
Tel-Aviv University

Raymond and Beverly Sackler Faculty of Exact Sciences

The School of Computer Science

Parallel Multithreaded

Satisfiability Solver:

Design and Implementation

A thesis submitted in partial fulfillment

of the requirements for the degree of Master of Science

by

Yulik Feldman

The research work in this thesis has been carried out

under the supervision of Prof. Nachum Dershowitz

January 2005

Abstract

This thesis describes the design and implementation of a highly optimized, mul-

tithreaded algorithm for the propositional satisfiability problem. The algorithm

is based on the Davis-Logemann-Loveland sequential algorithm, but includes

many of the optimization techniques introduced in recent years. The docu-

ment provides experimental results for the execution of the parallel algorithm

on a variety of multiprocessor machines with shared memory architecture. In

particular, the overwhelming effect of parallel execution on the performance of

processor cache is studied.

Contents

1 Introduction 3

2 The SAT problem and basic terminology 5

3 Sequential SAT algorithms 8

3.1 DLL algorithm . 8

3.1.1 Backtrack search . 8

3.1.2 Boolean constraint propagation (BCP) 10

3.2 Conflict-driven learning . 14

3.2.1 Implication graph . 15

3.2.2 Conflict clauses . 17

3.2.3 Non-chronological backtracking 19

3.2.4 Conflict clause deletion 19

3.3 Branching heuristics . 19

3.4 Restarts . 21

4 Parallel SAT algorithms 22

4.1 Search space partitioning . 22

4.2 Task scheduling . 24

4.3 Conflict clause exchange . 26

4.4 Thread synchronization overhead 28

5 Solver implementation 30

5.1 Data-oriented classes . 31

5.1.1 CAssignment . 31

5.1.2 CClause . 31

5.1.3 CConfiguration . 32

1

5.1.4 CImplication . 33

5.1.5 CLemmaContainer . 34

5.1.6 CLiteral . 34

5.1.7 CStatistics . 34

5.1.8 CTask . 36

5.1.9 CVariable . 37

5.2 Algorithm-oriented classes . 39

5.2.1 CClauseBuilder . 39

5.2.2 CConflictAnalysis . 39

5.2.3 CDecisionStrategy . 42

5.2.4 CParser . 44

5.2.5 CSolver . 44

5.2.6 CTaskList . 45

5.2.7 CThread . 47

5.3 Other classes and algorithms . 51

5.3.1 CIndexWeightPairLess . 51

5.3.2 CTaskLess . 51

5.3.3 CThreadId . 51

5.3.4 main() function . 51

6 Testing environment 52

7 Experimental performance results 56

8 Related work 64

9 Conclusion 66

2

Chapter 1

Introduction

This thesis describes the design and implementation of a highly optimized, par-

allel multithreaded algorithm for solving the propositional satisfiability problem

(SAT). SAT is a fundamental problem in the theory of computation, one that

has been studied extensively for more than four decades, ever since the intro-

duction of the first algorithm for its solution in 1960 [7]. Eleven years later

it became the first problem proven to be NP-complete, in a famous paper by

Cook [5]. Nowadays, the problem evidences great practical importance in a

wide range of disciplines, including hardware verification [30], artificial intelli-

gence [18], computer vision [4] and others. Indeed, one survey of satisfiability

[9] contains over 200 references to applications.

In spite of its computational complexity, there is strong demand in industry

for high-performance SAT-solving algorithms. Over the years, many different

approaches and optimizations have been developed to tackle the problem more

efficiently. Algorithms have evolved gradually by extending existing methods

with new, more powerful, optimizations. Current research on propositional

satisfiability is focused on two classes of SAT solving methods: complete al-

gorithms and incomplete procedures. Complete methods, mostly represented

by backtrack search algorithms, identify both satisfiable and unsatisfiable prob-

lems, and show reasonably good performance on both types. Incomplete meth-

ods, mostly represented by variations of local search procedures, perform much

faster on satisfiable problems, but incur the price of not always being able to

demonstrate unsatisfiability. The fact that backtrack search algorithms are able

3

to cope with unsatisfiable problems usually makes them the preferred choice in

domains where proofs of unsatisfiability are required.

The implementation of a complete backtrack search parallel algorithm de-

scribed in this document incorporates most of the state-of-the-art sequential

technologies introduced in recent years. The emphasis has been on providing an

efficient portable implementation that would work on any typical multiproces-

sor workstation in an industrial environment and improve runtime, as compared

with the core sequential algorithms, by distributing the workload over several

processors on one machine. To make sure the implementation is efficient and

that low-level implementation details are properly understood, the implemen-

tation of the solver was not based on existing publicly available source code of

other solvers, but instead was designed and coded from scratch. The imple-

mentation was carefully crafted to enable a direct comparison of its behavior

with existing sequential algorithms. After the implementation of the algorithm

was completed, its behavior in different real-life environments was measured. In

particular, the effect of concurrent execution of multiple threads on the behav-

ior of platform architecture primitives, such as processor cache, bus utilization

and resource allocation, was investigated. The main contribution of this work

is that it shows the general disadvantageousness of parallel execution of a back-

track search algorithm on a multiprocessor workstation, due to increased cache

misses.

The remainder of this document is organized as follows: the next chapter

describes the SAT problem and basic terminology. Chapter 3 gives an overview

of the state-of-the-art sequential algorithms used in the implementation of the

solver, while Chapter 4 describes the methods used to parallelize these algo-

rithms. Chapter 5 shows implementation details of the solver, and Chapter

6 gives an overview of tools and methods used to test the implementation.

Chapter 7 reports on the results of experimental runs of the solver in various

configurations. Chapter 8 describes related work in the area of parallel SAT

solving, and is followed by a brief conclusion.

A paper on this work was presented at 3rd International Workshop on Par-

allel and Distributed Methods in Verification (PDMC 2004) [1] and published

in [10].

4

Chapter 2

The SAT problem and basic

terminology

The propositional satisfiability problem can be formulated easily in one sen-

tence: given a boolean formula, determine whether an assignment of boolean

truth values to the propositional variables in the formula exists, such that the

formula evaluates to true. If such an assignment exists, the formula is said to

be satisfiable; if no such assignment exists, it is unsatisfiable.

This chapter describes the basic terminology used in discussions of satisfia-

bility problem. More advanced terminology, used in the context of specific SAT

solving algorithms, is given in the next chapter.

Although there are many ways to represent a boolean formula, conjunctive

normal form (CNF) is most frequently used for this purpose. In general, it

is not a limitation to use CNF for the representation of formulas, since any

boolean formula can be transformed to an equivalently satisfiable formula in

CNF (with extra variables) in polynomial time [26]. In CNF, the variables

of the formula appear in literals, which are either a lone variable (x) or the

negation of a variable (x̄). Literals are grouped into clauses, which represent a

disjunction (logical or) of the literals they contain. A single literal can appear

in any number of clauses. The conjunction (logical and) of all clauses represents

a formula. For example, the CNF formula (x1 ∨ x̄2) ∧ (x̄3) ∧ (x1 ∨ x3) contains

three clauses: x1 ∨ x̄2, x̄3 and x1 ∨ x3. Two literals in these clauses are positive

(x1, x3) and two are negative (x̄2, x̄3). Note that for a variable assignment to

5

satisfy a CNF formula, it must satisfy each of its clauses. For example, if x1 is

true and x3 is false, then all three clauses are satisfied, regardless of the value

of x2.

A boolean variable can be assigned one of two boolean truth values: false

or true. The false value is sometimes referred as the value zero (0), while the

true value is sometimes referred to as one (1). If a variable is assigned a truth

value, it is said that it is an assigned variable. If a variable is not assigned

a truth value, its value is undetermined, or irrelevant, and it is said that the

variable is unassigned variable. Similarly, literals are also said to be assigned or

unassigned. When a variable is assigned a specific value v, the positive literals

based on this variable are assigned the value v and the negative literals based

on this variable are assigned the opposite value. Given an assignment to all

formula variables, the value of each clause and the value of the whole formula are

evaluated according to the semantics of logical operations. If the clause evaluates

to true, it is said that the assignment satisfies the clause, or, alternatively, the

clause is satisfied. If the clause evaluates to false, it is said that the assignment

does not satisfy the clause, or, alternatively, the clause is unsatisfied. If all

formula clauses evaluate to true, the formula also evaluates to true and is said

to be satisfied. If at least one clause evaluates to false, the formula evaluates

to false and is said to be unsatisfied. As mentioned above, if an assignment to

formula variables exists such that the formula is satisfied, the formula is said

to be satisfiable and such an assignment is called a satisfying assignment. On

the other hand, if no such assignment exists, the formula is unsatisfiable. All

possible assignments to variables of such a formula are unsatisfying. Existence

of a satisfying assignment for a given formula is referred to as satisfiability of

the formula.

If a variable assignment assigns a value to all formula variables, it is called a

full assignment. For a formula with n variables, there are 2n possible full assign-

ments. If only some of the formula variables are assigned, such an assignment

is called partial.

Note that if the same literal appears more than once in a single clause,

the additional instances of the literal may be easily removed from the clause

without affecting the satisfiability of the formula. In the following discussions,

it is assumed that at most one instance of each literal is found in each clause,

based on the presumption that redundant literal instances have been removed

6

during early stages of the SAT-solving algorithm.

Another easily detectable redundancy is the case when both positive and

negative literals of the same variable are present in the same clause. In such a

case, the clause and the formula can not be satisfied by any assignment. It is

assumed that such cases are also detected in early stages of the algorithm and

therefore do not have to be taken care of at later stages.

7

Chapter 3

Sequential SAT algorithms

The sequential SAT solving algorithm used in the implementation of the parallel

SAT solver is based on the commonly used Davis-Logemann-Loveland algorithm

(DLL) [6]. The following sections describe the original DLL algorithm and a

number of optimization techniques that can enhance the original algorithm to

achieve better results. All the techniques shown in this chapter were imple-

mented in the parallel SAT solver described in this document.

3.1 DLL algorithm

The Davis-Logemann-Loveland algorithm is a backtrack search SAT-solving

algorithm extended with an optimization technique called boolean constraint

propagation. The following sections describe the principles of a backtrack search

SAT solving algorithm and the boolean constraint propagation optimization

technique.

3.1.1 Backtrack search

The backtrack search algorithm performs a methodical search of variable as-

signments, trying to satisfy the formula. To build the variable assignments, the

algorithm chooses variables in a certain order and incrementally assigns a value

to each variable. As long as the resulting partial variable assignment does not

falsify the formula, the algorithm continues to choose variables and assign a

value to the chosen variables. If the resulting partial variable assignment falsi-

8

fies the formula, the algorithm assigns an opposite value to the last variable it

chose and checks whether the resulting assignment still falsifies the formula. If

the formula becomes satisfied, the algorithm proceeds with assigning more vari-

ables. If the formula is falsified independently of the value of the last assigned

variable, the algorithm backtracks to the previous variable and assigns it an op-

posite value. The algorithm continues the search in similar fashion, assigning,

reassigning and unassigning variable values until either all variables are assigned

and the formula is satisfied or until all possible variable assignments are covered

and no satisfiable assignment is found. Note that the algorithm does not ex-

plicitly visit all 2n assignments, since it backtracks once a partial unsatisfying

assignment is found. Still, the complexity of the algorithm is exponential.

The above algorithm can be also described as a depth-first-search (DFS)

algorithm on a binary tree of partial variable assignments. Each node in that

tree represents a partial variable assignment. Each node has two children nodes,

representing an extension of the partial variable assignment of the node with

assignment to another variable, assigning the false value for the first children

node and the true value for the second. The depth of the binary tree equals

the number of variables in the formula. The leaves of the tree represent the full

variable assignments. The number of leaves is 2n, corresponding to the total

number of full variable assignments. The DLL algorithm can be seen as a DFS

traversal of that tree, in which the algorithm backtracks as soon as it reaches a

node representing an unsatisfying partial assignment. The algorithm ends when

it reaches a node representing satisfying partial or full assignment (in which

case it reports satisfiability of the formula), or when the whole tree is traversed

(in which case it reports unsatisfiability of the formula). The tree of partial

variable assignments is commonly called the search tree. The traversal of the

search tree combined with the backtracks is commonly called backtrack search.

Figure 3.1 shows an example of a search tree for the formula (x1∨x2∨ x̄3)∧

(x̄3 ∨ x4) ∧ (x2 ∨ x3).

Note that each level in the search tree in Figure 3.1 corresponds to an as-

signment to a particular variable, while the variables are ordered from x1 to x4

from the top of the tree to the bottom. Such a fixed order is not compulsory and

may change according to algorithm heuristics, which will be described later.

Figure 3.2 shows the steps taken by basic backtrack search algorithm while

traversing the tree shown in Figure 3.1.

9

0 0

0

0 1 1 0 1 0 0 0 1 1 1 0 10

0 1 X 0 X 1 X

X X X X

X X

X

X3 = 0 X3 = 1 X3 = 0 X3 = 1 X3 = 0 X3 = 1 X3 = 0 X3 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

X1 = 0 X1 = 1

Figure 3.1: Search tree for the formula (x1 ∨ x2 ∨ x̄3) ∧ (x̄3 ∨ x4) ∧ (x2 ∨ x3)

3.1.2 Boolean constraint propagation (BCP)

The original Davis-Logemann-Loveland algorithm used an optimization tech-

nique called unit propagation, or boolean constraint propagation (BCP). If the

current partial variable assignment causes all but one literal of some clause to

be assigned the false value, the remaining literal has to be assigned true in order

to not falsify the clause and the formula. Such a literal is called a unit literal,

and such a clause is called a unit clause. If a unit clause is found, the algorithm

chooses the variable of the unit literal as the next variable to assign a value

to, and assigns it a value that makes the unit literal evaluate to true. If more

than one unit clause is found, the algorithm collects all unit literals and uses

them in the subsequent variable assignments. Such variable assignments are

called implications. Note that more clauses may become unit clauses as a result

of evaluating the initial implications. The process of finding unit clauses and

creating the implications continues until an implication assigning an opposite

value to the already assigned variable is found or until no more unit clauses are

found. This process is called boolean constraint propagation.

To distinguish between the variables assigned as a result of boolean con-

straint propagation and the variables assigned by the main DLL algorithm,

the variables assigned as a result of boolean constraint propagation are called

implication variables, and the other variables are called decision variables.

10

1. Choose first variable (x1) and assign it 0.

2. Current partial assignment: x1 = 0. This partial assignment evaluates to

unknown (the value of the formula can not be determined). Choose next

variable (x2) and assign it 0.

3. Current partial assignment: x1 = 0, x2 = 0. This partial assignment

evaluates to unknown. Choose next variable (x3) and assign it 0.

4. Current partial assignment: x1 = 0, x2 = 0, x3 = 0. This partial assign-

ment evaluates to false, since it makes the third clause evaluate to false.

Since the last assigned variable (x3) was not yet assigned both values,

assign it the opposite value (1).

5. Current partial assignment: x1 = 0, x2 = 0, x3 = 1. This partial assign-

ment evaluates to false, since it makes the first clause evaluate to false.

Since the last assigned variable was already assigned both values, back-

track.

6. Current partial assignment: x1 = 0, x2 = 0. This partial assignment eval-

uates to unknown. However, it is now known that when this assignment is

extended with variable x3 it evaluates to false, independently of the value

of that variable. Since the last assigned variable (x2) was not yet assigned

both values, assign it the opposite value (1).

7. Current partial assignment: x1 = 0, x2 = 1. This partial assignment

evaluates to unknown. Choose next variable (x3) and assign it 0.

8. Current partial assignment: x1 = 0, x2 = 1, x3 = 0. This partial assign-

ment evaluates to true, since it makes all clauses evaluate to true. Finish

the algorithm and report that the formula is satisfiable by the current

partial assignment.

Figure 3.2: Steps taken by basic backtrack search algorithm while traversing

the tree shown in Figure 3.1

11

The situation in which an implication assigns an opposite value to the already

assigned variable is called a conflict. If a conflict is found, the DLL algorithm

assigns the opposite value to the last assigned decision variable or, alternatively,

backtracks, if that variable was already assigned both values. If no more unit

clauses are found, the DLL algorithm continues with choosing the next decision

variable.

Each assignment to a decision variable is said to increase the decision level

of the algorithm. Correspondingly, each unassignment of a decision variable

(backtracking) is said to decrease the decision level. An assignment to an im-

plication variable does not change the decision level. Each variable, either a

decision variable or an implication variable, has a decision level associated with

it. This is the decision level of the algorithm on which the variable has been

assigned a value. Therefore, at every given point of algorithm execution, a sin-

gle decision variable and zero or more implication variables are associated with

each decision level.

Figure 3.3 shows the steps taken by the backtrack search algorithm with

boolean constraint propagation (basic DLL) on formula (x2 ∨ x̄3) ∧ (x2 ∨ x3 ∨

x̄4) ∧ (x1 ∨ x4).

The boolean constraint propagation algorithm should be able to detect unit

clauses and the clauses falsified by the current variable assignments in a very

efficient way. A number of techniques for doing this have been proposed over

the years. One technique is the ”two watching literals” scheme proposed in

[23]. With this technique, two arbitrary literals not assigned false in each clause

are marked as special watching literals. The watching literals are associated

with the variables on which the literals are based. When a variable is assigned

a value, the clauses that have the watching literals based on this variable are

checked. The clauses that do not have watching literals based on this variable

can not become unit clauses, since at least two other literals of the clauses, which

are the watching literals based on other variables, are not assigned false. These

clauses may be safely ignored in the process of searching for implied unit clauses.

The clauses that have the watching literals based on the assigned variable can

potentially become unit clauses and therefore are checked. For each such clause,

if the clause did not become a unit clause as a result of variable assignment,

another clause literal not currently assigned false is marked as a watching literal

and the algorithm continues.

12

1. Choose first decision variable (x1) and assign it 0.

2. Current partial assignment: x1 = 0. Decision level is 1. This partial

assignment evaluates to unknown. The third clause (x1 ∨ x4) is a unit

clause, since all its literals but one (x4) are assigned 0. The literal x4 is

the unit literal. Create implication x4 = 1.

3. Current partial assignment: x1 = 0, x4 = 1. Decision level is 1. This

partial assignment evaluates to unknown. No more clauses become unit

clauses. Continue regular backtrack search by choosing the next decision

variable (x2) and assigning it the value 0.

4. Current partial assignment: x1 = 0, x2 = 0, x4 = 1. Decision level is 2.

This partial assignment evaluates to unknown. The first clause becomes

a unit clause. The literal x3 is the unit literal. Create implication x3

= 0. The second clause also becomes a unit clause as a result of the

original assignment. The literal x3 is the unit literal in this clause as

well. However, the implication created for this clause is x3 = 1. Since

the opposite values are being assigned to the same variable, a conflict is

created. To resolve the conflict, assign the opposite value (1) to the last

decision variable (x2).

5. Current partial assignment: x1 = 0, x2 = 1, x4 = 1. Decision level is

2. This partial assignment evaluates to true, since it makes all clauses

evaluate to true. Finish the algorithm and report that the formula is

satisfiable by the current partial assignment.

Figure 3.3: The steps taken by backtrack search algorithm with boolean con-

straint propagation (basic DLL) on formula (x2∨ x̄3)∧ (x2 ∨x3∨ x̄4)∧ (x1 ∨x4)

13

The two watching literals scheme is very efficient, since the clauses that do

not have watching literals based on the recently assigned variable do not need

to be checked for becoming a unit clause.

3.2 Conflict-driven learning

In 1996, Marques-Silva and Sakallah proposed an important optimization tech-

nique for the core DLL algorithm, called conflict-driven learning [20]. Conflict-

driven learning is a combination of conflict analysis, conflict learning, and a

conflict-directed backjumping, also called non-chronological backtracking.

The conflict analysis is invoked when boolean constraint propagation finds

a conflict. The purpose of conflict analysis is to find the reasons that caused

the conflict. The algorithm does so by building and analyzing a data structure

called the implication graph. The implication graph is described in Section 3.2.1.

Once the conflict analysis builds the implication graph, it analyzes the graph

and builds one or more special formula clauses that record the reasons for the

conflict in a form consistent with the original formula clauses. These clauses are

called conflict clauses. Section 3.2.2 describes how the conflict clauses are built.

Once the conflict clauses are built, the algorithm appends them to the for-

mula, making the information in the clauses available for future search. The

process of appending the conflict clauses to the formula is called conflict learn-

ing. It helps the core DLL algorithm avoid entering search paths that lead to

the previously found conflicts.

In addition to building the conflict clauses, the ability of conflict analysis to

find the exact reasons for the conflict enables it to find the minimal decision level

whose decision unavoidably leads to the current conflict. This in turn makes

it possible to implement non-chronological backtracking, which allows the DLL

algorithm to backtrack more than one decision level at once. Non-chronological

backtracking is described in Section 3.2.3.

Conflict-driven learning is one of the most important optimization techniques

for the core DLL algorithm. Its introduction and subsequent improvements

brought orders of magnitude improvement in the average performance of the

algorithm.

14

Decision
variable

)5(12x

)5(16x

)5(11x

)1(6x

)5(2x

)3(4x)2(8x

)5(1x

)5(3x

)2(13x

)5(5x

)5(18x

)1(17x

)5(18x

)3(19x

)5(10x
Conflicting

variable

Figure 3.4: An example of an implication graph

3.2.1 Implication graph

The implication graph is a graph whose nodes represent variable assignments

and whose edges represent those unit clauses that implied the variable assign-

ments. The graph is built in the first stage of the conflict analysis algorithm.

Since the conflict analysis algorithm is invoked only when a conflict is found, the

implication graph always contain a variable assigned two opposite values. The

variable that is assigned two opposite values is called a conflicting variable and

is represented by two complementary nodes in the implication graph. Figure

3.4 shows an example of an implication graph.

The labels on graph nodes denote the variable assignments the nodes repre-

sent. The labels specify the variable being assigned, while positive literals of the

variable represent assignments of 1 and negative literals represent assignments

of 0. The number in parentheses represents the decision level associated with

each assignment. The implication graph in Figure 3.4 shows the implications

of an assignment to the decision variable x11 on decision level 5 (shown on the

left). The graph shows that as a result of this assignment the variable x18 be-

comes conflicting. The white nodes represent the assignments made on the same

decision level as the assignment to the decision variable (5). The black nodes

represent the assignments made on lower decision levels. While there may ex-

15

ist more assignments made on lower decision levels than the graph shows, only

those assignments that are directly connected to the while nodes are shown.

The other assignments made on lower decision levels do not participate in the

conflict analysis.

The edges of the graph are built according to the unit clauses that were used

to create the implications shown in the graph. For example, the node x16(5)

represents the assignment to the unit literal of the unit clause (x̄11 ∨x13 ∨x16).

According to the graph, the variable x16 has been assigned 0 on decision level

2. The variable x11 has been assigned 1 on decision level 5. As a result the

clause became a unit clause, with x16 being a unit literal. In order to not falsify

the clause and the formula, an implication x16 = 1 has been created on level

5. The edges (x11(5)→ x16(5)) and (x̄13(2)→ x16(5)) in the implication graph

represent this implication. The other edges are built in a similar way.

Given a graph node, the nodes that are directly connected to it through the

incoming edges of that node are called the antecedent nodes of the node (or,

alternatively, antecedent vertices). The nodes x11(5) and x̄13(2) are antecedent

nodes of the node x16(5). The unit clause that implies the edges between the

node and its antecedent nodes is called the antecedent clause. The clause (x̄11∨

x13 ∨ x16) is the antecedent clause of the node x16(5) in this example. Note

that the node representing an assignment to the decision variable does not have

incoming edges and, correspondingly, the antecedent nodes and the antecedent

clause.

In an implication graph, node x is said to dominate node y if any path

from the decision variable to node y needs to go through node x. A unique

implication point (UIP) is a node at the current decision level that dominates

both nodes corresponding to the conflicting variable. In the graph in Figure

3.4, node x̄10(5) dominates both nodes x18(5) and x̄18(5); therefore, it is a UIP.

The decision variable is always a UIP. Note that there may be more than one

UIP for a certain conflict. In the example, there are three UIPs, namely, x11(5),

x̄2(5) and x̄10(5). Intuitively, UIPs represent the reason that implies the conflict

at the current decision level. The UIPs are ordered starting from the conflict.

In the example, x̄10(5) is the first UIP, x̄2(5) is the second UIP and x11(5) is

the last UIP.

16

Decision
variable

)5(12x

)5(16x

)5(11x

)1(6x

)5(2x

)3(4x)2(8x

)5(1x

)5(3x

)2(13x

)5(5x

)5(18x

)1(17x

)5(18x

)3(19x

)5(10x
Conflicting

variable

Cut 1
Cut 2

Cut 3

Figure 3.5: Examples of implication graph cuts

3.2.2 Conflict clauses

Conflict clauses are generated by a bipartition of the implication graph. The

partition has all the decision variables on one side (called reason side), and the

conflicting variable on the other side (the conflict side). All nodes on the reason

side that have at least one edge to the conflict side comprise the reason for the

conflict. Such a bipartition is called a cut. Different cuts correspond to different

learning schemes. Figure 3.5 shows several examples of implication graph cuts.

Cut 1 on Figure 3.5 represents the cut nearest to the pair of conflict variable

nodes. Cut 2 represents the cut that separates the conflicting variable from

the first UIP node (x̄10(5)), such that all nodes implied by the first UIP node

appear on the conflict side of the cut. Cut 3 represents the cut nearest the

decision variable. It is also the cut that separates the conflicting variable from

the last UIP node, which is the node of the decision variable. These cuts are

only several examples of legal cuts of the given implication graph. There exist

more cuts that legally bipartition this graph.

Each cut may be represented as a disjunction of negations of literals corre-

sponding to the source nodes of edges that cross the cut. These disjunctions of

literals are called conflict clauses. The conflict clause corresponding to Cut 1

17

is (x17 ∨ x̄1 ∨ x̄3 ∨ x5 ∨ x̄19), to Cut 2 is (x17 ∨ x̄8 ∨ x10 ∨ x̄19) and to Cut 3

is (x17 ∨ x̄8 ∨ x̄4 ∨ x6 ∨ x̄11 ∨ x13 ∨ x̄19). The conflict clauses are clauses that

do not exist in the original formula, but may be safely added to it, as they do

not change the satisfiability of the formula. It may be shown that the conflict

clauses are generated according to the operation called resolution, in which the

generated clauses are redundant with respect to the original clauses [35].

There exist different heuristics that generate conflict clauses according to

different cuts of the implication graph. The heuristics differ by the size of

generated conflict clauses, the average distance of the cuts from the conflicting

variable, the correspondence of the cuts to the UIPs of the graph, the number

of cuts being taken into account and other characteristics. Some heuristics limit

the cuts to the portion of the graph corresponding to the current decision level,

while others extend the cuts into the nodes corresponding to lower decision

levels. Many such heuristics are analyzed and compared in [34]. The authors

empirically show that the heuristic that usually outperforms the others is the

one called the first UIP learning scheme. This heuristic corresponds to the cut

where the conflict side includes all nodes implied by the first UIP, like Cut 2 in

Figure 3.5.

The heuristics based on the UIPs are important since they have the property

that once the conflict is resolved, as shown in the following section, there exists

a single variable whose currently assigned value should be flipped to take the

search to a new subspace. The conflict clauses that have this property are called

the asserting clauses. The variable whose currently assigned value should be

flipped is called the asserting variable. It is always desirable for a conflict clause

to be an asserting clause, since it allows a quick decision how to continue the

search after resolving the conflict. Many modern implementations of the DLL

algorithm use the first UIP learning scheme in their conflict-driven learning

algorithms.

The conflict clauses contribute to the performance of the DLL algorithm by

carrying information on what partial assignments lead to conflicts. When the

DLL algorithm encounters similar partial assignments again, the corresponding

conflict clause becomes a unit clause, and BCP prevents the algorithm from

exploring the implications of the assignments by assigning the non-conflicting

value to the unit literal of the clause.

18

3.2.3 Non-chronological backtracking

The implementation of conflict analysis makes it possible to implement a tech-

nique called non-chronological backtracking. When a conflict clause is built

during conflict analysis, the variables of the conflict clause may be analyzed

to find the lowest decision level whose decision inevitably lead to the current

conflict. In the particular case of asserting clauses, the decision level of all

variables except the asserting variable is compared and the maximal decision

level is found. The decisions on all decision levels above this maximal decision

level and below the current decision level do not contribute to the creation of

the conflict, which would exist even if these decisions were not made. There-

fore, when the DLL algorithm backtracks to resolve the current conflict, it may

safely backtrack several decision levels, up to one level above the maximal deci-

sion level as described above, without affecting the validity of the search. The

process of backtracking several levels while resolving a single conflict is called

non-chronological backtracking.

Non-chronological backtracking speeds up the DLL algorithm by skipping

the otherwise useless exploration of search space consisting of still unexplored

assignments to the variables that were assigned on decision levels above the

maximal decision level of the variables in asserting clauses.

3.2.4 Conflict clause deletion

The conflict analysis algorithm may generate many conflict clauses, which, if not

handled carefully, may take a lot of space and may be costly to process. The

conflict clauses are ordered based on several relevance factors and the clauses

that are less useful than the others are periodically deleted from the clause set.

Such relevance factors include the number of literals in the clause, the number

of literals not assigned to false and other techniques.

3.3 Branching heuristics

A number of different techniques exist for choosing the order in which decision

variables are picked by the DLL algorithm. Such techniques are called branching

heuristics, or decision strategies. They range from a simple random order to

complex techniques based on the behavior of variables and clauses in already

19

explored parts of the formula. A branching heuristic may be considered good if

it allows for quickly finding a satisfying assignment in the branch that contains

such an assignment and for quickly finding contradictions in the branch that

does not have one. The branching heuristics, like most other heuristics in the

DLL algorithm, should be simple to calculate so as not to slow down the core

algorithm.

Some branching heuristics use the information gathered during conflict anal-

ysis, while others do not. Examples of branching heuristics that do not use

the information gathered during conflict analysis include the Bohm heuristic,

MOM (Maximal Occurrence on clauses of Minimal size) heuristic, Jeroslow-

Wang heuristic, literal count heuristics and others. Examples of branching

heuristics that use the conflict analysis information are VSIDS (Variable State

Independent Decaying Sum), VOX (Variable Ordering Extension) and the Berk-

min heuristic. The heuristics that use conflict analysis information perform

better in general, and, as such, are used in modern DLL implementations more

frequently. Reference [19] contains a description and comparison of different

branching heuristics.

The following paragraph describes the VSIDS heuristic. This heuristic was

proposed by Moskewicz et al in 2001 [23], and was the first heuristic based on

conflict analysis information. In this heuristic, each literal is assigned a counter

which is increased for each appearance of the literal in a clause. Both origi-

nal and conflict clauses affect the literal counters. The algorithm periodically

decreases the values of all counters, thus giving more priority to literals partici-

pating in the recently generated conflict clauses, whose counters were decreased

fewer times than the clauses created earlier. When the next decision variable is

chosen, the DLL algorithm chooses the variable of the literal with the highest

counter and assigns it the value corresponding to the sign of the literal.

This strategy can be viewed as attempting to satisfy recent conflict clauses.

It is dynamic, since it gives preference to information received recently and

therefore adjusts itself quickly to the changes in database. It also has extremely

low overhead, since the literal count statistics can be updated during conflict

analysis.

20

3.4 Restarts

An additional DLL optimization technique is called a restart. Restart is a

termination of the current search process and restarting it from the beginning

by unassigning all formula variables. Search restarts have been proposed and

shown effective for real-world SAT instances in [8]. Although the search process

is restarted, some information gained from the previous run is preserved in

the form of learned conflict clauses. The restarts are done periodically to help

the algorithm get out of partial assignments that lead to deep branches of the

search space that can not be handled in a reasonable time. The frequency of

restarts is configurable and may be made dependant on actual solving time or

on algorithm-specific characteristics, such as number of decisions made.

Note that if restarts are used, the algorithm may become incomplete, since

it may never have a chance to finish the exploration of the whole search space

before the next restart happens. A number of techniques can be used to cope

with that problem. One of these is to gradually increase the period between

consequent restarts, such that it is guaranteed that at some time the restart will

not happen prior to finishing exploration of the whole search space.

21

Chapter 4

Parallel SAT algorithms

To parallelize the sequential DLL algorithm, the search space is partitioned into

several disjoint parts that are treated in parallel. An important characteristic

of the SAT search space is that it is impossible to predict the time needed to

complete a specific branch of the search space. Consequently, it is impractical

to partition the search space statically at the beginning of the algorithm, since

an incorrect prediction of the complexity of the chosen partitions would result

in uneven work load distribution, and, correspondingly, in reduced efficiency of

the algorithm. To cope with this problem, the parallel algorithm used in this

work dynamically partitions the search space, assigning the available work to

the available threads at run-time.

4.1 Search space partitioning

To partition the search space, the algorithm uses the concept of guiding path,

first introduced in [32]. The guiding path describes the current state of the

search process. It does so by recording the list of variables to which the algo-

rithm assigned a value up until the given point of execution. For each recorded

variable, the guiding path associates the currently assigned boolean value, as

well as a boolean flag that specifies whether there has been an attempt to as-

sign both boolean values to the given variable or whether the currently assigned

value is the only one for which the assignment has been attempted. A vari-

able for which there was an attempt to assign both boolean values is said to

22

be closed, while one for which there was an attempt to assign only one value

is open. Open variables represent junctions on the guiding path that lead to

yet unexplored search space. In the sequential SAT-solving algorithm, which

can be seen as a special case of a parallel SAT-solving algorithm working with

a single thread, the guiding path represents the internal stack of the partial

assignments. Variables that are assigned new values are pushed onto the stack,

and, therefore, are added to the end of the current guiding path. Variables that

are removed from the stack as a result of backtracking are removed from the

end of the guiding path.

Since a single thread explores only the currently assigned value of the open

variables, the search algorithm may be parallelized by letting other threads

explore the search space defined by the open variables on the guiding path of

the current thread. The other threads start their execution by assigning to

the variables that precede the selected open variable on the guiding path, the

values stored on the guiding path, and by flipping the value assigned to that

open variable. The selected open variable is then marked ”closed” to prevent

other threads from following paths already being explored. Note that each

running thread maintains a private guiding path associated with its execution

state. The available threads are then free to select any open variable from

any existing guiding path to pick up a new task. The thread that has the

selected open variable, and the thread that selects that variable, are said to be

in a parent-child relationship: the thread with the selected open variable is the

parent ; the one that selects the variable is the child. Running threads form a

conceptual tree, wherein nodes represent threads and edges represent parent-

child relationships. Figure 4.1 shows an example of search space partitioning in

the parallel algorithm.

Figure 4.1 shows that Thread 1 is currently solving the subspace defined

by nodes { 1, 2, 4, 8, 9 }, Thread 2 is solving the subspace { 5, 10, 11 } and

Thread 3 subspace { 3, 6, 7, 12, 13, 15, 16 }. Thread 1 is a parent thread of

both Thread 2 and Thread 3. Nodes 1 and 2 represent variables on the guiding

path of Thread 1 which were initially open, but became closed when Threads 2

and 3 began to solve their corresponding solution subspaces.

23

Thread 1 Thread 2 Thread 3

8 9 1110 12 13 14 15

4 5 6 7

2 3

1

Figure 4.1: Example of search space partitioning

4.2 Task scheduling

The execution of the parallel algorithm starts with a thread tree consisting of

a single node that is assigned the task of solving the whole problem instance.

As execution of the first thread begins, a number of open variables appear on

its guiding path. A second thread picks one of the open variables and joins the

thread tree as a child of the root and explores a subspace of the solution space

being explored by the root. The other threads choose an open variable from

one of the running threads and join the tree, exploring subspaces of those that

are being explored by their parent threads. The tree grows as long as available

threads join the execution of the algorithm.

A working thread finishes the execution of its current task in one of two

fashions: either the thread finds an assignment to all variables such that the

whole formula is satisfied, or the thread figures out that no such assignment

exists in its subspace. In the first case, the parallel algorithm is stopped and

the solution is reported. In the second case, the outcome does not necessarily

mean that the whole formula is unsatisfiable, since the subspaces being explored

by other threads were not searched by the current thread.

In this case, the completed thread picks up an open variable from one of the

24

other threads and starts exploration of the corresponding subspace. The thread

that finished execution of its latest task is removed from the tree and joins it

again at a different branch. If no available open variables exist at the time

an available thread looks for a new task, the thread is temporarily suspended

until an open variable appears. If all threads finish their execution and are in

suspension while waiting for an available task, this indicates that the search

space has been fully explored and the problem is unsatisfiable.

Note that with such dynamic partitioning of the search space, the work load

is evenly distributed between the working threads, and these threads are all kept

busy until the problem is solved. To minimize the thread waiting times and the

time needed to find a new task, a list of available tasks is maintained. When a

new open variable is introduced by a thread, the thread adds a description of a

task that is associated with the new variable to the list of available tasks. Since

the number of open variables is usually much larger than the number of working

threads, the threads add new tasks to the list only until a certain threshold on

the size of the list is reached. When a thread completes the execution of the

current task, it chooses an available task from the list and removes the task from

the list. The other threads promptly add a new task to the list, maintaining its

size around the threshold. Due to the large discrepancy between the number of

open variables and the number of threads, thread-waiting times on an empty list

are very short. These times are restricted to the stage just after the beginning

of execution of the algorithm, when the list is still empty, and to the time just

prior to the completion of execution, when no open variables remain.

To reduce the overhead of reinitializing the state of the threads when they

switch from execution of one task to another, the available tasks are chosen in

such a way that the expected running time of each individual task is higher.

This is achieved by choosing open variables that are closest to the beginning

of the guiding paths. In each thread, such a single open variable is chosen as

a candidate for entering into the list of available tasks. The list of available

tasks is sorted by the same means, according to the length of the guiding path

leading to the open variables in the tasks. This approach prevents frequent

task switches that would create additional overhead compared to the sequential

algorithm. Choosing the open variables closest to the beginning of the guiding

path also reduces the probability of a ping pong phenomenon [17], which can

happen when the open variables are chosen too close to the end of the guiding

25

Thread 1

Available tasks

Global list of available tasks

...
Current task

Thread 2

Available tasks

Current task

Thread N

Available tasks

Current task

Figure 4.2: High-level view of task-related data structures

path. In this extreme case, the task switch overhead becomes so significant that

it starts taking more time than the resolution itself.

Aside from reducing the overhead of task switches, the choice of these vari-

ables also eliminates the need to implement a complex messaging mechanism

between threads, as explained next.

Figure 4.2 shows the high-level view of task-related data structures.

4.3 Conflict clause exchange

Although the threads work quite independently of each other, the parallel algo-

rithm requires special treatment of the conflict clauses produced by each thread.

These clauses, similar to some other internal data structures used by the paral-

lel algorithm, have thread-specific data associated with them. This data should

be initialized in the context of each thread to let the threads benefit from the

existence of conflict clauses. Since the clauses are generated by specific threads,

the information about the generated clauses should be distributed to the other

threads. This is done by maintaining a list of generated conflict clauses that

is accessible from all threads. When a conflict clause is generated by a thread,

the thread that generated it puts it onto the list. The others threads frequently

check the existence of new clauses on this list. If a thread detects that a new

clause that is not yet initialized in the context of that thread has been added

to the list, it initializes the clause in its own context, and marks the clause as

initialized in its context. Whenever a clause is initialized in the contexts of all

26

working threads, it is removed from the list.

The distribution of conflict clauses between threads improves the effective-

ness of the search performed by each thread, much like it does in the sequential

SAT solving algorithm. It also eliminates the need to implement a complex

messaging mechanism between threads, which would allow the threads to ter-

minate the execution of tasks in other threads when they discover that these

tasks are not essential for solving the problem. The need for such termina-

tion signals arises when a thread finds a conflict and backtracks over several

variables to resolve the conflict. If one of the backtracked variables became

closed as a result of another thread starting exploration of the corresponding

subspace of the solution space, this exploring thread should be informed that

its current task is superfluous, since it leads to a conflict found by the current

thread. The implementation of the termination signals may be complex and

inefficient due to the need to implement synchronization mechanisms protecting

the thread data from simultaneous access from different threads. Fortunately,

if the distribution of conflict clauses is implemented, it becomes unnecessary to

signal other threads explicitly. When the current thread finds a conflict, aside

from backtracking over several variable assignments, it also generates a conflict

clause that describes the reason for the conflict, and puts it on the list of con-

flicts. Once the other thread detects the presence of this clause on the list and

initializes it in its own context, it will be forced to backtrack itself to avoid the

conflict described in the conflict clause. Since the tasks are created based on the

open variable found closest to the beginning of the corresponding guiding path,

it is guaranteed that no open variables are on the guiding path of the thread,

and the backtrack algorithm will terminate execution of the task once it reaches

the beginning of the guiding path.

The algorithm for managing the inter-thread communication, were it nec-

essary to design and implement, would be complex, because the threads that

receive the termination signals can not asynchronously handle them at the mo-

ment they are sent. However, since the execution of other threads is dependant

on the execution of the threads whose tasks are signalled to terminate, the

threads that send the termination signals need either wait for the termination

of the signalled tasks or implement another mechanism for ensuring the correct-

ness and efficiency of the search. The design and implementation of such an

algorithm appeared to be too complex to accomplish.

27

Thread 1

Clauses not yet learned by all threads

...Conflict
clauses

Thread 2 Thread N

Conflict
clauses

Conflict
clauses

Figure 4.3: High-level view of conflict-clause exchange related data structures

Figure 4.3 portrays high-level view of conflict-clause exchange related data

structures.

4.4 Thread synchronization overhead

From an implementation point of view, the list of available tasks and the list of

conflict clauses not yet learned by all threads are the only two data structures

that implement synchronization mechanisms to protect data from simultaneous

access from different threads. Both new task generation and new conflict clause

generation are relatively infrequent tasks compared to the rest of the work being

performed by threads. This makes the synchronization overhead of these data

structures insignificant for overall performance.

Aside from these two global data structures, the solver maintains another

global structure that represents the clauses of the formula being solved. How-

ever, since this data structure is read-only, it does not require thread synchro-

nization.

The remaining data structures are accessed by the single thread owning

them, and, as such, do not require any thread synchronization. As a result, the

introduction of thread synchronization mechanisms does not impose significant

overhead on the performance of the core sequential algorithm (see Chapter 7

for more details). Figure 4.4 shows the high-level architecture of the solver with

the emphasis on thread synchronization mechanisms.

28

Available tasks
Conflict clauses not yet
learned by all threads

Mutex Mutex

Thread 1
Thread 1

private data

Thread 2
Thread 2

private data

Thread N
Thread N

private data

Original formula clauses (read only)

...

Figure 4.4: High-level architecture of the solver

29

Chapter 5

Solver implementation

This chapter describes the implementation details of the sequential and par-

allel algorithms described above. The actual implementation of the solver is

probably the most important part of this work, as it allowed for the analyz-

ing of the behavior of the implemented algorithms and drawing the conclusions

presented later. The implementation details of algorithms and data structures

were designed with two primary goals in mind: high performance of the result-

ing implementation and good readability and maintainability of the code. The

other considerations were made based on the above two. After doing a search

for publicly available source code of sequential and parallel SAT solvers over the

Internet, several candidates were found. However, the coding quality of none of

them was high enough to justify the risks of finding major performance issues

in the infrastructure late in the implementation cycle or encountering difficul-

ties in understanding the code to enable parallelization of sequential algorithms.

Therefore, it was decided to design and code the algorithms from scratch, using

the publicly available source code and information in related published works

as a reference.

The implementation was done in ANSI C++ using Microsoft Visual Studio

[22] as the primary development platform. The code was written in a portable

way to enable its compilation on Linux systems using the GNU GCC compiler

[12]. A Linux environment was primarily used for running numerous time-

consuming regression tests. The code was successfully built and run on 8 differ-

ent system configurations, as described in Chapter 7. Since no standard C++

30

interface exists for working with multithreading primitives on different plat-

forms, the Boost Threads library from the open source Boost library collection

[3] was used to ensure portability of the code.

The object-oriented design of the code consists of a number of classes,

which can be categorized into two primary groups: data-oriented and algorithm-

oriented classes. Data-oriented classes represent entities whose primary respon-

sibility is to hold the data associated with them and allow appropriate query and

modification of the data. Algorithm-oriented classes represent algorithms that

make use of the data-oriented classes to perform the tasks needed to solve the

given instance of the satisfiability problem. Algorithm-oriented classes may also

contain algorithm-specific data, which is not represented using data-oriented

classes. The design also contains a small number of additional auxiliary classes,

which do not belong to one of the above categories.

The following sections describe the classes and their responsibilities.

5.1 Data-oriented classes

5.1.1 CAssignment

This class represents an assignment of a boolean truth value to a single formula

variable. It holds the index of the variable to which the value is assigned and

the value itself. The value 0 represents the false boolean value and value 1

represents the true boolean value. The class is used for representation of definite

assignments only. No instances of this class are created to represent assignments

to variables for which the assigned value is not yet calculated.

Since each thread explores different parts of the search space, each thread

maintains its own instances of this class.

5.1.2 CClause

This class represents a clause, i.e. a disjunction of literals. This class is used

to represent both original formula clauses and the conflict clauses generated by

the algorithm. It holds a vector of literals, which comprise the clause. It also

contains a bit vector specifying what threads currently use this clause. Although

most of time all clauses are used by all threads, there are two exceptions:

31

• When a new clause is created by a thread, it is marked as used only by

the thread that created it. The thread puts a pointer to the clause into a

shared list of uninitialized clauses that is periodically checked by all other

threads. The threads initialize the new clause in their contexts and mark

the clause as used by them. The thread that finishes the initialization of

the new clause removes the clause from the list of uninitialized clauses.

• When a redundant conflict clause is removed by a thread, the clause is

marked as unused by the thread. The clause is destroyed when it is re-

moved from the context of all threads.

The bit vector of clause thread usage is used to check whether the clause is

initialized in the context of all threads in the first case, and whether the clause

is removed from the context of all threads in the second case.

The CClause class defines a number of helper methods that implement vari-

ous commonly used queries about the clause. These include the checks whether

the clause is a unit clause, and, if yes, what the unit literal is; whether the given

literal of the clause is currently assigned, and, if yes, to what value; and other

checks.

5.1.3 CConfiguration

This class stores configurable parameters of the algorithm. The parameters are:

• The name of the file in CNF format that describes the formula to be

solved.

• Decision strategy update interval. The weights of literals in decision strat-

egy are updated periodically after this number of decisions. The default

value is 256.

• Maximal number of literals in conflict clauses. Conflict clauses that have

more literals than this number and that are not antecedent clauses of some

assignment are considered redundant. The default value is 5000.

• Maximal number of literals not assigned zero in conflict clauses. Conflict

clauses that have more literals not assigned to zero than this number are

considered redundant. The default value is 20.

32

• Minimal number of literals in conflict clauses. Conflict clauses that have

fewer literals than this number are not considered redundant. The default

value is 100.

• Initial increment of number of backtracks for restart. The restarts are

allowed to happen once in a certain number of backtracks. This num-

ber specifies the number of backtracks needed to allow the first restart

to happen. The number then gradually increases with time to ensure

completeness of the solver. The default value is 40000.

• Increment of increment of number of backtracks for restart – the restarts

are allowed to happen once in a certain number of backtracks. That

number gradually increases with time to ensure completeness of the solver.

This constant specifies the increment of the number of backtracks between

restarts. The default value is 100.

• Initial restart time. Specifies when, in seconds of elapsed CPU time, the

first restart should happen, if allowed by the number of backtracks. The

default value is 50.

• Redundant conflict clause deletion interval. The algorithm of redundant

conflict clause deletion starts periodically after this amount of backtracks.

The default value is 5000.

• Number of threads. The default value is 1.

The CConfiguration class is also responsible for parsing command line ar-

guments of the solver, checking their correctness and overriding the parameter

values according to the values specified by the user.

5.1.4 CImplication

This class represents an implication. An implication is an assignment that is

required to be made in order for formula not to be falsified. Implications are

created by the boolean constraint propagation algorithm when it encounters an

unit clause. The implication specifies a value for the variable of a corresponding

unit literal which makes the literal to evaluate to true. CImplication class

33

stores the following information: the variable to be assigned, the value to be as-

signed to that variable and the index of the clause which implied the implication

(the antecedent clause).

The boolean constraint propagation algorithm analyzes the implications it

creates and checks whether they produce a conflict (the value to be assigned

contradicts the currently assigned value). If a conflict is produced, the algorithm

finishes and the conflict analysis algorithm is invoked. Otherwise, the algorithm

converts the implication into assignment, performs the assignment and looks for

more clauses to become unit clauses.

Since each thread explores different parts of the search space, each thread

maintains its own instances of this class.

5.1.5 CLemmaContainer

This class represents a global container of conflict clauses that are not yet learned

by all threads. A single instance of this class is created during the solver’s run.

When a conflict clause is produced by a certain thread, the thread adds the con-

flict clause to this container to make it available to other threads. Other threads

periodically check whether new clauses have been added to this container and

initialize the new clauses in their context. Once a clause is initialized in the

context of all threads, it is deleted from the container. Since this data structure

is global and being accessed by several threads, it is protected by a mutex.

5.1.6 CLiteral

This class represents a literal. It holds the index of the variable on which the

literal is based, and the sign of the literal. Sign value 0 represents a negative

literal (a negation of the variable), and sign value 1 represents a positive literal

(the variable itself). The class defines a number of helper methods that check

whether the variable on which the literal is based is assigned, and, if yes, whether

the literal is assigned zero or one.

5.1.7 CStatistics

This class stores a variety of counters collecting statistical information about

the progress of the solver algorithm. A single instance of the class is created

during the algorithm’s run. While many of the counters are used for debugging

34

and analyzing purposes only, some of the counters are used by the algorithm

itself to decide on the best direction for the continuation of the search. The

counters stored by this class are:

• Maximal decision level

• Number of decisions taken. The decision strategy is periodically updated

based on this statistic

• Number of backtracks. The restarting algorithm is periodically updated

based on this statistic

• Number of generated conflict clauses

• Number of clauses in original formula

• Number of literals in original formula clauses

• Number of literals in conflict clauses

• Number of removed conflict clauses

• Number of literals in all removed clauses

• Number of implications

• Number of generated tasks

• Number of executed tasks

• Number of restarts

• CPU time spent on formula parsing

• CPU time spent on formula solving

Since the data in this class is global and may be accessed concurrently by

several threads, it is protected by a mutex. The class also has a method for

querying the current memory consumption by the process. This method is

implemented differently for Windows and Linux systems, since there is no stan-

dard portable way to get this information independently of the operating system

being used.

35

5.1.8 CTask

This class represents a single task to be solved by the given thread. It represents

a partition of the solution search space, which the thread assigned to this task

should traverse looking for problem solution. The partition is represented as a

sub-tree in the global binary tree representing the solution search space. The

sub-tree associated with the task is identified by its root node. To specify the

location of this node in the global tree, the class stores an ordered container of

assignments, which represent the path from the root of the global tree to the

root of the sub-tree associated with the task. Each assignment, by specifying an

assignment of the value 0 or 1 to the variable associated with the corresponding

node, specifies whether the path should descend into the left or right child of

the node.

Although a task represents a sub-tree of the global search tree, this sub-

tree may be further partitioned into smaller sub-trees, which are represented by

other tasks. Once a child task is created for a sub-tree of the tree of another task

(the parent task), this sub-tree is excluded from the list of nodes that should

be traversed by thread executing the parent task. This is done by marking the

node of the tree of the parent task that represents the root-node of the sub-tree

of the child task as assigned to the child task.

CTask class also stores an integer value representing the priority of the task.

The tasks are sorted according to this priority, and the threads pick tasks with

highest priority first. The priority of a task is set according to the decision level

of the root node of the sub-tree representing the task. The lower the decision

level, the higher the priority is. Note that the decision level of a node is not the

same as the length of the path leading to the node, and therefore not the same

as the number of assignments in the container of assignments representing the

path. This is because the decision level of a node is set according to explicit

assignments made by the search algorithm (the decisions), and does not include

the assignments representing implications created for these decisions. Therefore,

the number of decisions (representing the priority) is less or equal to the number

of assignments in the container of assignments.

The CTask class has two constructors. One constructor is used to create the

initial task from which the search process starts. This task represents the whole

global tree of the search space. This task is created once in the beginning of the

search process and each time a restart is invoked. The second constructor is used

36

to create the rest of the tasks, the tasks that represent sub-trees of the initial

task and sub-trees of other, already created, tasks. The second constructor

receives as an argument a pointer to the thread that currently executes another

task (the parent task) and builds a new task according to the lowest open

decision level of the parent task. The priority of the new task is set according

the value of the lowest open decision level. The assignments representing the

new task are created by copying all assignments, including decision assignments

and assignments created for implications, from all decision levels of the parent

task up to the lowest open decision level. The value of the last assignment is

flipped (value 0 becomes 1 and value 1 becomes 0) in order to create a task that

represents the other branch of the corresponding tree node, rather than the one

currently being traversed by the thread executing the parent task.

It is interesting to note about the constructor that creates the initial task that

it does not always create a task with no assignments. If the formula contains

clauses with one literal only, there is no need to traverse solution subspaces

that represent false assignments to these literals, since these subspaces do not

contain a solution. Therefore, the initial task contains assignments that assign

these literals to true. Note that this preprocessing is not only an optimization,

but is also essential for correct working of the main algorithm. This is because

clauses with only one literal are not initialized according to the two watching

literals scheme (since there are not two literals). If the assignments for these

literals would not be created by the constructor of the initial task, the literals

could be assigned false during the algorithm, and this would be left undetected,

since the watching literals are not initialized. This, in turn, would lead to an

incorrect result.

5.1.9 CVariable

This class represents a single formula variable. It holds various data associated

with the variable that is used by different algorithms. This data includes:

• The value currently assigned to the variable. A variable can have one

of three possible values: the false value, the true value and the value

specifying that the variable is not currently assigned a value (the unknown

value).

• The decision level at which the variable was assigned, if the variable is

37

assigned.

• Clauses that contain a watched literal based on this variable. Two sets of

clauses are stored, one for positive watched literals and one for negative

watched literals.

• The index of the unit clause that implied the currently assigned variable

value, if the value was implied by a unit clause. This clause is the an-

tecedent clause of the variable. The clause implicitly forms the edges of

the implication graph. Since the decision variables do not have a cor-

responding antecedent clause, this member has an invalid value for such

variables.

• A boolean flag specifying whether this variable is a part of the current

frontier of variables that lie on the paths from the decision variable to the

conflicting variable. The conflict analysis uses this frontier to find the UIP

of the implication graph.

• The order of this variable as calculated by the decision strategy. This

number is used to update the decision strategy state upon variable unas-

signment.

• A boolean flag specifying whether this variable is open. If the variable

is a decision variable on one of the decision levels, this boolean specifies

whether another task is assigned to explore the solution subspace corre-

sponding to the non-current literal of this decision variable.

This class has a number of methods for querying and modifying the data

listed above. It also has a method for assigning to a variable a new value or

unassigning it. Aside from setting proper values to the class data members,

this method is also responsible for notifying other algorithms on variable as-

signment, to let them update their data structures accordingly. For example,

if the assigned value makes one of the watched literals based on this variable

evaluate to false, a different watched literal should be found for the clause that

owns this literal, or, if the clause has no more literals not assigned false, produce

an implication or a conflict.

38

5.2 Algorithm-oriented classes

5.2.1 CClauseBuilder

This class is a helper class used to build a clause out of a list of literals of this

clause. The primary responsibility of this class is to detect multiple appearances

of the same literal and appearances of complementary literals of the same vari-

able (the negative and positive literals) in the list of clauses. If the same literal

is found more than once, only one of its occurrences is added to the clause. This

doesn’t change satisfiability of the formula, but makes the formula smaller. If

two complementary literals of the same variable are found, the whole clause is

discarded, since it is always satisfied.

CClauseBuilder class is used by two algorithms: the parser, which parses

the original clauses of the formula, and the conflict analysis algorithm, which

uses this class to build a minimal representation of the conflict clauses it creates.

5.2.2 CConflictAnalysis

This class implements the conflict analysis algorithm. The main responsibility of

this algorithm is, given a conflict represented by a conflicting clause (i.e. a clause

that evaluates to false using the current variable assignments), to resolve the

conflict by backtracking one or more most recently assigned variables, creating

a conflict clause that will prevent the same conflict from occurring in the future

and deciding on a new variable assignment to continue the search in the new

direction.

As a first step, the algorithm analyzes the conflicting clause and finds the

maximal decision level of the assigned clause variables. Note that if the con-

flicting clause was produced by the current thread, the maximal decision level

of assigned clause variables should be the current decision level, since the literal

corresponding to the UIP should be assigned at the current decision level. If the

maximal decision level is zero, the conflict can not be resolved and the solution

subspace being explored by the current thread is not satisfiable. This is because

only those decisions that must be made in order to not lead to a conflict are

made on decision level zero. If these decisions lead to a conflict themselves,

there is no way to resolve the conflict. Note that there are three cases when a

decision can be made on level zero:

39

• When a conflict is resolved and the resulting conflict clause has only one

literal, which is the UIP of the current decision level. In this case the

single literal is the only reason for the conflict and therefore the opposite

literal is put on decision level zero to resolve the conflict.

• Another case is when a conflict is resolved and all literals of the resulting

conflict clause except the UIP are assigned at decision level zero. In this

case the decisions on decision level zero are the only reasons for the conflict

and therefore the literal opposite to the UIP is put on decision level zero

to resolve the conflict.

• When a new task is created, the context of its parent task is copied to de-

cision level zero. If the copied context conflicts, it means that the solution

subspace selected by the current task is not satisfiable.

If the maximal decision level is zero, the algorithm notifies the caller that

the conflict can not be resolved and finishes.

If the maximal decision level is less than the current decision level, the algo-

rithm backtracks to that level, excluding the level itself. It is safe to backtrack

over all those levels since the conflict was not actually implied by assignments

on those levels. Note that, as explained above, the maximal decision level may

be less than the current decision level only if the conflicting clause was produced

by the current thread. Therefore, this step is necessary only when more than

one thread is participating in the solution process.

Once this initial backtracking is done, the algorithm performs more precise

analysis of the conflict to generate a corresponding conflict clause. For that, the

algorithm traverses the implication graph of the current decision level in BFS

(breadth-first-search) order and builds the conflict clause during the traversal.

The algorithm starts by creating the initial BFS frontier from the graph nodes

associated with the literals of the conflicting clause. During the traversal, when

the algorithm visits a literal assigned at the current decision level, it queries the

antecedent clause of the variable of the literal and appends literals of that clause

to the BFS frontier. When the algorithm visits a literal assigned at decision level

lower than the current decision level, it means that the traversal has gone beyond

the implication graph of the current decision level, and the algorithm appends

the literal to the conflict clause it builds. The traversal finishes when it reaches

the first UIP. At this point, the BFS frontier consists of the UIP only, by the

40

definition of UIP. The algorithm appends the negation of the UIP literal to the

conflict clause and by that finishes building the conflict clause. The literals on

lower decision levels that were collected by the algorithm represent the reasons

for the existence of the current conflict. By creating a conflict clause consisting

of these literals and the opposite value of the UIP literal, the search algorithm

prevents the same set of assignments, which led to a conflict, to happen in the

future.

Having the new conflict clause at hand, the conflict analysis algorithm adds

the clause to the lemma container, to make the information in the clause avail-

able to other threads.

The next step the algorithm performs is resolving the conflict at the current

decision level by backtracking over one or more decision levels. The algorithm

finds the maximal decision level of literals in the conflict clause (as opposed

to the literals in the conflicting clause it checked earlier), excluding the UIP

literal, and backtracks to one level up from the maximal decision level. This

is safe to do, since this will not unassign any of the conflict clause literals.

This implements the non-chronological backtracking. The algorithm always

backtracks at least one level, since the maximal decision level of literals in the

conflict clause, excluding the UIP literal, is always less than the current decision

level, according to the way the conflict clause is built.

After the algorithm backtracks, it uses the variable and the value of the

UIP literal to create an implication on the level to which it backtracked, as an

enabler for continuation of the search process after resolving the conflict.

Note that if the algorithm backtracks more than one level up and there are

other threads currently working on solution subspaces that are pruned by this

backtracking, the threads will automatically backtrack themselves as soon as

they learn the conflict clause that was just produced by the current thread.

Also, if the algorithm backtracks more than one level, it is impossible for the

current thread to start working on the same solution subspace as one of the other

threads, because the only other thread that can possibly explore the solution

subspace similar to the current subspace works on the non-current literal of the

decision variable of the level to which the current thread has just backtracked.

However, the current thread will start working on an implication corresponding

to the UIP literal found above, which can not be the same variable as the decision

variable explored by the other thread, since the algorithm has backtracked more

41

than one level back.

On the other hand, if the algorithm backtracks exactly one level, it checks

whether the non-current literal of the decision variable of the decision level it

just backtracked from was assigned for exploration by another thread. If it is

assigned (the variable is closed) and the current thread is going to start working

on the same decision variable, the algorithm prevents the current thread from

doing so, since it will cause the thread to start working on a solution subspace

being explored by another thread. Assuming that the tasks are always generated

based on the lowest open decision level, there can not be another open decision

level below the current decision level. Since there is no more unexplored solution

space left for exploring by the current thread, the algorithm announces the

current task as complete in this case.

The secondary responsibility of the CConflictAnalysis class is periodical

detection and deletion of redundant conflict clauses. This is done to maintain

the number of existing conflict clauses at optimal level. Although the creation

of conflict clauses in general improves performance of the search substantially,

creation of some conflict clauses may have a negative effect on performance if

these specific clauses are frequently checked by the algorithm but rarely prune

the solution space. Also, creation of too many conflict clauses may lead to ex-

cessive memory allocation. The conflict analysis algorithm periodically checks

the existing conflict clauses and, based on certain heuristics mentioned in previ-

ous chapters, deletes some of them. Note that when a conflict clause is deleted,

the references to it from the variables of the two watched literals of the clause

should be deleted as well.

5.2.3 CDecisionStrategy

This class implements an algorithm for deciding the order in which the variables

should be chosen when the boolean constraint propagation algorithm produces

no more implications and the DLL algorithm needs to assign the next variable.

The responsibility of the algorithm is, upon request by the DLL algorithm,

to return the variable and the value to assign to that variable, such that the

predicted running time of DLL algorithm will be as small as possible.

Class CDecisionStrategy implements the VSIDS branching heuristics [23].

It holds a vector of associations between variables and the weights of their two

literals, as calculated by the algorithm. The vector is maintained sorted by

42

the weight of literals and, when a request to return a variable and a value to

assign to the variable arrives, the variable and the value that corresponds to

the heaviest unassigned literal are returned. A special data member of the class

holds the index of the variable with current heaviest unassigned literal, in order

to return the variable immediately upon request.

The weights of literals are calculated based on the number of occurrences

of the literals in the clauses. Both original clauses and conflict clauses are ac-

counted for. Initially, the weights of literals are set to be equal to the number of

literal occurrences, meaning that literals with more occurrences get more weight.

Afterwards, the algorithm periodically, once in a certain number of decisions,

recalculates the weights of literals. The weights are recalculated by dividing

the current weight by 2, adding the current number of literal occurrences and

subtracting the number of literal occurrences at the time of the previous weight

update. Since the number of literal occurrences changes only as result of cre-

ation or deletion of conflict clauses, and the formula gives more weight to new

literal occurrences, the algorithm dynamically adopts the weights of literals such

that the literals that are frequently used in newly generated conflict clauses get

a bigger chance to be assigned next. This heuristics is believed to be the cor-

nerstone of the efficiency of the VSIDS algorithm. Note that the weights are

inexpensive to recalculate and do not require traversal of formula clauses at the

time of recalculation, since the literal statistics can be collected at the time of

clause creation and deletion. To enable fast recalculation of the literal weights,

the class CDesicionsStrategy holds the current weight of literals, the current

number of literal occurrences and the number of literal occurrences at the time

of previous weight update.

Once the weights of literals are recalculated, the vector of associations be-

tween variables and the weights of their literals is re-sorted according to the new

weights. Also, the index of the variable with current heaviest unassigned literal

is reset. Note that in order to maintain this index valid after unassignment of

variables, each variable holds its index in the vector and updates the index of

heaviest unassigned literal each time it is unassigned. These indexes are reset

after the vector is re-sorted.

When the DLL algorithm invokes a restart, the weights of literals are fully

reset and are recalculated as in the beginning of the algorithm.

43

5.2.4 CParser

This class is responsible for parsing the file that contains the representation of

the formula to be solved. The file is assumed to be in a simplified version of the

DIMACS format, as defined by recent SAT competitions [27]. The algorithm

parses the file header, validates its correctness and parses clause lines, skipping

comment lines.

For each clause line, the algorithm validates its correctness and uses CCla-

useBuilder class to build a new clause. The new clauses are then added to

CLemmaContainer. Though the main purpose of lemma container is to facilitate

exchange of conflict clauses between different threads, it is also used for the

initialization of the original formula clauses in the context of all threads. Putting

the original clauses in the lemma container is a simple way to ensure proper

initialization of all clauses in the context of all threads, while the threads are

not even required to be existent at the time the parser runs.

5.2.5 CSolver

This is a singleton class which implements the end-user interface for invocation

of the solver. Function CSolver::Run() receives the name of the input file

containing the representation of the formula to be solved and initiates the solving

process.

In addition, this class serves as a container for global data and global algo-

rithms that are not specific to each thread in the system. This class holds the

single instances of the CTaskList, CLemmaContainer and CStatistics classes.

It also holds the container of thread-specific data for each thread. Threads ac-

cess their private data using member functions of the class. The thread-specific

data container is implemented using Boost’s boost::thread specific ptr<>

class, which makes the implementation portable across different platforms.

Function CSolver::Run() invokes the parser to parse the input file and

notifies the CStatistics object to let it collect statistical information at the

end of parsing. Then, if the configuration specifies that more than one thread

should be run, the function creates a corresponding number of threads using

Boost’s boost::thread group::create thread(). The newly created threads

and the main thread are instructed to execute the CThreadId::operator()

function, which initiates the solving process. All threads execute the same

44

algorithm, making the parallel processing fully symmetric. The only difference

is that the main thread is instructed to create the initial task specifying the

whole search space before starting execution of the common algorithm. This

task enables the solving process to start. The function CSolver::Run() then

waits for all threads to finish. All threads exit as soon as a solution is found

by any thread. It is important to wait until all threads exit before finishing the

process to ensure that all mutexes are unlocked and are not used at the time

they are destroyed.

After all threads finish their execution, the main thread continues the execu-

tion of function CSolver::Run(), which then cleans up the allocated data, by

removing generated conflict clauses and the data associated with them. After

the cleanup, the CStatistics object is notified a second time to let it col-

lect statistical information at the end of the solving. If needed, the statistical

information is printed and the function CSolver::Run() returns.

5.2.6 CTaskList

This class is responsible for maintaining the global list of tasks that should be

executed by threads in order to complete the traversal of the solution search

space. Each task in the task list represents a single partition of the search space

that was not yet traversed by any thread. The threads that finish their current

task pick a task from the task list and continue by executing that task. During

execution of each task, the threads periodically attempt to create new tasks and

add them to the task list. Since the data in this class is global, only a single

instance of the class is created during the algorithm’s run. All accesses to the

data in the class are guarded by a mutex.

The task list maintains the number of tasks in it around a certain threshold.

This threshold ensures that the threads do not attempt to create too many

tasks, if the other threads are too busy to pick these tasks. It also ensures that

enough new tasks are created, to prevent a situation when the threads are idly

waiting for new tasks to come. Still, independent of the specific threshold used,

a situation when no available tasks are temporarily left is possible. In this case,

the threads that finish their current task start waiting for a new task to be added

to the task list. This wait is implemented using Boost’s boost::condition

class. When a new thread is added, the condition variable is notified and the

threads waiting on it are awakened.

45

The task list is also responsible for detection of unsatisfiability. When the

formula is unsatisfiable, eventually all tasks are executed and no new tasks are

created, since the whole solution search space is traversed. At this time, the

task list becomes empty and all threads are waiting for a new task to arrive.

CTaskList class maintains a data member counting how many threads are cur-

rently found in the waiting state. When this number reaches the total number

of threads, the task list reports that the formula is unsatisfiable, marks the for-

mula as solved and wakes up the threads. Upon awakening, the threads check

whether the formula is solved, and, if it is, finish their execution.

To complement the responsibility for detection and reporting of unsatisifi-

ability, the task list also defines helper functions that are used by threads to

report satisfiability. When some thread detects a satisfying assignment, it calls

CTaskList’s member function that reports satisfiability. This function checks

whether the current variable assignment indeed satisfies the formula (to detect

possible bugs in the implementation of the algorithm), marks the formula as

solved and reports the solution. The satisfying assignment is reported in the

format used in recent SAT competitions [27]. Since the function that reports the

solution is guarded by CTaskList’s mutex, it is guaranteed that no more than

one solution is reported at the same time. Once the first solution is reported,

other solutions are rejected and the threads are instructed to abort their tasks

immediately.

When tasks are added or removed from the list, the CStatistics object is

notified to let it collect related information.

The other major responsibility of the CTaskList class is to implement the

restart functionality. Restarts are allowed to happen once in a certain number

of backtracks and after a certain amount of CPU time is spent. The numbers

are gradually increased from time to time. The task list is notified on each

backtrack and checks whether a restart should occur based on the current back-

track and CPU time thresholds for the next restart. If a restart is allowed, the

algorithm removes all pending tasks from the task list and notifies all threads

to immediately abort the tasks they currently execute. It then creates a new

initial task specifying the whole search space, similar to the task created in the

beginning of the search process, and adds it to the task list. Once the threads

abort their current tasks, one of them picks the new task from the list and the

search process resumes from the beginning.

46

5.2.7 CThread

This class implements the core infrastructure of the parallel DLL algorithm. A

single instance of this class is created for each thread in the process. Each thread

invokes CThread::Run() function, which, in cooperation with other threads,

searches for the solution of the given SAT problem, exiting when the solution

is found.

The class stores thread-specific data for each thread. This data includes:

• Thread ID. This ID is used to identify the thread in global data structures

such as task list and lemma container. It is also used to maintain the

per-thread clause initialization flag, as described in the CClause overview

section.

• Current decision level. The current decision level represents the number

of explicit variable assignments made according to the decision strategy

algorithm. It doesn’t include the implicit variable assignments made ac-

cording to the boolean constraint propagation algorithm. The decision

level increases as the decisions are made and decreases as the algorithm

backtracks from decisions leading to conflicts.

• Vector of variables (instances of CVariable class). It stores thread-specific

data per formula variable.

• Queue of implications (instances of CImplication class). The new im-

plications are added to one end of queue as they are discovered by the

boolean constraint propagation algorithm and removed from the other

end as they are converted to assignments.

• Vector of vectors of assignments (instances of CAssignment class). This

container represents the assignment stack. For each decision level, the

container stores the set of assignments made at that decision level. The

size of the outer vector corresponds to the current decision level. The

first assignment on each level represents the decision and the rest of the

assignments represent the implications of that decision.

• Lowest open decision level. An open decision level is a level for which no

other thread was assigned to traverse the opposite value of the decision

47

variable at this level. The lowest open decision level is the open decision

level with the smallest level value.

• Vector of pairs of integers representing the two watched literals per each

clause. Watched literals are two arbitrary literals of a clause not currently

assigned zero.

• Vector of pointers to clauses (instances of CClause class). It contains

all formula clauses, both original clauses and conflict clauses. Note that

the CClause objects are shared between all threads and therefore only

pointers to these shared clauses are held by each thread. The vector itself

is not shared to allow access to the clauses without locking the vector

against simultaneous access by several threads. Were the vector shared,

there would be a need to synchronize access to it since the vector can be

dynamically resized during addition of new clauses to it. Such synchro-

nization would badly affect performance, since the vector is accessed at

time-critical points of the algorithm.

• List of indexes of conflict clauses that were removed since they became

redundant. The indexes are then assigned to the new conflict clauses

as they are generated. Maintaining the list of indexes helps keeping the

vector of clauses as compact as possible in spite of deletion of redundant

clauses.

• The total number of backtracks. This is used for statistical purposes

to periodically invoke redundant conflict clause removal algorithm. This

number is held separately for each thread, since each thread runs this

algorithm independently of other threads.

• An instance of CConflictAnalysis class, keeping thread-specific data of

the conflict analysis algorithm.

• An instance of CDecisionStrategy class, keeping thread-specific data of

the decision strategy algorithm.

The function CThread::Run() starts by querying the global lemma container

to learn the original formula clauses created by the parser. Using the lemma

container for initializing the original formula clauses is a convenient way to

initialize the clauses in the context of all threads at the time the threads start

48

their execution. The function then checks whether it is invoked by the main

thread. If it is, it invokes the CTaskList’s restart algorithm to initiate the search

process. Again, using the restart algorithm for initiating the search process the

first time is a convenient way to initialize all threads and prepare for clean

execution of the parallel DLL algorithm without duplicating implementation of

similar functionality in two places.

After finishing the initialization phase, the algorithm starts the main loop

of picking the tasks and executing them. The loop finishes when a solution is

found by this or other threads at any stage of the loop. In the beginning of the

loop, the algorithm cleans its state, possibly left after execution of a previous

task, by unconditional invocation of backtracking up to decision level 0. Note

that this leaves the implications at decision level 0 intact, preserving vital state

data needed for execution of any following task. The algorithm then queries the

task list to get the new task. If the task list does not have available tasks, since

the solution has already been found, the algorithm quits the loop. Otherwise,

the algorithm initializes its state according to the new task and runs boolean

constraint propagation combined with conflict analysis to handle single-literal

clauses and their implications. The state of the new task is described by the

list of assignments representing a path in the solution tree leading to the root of

the subtree selected by the task. If an unresolvable conflict is produced at this

stage, the solution subspace of the current task announced unsatisfiable and the

algorithm continues with picking a new task. Otherwise, a DLL algorithm is

invoked to solve the solution subspace of the current task. Once DLL finishes,

the algorithm either proceeds to the next task (if the solution is not yet found),

or quits the loop.

The DLL algorithm is implemented as another loop, which iteratively queries

the decision strategy to select the next assignment, and runs boolean constraint

propagation combined with conflict analysis to process the assignment. If the

decision strategy reports that all variables are assigned, the algorithm reports

that the formula is satisfiable by the current assignments and quits the loop.

Otherwise, the boolean constraint propagation and conflict analysis are run

until either no more implications and no more conflicts are produced or until an

unresolvable conflict is found. In the latter case, the algorithm reports that the

solution subspace represented by the task is not satisfiable and quits the loop.

If no more conflicts are produced, the algorithm proceeds to the next iteration.

49

Aside from making and handling the assignments, the DLL algorithm makes

several periodic checks at the beginning of each iteration. The following is the

list of those checks:

• A check whether a solution was found by one of the other threads. If a

solution was found, the algorithm quits the loop.

• A check whether a restart should be initiated according to the current

number of backtracks and execution runtime. A restart is initiated, if

needed.

• A check whether a restart was initiated by one of the other threads. The

algorithm quits the loop, if the check is positive.

• A check whether the task list contains too few tasks and whether the

current thread has at least one available task. If true, the algorithm

adds a new task to the task list. This task list update should be done

periodically to keep the list non empty. It is also important to do this at

a point where the thread state may be safely read, copied to the task list,

and then used in the thread that picks the new task.

• The last check that is done is whether other threads produced new conflict

clauses, not yet learned by the current thread. If yes, the thread accesses

the lemma container, gets new clauses and initializes them in its context.

The learned clauses are checked as to whether they are conflicting and,

if yes, boolean constraint propagation combined with conflict analysis are

invoked to resolve the conflicts.

The implementation of the DLL algorithm is further logically divided into

several sub-algorithms, each of which has interesting design and implementa-

tion aspects of its own. However, since these sub-algorithms are either only

marginally affected by the parallelization of the DLL algorithm or are partially

mentioned in other parts of this document, they are not described here.

50

5.3 Other classes and algorithms

5.3.1 CIndexWeightPairLess

This tiny class represents a binary predicate that is used by function that sorts

the vector of associations between variables and the weights of their two literals

in CDecisionStrategy algorithm. Using this predicate, the function orders the

associations by decreasing weight of their heaviest literal.

5.3.2 CTaskLess

This is another tiny binary predicate, which is used to sort the task list in

CTaskList according to task priorities.

5.3.3 CThreadId

The member operator() function of this class serves as the main function of all

threads except the main thread. The main thread calls the operator() func-

tion of this class once it finishes the initialization steps and creates the rest of

the threads. This function creates an instance of the CThread class, resets the

thread-specific storage of the calling thread and invokes the CThread::Run()

function, which initiates the DLL algorithm. The CThreadId class is also re-

sponsible for passing the ID assigned to the thread being created from the main

thread to the thread itself.

5.3.4 main() function

The main() function calls a member function of the CConfiguration class to

parse the command line arguments and invokes the CSolver::Run() function to

start the solving process. The main() function catches unexpected exceptions

in CSolver::Run() and reports internal errors, if found.

51

Chapter 6

Testing environment

In order to test the correctness and performance of the solver implementation,

a testing environment has been prepared. The testing environment includes

several scripts, which invoke the given solver(s) on given SAT problem bench-

mark(s) with given configurable parameters. The scripts are written in Perl.

The major features of the scripts are:

• They can run solvers on multiple benchmarks, which are configured

through user-supplied ”benchmark list” file.

• They can run multiple solvers (the number is not limited) on all configured

benchmarks. The solver list is also configurable.

• Benchmarks can be hierarchically organized in directories, allowing the-

matic sorting of them (such as by industrial/handmade/random categories

or other categorization).

• They run both on Linux and Windows. A special effort has been made to

support paths with white-space on Windows.

• Tests can be run either locally or remotely in parallel on a pool of ma-

chines. Parallel execution is supported only on Linux (no pool of Windows

machines was available during testing).

• Log files are generated for each run of a solver on a benchmark. The log

files are organized in a hierarchy similar to the benchmark hierarchy.

52

• Obsolete log files from previous runs are selectively removed when new

regression starts (log files of the tests that are not going to be invoked on

the current run are not removed).

• Running tests are continuously monitored and are terminated when they

exceed given (configurable) CPU time or memory consumption limits.

During the experiments, the CPU time limit was set to 1500 seconds and

the memory consumption limit to 200 Mbytes.

• When parallel execution is used, the current number of already finished

tests is reported.

• The outputs of the actual solvers are automatically analyzed to report the

run status.

• The tests can have the following outcomes: satisfiable, unsatisfiable, ex-

ceeded CPU time limit, exceeded memory consumption limit, solver pro-

duced invalid output or aborted, still runs.

• At the end of the run (or in the middle of a parallel execution run), the

summary and detailed reports on the regression can be generated. The

list of tests failed due to solver errors is generated separately.

A comprehensive benchmark suite of SAT problems has been prepared. It

includes 437 benchmarks, ranging from easy small problems that are solved in

fractions of a second to very complex problems unsolvable by any known state-of-

the-art SAT solver within the given time and memory limits. The majority of the

benchmarks contain real-life industrial problems representing solution criteria

for different aspects of formal equivalence and formal property verification of

hardware circuits. Most benchmarks are publicly available ones that were used

in various SAT solver competitions (such as on the SAT2004 competition [27]),

and were downloaded from the Internet. A small fraction are Intel-proprietary

benchmarks.

During the implementation phase, the benchmark suite was used for testing

the correctness of the solver. The outcomes of the tests that passed without

run-time failures were compared against the outcomes of the same tests invoked

on the zChaff solver [33], and checked for equality. In addition, for satisfiable

problems, satisfiability has been reaffirmed by a stand-alone algorithm running

53

at the end of the main solver algorithm, checking the satisfying assignment

reported by the main algorithm that it is actually satisfying.

Debugging of the solver implementation was split into two phases: debug-

ging of the single-threaded configuration and debugging of the multithreaded

configuration. Debugging the multithreaded configuration appeared to be a

much more complex problem, as in certain cases no conventional debugging

technique could be applied due to the inherent indeterminism of flow execution

of a multithreaded program. Each consecutive invocation of the solver in the

same environment resulted in threads taking different directions in the search

process, making it very difficult to track down the bugs. A bug that happened

in a certain solver invocation might not show in other invocations of the same

benchmark. Some especially elusive bugs would show only once in several in-

vocations of the whole benchmark suite, each time on a different benchmark at

an unpredictable point of flow execution. The following is the list of techniques

that were used during the debugging phase:

• Debugging with MicrosoftR© Visual Studio [22] and DDD debuggers [11]

(on Windows and Linux respectively)

• Instrumenting the code with debug messages

• Manual inspection of sources

• Analyzing the code with ParasoftR© Insure++ [25]

• Analyzing the code with ParasoftR© CodeWizard [24]

• Analyzing the code with IntelR© Thread Checker [15]

• Analyzing the code with IntelR© VTuneTM Performance Analyzer [16] on

both Windows and Linux

• Inspection/learning the sources of LinuxThreads library (Linux’s Pthreads

implementation, part of glibc) [13]

• Inspection/learning the sources of Boost Threads library [3]

• Inspection/learning the sources of Linux’s kernel thread-related parts

Eventually all known bugs in the solver implementation were found and

fixed. As a part of this effort, a number of bugs not directly related to the

implementation itself were found:

54

• A bug in the sources of the Boost Threads library, version 1.30.0. The bug

showed up in the Pthreads implementation of boost::recursive mutex

when the mutex was used with boost::condition synchronization prim-

itive, causing a situation where a mutex could remain unlocked after the

locking function is called. The bug was reported to Boost Threads devel-

opers and was fixed in the consecutive version of the library.

• A bug in RedHat 7.1 LinuxThreads library that showed up when the

process stack size limit was set to a very large number, causing inability to

create new threads in the process. After querying the RedHat database, it

appeared that the bug is known and was already fixed in one of the patch

releases of glibc library. Downloading and installing the patch release

fixed the problem.

• A bug in Netbatch, a distributed system developed by Intel for internal

use, which was used for distributing the jobs in the benchmark suite over

a pool of network-connected machines. Due to the bug, when the de-

fault process stack size was properly set, but the process was executed in

Netbatch, the process stack size was mistakenly changed to a very large

number, triggering the above bug in LinuxThreads. The bug was reported

to Netbatch developers and confirmed.

Once the correctness of the solver implementation was ensured, the bench-

mark suite was used to test and tune the performance of the solver. The results

of performance testing are shown and discussed in the next chapter.

55

Chapter 7

Experimental performance

results

This chapter describes the results of evaluation and tuning of performance of the

implemented parallel multithreaded SAT solver in a variety of configurations.

After the implementation and correctness testing of the solver was completed,

a special effort was made to tune the performance of the single-threaded con-

figuration to a level comparable with other state-of-the-art sequential solvers.

This effort included evaluation of solver performance using the benchmark suite

described in previous chapter, detailed analysis of run-time behavior of the code

using IntelR© VTuneTM Performance Analyzer [16] and restructuring the imple-

mented data structures and algorithms to remove performance bottlenecks in

the initial implementation.

Figure 7.1 shows the log of the benchmark suite after testing the final version

of the solver in a single-threaded configuration and comparing it to zChaff [33].

The listing shows the implemented solver under the name ”ySAT”.

For the purpose of calculating the total runtime and memory consumption

numbers in Figure 7.1, all benchmarks that failed due to reaching time or mem-

ory limits were charged with the maximal values for both runtime and memory

consumption. As is seen in the figure, in the single-threaded configuration, the

total running time of the implemented solver is about 10% more than zChaff’s,

its total memory consumption is about 12% less and it is able to solve 7 bench-

marks more.

56

Total number of benchmarks: 437

Run time limit: 1500 seconds

Memory consumption limit: 200 MBytes

Number of benchmarks found satisfiable by zChaff: 363

Number of benchmarks found unsatisfiable by zChaff: 38

Number of benchmarks unsolved by zChaff: 36

Total run time of zChaff: 68943.36 seconds

Total memory consumption of zChaff: 20854.97 MBytes

Number of benchmarks found satisfiable by ySat: 367

Number of benchmarks found unsatisfiable by ySat: 41

Number of benchmarks unsolved by ySat: 29

Total run time of ySat: 75988.82 seconds

Total memory consumption of ySat: 16818.54 Mbytes

Benchmarks that failed due to solver errors: none

Benchmarks that have conflicting outcomes on different solvers: none

Figure 7.1: Log of benchmarking suite after testing the solver in a single-

threaded configuration

57

While the performance evaluation and tuning of the single-threaded config-

uration was quite straightforward and produced expected satisfactory results,

the work on multi-threaded configuration appeared to be more complex and

surprising.

It should be noted that, in general, it is difficult to precisely measure the

performance of the solver due to the high variance of run-times of consecutive

invocations of the same test in the same environment. This may be attributed

to a combination of two factors. The first is the inherent indeterminism of

the parallel execution of a multithreaded program. The second factor is the

unpredictably unbalanced structure of the search space of the SAT problem.

These two factors together make it difficult to measure the performance of an

individual test, which may change in order of magnitude from run to run. To

minimize the effect of indeterminism on the results, the tests were run several

times and the total running times were recorded. The standard deviation was

in the range 20–30%.

On the first set of tests, overall performance of the solver on a single medium-

size SAT problem was measured—over a variety of different machine architec-

tures with different numbers of concurrently running threads. The particular

SAT problem was chosen in such a way that it is complex enough to objectively

test the overall performance of the solver and small enough to allow running

multiple tests within a reasonable timeframe. It was also chosen so that mem-

ory consumption does not cause a performance bottleneck and processor per-

formance alone is being tested. The problem is dlx2 aa from the “Superscalar

Suite 1.0” of Velev [31], and represents the correctness criteria for the 2-issue su-

perscalar DLX processor with in-order execution, having 2 pipelines of 5 stages

each. The problem, with 490 variables and 2804 clauses, is unsatisfiable. The

single-threaded configuration of the solver requires about 7000 decisions and

120,000 implications to conclude that it is unsatisfiable. During the run, the

solver consumed about 1.5MB of heap memory.

Table 7.1 shows the different machine configurations used in the tests. The

HT column specifies whether the given processor has IntelR© Hyper-Threading

Technology (HT) enabled. When HT is enabled, each physical processor is per-

ceived by the OS as two logical processors, enabling more concurrency between

threads in the system (the number of logical processors is shown in parenthe-

ses). The L2 column specifies the amount of L2 cache in each processor (in

58

Table 7.1: Machine configurations

OS Processor Type MHz HT CPU L2

A
Windows 2000 AS Pentium III

700 No 4 1M

B 500 No 2 0.5M

C
Windows XP

M. Pentium III 800 No 1 0.5M

D Pentium M 1700 No 1 1M

E

Linux RH 7.1

Pentium 4 2400 No 1 0.5M

F
Xeon

2200 Yes 1(2) 0.5M

G 2400 Yes 2(4) 0.5M

H Linux RH AW 2.1 Itanium 2 (64) 1300 No 2 (*)

megabytes). All processors have two levels of cache, with the exception of the

Itanium 2 processor (Configuration H), which has three levels (256K of L2 cache

and 3072K of L3 cache). Table 7.2 shows the overall performance of the SAT

solver on each configuration in Table 7.1, with a different number of concur-

rently working threads. Numbers are given in seconds and represent the sum

of runtimes for 10 consecutive invocations of the same test. The overhead for

executable startup, thread initialization and parsing of the problem was in the

range of 0.1-0.2 seconds per invocation. The last column gives the ratio of

performance of the configuration with four threads to the single-threaded con-

figuration.

As this set of tests shows, the overall performance of the solver, not only

does not improve with the increased number of concurrently working threads,

but becomes worse when the number of working threads is increased. Perfor-

mance degradation is especially severe on systems that have more than one

processor, whether physical or logical. The least degradation is observed with

Configurations C, D and E, which are single processors. The worst degrada-

tion occurs with Configuration G, with two processors and HT enabled. The

tendency for performance to degrade with an increased number of threads is

not limited to configurations shown in Table 7.2, with up to four threads; per-

formance continues to degrade as the number of working threads is increased

beyond four. A similar picture was observed when the solver was invoked on

other problems.

59

Table 7.2: Performance of SAT solver with different numbers of working threads

Configuration One Two Three Four Four:One

A 13 15 61 89 6.8

B 20 21 42 47 2.4

C 14 16 19 22 1.6

D 13 15 14 15 1.2

E 7 7 7 10 1.4

F 8 20 27 53 6.6

G 6 55 195 168 28.0

H 6 52 86 107 17.8

The above results suggest that there is some kind of interference between

threads running on different processors, which causes the performance degra-

dation. To locate possible sources of such interference, a detailed analysis of

algorithm performance on a single machine configuration with a varying num-

ber of threads was done. Again, VTune was used to collect data and to perform

the analysis. The initial investigation of solver process behavior relative to the

other processes in the system, load distribution of the threads inside the process

and the distribution of function calls inside the threads did not reveal the cause

for the degradation of performance as the number of working threads increases.

Independent of the number of working threads, the solver process took a large

part of the total processor load, the load distribution between process threads

was even, and the same function call patterns appeared in the performance bot-

tlenecks inside the threads. Consistent with performance reports of other DLL

satisfiability solvers, for about 70% of total running time the threads were busy

running boolean constraint propagation algorithms, while this number did not

change with the number of working threads. The only thing that changed with

the increased number of threads was the time that different functions spent

waiting on synchronization locks for shared data structures. However, even in

the case of four running threads, the total waiting time did not reach 10% of

the total running time, a percentage that could not explain the performance

degradation observed in the above tests.

With the help of VTune’s sampling performance analysis, it was found that

60

the average number of processor clockticks needed to execute a single proces-

sor instruction (CPI, clockticks per instruction) grows significantly with the

increased number of working threads. While the CPI of the solver process was

about 1.4 in the configuration with one thread, which is considered very good

for this class of processors, the CPI grew to about 3.7 in the configuration with

four threads, which is considered poor.

To investigate the cause of this degradation further, the behavior of

processor-monitoring events was analyzed. The processor-monitoring events

are hardware-level processor-specific counters that enable monitoring of low-

level processor events, such as cache misses and bus utilization. (For a detailed

description of processor-monitoring events, refer to [14].) A total of more than

200 different tests were run and detailed statistics were collected. Table 7.3

shows only the most interesting results. All tests in the table were run on the

same SAT problem on the same machine (Configuration B from Table 7.1).

Instead of showing the raw values of various processor-monitoring events, the

table shows the ratios of the events to other related basic events. These ratios

make the numbers independent of the actual runtime of a process. In particular,

the increased runtimes of tests due to an increased number of working threads

have no effect on the ratios. For example, the “Instructions Decoded / Clock-

ticks” ratio represents the average amount of decoded instructions per processor

clocktick, independent of how many clockticks have actually been executed.

As Table 7.3 demonstrates, most of the above ratios are strongly affected by

the increased number of threads. The more threads running, the worse the ratios

look. The most seriously affected ratios are the increased cache and memory

misses which slow down the execution very significantly. The average “L2 M-

state Lines Allocated / DMRs” is 0.0005 when one thread is running, while it

is more than 0.0053 when two or more threads are running, a tenfold increase

(!). It is important to note, once again, that these numbers are independent of

actual execution time, which varies with the number of threads.

Several factors may lead to the increased cache misses. One is that the

essence of the parallel SAT solving algorithm requires that most of the auxiliary

data structures storing the current state of the algorithm are duplicated for each

additional thread. The only data that can be shared between threads are the

sets of literals of the formula clauses. This does not constitute a major part of

the total processed data. The increased number of memory allocations results in

61

Table 7.3: Ratios of processor-monitoring events with different number of work-

ing threads

Ratio One Two Three Four

Partial Stall Cycles / Clockticks 0.0216 0.0413 0.0483 0.0427

Resource Related Stalls / Clockticks 0.2758 0.7620 0.4565 0.4439

L2 Cache Reads / DMRs (*) 0.0135 0.0175 0.0303 0.0314

L2 Cache Writes / DMRs 0.0017 0.0041 0.0096 0.0088

L2 M-state Lines Allocated / DMRs 0.0005 0.0053 0.0094 0.0066

L2 M-state Lines Evicted / DMRs 0.0004 0.0036 0.0109 0.0082

External Bus Cycles / Clockticks 0.0008 0.0070 0.0079 0.0095

Instructions Decoded / Clockticks 0.7908 0.5984 0.4855 0.4511

L2 Cache Request Misses / DMRs 0.0013 0.0075 0.0126 0.0096

(*) Data Memory References

Table 7.4: Heap memory allocation with different number of working threads

Decisions 1000 2000 3000 4000 5000 6000 7000

One thread 872 968 1036 1104 1308 1464 1596

Two threads 1172 1408 1528 1624 1756 1828 1912

Three threads 1416 1472 1584 1668 1928 1976 2100

Four threads 1648 1768 2080 2232 2340 2392 2592

an increased number of cache misses. Table 7.4 shows the amount of allocated

heap memory as a function of the number of working threads and the number

of decisions made by the solver. Note that when more than one thread is used,

the actual number of decisions made during the solution of the tested SAT

problem may vary from about 2000 to about 9000, due to nondeterminism of

the algorithm. The data in Table 7.4 shows the approximate memory allocation

(in kilobytes) made during solver invocations that resulted in a total of about

7000 decisions.

In addition to an increased number of memory allocations, the algorithm is

unable to process the data in a linear fashion to allow pre-fetching of coming

62

data. Rather, data is accessed in a nearly random order, inside a single thread

and, in addition, with no correlation between different threads. Frequent ac-

cesses to data from an increased number of locations also result in increased

cache misses. When the algorithm is run on a multiprocessor machine, the situ-

ation is worsened by the fact that a change of data by one processor invalidates

the cache lines holding the memory region surrounding the changed data in

other processors.

The data structures and algorithms of modern SAT solvers are highly opti-

mized with regard to cache misses, so the sharp increase in the number of cache

misses in a multithreaded environment seemingly overweighs the potential ad-

vantages of parallel execution of parts of the problem on a single multiprocessor

machine.

These hypotheses as to the root causes of the performance degradation are

based on the experimental results and on a detailed analysis of the implemented

algorithm, after having invested considerable effort in an attempt to optimize

cache behavior. Still, it is possible that some alternate organization of data

structures or different sequential or parallel algorithms might reduce the number

of cache misses within a multithreaded environment.

63

Chapter 8

Related work

Research on parallelizing SAT solving algorithms can be traced back to a 1994

paper by Bohm and Speckenmeyer [2], who presented a parallelization of a sim-

ple sequential Davis-Putnam (DP) SAT solving algorithm for k-SAT problems

on a parallel MIMD machine consisting of 320 T800 transputers. The authors

showed a linear speed-up with increasing numbers of processors.

In subsequent years, a number of works in the field of parallel SAT algo-

rithms were published. These included parallelizing a more advanced version of

DP/DLL algorithms, such as PSATO [32] and parallel Satz [17], parallelizing

local search algorithms [21] and hardware-based approaches [36]. One of the

most interesting is the implementation of PaSAT [28, 29], a parallel version of a

DLL-based SAT solver that incorporates a number of recently introduced tech-

niques, such as conflict analysis, non-chronological backtracking and dynamic

learning. The authors make a special emphasis on studying the behavior of dy-

namic learning in a parallel environment and its effect on overall performance.

The parallel solver was run on a cluster of 24 Sun workstations, and variations

of different dynamic learning parameters on several test cases were observed.

In many cases, the authors achieved linear, and even super-linear, speed up in

terms of the number of running threads.

There are two main aspects in which the work presented in this document

differs from the above works. First, a substantial effort has been made to im-

plement efficiently most published state-of-the-art sequential SAT solving tech-

niques, making the performance of the single-threaded algorithm directly com-

64

parable to other modern SAT solvers. This allowed the studying of the behavior

of parallel execution of the algorithm in a real-life environment, where it had

to coexist with other implemented optimizations of the SAT solving algorithm.

This also made it possible to observe the negative effect on otherwise highly

optimized cache performance of the sequential algorithm.

The other major distinction between this and previous works is that this

work investigated the parallel execution of a SAT solving algorithm on a sin-

gle multiprocessor workstation with shared memory architecture, as opposed to

executing on a cluster of network-connected machines. This study was deemed

important, since, in a typical industrial environment, it is usually difficult to

dedicate a cluster of network-connected machines to the solution of a SAT prob-

lem, due to the lack of sufficient resources. On the other hand, it is quite com-

mon for one or more processors on a company workstation to be idle, since the

operating system is unable to distribute the workload of a single-threaded SAT

solving algorithm to other processors. However, while it is possible to achieve a

linear speed-up on a cluster of network-connected machines, the effect of shared

memory architecture on cache performance seemingly diminishes the advantages

of parallel execution on a single multiprocessor workstation.

65

Chapter 9

Conclusion

The previous chapters presented experimental results of running a highly op-

timized parallel SAT solving algorithm on a single multiprocessor workstation

with shared memory architecture. The results show a very significant detrimen-

tal effect on cache performance, and, consequently, on total run-time. Cache

performance is so greatly affected that total run-time grows with the increased

number of running threads, in spite of the workload distribution among different

processors. This effect remains similar on a variety of hardware and system con-

figurations, with the tendency to become stronger as the number of processors

increases.

The structure of the SAT problem and the backtrack search SAT algorithm

make it very difficult to adjust the data structures or the algorithm for better

cache locality during concurrent execution of parts of the problem. As a result,

there seems to be no practical advantage in attempting to optimize the back-

track search algorithm by letting it execute concurrently on a multiprocessor

workstation.

66

Bibliography

[1] 3rd International Workshop on Parallel and Distributed Methods in verifi-

Cation (PDMC 2004). http://www.fi.muni.cz/∼brim/PDMC04, 2004.

[2] Max Bohm and Ewald Speckenmeyer. “A fast parallel SAT-solver — efficient

workload balancing”, http://citeseer.ist.psu.edu/51782.html, 1994.

[3] “Boost C++ Libraries”, http://www.boost.org, 2004.

[4] Ronald T. Chin and Charles R. Dyer.Model-based recognition in robot vision,

ACM Computing Surveys, 67–108, 1986.

[5] Stephen A. Cook. The complexity of theorem proving procedures, Proceedings

of the 3rd Annual ACM Symposium on the Theory of Computing, 151–158,

1971.

[6] Martin Davis, George Logemann and Donald W. Loveland. A machine pro-

gram for theorem proving, Journal of the ACM, 394–397, 1962.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantification

theory, Journal of the ACM, 201–215, 1960.

[8] C. P. Gomes, B. Selman and H. Kautz. Boosting Combinatorial Search

Through Randomization, Proceedings of the National Conference on Artifi-

cial Intelligence, 1998.

[9] Jun Gu, Paul W. Purdom, John Franco and Benjamin W. Wah. “Algo-

rithms for the satisfiability (SAT) problem: A survey”, http://citeseer.

ist.psu.edu/56722.html, 1996.

[10] Yulik Feldman, Nachum Dershowitz and Ziyad Hanna. Parallel Multi-

threaded Satisfiability Solver: Design and Implementation, Proceedings of

67

http://www.fi.muni.cz/~brim/PDMC04
http://citeseer.ist.psu.edu/51782.html
http://www.boost.org
http://citeseer.ist.psu.edu/56722.html
http://citeseer.ist.psu.edu/56722.html

the 3rd International Workshop on Parallel and Distributed Methods in Ver-

ification (PDMC 2004). Electronic Notes in Theoretical Computer Science

(ENTCS), Volume 128, Issue 3 (2005), 75–90.

[11] GNU, Free Software Foundation. “DDD, Data Display Debugger”, http://

www.gnu.org/software/ddd, 2004.

[12] GNU, Free Software Foundation. “GCC, GNU Compiler Collection”,

http://gcc.gnu.org, 2004.

[13] GNU, Free Software Foundation. “glibc, GNU C Library”, http://

www.gnu.org/software/libc, 2004.

[14] Intel Corp. “IA-32 Intel Architecture Software Developer’s Manual Volume

1: Basic Architecture”, http://developer.intel.com/design/Pentium4/

documentation.htm, 2003.

[15] Intel Corp. “IntelR© Thread Checker”, http://www.intel.com/software/

products/threading/tcwin, 2004.

[16] Intel Corp. “IntelR© VTuneTM Performance Analyzer”, http://www.intel.

com/software/products/vtune/vpa/index.htm, 2004.

[17] Bernard Jurkowiak, Chu Min Li and Gil Utard. Parallelizing Satz using

dynamic workload balancing, Electronic Notes in Discrete Mathematics, 9

(2001).

[18] Henry Kautz and Bart Selman. Unifying SAT-based and graph-based plan-

ning, Workshop on Logic-Based Artificial Intelligence, 1999.

[19] João P. Marques-Silva. The impact of branching heuristics in propositional

satisability algorithms, Proceedings of the 9th Portuguese Conference on

Artificial Intelligence, 62–74, 1999.

[20] João P. Marques-Silva and K. A. Sakallah. Conflict analysis in search algo-

rithms for propositional satisfiability, Proceedings of the IEEE International

Conference on Tools with Artificial Intelligence, 1996.

[21] Simone L. Martins, Celso C. Ribeiro, Mauricio C. Souza. A parallel GRASP

for the Steiner problem in graphs, Workshop on Parallel Algorithms for Ir-

regularly Structured Problems, 1998.

68

http://www.gnu.org/software/ddd
http://www.gnu.org/software/ddd
http://gcc.gnu.org
http://www.gnu.org/software/libc
http://www.gnu.org/software/libc
http://developer.intel.com/design/Pentium4/documentation.htm
http://developer.intel.com/design/Pentium4/documentation.htm
http://www.intel.com/software/products/threading/tcwin
http://www.intel.com/software/products/threading/tcwin
http://www.intel.com/software/products/vtune/vpa/index.htm
http://www.intel.com/software/products/vtune/vpa/index.htm

[22] Microsoft Corp. “Microsoft Visual Studio”, http://msdn.microsoft.com/

vstudio, 2004.

[23] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and

Sharad Malik. Chaff: engineering an efficient SAT solver, Proceedings of

the 38th Design Automation Conference, 2001.

[24] Parasoft. “Code Wizard”. http://www.parasoft.com/jsp/products/ho

me.jsp?product=Wizard, 2004.

[25] Parasoft. “Insure++”. http://www.parasoft.com/jsp/products/home.

jsp?product=Insure, 2004.

[26] David A. Plaisted and Steven Greenbaum. A structure-preserving clause

form translation, Journal of Symbolic Computation 2 (1986), 293–304.

[27] SAT 2004. The Seventh International Conference on Theory and Appli-

cations of Satisfiability Testing, http://www.satisfiability.org/SAT04,

2004.

[28] Carsten Sinz, Wolfgang Blochinger and Wolfgang Küchlin. PaSAT - par-

allel SAT-checking with lemma exchange: implementation and applications,

Proceedings of SAT2001, Workshop on Theory and Applications of Satisfi-

ability Testing.

[29] Carsten Sinz, Wolfgang Blochinger and Wolfgang Küchlin. Parallel proposi-

tional satisfiability checking with distributed dynamic learning, Parallel Com-

puting 29(7) (2003), 969–994.

[30] Miroslav N. Velev and Randal E. Bryant. Effective use of Boolean satis-

fiability procedure in the formal verification of superscalar and VLIW mi-

croprocessors, Proceedings of the Design Automation Conference, 226–231,

June 2001.

[31] Miroslav N. Velev. “Superscalar Suite 1.0”, http://www.ece.cmu.edu/

∼mvelev, 1999.

[32] Hantao Zhang, Maria Paola Bonacina and Jieh Hsiang. PSATO: a dis-

tributed propositional prover and its application to quasigroup problems,

Journal of Symbolic Computation, 1996.

69

http://msdn.microsoft.com/vstudio
http://msdn.microsoft.com/vstudio
http://www.parasoft.com/jsp/products/home.jsp?product=Wizard
http://www.parasoft.com/jsp/products/home.jsp?product=Wizard
http://www.parasoft.com/jsp/products/home.jsp?product=Insure
http://www.parasoft.com/jsp/products/home.jsp?product=Insure
http://www.satisfiability.org/SAT04
http://www.ece.cmu.edu/~mvelev
http://www.ece.cmu.edu/~mvelev

[33] Lintao Zhang, Zhaohui Fu. Zchaff. http://www.princeton.edu/∼chaff/

zchaff.html, 2004.

[34] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz and Sharad

Malik, Efficient Conflict Driven Learning in a Boolean Satisfiability Solver,

Proceedings of International Conference on Computer Aided Design (IC-

CAD2001), 2001.

[35] Lintao Zhang, Sharad Malik. Validating SAT solvers using an independent

resolution-based checker: practical implementations and other applications,

Proceedings of Design, Automation and Test in Europe (DATE2003), 2003.

[36] Ying Zhao, Sharad Malik, Matthew Moskewicz and Conor Madigan. Ac-

celerating Boolean satisfiability through application specific processing, ISSS,

2001.

70

http://www.princeton.edu/~chaff/zchaff.html
http://www.princeton.edu/~chaff/zchaff.html

	Introduction
	The SAT problem and basic terminology
	Sequential SAT algorithms
	DLL algorithm
	Backtrack search
	Boolean constraint propagation (BCP)

	Conflict-driven learning
	Implication graph
	Conflict clauses
	Non-chronological backtracking
	Conflict clause deletion

	Branching heuristics
	Restarts

	Parallel SAT algorithms
	Search space partitioning
	Task scheduling
	Conflict clause exchange
	Thread synchronization overhead

	Solver implementation
	Data-oriented classes
	CAssignment
	CClause
	CConfiguration
	CImplication
	CLemmaContainer
	CLiteral
	CStatistics
	CTask
	CVariable

	Algorithm-oriented classes
	CClauseBuilder
	CConflictAnalysis
	CDecisionStrategy
	CParser
	CSolver
	CTaskList
	CThread

	Other classes and algorithms
	CIndexWeightPairLess
	CTaskLess
	CThreadId
	main() function

	Testing environment
	Experimental performance results
	Related work
	Conclusion

