0.68 0.59

100 0.81 0.84 0.81

150 0.84 0.87 0.88

200 0.86 0.87 0.92

250 0.88 0.88 0.93

Table 4: The percentage of the sentences correctly identified by the algorithm, with and without

neighboring fragments data, compared to the percentage of correct words percentage.

 43

Not surprisingly Figure 12 illustrates that the accuracy decreases as the error rate rises.

However, it does not significantly drop even for very high error rate, and obviously we

cannot expect that the error reducing process will perform better than the algorithm

performs on errorless text.

Figure 13 illustrates the performance of each method. It seems that looking at the

most common n-grams does not help nor is correcting the unrecognized character.

Ignoring the unrecognized character, using either bigrams or trigrams, and estimating the

missing unrecognized bigram probability, show the best (and pretty similar) results.

0.7

0.75

0.8

0.85

0.9

0.95

0.1 0.2 0.3 0.4 0.5C
o

rr
e

ct
 W

o
rd

s
P

e
rc

e
n

ta
ge

Noise Rate

100 150 200 250

0.7

0.75

0.8

0.85

0.9

0 0.1 0.2 0.3 0.4 0.5C
o

rr
e

ct
 W

o
rd

s
P

e
rc

e
n

ta
ge

Noise Rate

trigrams

Ignoring

error correction

avearge bigram

top 40 bigrams

top 10 bigrams

Figure 12: The algorithm word accuracy as a function of the noise rate P. Each line

shows the reduce in accuracy for every fragment length

Figure 13: The performance of the correction methods above as for each error rate.

 44

CHAPTER 4

CORPUS SEARCHING ERROR CORRECTION

The ability to identify the language of documents opens possibilities for creating simple

catalogues and enhances search options for digitalized documents. As for text produced

by an OCR process, it opens up the option of post-processing the text to enhance OCR

accuracy. This is especially important for extremely noisy OCR processes, where the

produced text cannot be used without further improvement.

A common technique in OCR post-processing is approximate string matching. We

assume the text is a part of some big known corpus, and the problem is reduced to finding

the correct sub-text in the corpus that corresponds to the processed document. In

processing Hebrew manuscripts in the Genizah corpus, it highly likely that the

manuscript is part of some known book, and searching for it can reveal the text that the

OCR could not accurately recognize. Assuming we identified the language using the

techniques from the previous chapters, we can use those language models also to improve

the OCR result. This is relevant for extremely noisy texts, for which searching

approximate in the corpus may not provide with good results.

4.1 Background

String searching is a well-studied problem in computer science with many established

algorithms and strong theoretical background. The basic problem of finding a string

in a long text has well known solutions such as the Knuth-Morris-Pratt (KMP) and

Rabin-Karp algorithms, which are linear in the text size. The problem of approximate

string matching is a generalization of this problem, where the goal is to find a

substring of the text that best matches some search pattern, where matches are ranked

using some distance functions. Approximate string matching has applications in

 45

variety of fields in computer science especially computational biology, information

retrieval and spell checking.

4.1.1 EDIT-DISTANCE

To deal with approximate matching, we first need to define what an approximate

match is. This of course depends on the application, but one of the most popular

similarity measures for strings is edit-distance, also known as Levenstein distance. The

edit distance between two strings is defined by the minimal number of edit operations

needed to be performed on one string for it to exactly match the other. The edit

operations allowed in the basic form of edit distance are insertion, deletion and

substitution of letters. For example, given the words “train” and “ruins” we can perform 3

edit operations: deleting the ‘t’ letter (getting rain), substitution of ‘a’ by ‘u’ (getting ruin)

and inserting the ‘s’ character at the end to get “ruins”. Hence, the edit distance is 3.

Edit distance is highly suitable for OCR correction purposes, since the allowed

edit operations are pretty consistent with the errors an OCR engine may perform. It is

frequent for an OCR to skip a character or to recognize some irrelevant symbol as a letter

(insertion and deletion operations), and of course confuse one character with another

(substitution). We can use edit distance to approximate the probability the OCR engine

will produce one string from the other, in the sense that the lower the edit distance is , the

higher the probability for the OCR to produce one string as an output on the second

string. A generalized version of the edit distance problem assigns different weights for

insertion of each character, deletion of each character and substitution of each character

with each other character. This can match the different probabilities of mistakes made by

the OCR engine (it is more likely for the OCR to replace two characters that have

geometric similarity). Other string distance functions do not reflect the nature of OCR

engines. The popular Hamming distance allows only substitution of letters, but gives

 46

infinite distance for two strings with different lengths, which will assign zero probability

for an OCR to miscalculate the length of its input (which is way above zero obviously).

The generalization of Levenstein distance, Damerau-Levenstein, is popular in spelling

correction because of the additional edit operation of substitution of two letters. As

opposed to human typing, which have high probability of confusing character order, OCR

scans the text linearly, so this function does not suit our requirements. Other string

distance function popular in natural language processing usually use phonetic or semantic

word properties, while OCR usually uses geometric properties of characters.

The edit distance between two strings is usually computed using a dynamic

programming procedure. The computation complexity is O(n*m) where n and m are the

lengths of the two strings.

4.1.2 APPROXIMATE STRING MATCHING METHODS

There are several approaches to the approximate string matching problem. Some

of them are mainly theoretical in nature, where the practical ones are dynamic

programming, filtering and indexing.

Dynamic programming techniques are a search generalization of the distance

computation method, by trying to compute distance from every possible starting point in

the text. The run time of those methods is usually close to O(n*m) where n is the text

length and m is the pattern length. The main drawback of those methods is the large

space requirements that dynamic programming matrices need to manage. For large

corpora, this can make it inapplicable, since there are searches of patterns of thousands of

characters in texts of tens of millions of characters.

Filtering methods use heuristics to eliminate indexes in the text that cannot be the

best solution. There is usually some fast scanning of the text, which will make the search

 47

phase more efficient. The search phase usually makes use of dynamic programming

techniques, so worst case scenarios will be similar to the dynamic programming

complexity. Those methods are much more convenient for our purpose.

Indexing methods preprocess the text, which in turn enhances the matching

procedure. Those methods are suitable for applications that perform multiple searches on

the same text. The indexing is usually computationally expensive and has high memory

consumption and the search algorithms are complex and difficult to modify.

4.2 Error rate estimation

Applying string matching techniques for correction of OCR process has unique

properties, due to the unknown accuracy of the OCR process. Although edit-distance is

suitable for estimating the probability of a string being produced by the OCR, there is still

no guarantee that the closest substring in a text in terms of edit distance is the actual

string. In other words, we want to estimate how efficient application of string matching

techniques to OCR correction problem is and what OCR accuracy is needed for it to be

efficient.

4.2.1 SINGLE LETTER ALIGNMENT

The first thing we test is the application of string matching techniques, under the

assumption the OCR can accurately recognize only one character of the alphabet. We

first try exact matching, meaning we assume the OCR recognizes the letter perfectly. For

this purpose, we choose an arbitrary string in the text, mask it, in the sense we leave only

one letter in the string and turn all other characters into the ‘$’ sign, and search for it back

in the text. We denote by () the average number of alignments for substrings of

length n (over 500 random strings) which was masked to contain only the letter l. We

 48

used the Bible, which is 1505034 characters long, as the text to search in. We expect the

number of alignments to rise as the text grows.

As shown in Figure 5.1, we can see that for frequent letters (such as ‘י’ which has 10%

frequency), the search yields a single match on strings longer than 110 characters. For

rare characters, even on 200 character strings, it still has over 1000 correct matchings,

making the search irrelevant. So if OCR recognizes only rare characters we demand

much longer documents.

4.2.1.1 Single letter with errors

After testing the straight forward approach of exact matching, we try to extend it to

inexact substrings. We still assume the availability of only one letter. Suppose the

substring is a copy of some fragment of the original text, while errors can be taken place

in the copying process. We can look at a probability matrix of copying errors. Suppose

we have a probability of to get a letter l in the copy even when the original text

contained something else. It means that we have a probability of only to get

another character (denote it by $) in the copy when there appeared $ in the original text.

Symmetrically, we define by the probability of getting $ in the copy when the original

1

10

100

1000

10000

100000

1000000

22426282102122142162182

Allign(n)

N

 ל

 י

 ד

Figure 14: The number of possible matches for string masked by three different

letters, as a function of the string length.

 49

text contained l, and it means we only have probability to copy the letter l

correctly.

For the test, we set P1=0 and P2=0.05. This means that the OCR does not produce “false

positives” and identify l where it did not appear. It does have a 0.05 probability to miss a

character l and produce something else. For example given a string “אדאבדאהדאבדא” which

contains 4 occurences of the character 'ד', the probability of getting “$ד$$ד$$ד$$ד$” (exactly

correct OCR) is , since the probability of correct recognition of the letter is 0.95.

The probability for “$$$$ד$$ד$$ד$” is (3 correct identifications and one

mistake). This can be the nature of a very conservative OCR, that identifies some

character only when there is very high probability it is actually it and therefore does not

produce false positives.

The test we produced selects an arbitrary string, leaving only a character l in the string,

while with probability P2 we replace the appearances of l into $. Then the new pattern is

searched in the text and the match with the highest probability (as defined above) is

returned. We are interested to know when the returned match is actually the string that

was selected and masked. We use the character 'ל' as l, which is an average letter with

0.05% appearance.

Pattern length
Percentage of correct

matches

Average rank of original

string

500 1.000 1.000

350 1.000 1.000

250 0.995 1.025

200 1.000 1.000

160 0.985 1.015

120 0.945 14.385

100 0.860 21.610

 50

As shown in Table 5, for fragments of 200 characters and longer, there is high probability

for the best match to actually be the correct fragment. For fragments longer than 100, the

results are reasonable; below that results are poor, so we cannot expect string matching to

show good performance. When the error rate rises, the success rate drops as shown in

Figure 15. The performance is reasonable for error rates below 25%.

4.2.2 MULTI LETTER ALIGNMENT

When scaling to several letters, we obviously expect the searching success rate to

increase. It is obvious due to the higher rate of recognized characters but also due the

veracity of symbols needed to be matched. Figure 16 illustrates the success rate for

matching patterns containing various amounts of different letters, and we can see

accuracy increases with the increase in number of letters.

80 0.675 514.93

60 0.375 1760.85

Table 5: The percentage of correct matches of the patterns with errors searched in the Bible. The second rows

shows the average rank (in probability terms) of the correct string

0.6

0.7

0.8

0.9

1

0.05 0.15 0.25 0.35 0.45

Noise Rate

Matching Success rate

Figure 15: The percentage of correct matches of the patterns with errors searched in the bible

as a function of the OCR error rate. The patterns are 200 characters long

 51

4.3 Proposed Algorithm

We propose an algorithm for post-processing OCR results by approximately

searching a corpus of text. The algorithm has to deal with relatively large patterns and

corpora, and the fact that the pattern is extremely noisy, so the search result may be

considerably different from the pattern.

4.3.1 THE INPUT

The corpus is a long text (several millions of characters) denoted by T. The OCR

results are given by the following: for each character in the OCR’ed text , we get a set

of characters and a set of probabilities () () which stand for the

probability that the character I of the pattern (the scanned text) is . Notice that the

∑ ()

 do not necessary add to 1, since some of the probabilities are neglected. For

most characters only one option is given.

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 80 100 120 140 160 180 200

Document Length

one letter two letters three letters four letters

Figure 16: The percentage of a single match rates for a pattern in for various available letter

numbers as a function of fragment length.

 52

We assume that the accuracy of the OCR is pretty low, which means that only

about half of the top scored letters produced by the OCR are correct. The probabilities of

each character are not high (most of them below 0.5, which is just a good guess), and in

addition insertions and deletions of characters can occur frequently. On the other hand,

the pattern is assumed to be quite long so, we can use that fact to perform a more accurate

search.

4.3.2 THE ALGORITHM

The proposed algorithm is actually a filter algorithm, where the filtering is

heuristic, and uses substring of the pattern. The length of the corpus and fragment makes

it very difficult to run a classic dynamic programming algorithm. The fact that the input

is so noisy will make most filter algorithms inefficient.

The algorithm proposed follows the following scheme:

1. Clean the corpus and the pattern from characters that are poorly

recognized.

2. Iteratively choose a substring of the pattern and search for it in the corpus

3. Combine the results into the one best result

The first stage handles the cleaning of the pattern from the noisy characters. We estimate

the probability of each character to be the average of the probabilities attached to the

character at all its occurences. More formally, () ()| ()

 . If the OCR engine proposed the character l as an option for the I'th place

of the pattern, we consider it in the average of the probabilities of l. The estimation P(l) is

an approximation for how accurate the engine handles the character l. The estimation is a

combination for the OCR recall and precision on the character. After the estimation of

accuracies for all characters we pick a threshold below which all letters will be neglected.

 53

The threshold should be estimated empirically and depends on the accuracy of the OCR.

As shown in the previous section, even one character with reasonable error rate can be

enough for searching a fragment of even medium length. Therefore the threshold should

be set high enough for the extra recognized characters to increase rather than decrease the

success of the search. All characters below the threshold are replaced by an "unknown"

character both in the pattern and the corpus.

The second step is iterative search. In each iteration, we select a substring of the pattern

and search for it in the corpus. The length of the substring should be the shortest possible,

such that, using the characters chosen in step 1, the search is expected to return one result

only. In other words, we would like to search for a sub-pattern long enough so the search

will return match (or matches) in the corpus with high probability. When searching, we

use the dynamic programming technique, assuming the sub-pattern is relatively short for

efficient search. The result of each search is an interval [a..b], where a and b are the

starting and ending indexes of the match in the corpus. We define the following

variables:

l- the sub-pattern length, L- pattern length

r – the index of the sub-pattern in the pattern

a,b – the indexes in the corpus that define the match of the sub-pattern

Insert ratio - a parameter estimating the frequency of insertion mistakes made by

the OCR engine.

From a, b, we define an interval [i1..i2] which will estimate the position of the whole

pattern in the string. Since the sub-pattern is in indexes [a..b] we naturally would expect

to find the whole pattern at indexes [a-r…b+(L-(r+l))], by extending the match of the

interval by the distance of the sub-pattern the pattern boundaries. Since we expect some

 54

insertion mistakes we extend the interval to [a-(1+InsertRatio)*r…b+(1+InsertRatio)(L-

(r+l))] to estimate the alignment of the pattern with the mistakes. The estimated interval

is the result of each search iteration.

In the third step we combine all intervals into a single result. The combination algorithm

is as follows:

1. Initialize

2. For each [i1,..i2] in Results

2.1. If contains Interval such that []

2.1.1. []

2.1.2. []

2.1.3.

2.2. Else

2.2.1. (

[] [])

3.

4. [a..b] = The search of pattern in Intmax.Intersection

5. Return [a..b]

The combination algorithm is based on the fact that the corpus is significantly longer than

the pattern. Given an interval returned, we compare it to all other intervals returned by

other searches. If two intervals intersect, they’re union is considered to be one (longer)

interval. If an interval does not intersect with others, it is considered new. The algorithm

tries to unify all intervals and counts the number of intervals joined in each union and we

expect only one interval to be counted a significant number of times and classify all

 55

others as noise. We then search for the fragment back in the interval to return the final

result.

4.4 Testing

The testing was done on several outputs of an OCR system operated on Genizah

fragments. The input was as described in the section 2, where the number of iterations

was 20 and the sub-pattern length was 50. The minimum accuracy, under which

characters were omitted, was set to 0.5.

Original Text OCR result OCR output

with prob >

0.5

Algorithm

Output

Best Match

שמייםליהוהוהארץנתןלבנ
יאדםלאהמתיםיהללויהול
אכלירדידומהואנחנונברךי
המעתהועדעולםהללויהא
הבתיכיישמעיהוהאתקולי
תחנוניכיהטהאזנוליובימי
אקראאפפוניחבלימותומצ
רישאולמצאוניצרהויגוןאמ
צאובשםיהוהאקראאנהיהו
המלטהנפשיחנוןיהוהוצדי
קואלהינומרחםשמרפתאי
םיהוהדלתיולייהושיעשובי

חיכיכייהוהגמלענפשילמנו
ליכיכיחלצתנפשיממותאת
עינימןדמעהאתרגלימדחי
אתהלךלפנייהוהבארצות
 החייםהאמנתיכיאדבראני

שסיסלידודארץכעןלבני
אדסלאדתיילוידולאכליו
רדידומואשנונברךידעת
דעולסדלוידאדזבעיכיש
עידודארוליעחנוניכידסר
אזנויוביסיארראאוניחבל
ישתומצרישאולצאוניצדו
גוןאמצאובשםידואררא

ודלטכשינוןידודוצאנאיד
דידואדינוסרחסשוערת
איסיזוזדלייייליידושיעשו
בינשילסנוחיכיכיידודגמ
לעיכיכיחלצתנשיממועא
עעיניסדסעדאערגליאע
דלךלניידודבארדחייפד
אסנעיכיאדבראניגליאע
 דל

ב$ן$$רץ$ידוד$$י$ש
וידולא$יי$אד$יאדס$

ך$$$נו$$ו$כליורדידו
$לסדלוידאד$$ד$$יד
ח$י$ו$$ידוד$$יכי$ב
יא$י$נויוראז$יד$י$נו
ר$$ו$$בלי$י$או$ר$

$א$דוגו$צאוני$ו$יש
$ראא$וא$שםי$$א$

ןידודו$$שי$$אידודל
$רחסשו$ואדינו$די$
יידו$יי$י$ד$ו$י$י$$ר

נוחיכי$$י$$שיעשובי
$יחל$לעיכי$$כיידוד

ד$$עינ$א$ו$$שי$$
$דלךל$יא$רג$דא$$
$$פדא$י$רד$$$יידו
ד$יא$יג$דברא$יכי$

 $ל

והארץנתןלבניאדםל
אהמתיםיהללויהולא

ידומהואנחנונכלירד
ברךיהמעתהועדעול
םהללויהאהבתיכיי
שמעיהוהאתקולית
חנוניכיהטהאזנוליוב
ימיאקראאפפוניחבל
ימותומצרישאולמצא
וניצרהויגוןאמצאוב
שםיהוהאקראאנהי
הוהמלטהנפשיחנוןי
הוהוצדיקואלהינומר
חםשמרפתאיםיהוה
דלתיולייהושיעשובי
נפשילמנוחיכיכייהוה
גמלעליכיכיחלצתנפ
שיממותאתעינימןד

גלימדחיאמעהאתר
תהלךלפנייהוהבאר
צותהחייםהאמנתיכי
 אדבראני

ליהוה והארץ נתן
לבני אדם לא המתים
יהללו יה ולא כל ירדי
דומה ואנחנו נברך יה
מעתה ועד עולם
הללו יה אהבתי כי
ישמע יהוה את קולי
תחנוני כי הטה אזנו
לי ובימי אקרא
אפפוני חבלי מות
ומצרי שאול מצאוני
צרה ויגון אמצא

ם יהוה אקרא ובש
אנה יהוה מלטה
נפשי חנון יהוה וצדיק
ואלהינו מרחם שמר
פתאים יהוה דלתי ולי
יהושיע שובי נפשי
למנוחיכי כי יהוה גמל
עליכי כי חלצת נפשי
ממות את עיני מן
דמעה את רגלי מדחי
 אתהלך לפני י

עניתימאדאניאמרתיבחפז
יכלהאדםכזבמהאשיבליהו
הכלתגמולוהיעליכוסישועו

בשםיהוהאקראנדתאשאו
ריליהוהאשלםנגדהנאלכל
עמויקרבעינייהוההמותהל
חסידיואנהיהוהכיאניעבדך
אניעבדךבןאמתךפתחתל
מוסרילךאזבחזבחתודהוב
שםיהוהאקראנדריליהוהא

עניסאדאניאסדעיבהזיכלד
אדסכוזככלדזאדסכוזכללד
אשדודכלעגמולודיעליכוסי
שועועאשאובשסידזודזאד
ראכדרילידודאשלנגדדנאל
כלעמויבעיניידודדמותדלחי
דיואנידודכיאניעכדךאניעב
דךבןאמתךעחתלוסרילדא
זבחזבהתודדובשסידודאד
זראנדרילידודאשלנגדדלכ

$$

$ז$יב$$$א$נ$ד$$י
ד$דז$כ$דסכוז$ד$כ

$$שדודכ$ד$$$סכוז
$ו$יכוסישו$$ודי$ו$$

$$א$וד$יד$אשאובש
ד$נ$ש$וד$י$רי$$$

יידוד$ויבעי$$לכל$$ד
ידודכי$ידיוא$דל$ו$ד
$בדךבן$כדךאני$י$א

יתימאדאניאמרתיב
חפזיכלהאדםכזבמ
האשיבליהוהכלתגמ

ליכוסישועותולוהיע
אשאובשםיהוהאקר
אנדריליהוהאשלםנג
דהנאלכלעמויקרבעי
נייהוההמותהלחסיד
יואנהיהוהכיאניעבד
ךאניעבדךבןאמתךפ

אני אמרתי בחפזי כל
האדם כזב מה אשיב
ליהוה כל תגמולוהי
עלי כוס ישועות אשא
ובשם יהוה אקרא
נדרי ליהוה אשלם
נגדה נא לכל עמו יקר
בעיני יהוה המותה
לחסידיו אנה יהוה כי
אני עבדך אני עבדך

 56

שלםנגדהנאלכלעמובחצר
ותביתיהוהבתוככיירושלם
הללויההללואתיהוהכלגוי
םשבחוהוכלהאמיםכיגבר
עלינוחסדוואמתיהוהלעול
כםהללויההודוליהוהכיטוב

 ילעולם

לעובהותביתידודבעוככייו
ושלסשלסבתלדזודזבעככ

דללוידדללזאעידודכלגוידז
ללזאעלוזכלגושכחזדוכלד
אומיסכיגכעליוחסדוואעעיו

וכלדאומיסכיݭעולסדללויד
 $גכעליוחסדווא

זב$$ריל$לו$$$ך$$
$ו$שסי$ודדו$$ב$$

ילידודאש$ד$$ר$$א
$בי$ו$וב$$דדלכ$$ל

$ב$$וככייוש$$דוד$
$ד$$ככוש$$$וד$ד$
ו$$ודכ$י$$$וידדלל$

$וש$$כ$לו$$$ידזלל
ל$$כיג$י$ו$דוכלד$$

ל$ולסד$יו$$דווא$$יו
$$כיג$י$ו$וכלדݭ$וי

דווא$$ליו $

תחתלמוסרילךאזב
חזבחתודהובשםיהו
האקראנדריליהוהא
שלםנגדהנאלכלעמו
בחצרותביתיהוהבת
וככיירושלםהללויהה
ללואתיהוהכלגויםש
בחוהוכלהאמיםכיגב
רעלינוחסדוואמתיהו

ההודוהלעולםהללוי
ליהוהכיטובכילעולם
 חסדויא

בן אמתך פתחת
למוסרי לך אזבח
זבח תודה ובשם

קרא נדרי יהוה א
ליהוה אשלם נגדה
נא לכל עמו בחצרות
בית יהוה בתוככי
ירושלם הללו יה הללו
את יהוה כל גוים
שבחוהו כל האמים כי
גבר עלינו חסדו
ואמת יהוה לעולם
 הללו יה הודו

כבשיביאקרבנולחטאתנק
בהתמימהיביאנהוסמךאת
ידועלראשהחטאתושחטא
תהלחטאתבמקוםאשריש
חטאתהעלהולקחהכהןמד

באצבעוונתןעלקםהחטאת
רנתמזבחהעלהואתכלדמ
הישפךאליסודהמזבחואת
 כלחלבהיסירכאשריוסר

לישייאררונרזתמיריביןוךעי
העלרשןרמושמאררחמברו
שרישמדעלריייןודןחרןרעב
אצכץוזעלידמנץרלרואכדמ
רזושרליסזדורמזבחואכלח
 לסישיומרו

$$$

ביןו$$י$$$נר$ר$$יי
$$$ו$$רשן$ע$$$$

$$$$$$$$ו$$$$$$
$$$$$$ן$$ן$$ן$$י$

$ו$$$$$$$$$$$ו$
$$$$$$$$$$$$$$

שיו$$$$$$$ו$$ז$$
$$$

לואחותתובלקיןנעמ
הויאמרלמךלנשיועד
הוצלהשמעןקולינשי
למךהאזנהאמרתיכי
 אישהר

להויאמרואליואישבע
לשערואזורעוראזורב
מתניוויאמראליההת
 שביהואוישלחאליו

החטאתבמקוםהעלהולקח
הכהןמדמהבאצבעוונתןעל
קרנתמזבחהעלהואתכלד

ואמהישפךאליסודהמזבח
תכלחלבהיסירכאשרהוסר
חלבמעלזבחהשלמיםוהק
טירהכהןהמזבחהלריחניח
חליהוהוכפרעליוהכהןונסל
 חלוואם

ריחטאבץזרעליוררכדןמד
מריבבעווןעלרריזברערזאי
דכלדמריישךאליסורזבחיו
רכלרלבריסיבשרזסלבמזז
רשיוררמיררכרמזבדלחגי
 ההיבירג

$$$$$$$$$$$

עוו$$$$$$$ן$$ר$יו
$$$$$$$$ז$ר$$$$

$$$$$שך$$$$$$$
$$$$$$$ר$$$$$$

שי$ז$$$$$$$ש$י$
$$$$$$$$$יר$$ר$

י$ $$$$$$$

מיםאשרמעללרקיעו
יהיכןויקראאלהיםלר
קיעשמיםויהיערבוי
היבקריוםשניויאמר
 אלהיםי

גידביזרעאלוירכביהו
אוילךיזרעאלהכייורם
שכבשמהואחזיהמלך
 יהודהיר

והקטירהמזבחהעלאשייה
והחטאתהואוכפרעליוהכה
ןעלחטאתואשרחטאמאח

תהלכתמאלהונסלחלווהי
הןכמנחהוידבריהוהאלמש
הלאמרנפשכיתמעלמעלו
חטאהבשגגהמקדשייהוהו
 הביאאתאשמוליהוהאיל

ורירזסרדימזרשייחטריזבר
עליורדןעמעורחזמאיחמלר
ונלוורירלככהנחרןוידביאמי
רןאמנכישכירסלמעלוזץטא
 רבמרייורבירזזיויל

$יי$$$$$$$$$$$$ו
$$ן$$$$$ע$$$י$$

ו$$$$$$$$$$$$ור$
$$$ו$$$נ$$$$יר$$

$$י$יש$$$$$$$$$י
יו$$$רב$$$$$$ע$$

וי$ז$$בי$ $

והארץהיתהתהוובה
ווחשךעלפניתהוםור
וחאלהיםמרחפתעל
פניהמיםויאמראלהי
םיהיאורויהיאורוירא
 אל

ויעלמשםבארשבעויר
אאליויהוהבלילהההו
אויאמראנכיאלהיאבר
 הםאביךאל

Table 6: The algorithm results for several fragments. The columns show the original text, the text as

transcripted by the OCR, the transcript after the character omission, the algorithm results and the best edit

distance match of the string to the corpus

As seen in Table 6, the algorithm presents good results and approximates the original

fragment well for reasonable OCR performance. The results are similar to the best edit

distance matching. For extremely noisy OCR output, the results are not accurate, since

edit distance cannot be a good approximation for the result and other methods need to be

applied.

 57

CHAPTER 5

CONCLUSIONS AND FURTHER RESEARCH

5.1 Conclusions

This thesis presented methods for three slightly different but connected problems. A

statistical algorithm for language classification of Hebrew script documents was

presented, using bigram distributions. The algorithm showed over 95% accuracy for most

of the documents, rising to perfect 100% performance on documents longer than 800

characters. It also showed a method for higher precision the error rate by allowing the

classification algorithm to return an unknown result.

 An algorithm for segmenting multilingual documents into monolingual fragments was

introduced, reaching about 90% percent accuracy on 100-200 character length language

shifts. The accuracy for more frequent language shifts was about 70%. Several methods

were presented and compared for generalizing the method to handle noisy texts.

 Finally, a heuristic filter algorithm for approximate string matching was described. It

showed good accuracy results, running significantly faster than classic edit distance

algorithms.

5.2 Further research

While the language classification problem has well established methods, language

segmentation has many open questions. The algorithm proposed was extremely sensitive

to the language shift rate, so a method for approximating this rate can significantly

increase performance by smarter parameter tuning. Another method for increasing

performance can be a machine learning approach for parameter estimation, a method that

 58

was not tried thoroughly enough in this work. A different direction can be to revise the

shift smoothing process, by trying a different way than trying constant shift points.

 The probabilistic approximate search algorithm needs to be further tested on larger

datasets, with patterns of various lengths and noise rates. A more accurate selection of the

sub-patterns can be considered. Another direction can be an OCR ad hoc tuning such as

considering specific substitution matrixes and error rates and test the change in

performance.

 59

REFERENCES

1. Hearst, Marti A. 1993. TextTiling: A quantitative approach to discourse segmentation. Technical
Report Sequoia 93/24, Computer Science Division,

2. Sylvain Lamprier, Tassadit Amghar, Bernard Levrat, Frédéric Saubion. On Evaluation
Methodologies for Text Segmentation Algorithms. In Proceedings of ICTAI (2)'2007. pp.19~26

3. F.Y.Y. Choi, "Advances in domain independent linear text segmentation", in Proceedings of the
1st North American chapter of the Association for Computational Linguistics conference, 2000,
pp.

4. Hakkinen, J. Jilei Tian .N-gram and decision tree based language identification for written
words. Automatic Speech Recognition and Understanding, 2001. ASRU '01.

5. X. Tong, D. Evans. A Statistical Approach to Automatic OCR Error Correction in Context. In
Proceedings of the Fourth Workshop on Very Large Corpora, pages 88-100,Copenhagen,
Denmark, August 1996

6. K. Kukich. Techniques for automatically correcting words in text. In ACM Computing Surveys,
vol. 24, no. 4, 1992.

7. Hughes B, Baldwin T, Bird S, Nicholson J, and MacKinlay A. Reconsidering language
identification for written language resources. In Proceedings of the 5th International Conference
on Language Resources and Evaluation (LREC 2006), 485–488, 2006, Genoa, Italy

8. Friedberg Genizah Project website, http://www.genizah.org/TheCairoGenizah.aspx

9. OCR Post-Processing for Low-Density Languages”, Okan Kolak, Philip Resnik, Proceedings of
HLT-EMNLP '05, 2005

10. S. Chen, D. Misra, and G. R. Thoma. Eficient automatic OCR word validation using word partial
format derivation and language model. In L. Likforman-Sulem and G. Agam, editors,Document
Recognition and Retrieval XVII, 2010.

11. E. Giguet. 1996. The stakes of multilinguality: Multilingual text tokenisation in natural language
diagnosis.In Proceedings of the PRICAI Workshop on Future Issues for Multilingual Text
Processing.

12. Navarro, Gonzalo 2001. "A guided tour to approximate string matching". ACM Computing

Surveys

13. Hal Daum´e III and Daniel Marcu. Learning as search optimization: Approximate large margin
methods for structured prediction. InInternational Conference on Machine Learning (ICML),
2005.

http://ieeexplore.ieee.org.proxy1.athensams.net/search/searchresult.jsp?searchWithin=Authors:.QT.Hakkinen,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org.proxy1.athensams.net/search/searchresult.jsp?searchWithin=Authors:.QT.%20Jilei%20Tian.QT.&newsearch=partialPref
http://ieeexplore.ieee.org.proxy1.athensams.net/xpl/mostRecentIssue.jsp?punumber=8037
http://www.genizah.org/TheCairoGenizah.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.7225&rep=rep1&type=pdf

 60

Appendix 1 – collected corpora

English name Hebrew name

Targum Onkelus, Targum Unkelus תרגום אונקלוס

Jerusalem Talmud, Talmud Yerushalmi תלמוד ירושלמי

Torah, Pentateuch, Five books of Moses תורה, חומש

Mishnah משנה

The Guide for the Perplexed, Moreh

Nevukhim

ה נבוכיםמור

Kozari הכוזרי

Maspik Ovdei Hashem, A Comprehensive

Guide for the Servants of God

 המספיק לעובדי השם

Tanakh תנך

Bible commentaries פרשנות

Chazal ל"חז

Zohar זהר

Geonim גאונים

Rishonim ראשונים

Achronim אחרונים

Mishnah commentaries משנהפרשנות

Minhag, Customs books מנהג

Mizvot, Commandments book מצוותספרי

Machshava, Thought books מחשבה

Maimonides רמבם

Tur טור

 61

 Shulchan Aruch (Code of Jewish Law) ערוךשולחן

