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Abstract

The field of proof complexity aims at characterizing which statements have short
proofs in a given formal proof system. This thesis is a contribution to proof complex-
ity broadly construed as the field that studies the sizes of structured or symbolic proofs.
Our focus will be on the development and complexity-theoretic study of new frameworks,
mainly of an algebraic nature, for providing, among other things, proofs of propositional
tautologies. We further link and motivate the proof systems we explore with certain ques-
tions, mainly from algebraic complexity. The main results of this thesis can be divided
into four parts, as follows.

MULTILINEAR PROOFS: We introduce an algebraic proof system that operates with
multilinear arithmetic formulas. We show that this proof system is fairly strong, even when
restricted to multilinear arithmetic formulas of a very small depth. Specifically, we show
that algebraic proofs manipulating depth-2 multilinear arithmetic formulas polynomially
simulate resolution, Polynomial Calculus (PC) and Polynomial Calculus with Resolution
(PCR) proofs. We provide polynomial size proofs manipulating depth-3 multilinear arith-
metic formulas for the pigeonhole principle tautologies and the Tseitin’s graph tautologies.

By known lower bounds, this demonstrates that algebraic proof systems manipulat-
ing depth-3 multilinear formulas are strictly stronger than resolution, PC and PCR, and
have an exponential gap over bounded-depth Frege for both the pigeonhole principle and
Tseitin’s graph tautologies.

We illustrate a connection between lower bounds on multilinear proofs and lower
bounds on multilinear circuits. In particular, we show that (an explicit) super-polynomial
size separation between proofs manipulating general arithmetic circuits and proofs ma-
nipulating multilinear circuits implies a super-polynomial size lower bound on multilinear
circuits for an explicit family of polynomials.

The short multilinear proofs for hard tautologies are established via a connection be-
tween depth-3 multilinear proofs and extensions of resolution, described as follows:

RESOLUTION OVER LINEAR EQUATIONS WITH APPLICATIONS TO MULTILINEAR

PROOFS: We develop and study the complexity of propositional proof systems of varying
strength extending resolution by allowing it to operate with disjunctions of linear equa-
tions instead of clauses. We demonstrate polynomial-size refutations for hard tautologies
like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies
in these proof systems. Using (monotone) interpolation we establish an exponential-size
lower bound on refutations in a certain, strong, fragment of resolution over linear equa-
tions, as well as a general polynomial upper bound on (non-monotone) interpolants in this
fragment. We show that proofs operating with depth-3 multilinear formulas polynomi-
ally simulate a certain, strong, fragment of resolution over linear equations (by which the
aforementioned upper bounds on multilinear proofs follow). We then connect resolution
over linear equations with extensions of the cutting planes proof system.



SYMBOLIC PROOFS OF POLYNOMIAL IDENTITIES: To transform algebraic propo-
sitional proof systems operating with arithmetic formulas into formal proof systems one
usually augments the system with an “auxiliary” proof system capable of manipulating
arithmetic formulas by means of the polynomial-ring axioms. We investigate basic struc-
tural and complexity characterizations of the latter proof system and its fragments. Specif-
ically, a symbolic proof for establishing that a given arithmetic formula Φ computes the
zero polynomial (or equivalently, that two given arithmetic formulas compute the same
polynomial) is a sequence of formulas, starting with Φ and deriving the formula 0 by
means of the standard polynomial-ring axioms applied to any subformula. We introduce
fragments of symbolic proofs named analytic symbolic proofs, enjoying a natural property:
a symbolic proof is analytic if one cannot introduce arbitrary new formulas anywhere in
the proof (that is, formulas computing the zero polynomial which do not originate, in a pre-
cise manner, from the initial arithmetic formula). We establish exponential lower bounds
on the number of steps in analytic symbolic proofs operating with depth-3 arithmetic for-
mulas, under a certain regularity condition on the structure of proofs (roughly, mimicking
a tree-like structure). The hard instances are explicit and rely on small formulas for the
symmetric polynomials.

ALTERNATIVE MODELS OF REFUTATION – PROMISE PROPOSITIONAL PROOFS: We
study the problem of certifying unsatisfiability of CNF formulas under the promise that
any satisfiable formula has many satisfying assignments, where “many” stands for an
explicitly specified function Λ in the number of variables n. To this end, we develop
propositional proof systems under different measures of promises (that is, different Λ) as
extensions of resolution. This is done by augmenting resolution with axioms that, roughly,
can eliminate sets of truth assignments defined by Boolean circuits. We then investigate
the complexity of such systems, obtaining an exponential separation in the average-case
between resolution under different size promises: (i) Resolution has polynomial-size refu-
tations for all unsatisfiable 3CNF formulas when the promise is ε ·2n, for any constant
0 < ε < 1; (ii) There are no sub-exponential size resolution refutations for random 3CNF
formulas, when the promise is 2δn (and the number of clauses isO(n3/2−ε), for 0 < ε < 1

2
),

for any constant 0 < δ < 1.
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Proof complexity lies at the intersection of computational complexity and logic. Com-
putational complexity aims at understanding the nature and limitations of efficient compu-
tation; logic, on the other hand, and in particular proof theory, studies what can formally be
proved from a given set of axioms and deduction rules, in a given language. Accordingly,
proof complexity aims at characterizing which statements can formally be proved with
efficient (or feasible) proofs. Here the term “efficient” typically stands for two separate
(though interconnected) meanings: the first meaning refers to the size of the proofs, that
is, the number of symbols (or bits) it takes to write down the proofs. The second mean-
ing refers to the efficiency of the “concepts” one reasons with (the technical interpretation
being the complexity class from which proof-lines are taken).

Let us begin with a short introduction to the field of propositional proof complexity.

1.1 Background on Propositional Proof Complexity
Propositional proof complexity deals with proof systems that establish propositional tau-
tologies. A propositional proof system is usually described by a finite set of inference
rules and axiom schemata. A propositional proof is then a derivation of some tautology
that applies the prescribed inference rules to the set of axioms. We can sometimes take the
dual view in which proof systems establish that some formula is unsatisfiable by deriving
FALSE from the formula and axioms. Thus, the proofs in such systems are usually called
refutations.

The standard definition of a formal (or abstract) proof system in this setting is that
introduced by Cook and Reckhow in their seminal work Cook and Reckhow (1979).

Definition 1.1.1 (Cook-Reckhow propositional proof system) A Cook-Reckhow
propositional proof system (or a formal propositional proof system) is a polynomial-time
algorithm A that receives a propositional formula F (most commonly a Boolean formula
in the connectives ∨,∧,¬) and a string π over some finite alphabet (“the [proposed]
proof” of F ), such that there exists a π with A(F, π) = 1 if and only if F is a tautology.

Note that the requirement of a formal proof system A is that proofs are polynomial-
time recognizable (polynomial in the size of both the proofs π and the formulas F ). The
completeness of a (Cook-Reckhow) proof system (with respect to the set of all proposi-
tional formulas; or for a subset of it, e.g. the set of tautological formulas in disjunctive
normal form [DNFs]) means that every tautological formula F has a string π (“the proof
of F ”) so that A(F, π) = 1. The soundness of a (Cook-Reckhow) proof system means
that for every formula F , if there is a string π for which A(F, π) = 1, then F is indeed a
tautology.

Given Definition 1.1.1, the basic question of propositional proof complexity is this:

Fix a formal propositional proof system P and a propositional tautology τ .
What is the smallest proof of τ in P?



Chapter 1. Introduction 3

From the perspective of computational complexity, this question is of fundamental im-
portance, since showing that for every propositional proof system P , there are tautologies
τ with no polynomial-size (in the size of τ ) proofs in P , would readily imply NP 6= coNP,
as was observed in Cook and Reckhow (1979).

From the perspective of algorithmics (and computational logic), establishing lower
bounds on the size of proofs in certain proof systems, usually gives lower bounds on the
run-time of specific procedures for NP-complete problems like certain SAT-solvers and
theorem provers (cf. Impagliazzo et al. (1999); Beame et al. (2002); Segerlind (2007a)).
These run-time lower bounds are rather broad, in the sense that they do not depend on
specific heuristics taken by the procedures for solving the problems.

Furthermore, from the perspective of mathematical logic, and specifically the proof-
and model-theoretic study of formal (first, or higher-order) systems of arithmetic, tight and
significant connections with propositional proof complexity were discovered. To some
extent, propositional proofs are the non-uniform counterpart of weak formal systems of
arithmetic (generally called theories of bounded arithmetic); in fact, lower bounds on
propositional proof systems are closely related to independence (that is, unprovability)
results in weak systems of arithmetic (cf. Buss (1986); Krajı́ček (1995); Razborov (1996);
Buss (1997); Cook (2005); Cook and Nguyen (2004–2008)).

Yet another aspect of propositional proof complexity is its tight relation – in spirit
and techniques – to circuit complexity. It seems that there is a correspondence between
proving lower bounds on a circuit class and proving lower bounds on proofs operating with
circuits of the prescribed circuit class, though formal and specific relations between proof
complexity hardness and computational hardness are quite restricted currently (see Beame
and Pitassi (1998) for a short discussion on circuit-complexity based proof systems; see
also Segerlind (2007b) for a technical survey of propositional proof complexity).

In what follows we focus on concrete proof systems that are usually studied in the
proof complexity literature and which are relevant to this thesis.

1.1.1 Concrete Proof Systems

Perhaps the most natural and typical family of proof systems are those systems originating
in mathematical logic, which are called Frege proof systems (or Hilbert-style proof sys-
tems). When considering only the propositional fragment of this family of proof systems,
we obtain a textbook proof system, in which each proof-line1 is usually a Boolean formula
with the logical connectives ∧,∨,¬, which stand for AND, OR, NOT, respectively (and,
optionally, the implication connective→). A proof in a Frege system is a sequence of for-
mulas that starts from a set of self-evident (and easily recognizable) axioms and derives
new formulas (that is, new proof-lines) by using a set of self-evident deduction rules. In
this way, the proof system enables one to derive any propositional tautology (and only
propositional tautologies).

1Each element (usually a formula) of a proof-sequence is referred to as a proof-line.
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Algebraic proof systems. In the course of investigating the complexity of different
propositional proof systems, connections were found between proofs operating with
Boolean formulas and proofs operating with multivariate polynomials over a fixed field
(cf. Beame et al. (1996); Pitassi (1997)). Proof systems operating with polynomials are
called algebraic proof systems. In this setting one replaces logical reasoning (as used in
Frege proofs), with basic algebraic reasoning. Specifically, in algebraic proofs one usually
starts from a set of polynomials, with the intended semantics that each of the polynomials
evaluates to 0 over the field, and by using simple algebraic deduction rules like addition of
two polynomials and multiplication of a polynomial by a variable, derives new polynomi-
als (from previous ones). Such algebraic proofs usually demonstrate that a collection of
polynomial equations has no solutions (that is, no common roots) over some fixed field.
When the collections of initial polynomial equations are derived from propositional con-
tradiction (most typically, from the clauses of unsatisfiable formulas in conjunctive normal
form [CNF]) and the algebraic proofs establish that the collections have no 0, 1 solutions
over the field, then the proof system is called an algebraic propositional proof system.

The Polynomial Calculus proof system (PC, for short), introduced in Clegg et al.
(1996), is a well studied algebraic (propositional) proof system. Fix some field F and
let Q be a collection of multivariate polynomial equations Q1 = 0, . . . , Qm = 0, where
each Qi is taken from the ring of polynomials F[x1, . . . , xn]. In PC the fact that the col-
lection Q has no 0, 1 solutions over the field F is proved by using the following basic
algebraic inference rules: from two polynomials p and q (interpreted as the two equations
p = 0 and q = 0) we can deduce α · p + β · q, where α, β are elements of F; and from
p we can deduce xi · p, for any variable xi (1 ≤ i ≤ n). A sequence of polynomials that
uses Q1, . . . , Qm and x2

i −xi (for any variable xi) as initial polynomial equations, follows
the above algebraic inference rules, and terminates with 1 (with the intended semantics
being that 1 evaluates to 0; thus, 1 here stands for FALSE), is called a PC refutation of the
polynomial (equations) Q1, . . . , Qm.

It can be shown by Hilbert’s Nullstellensatz that for every unsatisfiable set of polyno-
mials (unsatisfiable, in the sense that the polynomials have no common 0, 1 roots over the
field) there exists a PC refutation. Also, since the deduction rules are sound, every deriva-
tion of the polynomial 1 must start from a set of unsatisfiable set of polynomials, and so
overall we obtain a sound and complete proof system that can establish the unsatisfiability
of every unsatisfiable set of polynomials over the field.

When we consider algebraic proof systems we have the possibility to relax somewhat
the notion of a proof : instead of requiring that a proof be polynomially-verifiable (as is
required by the definition of a formal proof system), we may only require that the proof
will be polynomially-verifiable with high probability. This is done by considering the
proofs as being semantic proofs (this semantic setting was first considered by Pitassi in
Pitassi (1997)). In other words, each proof-line can be regarded as (the set of solutions of)
a (formal) multivariate polynomial over the given field; and where each such polynomial
is written as an arbitrarily chosen arithmetic formula computing the polynomial (note that
a single polynomial might have many representation as an arithmetic formula). Some of
the algebraic proof systems we study in this thesis are semantic proof systems. We shall
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also study ways to turn semantic algebraic proofs into syntactic ones (that is, into formal
propositional proof systems – verifiable in deterministic polynomial time).

Besides the fact that algebraic proof systems are almost as natural as their Boolean
counterparts (that is, Frege proof systems), there are many other motivations for studying
algebraic proofs. In fact, the initial interest in algebraic proof systems arose due to their
connections with Frege proof systems operating with constant-depth formulas equipped
with modular counting gates and Frege proofs operating with constant-depth formulas
augmented with modular counting axioms (cf. Beame et al. (1996); Buss et al. (1996/97);
Beame and Riis (1998); Impagliazzo and Segerlind (2001, 2002)). Proving lower bounds
on constant depth Frege proof with counting gates is still an important open problem
in proof complexity theory. Another motivation for considering algebraic proof system
is more akin to questions of practical importance, for instance, boosting performance in
automatic theorem provers and SAT-solvers by using algebraic reasoning (see for example
Clegg et al. (1996); Hirsch et al. (2005)).

In this thesis we study algebraic proof systems as objects of interest in their own right,
and we shall also consider their connections with questions in algebraic complexity and
algebraic circuit complexity.

1.1.2 Overview of Proof Systems

We now list the proof (and refutation) systems we consider in this thesis. Some of the proof
systems have already been considered in previous works and other systems are introduced
in this thesis (we shall define these formally in the relevant places).

Algebraic propositional proof systems. Polynomial Calculus, denoted PC (introduced
in Clegg et al. (1996)). A proof system for the set of unsatisfiable CNF formulas written as
an unsatisfiable set of polynomial equations over a field. Each polynomial in a PC proof
is represented as an explicit sum of monomials.

Polynomial Calculus with Resolution, denoted PCR (introduced in Alekhnovich et al.
(2002)). This is an extension of PC where for each variable xi a new formal variable
x̄i is added. The variable x̄i equals 1−xi. Each polynomial in a PCR proof is represented
as an explicit sum of monomials. PCR can polynomially simulate both PC and resolution.

Formula Multilinear Calculus, denoted fMC. The fMC is a semantic algebraic proposi-
tional proof system for the set of unsatisfiable CNF formulas written as unsatisfiable set
of multilinear polynomial equations over a field. Each polynomial in an fMC proof is a
multilinear polynomial represented as a multilinear arithmetic formula (we consider arith-
metic formulas that can use unbounded fan-in + (addition) and × (product) gates).

Depth-k Formula Multilinear Calculus, denoted depth-k fMC. This is a restriction of fMC
to multilinear arithmetic formulas of depth at most k.

The cMC and cPCR proof systems. The cMC proof system is similar to fMC, except
that multilinear polynomials are represented by multilinear arithmetic circuits (instead of
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multilinear arithmetic formulas). In the same manner, cPCR is a proof system similar to
PCR, except that polynomials are represented by (general) arithmetic circuits (instead of
sums of monomials).

Proof systems operating with Boolean formulas. Resolution (introduced by Blake
(1937) and further developed in Robinson (1965)). A proof system for establishing the
unsatisfiability of CNF formulas. Each resolution proof-line consists of a clause (i.e., a
disjunction of variables or their negations). The last line of a resolution refutation is the
empty clause, which has no satisfying assignment.

Bounded-depth Frege. This system is usually considered as a proof system for the set of
Boolean tautologies. The lines in a bounded depth Frege proof consists of constant-depth
formulas over the connective NOT and the unbounded fan-in connectives AND, OR. We
can consider bounded-depth Frege to be also a proof system for the set of unsatisfiable
Boolean formulas, by treating a proof sequence (starting from some initial set of unsatis-
fiable formulas) that ends with FALSE, as a refutation.

Propositional proofs under a promise. These are refutation systems operating with
Boolean formulas (or clauses, in case we deal with extensions of resolution) that are com-
plete and sound for the set of formulas promised to be either unsatisfiable or to have
sufficiently many satisfying assignments (where the term “sufficiently many” stands for
an explicitly given function of the number of variables in the formula).

Boolean-Algebraic proof systems. Resolution over linear equations (R(lin), for short)
and its fragments. The R(lin) proof system establishes unsatisfiable CNF formulas. Each
R(lin) proof-line consists of a disjunction of linear equations with integer coefficients (the
coefficients are written in unary notation). The last line of an R(lin) refutation is the empty
clause, which has no satisfying assignment. We shall also define a (provably weaker)
fragment of R(lin), denoted R0(lin).

Extensions of the cutting planes proof system. The R(CP*) proof system (introduced in
Krajı́ček (1998)) is a common extension of resolution and CP* (the latter is cutting planes
with polynomially bounded coefficients). The system R(CP*) is essentially resolution
operating with disjunctions of linear inequalities (with polynomially bounded integral
coefficients) augmented with the cutting planes inference rules.

Algebraic proof systems for polynomial identities. Symbolic proofs of polynomial
identities. A symbolic proof for establishing that a given arithmetic formula Φ com-
putes the zero polynomial (or equivalently, that two given arithmetic formulas compute
the same polynomial) is a sequence of formulas, starting with Φ and deriving the formula
0 by means of the standard polynomial-ring axioms applied to any subformula.
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1.1.3 Comparing Proof Systems: Simulations and Separations

For two propositional proof systems P1, P2 we say that P2 polynomially simulates P1 if
for every propositional formula F and every P1-proof π of F , there exists a proof of F in
P2 of size polynomial in the size of π. In case P2 polynomially simulates P1 while P1 does
not polynomially simulate P2 we say that P2 is strictly stronger than P1 or that there is
a (super-polynomial) separation of P2 and P1. In case a proof system P uses a language
that is different language from the set of Boolean propositional formulas, we shall fix
ahead a simple (and efficient) translation that maps Boolean propositional formulas to the
language used by P (and this way we can treat the proof system P as a proof system for
the set of Boolean propositional formulas).

In this thesis, when comparing the strength of different propositional proof systems,
we shall restrict ourselves to CNF formulas only. That is, we consider propositional proof
systems such as resolution and bounded-depth Frege as proof systems for the set of un-
satisfiable CNF formulas and we consider algebraic proof systems to be proof systems for
the set of polynomial translations of unsatisfiable CNF formulas (see Section 2.4). More
formally:

Definition 1.1.2 (Simulations and separations) Let P1, P2 be two proof systems for the
set of unsatisfiable CNF formulas. We say that P2 polynomially simulates P1 if given a
P1 refutation π of a CNF F , there exists a refutation of F in P2 of size polynomial in the
size of π. In case P2 polynomially simulates P1 while P1 does not polynomially simulate
P2 we say that P2 is strictly stronger than P1 and also that there is a (super-polynomial)
separation of P2 and P1. Given an unsatisfiable CNF formula F , we say that P2 has an
exponential gap over P1 for F , if there exists a polynomial size P2 refutation of F , and
the smallest P1 refutation of F is of exponential size. If either P1 or P2 are algebraic
proof systems, then we identify the CNF formula F with its translation to a collection of
polynomial equations.

For the sake of convenience we shall sometimes write simply simulates to mean poly-
nomially simulates. Since we do not talk about other concepts of simulations, there should
be no confusion.

1.2 Contribution of the Thesis
The thesis is divided basically into the following four parts: multilinear proofs, resolution
over linear equations, symbolic proofs of polynomial identities and propositional proofs
under a promise. The following subsections elaborate on these four parts.

1.2.1 Multilinear Proofs

In Chapter 3 we introduce a natural family of algebraic proof systems generally called
multilinear proof systems. In particular we consider an algebraic proof system Formula
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Multilinear Calculus (fMC) that manipulates multilinear arithmetic formulas. A multi-
linear proof (that is, an fMC proof) begins with an initial set of multilinear polynomial
equations representing the clauses of a CNF formula (where a polynomial is multilinear
if in each of its monomials the power of every variable is at most one), and the goal is
to prove that the CNF formula is unsatisfiable by showing the equations have no 0, 1
solutions over a given fixed field.

Specifically, let Q be a set of initial multilinear polynomial equations in the formal
variables {x1, . . . , xn, x̄1, . . . , x̄n} over some fixed field. A multilinear proof of the insolv-
ability of Q is a sequence of multilinear polynomial equations, where each polynomial is
represented as (an arbitrarily chosen) multilinear arithmetic formula (a multilinear arith-
metic formula is an arithmetic formula in which every gate computes a multilinear polyno-
mial). The sequence uses the initial equations plus the polynomial equations xi+x̄i−1 = 0
and xi · x̄i = 0 (for all variables xi, x̄i) as axioms, and terminates with the unsatisfiable
equation 1 = 0. Derivations of polynomial equations in the sequence are done by applying
the following two basic algebraic inference rules to previous equations in the sequence:

• from p = 0 and q = 0 one can deduce α · p+ β · q = 0, where α, β are elements of
the field;

• from p = 0 one can deduce q · p = 0 , for any polynomial q such that q · p is
multilinear.

(The inclusion of the equalities xi + x̄i− 1 = 0 and xi · x̄i = 0 forces the variables xi and
x̄i to take on only the Boolean values 0 and 1, where x̄i takes the negative value of xi.) If
such a sequence exists then there is no assignment of 0, 1 values that satisfies all the initial
equations. Such a proof of insolvability is then called a multilinear refutation of the initial
polynomial equations.

We can obtain in this way a proof system for (unsatisfiable) CNF formulas. Given a
CNF formula F in the variables x1, . . . , xn we translate F to a system of multilinear poly-
nomial equations in the variables x1, . . . , xn, x̄1, . . . , x̄n. Each clause C of F translates
into a multilinear polynomial equation qC = 0. F is satisfiable if and only if the system
of polynomial equations qC = 0, for all clauses C of F , has a common root in the field,
where the root also satisfies the axioms xi + x̄i − 1 = 0 and xi · x̄i = 0 (for all variables
xi, x̄i). For example, the CNF (x1 ∨x2 ∨¬x3)∧ (¬x2 ∨x4) translates into the polynomial
equations x̄1 · x̄2 · x3 = 0 , x2 · x̄4 = 0.

The minimal refutation size of a given set of initial polynomial equations (i.e., the
number of symbols that it takes to write down the refutation of these equations) is the
standard measure for the strength of an algebraic proof system. In algebraic proof systems
such as the Polynomial Calculus (PC) (described above) and Polynomial Calculus with
Resolution (PCR), one represents the polynomials inside refutations as explicit sum of
monomials. Then, the size of a PC or a PCR refutation is defined as the total number of
all monomials appearing in the refutation. On the other hand, in the multilinear proof sys-
tem we present, polynomials inside refutations are represented as multilinear arithmetic
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formulas. Accordingly, the size of a multilinear refutation is defined to be the total size of
all the multilinear arithmetic formulas appearing in the refutation.

Our results show that algebraic proof systems manipulating multilinear arithmetic for-
mulas – and further, very small depth multilinear arithmetic formulas – constitute rather
strong proof systems that are strictly stronger than PC, PCR and resolution. Moreover,
such multilinear proof systems are capable of refuting efficiently (negations of) families
of tautologies that were found hard2 for other proof systems, such as the bounded-depth
Frege proof system. Furthermore, we illustrate a link between multilinear proofs and mul-
tilinear arithmetic circuit lower bounds.

1.2.1.1 Background and Motivations

There is a great amount of literature devoted to proving lower bounds on the maximal
degree of polynomials appearing in PC refutations of some set of initial polynomials (cf.
Razborov (1998), Impagliazzo et al. (1999), Buss et al. (2001), Ben-Sasson and Impagli-
azzo (1999), Alekhnovich et al. (2004), Alekhnovich and Razborov (2001), Razborov
(2002-2003)). These lower bounds imply a lower bound on the size of the refutations only
when polynomials are represented as a sum of monomials, that is, as depth-2 arithmetic
formulas. For instance, Impagliazzo et al. (1999) showed that any degree lower bound that
is linear in the number of variables implies an exponential lower bound on the number of
monomials in the refutation.

With respect to lower bounds on the refutation size of algebraic proof systems other
than PC and PCR (in which the size of refutations is measured by the number of mono-
mials appearing in the refutations), not much is known. Moreover, extending the PC
proof system by allowing it to manipulate general (i.e., not necessarily multilinear) arith-
metic formulas makes this proof system considerably stronger (cf. Buss et al. (1996/97);
Pitassi (1997); Grigoriev and Hirsch (2003)). In particular, such an extended PC proof
system that manipulates general arithmetic formulas polynomially simulates the entire
Frege proof system, which is regarded as a rather strong proof system, and for which no
super-polynomial size lower bounds are currently known. Thus, if one seeks to prove
size lower bounds on refutation size, it is more reasonable to concentrate on (apparently
weaker) extensions of PC (and PCR).

Furthermore, it is well known in proof complexity theory (cf. Beame and Pitassi
(1998)) that there is an (informal) correspondence between circuit-based complexity
classes and proof systems based on these circuits (that is, proofs in which the proof
lines consist of circuits from the prescribed circuit-class). Moreover, super-polynomial
size lower bounds on proofs manipulating circuits from a given circuit-class were only
found after super-polynomial size lower bounds were already proved for circuits from
the circuit-class itself. Keeping in mind this correspondence, it is important to note that
super-polynomial lower bounds on multilinear arithmetic formulas for the determinant

2Given a proof system P and a family of tautologies {τn | n ∈ N}, we say that τn is hard for P in case
there is no P -proofs of τn of size polynomial in the size of τn (or equivalently, if there is no polynomial-size
P -refutations of ¬τn).
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and permanent functions, as well as other functions, were recently proved in Raz (2004,
2006) and Aaronson (2004). On the other hand no super-polynomial lower bounds are
known for general arithmetic formulas.

In light of the aforesaid, our results show that algebraic proof systems operating with
multilinear arithmetic formulas (even of a very small depth) constitute on the one hand
fairly strong proof systems extending PC and PCR — and on the other hand, the cor-
responding circuit-class (i.e., multilinear formulas) does have known super-polynomial
lower bounds.

Moreover, as mentioned above, the correspondence between proof systems and circuit-
classes is not a formal one, but instead it acts more as a working conjecture in proof com-
plexity theory. Nevertheless, using multilinear proofs we are able to pinpoint an interesting
case where this correspondence can be formulated explicitly.

1.2.1.2 Summary of Results and Organization

In Chapter 3 we introduce the multilinear proof systems. We prove three kinds of re-
sults. The results of the first kind are polynomial simulations. The second kind of results
concerns the problem of proving multilinear arithmetic circuit size lower bounds in con-
nection to multilinear proof systems. The results of the third kind are upper bounds on the
refutation size of combinatorial principles that were found hard for other proof systems.
Both the simulations and upper bounds results are valid when one restricts the multilin-
ear arithmetic formulas in the refutations to depth at most 3. Specifically, we show the
following.

Simulation results: In Chapter 3 (Sections 3.2 and 3.3) we show that Depth-2 fMC
polynomially simulates resolution, PC and PCR.

In Chapter 3 (Section 3.3) we provide a general simulation result for multilinear
proofs. Specifically, Let S be a sequence of polynomials (not formulas) that forms a
PCR proof sequence for some given set Q of multilinear polynomials, and consider the
corresponding sequence S ′ of multilinear polynomials formed by “multilinearization” (see
Definition 2.5.2) of the polynomials in S. Then, the general simulation result essentially
says that there is an fMC proof of Q of size polynomial in the total size of all the multilin-
ear formulas that compute the polynomials in S ′.

Relations with algebraic circuit complexity: In Chapter 3 (Section 3.4) we utilize
the general simulation described above to assert the following: proving (an explicit) super-
polynomial size separation between algebraic proofs manipulating general arithmetic cir-
cuits and algebraic proofs manipulating multilinear arithmetic circuits implies a super-
polynomial size lower bound on multilinear arithmetic circuits for an explicit family of
polynomials.

Upper bounds: In Chapter 3 Section 3.5 we demonstrate the following upper bound:

1. Depth-3 fMC has polynomial-size refutations of the Tseitin mod p contradictions
(for any p) over fields of characteristic q - p that include a primitive p-th root of
unity.
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In Chapter 5 we establish more upper bounds on multilinear proofs of hard tautologies.
This is accomplished as a consequence of a general simulation result (Corollary 5.2.5)
stating that depth-3 multilinear proofs polynomially simulate a certain considerably strong
fragment of resolution over linear equations introduced in Chapter 4. Specifically, we
show the following:

2. Depth-3 fMC over fields of characteristic 0 has polynomial-size refutations of the
pigeonhole principle;

3. Depth-3 fMC has polynomial-size refutations of the Tseitin mod p contradictions
(for any p) over any field of characteristic 0.

The short multilinear proofs of Tseitin mod p contradictions established in Chapter 3
(Section 3.5) are different from the short proofs of Tseitin mod p demonstrated in Chapter
5. The latter apply to multilinear proofs over any field of characteristic 0, while the former
over fields of characteristic q - p that include a primitive p-th root of unity. On the other
hand, the former proofs have the advantage of being more direct since they do not rely
on small depth-3 representations of the symmetric polynomials (and so it is not known
if the latter proofs can be carried out in a “syntactic” multilinear proof system [see the
discussion on syntactic versus semantic algebraic proof systems in Section 1.2.3]).

Some consequences. Haken (1985) has shown an exponential lower bound on the size
of resolution refutations of the pigeonhole principle. Moreover, exponential lower bounds
on the size of resolution refutations of certain Tseitin mod 2 tautologies (that is, Tseitin
tautologies based on expanding graphs) are also known (see Urquhart (1987); Ben-Sasson
and Wigderson (2001)). We conclude then that depth-3 fMC is exponentially stronger
than resolution.

From the known exponential lower bounds on PC and PCR refutation size of certain
Tseitin mod p tautologies (cf. Buss et al. (2001); Ben-Sasson and Impagliazzo (1999);
Alekhnovich et al. (2004)), we conclude that depth-3 fMC is strictly stronger than PC and
PCR.

Note also that Razborov (1998) and subsequently Impagliazzo et al. (1999) have
shown an exponential-size lower bound on the size of PC (and PCR) refutations of a
low-degree version of the pigeonhole principle. Our depth-3 fMC upper bound is also
applicable to this low-degree version (see Section 5.3 for more details on this).

Exponential lower bounds on the size of bounded-depth Frege proofs of the pigeon-
hole principle were proved in Pitassi et al. (1993) and, independently, in Krajı́ček et al.
(1995). Thus Item (2) above shows an exponential gap of depth-3 fMC over bounded
depth Frege for the pigeonhole principle. Similarly, an exponential lower bound on the
size of bounded-depth Frege proofs of certain Tseitin mod 2 tautologies was shown in
Ben-Sasson (2002). Thus, Items (1) and (3) above implies that also for these Tseitin mod
2 tautologies, depth-3 fMC has an exponential gap over bounded-depth Frege proofs.

The results on multilinear proofs appeared as parts of:
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Ran Raz and Iddo Tzameret. The strength of multilinear proofs. Compu-
tational Complexity, 17(3):407–457, 2008.

Ran Raz and Iddo Tzameret. Resolution over linear equations and multi-
linear proofs. Ann. Pure Appl. Logic, 155(3):194–224, 2008.

1.2.2 Resolution over Linear Equations with Applications to Multi-
linear Proofs

The resolution system is a popular refutation proof system for establishing the unsatisfi-
ability of CNF formulas. Nevertheless, it is well known that resolution cannot provide
small, polynomial-size, proofs for many basic counting arguments. The most notable ex-
amples of this are the strong exponential lower bounds on the resolution refutation size of
the pigeonhole principle and its different variants. Due to the popularity of resolution both
in practice, as the core of many automated theorem provers, and as a theoretical case-study
in propositional proof complexity, it is natural to consider weak extensions of resolution
that can overcome its inefficiency in providing proofs of counting arguments. In Chapter
4 we present proof systems that are extensions of resolution, of various strengths, that
are suited for this purpose. In Chapter 5, these proof systems will be furthered linked to
multilinear proofs.

The basic proof system we shall study in Chapter 4 is denoted R(lin). The proof-
lines in R(lin) proofs are disjunctions of linear equations with integral coefficients over
the variables ~x = {x1, . . . , xn}. It turns out that (already proper subsystems of) R(lin) can
handle very elegantly basic counting arguments. The following defines the R(lin) proof
system. Given an initial CNF, we translate every clause

∨
i∈I xi ∨

∨
j∈J ¬xj (where I

are the indices of variables with positive polarities and J are the indices of variables with
negative polarities) pertaining to the CNF, into the disjunction

∨
i∈I(xi = 1)∨∨j∈J(xj =

0). Let A and B be two disjunctions of linear equations, and let ~a · ~x = a0 and ~b · ~x = b0

be two linear equations (where ~a,~b are two vectors of n integral coefficients, and ~a · ~x is
the scalar product

∑n
i=1 aixi; and similarly for ~b · ~x). The rules of inference belonging

to R(lin) allow to derive A ∨ B ∨ ((~a − ~b) · ~x = a0 − b0) from A ∨ (~a · ~x = a0) and
B ∨ (~b ·~x = b0). We can also simplify disjunctions by discarding (unsatisfiable) equations
of the form (0 = k), for k 6= 0. In addition, for every variable xi, we shall add an axiom
(xi = 0) ∨ (xi = 1), which forces xi to take on only Boolean values. A derivation of
the empty disjunction (which stands for FALSE) from the (translated) clauses of a CNF
is called an R(lin) refutation of the given CNF. This way, every unsatisfiable CNF has
an R(lin) refutation (this can be proved by a straightforward simulation of resolution by
R(lin)).

The basic idea that enables us, in Chapter 5, to connect resolution operating with dis-
junctions of linear equations and multilinear proofs is this: whenever a disjunction of
linear equations is simple enough—and specifically, when it is close to a symmetric func-
tion, in a manner made precise—then it can be represented by a small size and small
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depth multilinear arithmetic formula over large enough fields. We show how to polyno-
mially simulate with multilinear proofs, operating with small depth multilinear formulas,
certain short proofs carried inside resolution over linear equations. This enables us to
provide polynomial-size multilinear proofs for certain hard tautologies.

More specifically, we introduce a fragment of R(lin), which can be polynomially sim-
ulated by depth-3 multilinear proofs (that is, proofs in depth-3 fMC). On the one hand this
fragment of resolution over linear equations already is sufficient to formalize in a transpar-
ent way basic counting arguments, and so it admits small proofs of the pigeonhole prin-
ciple and the Tseitin mod p formulas (which yields upper bounds on multilinear proofs);
and on the other hand we can use the (monotone) interpolation technique to establish an
exponential-size lower bound on refutations in this fragment as well as demonstrating a
general (non-monotone) polynomial upper bound on interpolants for this fragment.

In Chapter 4 (Section 4.7) we consider the relation of the cutting planes system and
its extensions with the R(lin) proof system. The cutting planes proof system operates with
linear inequalities with integral coefficients, and this system is very close to the extensions
of resolution we will study in Chapter 4. In particular, the following simple observation
can be used to polynomially simulate cutting planes proofs with polynomially bounded
coefficients (and some of its extensions) inside resolution over linear equations: the truth
value of a linear inequality ~a ·~x ≥ a0 (where ~a is a vector of n integral coefficients and ~x is
a vector of n Boolean variables) is equivalent to the truth value of the following disjunction
of linear equalities:

(~a · ~x = a0) ∨ (~a · ~x = a0 + 1) ∨ · · · ∨ (~a · ~x = a0 + k) ,

where a0 + k equals the sum of all positive coefficients in ~a (that is, a0 + k =
max~x∈{0,1}n (~a · ~x)).

1.2.2.1 Comparison to Earlier Work

To the best of our knowledge our results are the first that consider the complexity of reso-
lution proofs operating with disjunctions of linear equations. Previous works considered
extensions of resolution over linear inequalities augmented with the cutting planes infer-
ence rules (the resulting proof system denoted R(CP)). In full generality, we show that
resolution over linear equations can polynomially simulate R(CP) when the coefficients
in all the inequalities are polynomially bounded (however, the converse is not known to
hold). On the other hand, we shall consider a certain fragment of resolution over linear
equations, in which we do not even know how to polynomially simulate cutting planes
proofs with polynomially bounded coefficients in inequalities (let alone R(CP) with poly-
nomially bounded coefficients in inequalities). We now discuss the previous work on
R(CP) and related proof systems.

Extensions of resolution to disjunctions of linear inequalities were first considered in
Krajı́ček (1998) who developed the proof systems LK(CP) and R(CP). The LK(CP) sys-
tem is a first-order (Gentzen-style) sequent calculus that operates with linear inequalities
instead of atomic formulas and augments the standard first-order sequent calculus infer-
ence rules with the cutting planes inference rules. The R(CP) proof system is essentially
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resolution over linear inequalities, that is, resolution that operates with disjunctions of
linear inequalities instead of clauses.

The main motivation of Krajı́ček (1998) was to extend the feasible interpolation tech-
nique and consequently the lower bounds results, from cutting planes and resolution to
stronger proof systems. That paper establishes an exponential-size lower bound on a re-
stricted version of R(CP) proofs, namely, when the number of inequalities in each proof-
line isO(nε), where n is the number of variables of the initial formulas, ε is a small enough
constant and the coefficients in the cutting planes inequalities are polynomially bounded.

Other papers considering extensions of resolution over linear inequalities are the more
recent papers by Hirsch and Kojevnikov (2006) and Kojevnikov (2007). The first paper
Hirsch and Kojevnikov (2006) considers combinations of resolution with LP (an incom-
plete subsystem of cutting planes based on simple linear programming reasoning), with the
‘lift and project’ proof system (L&P), and with the cutting planes proof system. That pa-
per also illustrates polynomial-size refutations of the Tseitin mod 2 tautologies in all these
extensions of resolution. The second paper Kojevnikov (2007) deals with improving the
parameters of the tree-like R(CP) lower-bounds obtained in Krajı́ček (1998). Also, on the
more practical level, Hirsch, Itsykson, Kojevnikov, Kulikov, and Nikolenko (2005) have
developed an experimental SAT-solver (that is, a software tool for deciding satisfiabil-
ity) named basolver, which stands for mixed Boolean-Algebraic Solver. This SAT-solver
solves CNF formulas (and also checks Boolean circuits for equivalence) by translating
them first into systems of polynomial equations and disjunctions of polynomial equations,
and then solving these systems by means of derivation rules in the spirit of the resolution
derivation rules.

Whereas previous results concerned primarily with extending the cutting planes proof
system, our foremost motivation is to link resolution over linear equations to multilinear
proofs. As mentioned above, motivated by relations with multilinear proofs operating with
depth-3 multilinear formulas, we shall consider a certain subsystem of resolution over lin-
ear equations. For this subsystem we apply twice the interpolation by a communication
game technique. The first application is of the non-monotone version of the technique,
and the second application is of the monotone version. Namely, the first application pro-
vides a general (non-monotone) interpolation theorem that demonstrates a polynomial (in
the size of refutations) upper bound on interpolants; The proof uses the general method
of transforming a refutation into a Karchmer-Wigderson communication game for two
players, from which a Boolean circuit is then attainable. In particular, we shall apply the
interpolation theorem of Krajı́ček (1997). The second application of the (monotone) inter-
polation by a communication game technique is implicit and proceeds by using the lower
bound criterion of Bonet, Pitassi, and Raz (1997). This criterion states that (semantic)
proof systems (of a certain natural and standard kind) whose proof-lines (considered as
Boolean functions) have low communication complexity cannot prove efficiently a certain
tautology (namely, the clique-coloring tautologies).
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1.2.2.2 Summary of Results and Organization

The proof systems. In Chapter 4 we formally define two extensions of resolution of
decreasing strength allowing resolution to operate with disjunctions of linear equations.
The size of a linear equation a1x1 + . . . + anxn = a0 is in fact Σn

j=0 |aj|, where |aj| is
the size of the coefficients aj written in unary notation. The size of a disjunction of linear
equations is the total size of all linear equations in the disjunction. The size of a proof
operating with disjunctions of linear equations is the total size of all the disjunctions in it.

R(lin): This is the stronger proof system (described above) that operates with disjunc-
tions of linear equations with integer coefficients.

R0(lin): This is a (provably proper) fragment of R(lin). It operates with disjunctions
of (arbitrarily many) linear equations whose variables have constant coefficients, under
the restriction that every disjunction can be partitioned into a constant number of sub-
disjunctions, where each sub-disjunction either consists of linear equations that differ only
in their free-terms or is a (translation of a) clause.3 For the precise definition see Section
4.1.3.

Note that any single linear inequality with Boolean variables can be represented by a
disjunction of linear equations that differ only in their free-terms (see the example men-
tioned above in this section). So the R0(lin) proof system is close to a proof system op-
erating with disjunctions of constant number of linear inequalities (with constant integral
coefficients). In fact, disjunctions of linear equations varying only in their free-terms, have
more (expressive) strength than a single inequality. For instance, the PARITY function can
be easily represented by a disjunction of linear equations, while it cannot be represented
by a single linear inequality (nor by a polynomial-size disjunction of linear inequalities).

As already mentioned, the motivation to consider the restricted proof system R0(lin)
comes from its relation to multilinear proofs operating with depth-3 multilinear formu-
las: R0(lin) corresponds roughly to the subsystem of R(lin) that we know how to simulate
by depth-3 multilinear proofs (the technique is based on converting disjunctions of linear
forms into symmetric polynomials, which are known to have small depth-3 multilinear
formulas). This simulation is then applied in order to obtain upper bounds on depth-3
multilinear proofs, as R0(lin) is already sufficient to efficiently prove certain “hard tau-
tologies”. Moreover, we are able to establish an exponential lower bound on R0(lin) refu-
tations size (see below for both upper and lower bounds on R0(lin) proofs). We also
establish a super-polynomial separation of R(lin) from R0(lin) (via the clique-coloring
principle, for a certain choice of parameters; see below).

Upper bounds. In Chapter 4 we demonstrate the following short refutations in R0(lin)
and R(lin):

1. Polynomial-size refutations of the pigeonhole principle in R0(lin);

3The free-term of a linear form a1x1 + . . .+ anxn + a0 is a0.
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2. Polynomial-size refutations of Tseitin mod p graph formulas in R0(lin);

3. Polynomial-size refutations of the clique-coloring formulas in R(lin) (for certain pa-
rameters). The refutations here follow by direct simulation of the Res(2) refutations
of clique-coloring formulas from Atserias et al. (2002).

Interpolation results. In Chapter 4 Section 4.5 we provide a polynomial upper-bound
on (non-monotone) interpolants corresponding to R0(lin) refutations; Namely, we show
that any R0(lin)-refutation of a given formula can be transformed into a (non-monotone)
Boolean circuit computing the corresponding interpolant function of the formula (if there
exists such a function), with at most a polynomial increase in size. We employ the general
interpolation theorem for semantic proof systems from Krajı́ček (1997).

Lower bounds. In Chapter 4 Section 4.6 we provide the following exponential lower
bound:

Theorem 1.2.1 R0(lin) does not have sub-exponential refutations for the clique-coloring
formulas.

This result is proved by applying a result of Bonet, Pitassi, and Raz (1997). The result
in Bonet et al. (1997) (implicitly) use the monotone interpolation by a communication
game technique for establishing an exponential-size lower bound on refutations of general
semantic proof systems operating with proof-lines of low communication complexity.

Relations with cutting planes proofs. A proof system combining resolution with cut-
ting planes was presented in Krajı́ček (1998). The resulting system is denoted R(CP)
(see Section 4.7 for a definition). When the coefficients in the linear inequalities inside
R(CP) proofs are polynomially bounded, the resulting proof system is denoted R(CP*). In
Chapter 4 Section 4.7 we establish the following simulation result:

Theorem 1.2.2 R(lin) polynomially simulates resolution over cutting planes inequalities
with polynomially bounded coefficients R(CP*).

We do not know whether the converse simulation holds.

From resolution over linear equations to multilinear proofs. Chapter 5 is devoted to
establish the following theorem, connecting multilinear proofs with resolution over linear
equations:

Theorem 1.2.3 Multilinear proofs operating with depth-3 multilinear formulas over char-
acteristic 0 polynomially-simulate R0(lin).
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An immediate corollary of this theorem and the upper bounds in R0(lin) described in
Chapter 4 are the polynomial-size multilinear proofs for the pigeonhole principle and the
Tseitin mod p formulas.

The results on resolution over linear equations appeared as parts of:

Ran Raz and Iddo Tzameret. Resolution over linear equations and multi-
linear proofs. Ann. Pure Appl. Logic, 155(3):194–224, 2008.

1.2.3 Symbolic proofs of polynomial identities: From Semantic to
Syntactic Algebraic Proofs

Let F be a field (say, the complex numbers) and let Φ be an arithmetic formula in the input
variables x1, . . . , xn, computing a polynomial in the ring of polynomials F[x1, . . . , xn]. A
symbolic operation is any transformation of a subformula in Φ into another subformula,
by means of the standard polynomial-ring axioms (expressing associativity and commu-
tativity of both addition and multiplication, distributivity of multiplication over addition,
equalities involving only field elements and the laws for the 0 and 1 elements in the field).

Chapter 6 deals with the following basic question:

How many symbolic operations does one need to perform on Φ in order to
validate that Φ computes the zero polynomial?

To this end we define the notion of symbolic proofs of polynomial identities as follows:
assume that the arithmetic formula Φ computes the zero polynomial, then a symbolic proof
of this fact is a sequence of arithmetic formulas, where the first formula is Φ, the last
formula is the formula 0, and every formula in the sequence (excluding the first one) is
derived from the (immediate) previous formula in the sequence by a symbolic operation.
We are interested in the number of proof-lines in such proof sequences.

1.2.3.1 Background

The problem of deciding whether a given arithmetic circuit (or formula) over some field
computes the zero polynomial – namely, the polynomial identity testing problem (PIT,
for short) – is of great importance in algebraic complexity theory, and complexity theory
in general. It is known that when the underlying field is big enough there is an effi-
cient probabilistic procedure for deciding whether an arithmetic circuit computes the zero
polynomial (cf. Schwartz (1980); Zippel (1979)). However, not much is known about the
complexity of deterministic algorithms for this problem. Devising an efficient determin-
istic procedure, or even demonstrating (non-deterministic) sub-exponential witnesses, for
the polynomial identity testing problem is a fundamental open problem.

The importance and apparent difficulty in finding an efficient deterministic procedure
(or sub-exponential non-deterministic witnesses for that matter) for PIT led researchers to
several different directions. On the one hand, there is a growing body of work dedicated
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to establishing efficient deterministic procedures for PIT when arithmetic circuits are re-
placed by more restrictive models of computing polynomials (cf. Raz and Shpilka (2005);
Dvir and Shpilka (2006); Kayal and Saxena (2007); Karnin and Shpilka (2008); Shpilka
and Volkovich (2008)). On the other hand, in a somewhat more logical vein, evidence or
“justifications” for the apparent empirical difficulty in finding efficient deterministic algo-
rithms for PIT were discovered in Kabanets and Impagliazzo (2004) (see also, Dvir et al.
(2008)).

In Chapter 6 we propose a different direction of research, relevant both to the poly-
nomial identity testing problem as well as to proof complexity. Instead of studying algo-
rithms for the PIT we shall concentrate on symbolic proofs of polynomial identities, that
is, proof sequences that manipulate formulas and which have clear and natural structure
(besides the fact that they can be efficiently recognized). On the one hand, the choice to
study proofs instead of algorithms gives the model more strength (in comparison to al-
gorithms), as one can use non-determinism. On the other hand, we will restrict severely
the “reasoning” allowed in these proofs, and this will in turn enable us to demonstrate
exponential-size lower bounds on certain proofs of polynomial identities.

1.2.3.2 Motivations

As discussed above, research into the complexity of symbolic proofs of polynomial iden-
tities is directed, among others, to achieve better understanding of the polynomial identity
testing problem: although it is reasonable to assume (and widely believed) that there are
polynomial size witnesses (or “proofs”) of polynomial identities, lower bounds on certain
symbolic proofs of polynomial identities might lead to better understanding of the struc-
ture of proofs needed in order to efficiently prove polynomial identities. On the applicative
level, our work can be regarded as a contribution to the understanding of the efficiency of
symbolic manipulation systems (like symbolic mathematical software tools). Neverthe-
less, perhaps the most concrete motivation for studying symbolic proofs of polynomial
identities comes from algebraic proof systems, as we now explain.

From semantic to syntactic algebraic proof systems. Algebraic propositional proof
systems, as discussed before, and as we study in this thesis, are intended to demonstrate
that a collection of polynomial equations, derived from the clauses of an unsatisfiable
formula has no 0, 1 solutions over the fixed field.

In previous chapters (Chapters 3, 5) we dealt with semantic algebraic propositional
proof systems (and not syntactic ones), in which every proof-line is written as an arith-
metic formula (or circuit). A semantic algebraic proof is a sequence of arithmetic for-
mulas such that each formula in the sequence computes a formal multivariate polyno-
mial (i.e., an element of the polynomial-ring F[x1, . . . , xn], where F is the base field and
x1, . . . , xn are the formal variables of the system); note however that for every polynomial
p ∈ F[x1, . . . , xn] there is no unique arithmetic formula computing p. Thus, each polyno-
mial in the algebraic proof can be written in more than one way as an arithmetic formula.
The inference of new polynomials from previous ones, via the algebraic inference rules,
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is a semantic inference of polynomials from preceding ones, rather than a syntactic infer-
ence of formulas from preceding formulas (for instance, the two inference rules mentioned
above are semantic in the sense that every root of p in F is also a root of q · p in F [for
every polynomial q]; and every common root of p and q in F is also a root of α · p+ β · q,
for any α, β ∈ F).

It follows from the aforesaid that semantic algebraic proofs operating with arithmetic
formulas might not necessarily be recognizable in polynomial-time (in the sizes of the
proofs): because no polynomial-time procedure for the polynomial identity testing prob-
lem is known, no known polynomial-time procedure can verify that a proof-line in an
algebraic proof was derived correctly from preceding lines in the proof (for instance, the
polynomial p might be written as two completely different arithmetic formulas in a proof-
line consisting of p and in its legitimate consequence consisting of q · p).

Nevertheless, it is sometimes preferable to turn to algebraic proofs that are polynomial-
time recognizable. The most natural choice here is to join together the underlying semantic
algebraic proof system that operates with arithmetic formulas over a field (similar to that
mentioned above), with a symbolic proof system for establishing polynomial identities.
This can be achieved, for instance, in the following simple manner: a syntactic algebraic
proof is defined now to be a sequence of arithmetic formulas in which each proof-line is
either (i) an initial formula; or (ii) was derived from a previous formula in the sequence
by one of the derivation rules pertaining to the symbolic proof system (expressing the
polynomial-ring axioms, applied to any subformula); or (iii) was derived by the following
inference rules that correspond to the rules of the underlying algebraic proof system: from
the formulas ϕ and ψ derive the formula α×ϕ+β×ψ (for α, β field elements); and from
the formula ϕ derive the formula ψ × ϕ for any arithmetic formula ψ over the base field
(the symbol × stands for the product gate).

Such natural syntactic algebraic propositional proof systems (operating with arithmetic
formulas) were mentioned in Buss et al. (1996/97) and were explicitly introduced in Grig-
oriev and Hirsch (2003). Understanding the complexity of symbolic proofs of polynomial
identities is essential in order to understand such syntactic algebraic propositional proof
systems operating with arithmetic formulas. Moreover, establishing super-polynomial
lower bounds on symbolic proofs of polynomial identities might yield a super-polynomial
separation between semantic and syntactic algebraic (propositional) proof systems. For
instance, the short (depth-3) multilinear proofs of hard tautologies established in Chapters
5 use in an essential way the fact that the algebraic proof systems are semantic, and it
is not known whether such short proofs exist for corresponding syntactic algebraic proof
systems.

1.2.3.3 The Basic Model: Analytic Symbolic Proofs

Recall the underlying model of symbolic proofs of polynomial identities illustrated above.
We now explain the fragment of symbolic proofs we shall study here. With analogy to tra-
ditional research in proof complexity (as well as classical proof theory and automated
proofs), we will consider symbolic proof systems that enjoy a property, which is anal-
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ogous to some extent with the so-called subformula property in standard (propositional
or predicate sequent calculus) proofs. The subformula property states that every formula
that appears in a proof sequence π of T also appears in T . Intuitively, this means that the
prover is forbidden from introducing notions not already present in the statement to be
proved. Proofs having the subformula property are sometimes called analytic (or cut-free
in the framework of the sequent calculus), and we shall adopt this term here.

Accordingly, we will introduce a proof system for the set of arithmetic formulas com-
puting the zero polynomial, called analytic symbolic proofs, in which the following (re-
laxed form of the) subformula property holds: if π is a proof sequence intended to establish
that the formula Φ computes the zero polynomial, then every subformula that appears in
some proof-line in π is “originated” from the initial formula to be proved. More formally,
this means that for every proof-line and every monomial (with its coefficient) that is syn-
tactically computed in the proof-line, the same monomial is also syntactically computed
in the initial proof-line (see Section 6.2 for more details on this and for the definition of
syntactic computation of monomials).

The analytic criterion thus implies, for instance, that one cannot add arbitrary formulas
computing the zero polynomial in the proof (for example, one cannot get from the proof-
line ϕ to the proof-line ϕ+ f − f , where f is some arbitrarily chosen arithmetic formula).

The (analytic) proof system we introduce is a natural proof system since, first, sym-
bolic manipulations of polynomial formulas according to the polynomial-ring axioms is
something familiar to every high-school student, and second, the restriction to analytic
proofs forbids only “ingenious” steps as illustrated above (that is, adding a formula f − f ,
and then using in some clever way this f to efficiently derive the formula 0 in the system).

1.2.3.4 Results

The main technical result in Chapter 6 is an exponential-size lower bound on analytic
symbolic proofs of certain hard formulas computing the zero polynomial, where proofs
operate with depth-3 formulas and conform to a certain regularity condition on the struc-
ture of proofs.

The hard formulas we provide are based on small depth-3 formulas for the elementary
symmetric polynomials. We establish a lower bound rate of 2Ω(

√
`), where ` is the number

of variables in the initial hard formulas.
The regularity condition intends to keep the following requirement: once a proof-line

A×(B+C) is transformed into the proof-lineA×B+A×C, in no way the two formulas
A × B and A × C, as well as any other two formulas that originate (among others) from
A × B and A × C (in a manner made precise), be united together again into a product
formula by means of the distributivity rule. For instance, in our case, after A × (B + C)
was broken into the two sums A×B+A×C, these two sums (A×B and A×C) cannot
be united together again into a product formula by means of the “backward” distributivity
rule, to yield A× (B + C), once more.

Our lower bound follows by a structural analysis of symbolic proofs, and specifically,
by tracing the “paths” in which monomials and subformulas “move” along the proof.



Chapter 1. Introduction 21

Some basic algebraic properties of the small depth-3 formulas of the elementary symmet-
ric polynomials are also exploited in the lower bound argument.

The results in this chapter appear in:

Iddo Tzameret. On the Structure and Complexity of Symbolic Proofs of
Polynomial Identities. Manuscript, 35 pages, April 2008.4

1.2.4 Propositional Proofs under a Promise

Any standard sound and complete propositional proof system has the ability to separate
the set of unsatisfiable formulas in conjunctive normal form (CNF) from the set of CNF
formulas having at least one satisfying assignment, in the sense that every unsatisfiable
CNF has a refutation in the system, while no satisfiable CNF has one. In Chapter 7 we
develop and study, within the framework of propositional proof complexity, systems that
are “sound and complete” in a relaxed sense: they can separate the set of unsatisfiable CNF
formulas from the set of CNF formulas having sufficiently many satisfying assignments
(where the term “sufficiently many” stands for an explicitly given function of the number
of variables in the CNF). We call such proof systems promise refutation systems, as they
are complete and sound for the set of CNF formulas promised to be either unsatisfiable or
to have many satisfying assignments.

Our first task in Chapter 7 is to introduce a natural model for promise propositional
refutation systems. This is accomplished by augmenting standard resolution (or any other
propositional proof system extending resolution) with an additional collection of axioms,
the promise axioms. Each refutation in a promise refutation system can make use of at
most one promise axiom. The promise axioms are meant to capture the idea that we
can ignore or “discard” a certain number of truth assignments from the space of all truth
assignments, and still be able to certify (due to the promise) whether or not the given CNF
is unsatisfiable. The number of assignments that a promise axiom is allowed to discard
depends on the promise we are given, and, specifically, it needs to be less than the number
of assignments promised to satisfy a given CNF (unless it is unsatisfiable).

Assuming we have a promise that a satisfiable CNF has more than Λ satisfying assign-
ments, we can discard up to Λ assignments. We refer to Λ as the promise. This way, the
refutation system is guaranteed not to contain refutations of CNF formulas having more
than Λ satisfying assignments, as even after discarding (at most Λ) assignments, we still
have at least one satisfying assignment left. On the other hand, any unsatisfiable CNF
formula has a refutation in the system, as resolution already has a refutation of it.

We now explain what it means to “discard” assignments and how promise axioms
formulate the notion of discarding the correct number of truth assignments. Essentially,
we say that a truth assignment ~a is discarded by some Boolean formula if ~a falsifies the
formula. More formally, let X := {x1, ..., xn} be the set of underlying variables of a
given CNF, called the original variables. Let A be some CNF formula in the variables

4Independently of this paper, Pavel Hrubeš recently investigated close problems concerning equational
systems (Hrubeš (2008)); the two papers are about to be substantially expanded and merged.
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X , and assume that A also contains variables not from X , called extension variables.
Let ~a ∈ {0, 1}n be a truth assignment for the X variables, and assume that there is no
extension of ~a (assigning values to the extension variables) that satisfies A. Thus, any
assignment satisfying A must also satisfy X 6≡ ~a (that is, A |= X 6≡ ~a), and so any
(implicationally) complete proof system can prove X 6≡ ~a from A, or, in the case of a
refutation system, can refute X ≡ ~a, given A. In this case, we say that the assignment ~a
is discarded by A.

The promise axioms we present enjoy two main properties:

1. They discard assignments from the space of possible assignments to the variables
X .

2. They express the fact that not too many assignments to the variables X are being
discarded (in a manner made precise).

The first property is achieved as follows: let C be any Boolean circuit with n output
bits. Then we can formulate a CNF formula A (using extension variables) expressing the
statement that the output of C is (equal to) the vector of variables X . This enables A
to discard every truth assignment to the variables of X that is outside the image of the
Boolean map defined by C, because, if an assignment ~a to X is not in the image of C,
then no extension of ~a can satisfy A—assuming the formulation of A is correct. (For
technical reasons, the actual definition is a bit different from what is described here; see
Section 7.2.)

The second property is achieved as follows: assume we can make explicit the statement
that the domain of the map defined by the Boolean circuitC above is of size at least 2n−Λ.
(See Section 7.2 in Chapter 7 for details on this.) Then, for the second property to hold, it
is sufficient that the axiom formulates the statement that the circuit C defines an injective
map (and thus the image of the map contains enough truth assignments), which can be
done quite naturally.

Given a certain promise and its associated promise axiom, we call a refutation of
resolution, augmented with the promise axiom, a resolution refutation under the (given)
promise.

Besides introducing the model of promise refutation systems, our second task in Chap-
ter 7 will be to investigate the basic properties of this model and in particular to determine
its average-case proof complexity with respect to different sizes of promises (see below
for a summary of our findings in this respect).

1.2.4.1 Background and Motivation

A natural relaxation of the problem of unsatisfiability certification is to require that, if a
CNF is satisfiable, then it actually has many satisfying assignments. As mentioned above,
we call the specific number of assignments (as a function of the number of variables n)
required to satisfy a satisfiable CNF formula, the “promise”. It is thus natural to ask
whether giving such a promise can help in obtaining shorter proofs of unsatisfiability.
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It is possible to define an abstract promise proof system in an analogous manner to
the definition of an abstract (or formal) proof system (Definition 1.1.1). Nevertheless,
as we already discussed in previous sections, proof complexity theory usually deals with
specific and structured proof systems. In accordance with this, we shall be interested
in Chapter 7 not with abstract proof systems (that is, not with finding general witnesses
for unsatisfiability, possibly under a promise), but rather with specific and more structured
proof systems, and specifically with refutation systems built up as extensions of resolution.

In the case of a big promise, that is, a constant fraction of the space of all truth as-
signments (Λ = ε · 2n, for a constant 0 < ε < 1), there is already a deterministic
polynomial-time algorithm for any fixed natural number k that certifies the unsatisfiability
of all unsatisfiable kCNF formulas under the promise: the algorithm receives a kCNF that
is either unsatisfiable or has more than Λ satisfying assignments and answers whether the
formula is unsatisfiable (in case the formula is satisfiable the algorithm provides a satisfy-
ing assignment). See Hirsch (1998); Trevisan (2004) for such efficient algorithms.5 This
trivially implies the existence of polynomial-size witnesses for any unsatisfiable kCNF
under the promise ε · 2n. But does resolution already admit such short witnesses of unsat-
isfiability (that is, resolution refutations) under a big promise? We show that the answer is
positive (for all unsatisfiable 3CNF formulas).

In the case of a smaller promise, by which we mean Λ = 2δn for a constant 0 <
δ < 1, it is possible to efficiently transform any CNF over n variables to a new CNF
with n′ = dn/(1 − δ)e variables, such that the original CNF is satisfiable if and only if
the new CNF has at least 2δn

′ satisfying assignments.6 Thus, the worst-case complexity
of certifying CNF unsatisfiability under such a promise is polynomially equivalent to the
worst-case complexity of certifying CNF unsatisfiability without a promise. However, it is
still possible that a promise of 2δn might give some advantage (that is, a super-polynomial
speedup over refutations without a promise) in certifying the unsatisfiability of certain (but
not all) CNF formulas; for instance, in the average-case.7

Feige, Kim, and Ofek (2006) have shown that when the number of clauses is Ω(n7/5)
there exist polynomial-size witnesses for the unsatisfiability of 3CNF formulas in the
average-case. On the other hand, Beame, Karp, Pitassi, and Saks (2002) and Ben-Sasson
and Wigderson (2001) showed that resolution does not provide sub-exponential refutations
for 3CNF formulas in the average-case when the number of clauses is at most n(3/2)−ε, for
any constant 0 < ε < 1/2. 8 This shows that general witnessing of 3CNF unsatisfiability

5In the case the promise is Λ = 2n/poly(n), the algorithm in Hirsch (1998) also gives a deterministic
sub-exponential time procedure for unsatisfiability certification of kCNF formulas (for a constant k).

6This can be achieved simply by adding new (n′ − n) “dummy variables”. For instance, by adding the
clauses of a tautological CNF in these dummy variables to the original CNF. This way, if the original CNF
has at least one satisfying assignment then the new CNF has at least 2n

′−n ≥ 2δn
′

satisfying assignments.
7Note that if we add dummy variables to a 3CNF then we obtain an “atypical instance” of a 3CNF. Thus,

assuming we have polynomial-size witnesses of unsatisfiability of 3CNF formulas under a small promise in
the average-case (that is, the “typical case”), the reduction alone (that is, adding dummy variables) does not
automatically yield polynomial-size witnesses for 3CNF formulas in the average-case without a promise as
well.

8Beame et al. (2002) showed such a lower bound for n(5/4)−ε number of clauses (for any constant



Chapter 1. Introduction 24

is strictly stronger than resolution refutations. But is it possible that, under a promise of
2δn, resolution can do better in the average-case? We show that the answer is negative.

There are two main motivations for studying propositional proofs under a given
promise and their complexity. The first is to answer the natural question whether CNF
unsatisfiability certification enjoys any advantage given a certain promise. As already
mentioned, the answer is positive when the promise is a constant fraction of all the truth
assignments, and our results imply that this phenomenon already occurs for resolution.
For a small promise of 2δn, we can show that, at least in the case of resolution refutations
of most 3CNF formulas (of certain clause-to-variable density), the answer is negative. In
fact, we can show that the answer stays negative even when the promise is bigger than
2δn, and specifically when Λ = 2n/2n

ξ for some constant 0 < ξ < 1. Overall, our results
establish the first unsatisfiability certification model in which a promise of a certain given
size is known to help (that is, allow more efficient certifications) in the average-case, while
promises of smaller sizes do not help.

The second motivation is more intrinsic to proof complexity theory: it is a general
goal to develop natural frameworks for propositional proofs that are not sound in the
strict sense, but rather possess an approximate notion of soundness (like showing that
certain “approximations” give speed-ups). For this purpose, the proof systems we propose
formalize—in a natural way—the notion of separating unsatisfiable CNF formulas from
those that have many satisfying assignments. The promise axioms we present also allow
for a natural way of controlling the size of the promise, which in addition leads to an
exponential separation between different size promises.

Chapter 7 develops the notion of propositional proofs under a promise, analyzes the
proof complexity of these proof systems, as well as obtaining a separation, with respect
to different promise sizes, and also illustrates several new facts about the resolution proof
system.

1.2.4.2 Results and Organization

After defining the notion of proofs under a promise in Chapter 7 Section 7.2, we show that
resolution refutations are already enough to efficiently separate unsatisfiable 3CNF for-
mulas from those 3CNF formulas with an arbitrarily small constant fraction of satisfying
assignments. In particular, in Section 7.3, we show the following:

Upper Bound: Let 0 < ε < 1 be any constant and let Λ = ε·2n be the given promise.
Then every unsatisfiable 3CNF with n variables has a polynomial-size (in n) resolution
refutation under the promise Λ.

The proof of this resembles a deterministic algorithm of Trevisan (2004) for approxi-
mating the number of satisfying assignments of kCNF formulas.

0 < ε < 1/4). Ben-Sasson and Wigderson (2001) introduced the size-width tradeoff that enables one to
prove an exponential lower bound for random 3CNF formulas with n(3/2)−ε number of clauses (for any
constant 0 < ε < 1/2), but the actual proof for this specific clause-number appears in Ben-Sasson (2001).
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In contrast to the case of a big promise, our results show that, at least for resolution, a
small promise of Λ = 2δn (for any constant 0 < δ < 1) does not give any advantage over
standard resolution (that is, resolution without the promise axioms) in most cases (that is,
in the average-case). Specifically, in Section 7.4 we show the following:

Lower Bound: Let 0 < δ < 1 be any constant and let Λ = 2δn be the given promise.
Then, there is an exponential lower bound on the size of resolution refutations of random
3CNF formulas under the promise Λ, when the number of clauses is O(n3/2−ε), for 0 <
ε < 1

2
.

This lower bound actually applies to a more general model of promise proofs. It
remains valid even if we allow (somehow) the promise proofs to discard arbitrarily chosen
sets of truth assignments (of size Λ = 2δn), and not necessarily those sets that are definable
by (small) Boolean circuits. In fact, the lower bound applies even to a bigger promise of
Λ = 2n−n

ξ , for some constant 0 < ξ < 1.
The proof strategy for this lower bound follows that of Ben-Sasson and Wigderson

(2001) (the size-width tradeoff approach), and so the rate of the lower bound matches the
one in that paper. The main novel observation is that under the appropriate modifications
this strategy also works when one restricts the set of all truth assignments to a smaller
set (that is, from 2n down to 2n − 2δn for a constant 0 < δ < 1, and in fact down to
2n − 2n/2n

ξ , for some constant 0 < ξ < 1).
It is important to note that these two main results show that the decision to discard

sets of truth assignments defined by Boolean circuits does not affect the results in any
way, and thus should not be regarded as a restriction of the model of promise refutations
(at least not for resolution). To see this, note that we could allow a promise refutation to
discard arbitrarily chosen sets of truth assignments (of the appropriate size determined
by the given promise), that is, sets of truth assignments that are not necessarily definable
by (small) Boolean circuits. However, although this modification strengthens the model,
it is not really necessary for the upper bound, as this upper bound is already valid when
one discards sets of truth assignments by (small) Boolean circuits. On the other hand, as
mentioned above, the lower bound is already valid when one allows a promise refutation
to discard any arbitrarily chosen set of truth assignments (of the appropriate size).

The exact model of promise propositional proof systems is developed in Section 7.2.
The results in this chapter appeared in:

Nachum Dershowitz and Iddo Tzameret. Complexity of propositional
proofs under a promise. Proceedings of the Thirty-Fourth International
Colloquium on Automata, Languages and Programming (ICALP), pages 291–
302, 2007. Also in arXiv:0202.7057. (Full journal version submitted.)
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2.1 General Notations
For a natural number m, we use [m] to denote {1, . . . ,m}. For a vector of n (integral)
coefficients~a and a vector of n variables ~x, we denote by~a·~x the scalar product

∑n
i=1 aixi.

If~b is another vector (of length n), then~a+~b denotes the addition of~a and~b as vectors, and
c~a (for an integer c) denotes the product of the scalar c with ~a (where, −~a denotes −1~a).
For two linear equations L1 : ~a · ~x = a0 and L2 : ~b · ~x = b0, their sum (~a+~b) · ~x = a0 + b0

is denoted L1 + L2 (and their difference (~a −~b) · ~x = a0 − b0 is denoted L1 − L2). For
two Boolean assignments (identified as 0, 1 strings) α, α′ ∈ {0, 1}n we write α′ ≥ α if
α′i ≥ αi, for all i ∈ [n] (where αi,α′i are the ith bits of α and α′, respectively).

2.1.1 CNF Formulas

A CNF formula over the propositional variables x1, . . . , xn is defined as follows: a literal
is a variable xi or its negation ¬xi. A clause is a disjunction of literals. We treat a clause
as a set of literals, that is, we delete multiple occurrences of the same literal in a clause. A
CNF formula is a conjunction of clauses (sometimes treated also as a set of clauses, where
the conjunction between these clauses is implicit).

2.2 Resolution and Bounded-Depth Frege Proof Systems

Resolution. Resolution is a complete and sound proof system for unsatisfiable CNF
formulas. Let C and D be two clauses containing neither xi nor ¬xi, the resolution rule
allows one to derive C ∨ D from C ∨ xi and D ∨ ¬xi. The clause C ∨ D is called the
resolvent of the clauses C ∨xi and D∨¬xi on the variable xi, and we also say that C ∨xi
and D∨¬xi were resolved over xi. The weakening rule allows to derive the clause C ∨D
from the clause C, for any two clauses C,D.

Definition 2.2.1 (Resolution) A resolution proof of the clause D from a CNF formula K
is a sequence of clauses D1, D2, . . . , D` , such that: (1) each clause Dj is either a clause
of K or a resolvent of two previous clauses in the sequence or derived by the weakening
rule from a previous clause in the sequence; (2) the last clause D` = D. The size of a
resolution proof is the number of clauses in the proof. A resolution refutation of a CNF
formula K is a resolution proof of the empty clause � from K (the empty clause stands
for FALSE; that is, the empty clause has no satisfying assignments).

A proof in resolution (or any of its extensions) is also called a derivation or a proof-
sequence. A proof-sequence containing the proof-lines D1, . . . , D` is also said to be a
derivation of D1, . . . , D`.

Without loss of generality, we assume that no clause in a resolution refutation contains
both xi and ¬xi (such a clause is always satisfied and hence it can be removed from the
proof).
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Bounded-depth Frege. We shall not need an explicit definition for the bounded-depth
Frege proof system in this thesis. We only state several exponential gaps between mul-
tilinear refutations and bounded depth Frege refutations for specific (families of) CNF
formulas (based on known exponential lower bounds on the sizes of bounded-depth Frege
refutations of these CNF formulas). For a formal definition of bounded-depth Frege see,
e.g., Krajı́ček (1995) (Definition 4.4.2 there).

A Frege proof system is an implicationally complete proof system (meaning that given
any set of propositional formulas T , every formula that is semantically implied from T
has a proof from T in the system) whose proof lines consist of formulas over some finite
complete set of connectives (a complete set of connectives is one that can represent any
Boolean function; usually the connectives ∧,∨,¬ are used, augmented with the constant
FALSE). A Frege proof system is specified by a finite set of sound and complete inference
rules, rules for deriving new propositional formulas from existing ones by (consistent)
substitution of formulas for variables in the rules.

A bounded-depth Frege proof system is a Frege proof system whose proof lines consist
of constant-depth formulas, for some fixed constant (in the case of constant-depth formu-
las, the connectives ∧,∨ have unbounded fan-in). As mentioned earlier (Section 1.1.2 in
the introduction), we can consider bounded-depth Frege to be a proof system for the set
of unsatisfiable Boolean formulas, by treating a proof sequence (starting from some initial
set of unsatisfiable formulas) that ends with FALSE, as a refutation.

2.3 Basic Notions from Proof Complexity
Recall the definition of a formal (Cook-Reckhow) propositional proof system (or equiva-
lently a formal propositional refutation system) from the introduction (Definition 1.1.1):
A formal propositional proof system is a polynomial-time algorithm A that receives a
Boolean formula F (for instance, a CNF) and a string π over some finite alphabet, such
that there exists a π with A(F, π) = 1 if and only if F is unsatisfiable. Note, for example
that resolution is a Cook-Reckhow proof system, since it is complete and sound for the
set of unsatisfiable CNF formulas, and given a CNF formula F and a string π it is easy to
check in polynomial-time (in F and π) whether π constitutes a resolution refutation of F .

We will also consider proof systems that are not necessarily (that is, not known to be)
Cook-Reckhow proof systems. Specifically, multilinear proof systems (over large enough
fields) meet the requirements of the definition of Cook-Reckhow proof systems, except
that the condition on A above is relaxed: we allow A to be in probabilistic polynomial-
time BPP (which is not known to be equal to deterministic polynomial-time).

For the basic definitions concerning comparison of proof systems, recall the notions
of simulations and separation (Definition 1.1.2 in the introduction chapter, Section 1.1.3).
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2.4 Algebraic Propositional Proof Systems
Algebraic propositional proof systems are proof systems for finite collections of polyno-
mial equations having no 0, 1 solutions over some fixed field. (Formally, each different
field yields a different algebraic proof system.) We will only consider refutations of col-
lections of polynomial equations that are translations of CNF formulas, according to a
fixed translation scheme we shall define explicitly (see Definition 3.0.7 for the translation
used for PCR and multilinear proofs).

The lines of an algebraic refutation consists of polynomials pi over the given fixed
field. Each such proof-line is interpreted as the polynomial equation pi = 0. If we want
to consider the size of algebraic refutations we should fix the way polynomials inside
refutations are represented.

2.4.0.1 Polynomial Calculus

The Polynomial Calculus is a complete and sound proof system for unsatisfiable CNF
formulas (translated to polynomial equations), first considered in Clegg et al. (1996).

Definition 2.4.1 (Polynomial Calculus (PC)). Let F be some fixed field and let Q :=
{Q1, . . . , Qm} be a collection of multivariate polynomials from F[x1, . . . , xn]. Call the set
of polynomials x2

i −xi, for all variables xi ( 1 ≤ i ≤ n), the set of Boolean axioms of PC.
A PC proof from Q of a polynomial g is a finite sequence π = (p1, ..., p`) of multivari-

ate polynomials from F[x1, . . . , xn] (each polynomial pi is interpreted as the polynomial
equation pi = 0), where p` = g and for each i ∈ [`], either pi = Qj for some j ∈ [m],
or pi is a Boolean axiom, or pi was deduced from pj, pk , where j, k < i, by one of the
following inference rules:

Product: from p deduce xi · p , for some variable xi ;

Addition: from p and q deduce α · p+ β · q, for some α, β ∈ F.

All the polynomials inside a PC proof are represented as sums of monomials. A PC refu-
tation of Q is a proof of 1 (which is interpreted as 1 = 0) from Q.

The size of a PC proof is defined to be the total number of monomials appearing in
the polynomials of the proof. The degree of a PC proof is the maximum degree of the
polynomials in the proof.

Notice that the Boolean axioms have only 0, 1 solutions.

Note also that the formal variables of the PC proof system are x1, . . . , xn. In order to
refute in PC an unsatisfiable CNF formula in the variables x1, . . . , xn, we translate a CNF
formula into a system of polynomials as follows (again, a polynomial p is interpreted as
the polynomial equation p = 0). A positive literal xi translates into 1 − xi. A negative
literal ¬xi translates into xi. A clause, i.e., a disjunction of literals `1 ∨ . . .∨ `k, translates
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into the product of the translations of the literals `i. A CNF is translated into the set of
polynomial translations of its clauses. For example, (x1∨x2∨¬x3)∧(¬x1∨¬x4) translates
into the two polynomials (1− x1) · (1− x2) · x3 and x1 · x4. It is not hard to see that any
assignment of 0,1 (where 0 is interpreted as FALSE and 1 as TRUE) to the variables of a
CNF formula F satisfies F if and only if it is a common root of the corresponding system
of polynomials, over any given field.

2.4.0.2 Polynomial Calculus with Resolution

The translation of CNF formulas into collections of polynomials, demonstrated in the pre-
vious paragraph, makes PC unable to polynomially simulate resolution (Definition 2.2.1).
For instance, the clause

∨n
i=1 xi is translated into the polynomial Πn

i=1(1−xi). The number
of monomials in Πn

i=1(1− xi) is 2n, exponential in the number of variables in the clause.
For this reason an extension of PC, denoted PCR, that is capable of simulating resolution
was defined as follows (cf. Alekhnovich et al. (2002)).

Definition 2.4.2 (Polynomial Calculus with Resolution (PCR)). Let F be some fixed
field and let Q := {Q1, . . . , Qm} be a collection of multivariate polynomials from
F[x1, . . . , xn, x̄1, . . . , x̄n]. The variables x̄1, . . . , x̄n are treated as new formal variables.
Call the set of polynomial equations x2 − x, for x ∈ {x1, . . . , xn, x̄1, . . . , x̄n}, plus the
polynomial equations xi + x̄i − 1, for all 1 ≤ i ≤ n, the set of Boolean axioms of PCR.

The inference rules, proofs and refutations of PCR are defined the same as
in PC [Definition 2.4.1] (except that in PCR the polynomials are taken from
F[x1, . . . , xn, x̄1, . . . , x̄n]). Similarly to PC, all the polynomials in a PCR proof are repre-
sented as sum of monomials.

The size of a PCR proof is defined to be the total number of monomials appearing in
the polynomials of the proof. The degree of a PCR proof is the maximum degree of the
polynomials in the proof. The number of steps of a PCR proof is defined to be the number
of polynomials in it (i.e., the length of the proof sequence).

Note that the Boolean axioms of PCR have only 0, 1 solutions, where x̄i = 0 if xi = 1
and x̄i = 1 if xi = 0.

2.5 Arithmetic and Multilinear Circuits and Formulas

2.5.1 Arithmetic Circuits and Formulas

An arithmetic circuit is a directed acyclic graph with unbounded (finite) fan-in and un-
bounded (finite) fan-out. Every leaf of the graph (i.e., a node of fan-in 0) is labeled with
either an input variable or a field element. A field element can also label an edge of the
graph. Every other node of the graph is labeled with either + or × (in the first case the
node is a plus gate and in the second case a product gate). We assume that there is only
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one node of out-degree zero, called the root. The size of an arithmetic circuit C is the total
number of nodes in its graph and is denoted by |C|.

An arithmetic circuit computes a polynomial in the ring of polynomials F[x1, . . . , xn]
in the following way. A leaf just computes the input variable or field element that labels
it. A field element that labels an edge means that the polynomial computed at its tail (i.e.,
the node where the edge is directed from) is multiplied by this field element. A plus gate
computes the sum of polynomials computed by the tails of all incoming edges. A product
gate computes the product of the polynomials computed by the tails of all incoming edges.
(Subtraction is obtained using the constant−1.) The output of the circuit is the polynomial
computed by the root.

The depth of a circuit C is the maximal number of edges in a path from a leaf to the
root of C, and is denoted by dp(C).

Unless otherwise stated, we shall consider all circuits to be leveled circuits, that is,
circuits where all the nodes of a given level (excluding the bottom level nodes, i.e., the
leaves) in the circuit-graph have the same labels, and two consequent levels have different
labels (i.e., the gates in any path in the circuit alternate between plus and product gates).1

Any arithmetic circuit with unbounded fan-in gates can be transformed into a leveled
circuit that computes the same polynomial, with only a polynomial increase in the size of
the circuit. Hence, considering only leveled circuits is not a real restriction here.

We say that a variable xi occurs in an arithmetic circuit if xi labels one of the leaves
of the arithmetic circuit, i.e., xi is an input variable. We say that an arithmetic circuit has
a plus (product) gate at the root if the root of the circuit is labeled with a plus (product)
gate.

An arithmetic circuit is an arithmetic formula if its underlying graph is a tree (with
edges directed from the leaves to the root).

Comment: In Chapter 6 it will be more convenient to work with arithmetic formulas as
labeled trees with fan-in at most two (and where the definition of the depth of formulas is
changed accordingly to be the maximal number of alternating blocks of consecutive plus
or product gates in a path from the root to a leaf).

2.5.2 Multilinear Polynomials, Circuits and Formulas

A polynomial is multilinear if in each of its monomials the power of every input variable
is at most one.

Definition 2.5.1 An arithmetic circuit is a multilinear circuit (or equivalently, multilinear
arithmetic circuit) if the polynomial computed by each gate of the circuit is multilinear
(as a formal polynomial, i.e., as an element of F[x1, . . . , xn]). Similarly, an arithmetic
formula is a multilinear formula (or equivalently, multilinear arithmetic formula) if the
polynomial computed by each gate of the formula is multilinear.

1Chapter 6 will be the exception of this (there we shall consider general formulas with fan-in at most 2).
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An additional definition we shall use extensively is the following:

Definition 2.5.2 (Multilinearization operator) Given a field F and a polynomial q ∈
F[x1, . . . , xn], we denote by M[q] the unique multilinear polynomial equal to q modulo
the ideal generated by all the polynomials x2

i − xi, for all variables xi.

For example, if q = x2
1x2 + αx3

4 (for some α ∈ F) then M[q] = x1x2 + αx4 .

2.5.3 Notational Conventions Regarding Arithmetic Formulas

We shall often abuse notation by identifying arithmetic formulas with the polynomials
they compute. For instance, if Φ is an arithmetic formula computing the polynomial f ,
then M[Φ] is the multilinear polynomial M[f ], and not a formula (note that there can be
many arithmetic formulas computing a given polynomial). We can also write, for instance,
Φ · xi to mean the polynomial f · xi, or Φ + xi to mean the polynomial f + xi (we shall
often state explicitly when we refer to the polynomial and not the formula).

Also, givenm formulas Φ1, . . . ,Φm, we usually write Φ1 +. . .+Φm and Φ1×. . .×Φm

to designate the formula with a plus gate at the root with m children Φ1, . . . ,Φm, and
product gate at the root withm children Φ1, . . . ,Φm, respectively. When writing a formula
like Φ1 × xi + Φ2, then the × gate has precedence over the + gate.

2.5.4 Symmetric Polynomials

A renaming of the variables in X is a permutation σ ∈ S` (the symmetric group on [`])
such that xi is mapped to xσ(i) for every 1 ≤ i ≤ `.

Definition 2.5.3 (Symmetric polynomial) Given a set of variables X = {x1, . . . , xn},
a symmetric polynomial f over X is a polynomial in (all the variables of) X such that
renaming of variables does not change the polynomial (as a formal polynomial).

For example, 1+x1+x2+x1·x3
2+x2·x3

1 is a symmetric polynomial overX = {x1, x2} .

The following theorem is due to M. Ben-Or (cf. Theorem 5.1 in Shpilka and Wigder-
son (2001)):

Theorem 2.5.4 (Ben-Or) Let F be a field of characteristic 0 and let X be a set of `
variables {x1, . . . , x`}. For every symmetric multilinear polynomial overX (over the field
F) there is a polynomial-size (in `) depth-3 multilinear formula. Moreover, this formula is
a leveled multilinear formula with a plus gate at the root.

Proof. Consider the polynomial
n∏
i=1

(xi + t)
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as a univariate polynomial in t of degree n over F[x1, . . . , xn]. Then

n∏
i=1

(xi + t) = a0 + a1t+ ...+ ant
n.

Note that for every 0 ≤ d ≤ n the coefficient an−d (of tn−d) is exactly the symmetric
multilinear polynomial of degree d:

an−d =
∑

I⊆[n],|I|=d

∏
i∈I

xi.

We have



1 t t2 · · · tn−1 tn

1 t t2 · · · tn−1 tn

. . .
...

...
. . .

1 t t2 · · · tn−1 tn





a0

a1

a2
...
...
an


=



n∏
i=1

(xi + t)

n∏
i=1

(xi + t)

...

n∏
i=1

(xi + t)


Let b0, . . . , bn be n + 1 distinct elements from F. Thus by the previous equation we

have:



1 b0 b2
0 · · · bn−1

0 bn0
1 b1 b2

1 · · · bn−1
1 bn1

. . .
...

...
. . .

1 bn b2
n · · · bn−1

n bnn


︸ ︷︷ ︸

B



a0

a1

a2
...
...
an


=



n∏
i=1

(xi + b0)

n∏
i=1

(xi + b1)

...

n∏
i=1

(xi + bn)


(2.1)

Consider the matrix B as defined in Equation (2.1). The matrix B is a Vandermonde
matrix, and since the bi’s are all distinct elements from F, by basic linear algebra (that is,
the fact that the determinant of B is

∏
0≤j<i≤n(bi − bj)), B has an inverse denoted B−1,
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and so: 

a0

a1

a2
...
...
an


= B−1



n∏
i=1

(xi + b0)

n∏
i=1

(xi + b1)

...

n∏
i=1

(xi + bn)


(2.2)

Now, let 0 ≤ d ≤ n and consider ad, which is the multilinear symmetric polynomial
of degree d. Let (r0, . . . , rn) be the dth row of B−1. Then by (2.2)

ad = r0 ·
n∏
i=1

(xi + b0) + ...+ rn ·
n∏
i=1

(xi + bn) = (2.3)

n∑
j=0

rj ·
n∏
i=1

(xi + bj) (2.4)

Note that this is indeed a depth-3 multilinear formula with a plus gate at the root. �
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In this chapter we introduce the notion of multilinear proofs, study some of its basic
properties and develop tools to deal with multilinear proofs, as well as provide several
separation results. We begin by defining the basic proof system operating with multilinear
formulas.

Definition 3.0.5 (Formula Multilinear Calculus (fMC)). Fix a field F and let Q :=
{Q1, . . . , Qm} be a collection of multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n]
(the variables x̄1, . . . , x̄n are treated as formal variables). Call the set of polynomials
consisting of xi + x̄i − 1 and xi · x̄i for 1 ≤ i ≤ n , the Boolean axioms of fMC.

An fMC proof from Q of a polynomial g is a finite sequence π = (p1, ..., p`) of multi-
linear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] , such that p` = g and for each i ∈ [`],
either pi = Qj for some j ∈ [m], or pi is a Boolean axiom of fMC, or pi was deduced by
one of the following inference rules using pj, pk for j, k < i:

Product: from p deduce q · p , for some polynomial q in F[x1, . . . , xn, x̄1, . . . , x̄n] such
that p · q is multilinear;

Addition: from p, q deduce α · p+ β · q, for some α, β ∈ F.

All the polynomials in an fMC proof are represented as multilinear formulas. (A poly-
nomial pi in an fMC proof is interpreted as the polynomial equation pi = 0.) An fMC
refutation of Q is a proof of 1 (which is interpreted as 1 = 0) from Q.

The size of an fMC proof π is defined as the total sum of all the formula sizes in π and
is denoted by |π|.

Note that the Boolean axioms have only 0, 1 solutions, where x̄i = 0 if xi = 1 and
x̄i = 1 if xi = 0, for each 1 ≤ i ≤ n .

Remark. The product inference rule of fMC in Definition 3.0.5 allows a polynomial p
to be multiplied by an arbitrary polynomial q as long as p · q is multilinear. We could have
restricted this product rule to allow a polynomial p to be multiplied only by a variable
from {x1, . . . , xn, x̄1, . . . , x̄n} (not occurring already in p). It is not hard to show that fMC
refutations with such restricted product rule can polynomially simulate fMC refutations
as defined in Definition 3.0.5.

Definition 3.0.6 (Depth-k Formula Multilinear Calculus (depth-k fMC)). For a natu-
ral number k, depth-k fMC denotes a restriction of the fMC proof system, in which proofs
consist of multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] represented as multilin-
ear formulas of depth at most k.

In order to refute an unsatisfiable CNF formula in fMC, we first translate the CNF
formula into a system of polynomials via the following translation scheme.
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Translation of CNF formulas. In the case of fMC and PCR the polynomial translation
of CNF formulas is the following.

Definition 3.0.7 (Polynomial translation of CNF formulas). The literal xi translates
into x̄i. The literal¬xi translates into xi. A clause, i.e., a disjunction of literals `1∨. . .∨`k,
translates into the product of the translations of its literals. A CNF is translated into the
set of polynomial translations of its clauses.

Note that this way the clause
∨n
i=1 xi translates into Πn

i=1x̄i, which consists of only one
monomial.

It is clear that any assignment of 0,1 values to the variables x1, . . . , xn of a CNF for-
mula F satisfies F if and only if it is a common root of the set of polynomial translations
of the clauses of F over the given fixed field (where each variables x̄i gets the negative
value of xi , i.e., x̄i = 0 if xi = 1 and x̄i = 1 if xi = 0).

Note that this translation scheme yields a set of multilinear monomials, since each
literal occurs at most once inside a clause. From now on, when considering multilinear
proofs or PCR proofs, we shall assume that any CNF formula is translated to a system of
polynomials via Definition 3.0.7.

3.0.4.1 Discussion about the fMC Proof System

It is important to clarify the following matter. A proof in fMC, as defined in Definition
3.0.5, is a sequence of formal (multilinear) polynomials, that is, (multilinear) elements of
F[x1, . . . , xn, x̄1, . . . , x̄n]. The representation of multilinear polynomials inside an fMC
proof sequence is done by arbitrary multilinear formulas. Thus, each polynomial in an
fMC proof can be represented in more than one way by a multilinear formula (in contrast
to PC and PCR proofs, where each polynomial has a unique representation as a sum of
monomials [disregarding the order of monomials inside a polynomial]). This means that
we can think of the inference of new polynomials from previous ones, via the fMC in-
ference rules, as a semantic inference of polynomials from preceding ones, rather than a
syntactic inference of formulas from preceding formulas (the inference is semantic in the
sense that any root of p in F is also a root of q · p in F; and any common root of p and q in
F is also a root of α · p+ β · q, for any α, β ∈ F).

Accordingly, when we talk about the size of an fMC proof (or refutation), we take into
account a specific choice of multilinear formulas representing each of the polynomials in
the proof sequence (naturally, we shall be interested in the most efficient way to represent
each multilinear polynomial by a multilinear formula).

It stems from the aforesaid that fMC is not necessarily a propositional proof system
in the formal sense (Definition 1.1.1): Since it is an open question whether there exists
a polynomial-time algorithm that can decide the identity of two (multilinear) arithmetic
formulas, it is open whether there exists a polynomial-time algorithm that can verify the
correctness of a given refutation, represented as a sequence of multilinear formulas.

Nevertheless, since there is a probabilistic polynomial-time algorithm that can verify
the identity of two given arithmetic formulas (cf. Schwartz (1980); Zippel (1979)), any
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proof of fMC can be recognized in polynomial-time (in the proof size) by a probabilistic
algorithm (cf. Pitassi (1997) for some facts about algebraic proof systems over arithmetic
circuits and formulas). Also, it is worth noting that for some restricted classes of arithmetic
formulas (and circuits) there are known deterministic polynomial-time algorithms that
decide the identity of any two given arithmetic formulas (and circuits) belonging to the
prescribed classes (see, for example, Raz and Shpilka (2005), Dvir and Shpilka (2006),
Kayal and Saxena (2007)).

3.1 Basic Manipulations of Arithmetic Formulas
In this section we shall prove simple propositions concerning manipulations of arithmetic
formulas in fMC. These propositions will be very useful in the sequel. In particular, we
take special care to maintain the small depth of arithmetic formulas inside fMC refutations
(this makes the arguments of this section and Section 3.3 a bit tedious).

Notational convention. We say that a polynomial f1 is subtracted from f2 in an fMC
proof, if f2 is added to −1 · f1 by the addition rule.

Also, recall that a constant from the field (e.g., −1) can label an edge in an arithmetic
formula, which means that the polynomial computed at the tail of the edge (i.e., the node
where the edge is directed from) is multiplied by this constant.

Proposition 3.1.1 Let Φ be a multilinear formula whose root is a plus gate. Let x ∈
{x1, . . . , xn, x̄1, . . . , x̄n} be some variable. Then there exists a multilinear formula Φ′ :=
x× Φ1 + Φ2, where x does not occur in Φ1,Φ2, such that:

(i) Φ′ and Φ compute the same polynomial;
(ii) |Φ1| = 2 · |Φ| and |Φ2| = |Φ| ;
(iii) dp(Φ1) = dp(Φ2) = dp(Φ) ;
(iv) the roots of both Φ1 and Φ2 are plus gates .

Proof. Let a be an element of the base field. Denote by Φ[a/x] the formula that results by
substituting each occurrence of x in Φ with a.

Let f be the polynomial computed by Φ. Consider the polynomial f as a polynomial
in the variable x only, denoted by f(x) (where now the coefficients of the variable x in
f(x) also contain variables). Since f is multilinear, f(x) is of degree 1. Thus, by the
Lagrange interpolation formula, the following is equal to the polynomial f(x):

x · (f(1)− f(0)) + f(0)

(this equality can also be verified in a straightforward manner). Hence, the multilinear
formula

x× (Φ[1/x]− Φ[0/x]) + Φ[0/x]

computes the polynomial f(x). When considering f(x) as a polynomial in all the variables
occurring in Φ, f(x) is precisely the polynomial f .
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Therefore, letting Φ1 := Φ[1/x] − Φ[0/x] and Φ2 := Φ[0/x] concludes the proof
(note that Φ1 is of the same depth as that of Φ, since the root of Φ is a plus gate, and
since subtraction can be achieved by labeling the edge going out of the root of Φ[0/x]
with −1). (Also notice that if x does not occur in Φ then the proof holds trivially, since
Φ1 := Φ[1/x]−Φ[0/x] = Φ−Φ, which is a formula computing the zero polynomial.) �

Proposition 3.1.2 Let Φ be a multilinear formula of depth d, whose root is a plus gate,
and let xi ∈ {x1, . . . , xn} be some variable. Then there is a multilinear formula

x̄i × xi × ϕ1 + x̄i × ϕ2 + xi × ϕ3 + ϕ4

that computes the same polynomial as Φ, and such that for all 1 ≤ j ≤ 4 :
(i) ϕj does not contain xi, x̄i ;
(ii) ϕj has depth at most d and size O(|Φ|) ;
(iii) ϕj has a plus gate at the root .

Proof. We simply apply Proposition 3.1.1 three times. Specifically, by Proposition 3.1.1,
there are two depth-d and size O(|Φ|) multilinear formulas Φ1,Φ2 that do not contain x̄i ,
such that:

Φ = x̄i · Φ1 + Φ2 .

By Claim 3.1.1 again, there exist four depth-d multilinear formulas ϕ1, ϕ2, ϕ3, ϕ4 that do
not contain xi, x̄i, where each formula is of size O(|Φ|), and has a plus gate at the root,
such that:

x̄i · Φ1 + Φ2 = x̄i · (xi · ϕ1 + ϕ2) + Φ2 apply Claim 3.1.1 on Φ1, xi

= x̄i · xi · ϕ1 + x̄i · ϕ2 + Φ2

= x̄i · xi · ϕ1 + x̄i · ϕ2 + xi · ϕ3 + ϕ4 apply Claim 3.1.1 on Φ2, xi .

(We treat here all formulas as the polynomials they compute; so the equalities are between
polynomials, and not formulas.) �

We need the following claim for the proposition that follows.

Claim: Let Φ1 be a depth-d ≥ 2 multilinear formula computing the polynomial f . Let
Φ2 be a multilinear formula for a monomial M (i.e., either a depth- 1 multilinear formula
having a product gate at the root, or a single variable, or an element of the field). Assume
that no variable that occurs in Φ2 also occurs in Φ1. Then there is a multilinear formula
for f ·M , with the same gate at the root as that of Φ1, depth d and size O(|Φ1| · |Φ2|) .

Proof of claim: The claim holds simply by distributivity of multiplication over addition.
If Φ1 has a product gate at the root then Φ1 × Φ2 is the desired multilinear formula

(note this formula is of depth d).

Assume that Φ1 has a plus gate at its root.
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Recall that we consider all formulas to be leveled. Thus, for some m, there exist m
multilinear formulas ϕ1, . . . , ϕm , each either has an (unbounded fan-in)× gate at the root
and depth ≤ d − 1, or has depth 0 (i.e., is an input variable or a field element), such
that Φ1 = ϕ1 + . . . + ϕm . We can assume without loss of generality that dp(Φ2) = 1
(otherwise, we consider Φ2 to be the formula Φ2×1 ). For all 1 ≤ i ≤ m , dp(Φ2×ϕi) ≤
d− 1 . Thus, by distributivity of multiplication over addition, the formula

Φ2 × ϕ1 + . . .+ Φ2 × ϕm (3.1)

computes the polynomial f · M and has size O(|Φ1| · |Φ2|) and depth d . Since, by
assumption, no variable that occurs in Φ2 also occurs in Φ1, (3.1) is a multilinear formula.

Claim

Proposition 3.1.3 Let Φ = Φ1 + . . . + Φk be a multilinear formula of depth d. Let
ϕ1, . . . , ϕk be k formulas, where each ϕi is a multilinear formula of size ≤ s for a mono-
mial (i.e., ϕi is either a depth- 1 multilinear formula having a product gate at the root,
or a single variable, or an element of the field). Denote by f the polynomial computed by
ϕ1 × Φ1 + . . . + ϕk × Φk , and assume that no variable that occurs in ϕi also occurs in
Φi (for all 1 ≤ i ≤ k). Then f has a multilinear formula of size O(s · |Φ|) and depth
max {d, 2}.

Proof. We show that for all 1 ≤ i ≤ k, there exists a multilinear formula Φ′i of size
O(s · |Φi|) that computes the polynomial computed by Φi × ϕi , and such that one of the
following holds:

(i) dp(Φ′i) = dp(Φi) and the gate at the root of Φ′i is the same as that of Φi;
(ii) dp(Φ′i) = 2 and the root of Φ′i is a plus gate.

Therefore, the multilinear formula Φ′1 + . . . + Φ′k computes the polynomial f , and
has depth max {d, 2} and size O(

∑k
i=1 |Φi| · s) = O(s · |Φ|) .

Case 1: Assume that dp(Φi) ≥ 2, for some 1 ≤ i ≤ k. Then by Claim 3.1, the polynomial
computed by Φi × ϕi has a multilinear formula Φ′i of depth dp(Φi) and size O(s · |Φi|) ,
with the same gate at the root as Φi.

Case 2: Assume that dp(Φi) < 2, for some 1 ≤ i ≤ k. Then we can switch to a new
formula Φ′′i that computes the same polynomial as Φi, such that dp(Φ′′i ) = 2 and Φ′′i has a
plus gate at the root1. Thus, we can apply Case 1 on Φ′′i . �

Proposition 3.1.4 Let Φ2 + Φ1 be a multilinear formula of depth d , where Φ2 computes
the polynomial f2 (possibly the zero polynomial) and Φ1 computes the polynomial f1.
Assume that Φ1 contains neither the variable xi nor x̄i . Let d′ := max {d, 2}. Then the

1If Φi = a, for a variable or a field element, a, then switch to a× 1 + 0. If Φi has a product gate at the
root, then switch to Φi + 0. If Φi is a sum of variables (and/or field elements) with constant coefficients,
α1xi1 + . . .+ αmxim , then switch to (α1xi1 × 1) + . . .+ αmxim .
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polynomials f2 + f1 · x̄i and f2 + f1 · (1− xi) can be proved from one another in depth-d′

fMC proofs of size O(|Φ2|+ |Φ1|).

Proof. Start from the Boolean axiom xi + x̄i − 1, and multiply it by f1 in order to get:

(xi + x̄i − 1) · f1 . (3.2)

If we subtract (3.2) from
f2 + f1 · x̄i , (3.3)

we get
f2 + f1 · (1− xi) . (3.4)

Similarly, if we add (3.2) to (3.4), we get (3.3).

Open parentheses in (3.2), (3.4) and (3.3), and observe that by Proposition 3.1.3 these
three polynomials have all multilinear formulas of depth at most d′ and sizeO(|Φ2|+|Φ1|).
�

3.2 Soundness and Completeness of fMC
We show in this section that fMC is a sound proof system. Then we show a simple com-
pleteness proof (for CNF formulas), by demonstrating a depth-2 fMC simulation of res-
olution. In fact, this simulation also stems from the simulation of PCR by depth-2 fMC
(Section 3.3), since PCR simulates resolution.

Proposition 3.2.1 fMC is a sound proof system. That is, if there exists an fMC refutation
of a system of multilinear polynomials Q over a field F then the system of multilinear
polynomials Q has no common root in F with 0, 1 values.

Proof. Note that the inference rules of fMC are sound: Any root of p in F is also a root
of q · p in F; and any common root of p and q in F is also a root of α · p + β · q (for any
α, β ∈ F).

Let π = (p1, . . . , p`) be an fMC refutation of Q. Any pi in π is either a Boolean axiom
or a polynomial from Q or pi was deduced from previous polynomials in π by one of the
inference rules.

Then, by the soundness of the inference rules, any common root of the system Q that
also satisfies the Boolean axioms in F, is also a root of pj ∈ π, for all j ≤ ` (by induction
on the refutation length). Since by definition, the last polynomial in π (i.e., p`) is 1, then
there exists no common root of the system Q and the Boolean axioms in F. This means
that Q has no common root in F with 0, 1 values. �

We show now that fMC is complete for (polynomial translations of) CNF formulas,
when the lines of the refutations consist of depth-2 multilinear formulas. Note that any
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CNF formula translates via Definition 3.0.7 into a system of multilinear monomials. In
particular, we prove that any resolution refutation of an unsatisfiable CNF can be trans-
formed into a depth-2 fMC refutation of (the polynomial translation of) that CNF, with at
most a polynomial increase in size.

Proposition 3.2.2 Depth-2 fMC polynomially simulates resolution. Specifically, if P is a
resolution derivation of the clause K, where the size of P (that is, the number of clauses
in P ) is s, and the number of variables in K is n, then there is a depth-2 fMC proof of K
with size O(n · s).

Comment: If we assume that the size s of the resolution refutation P is at least the number
of variables n, then the proposition states that there is a depth-2 fMC proof of K with size
O(s2).

Proof. By induction on s. For a given clause D, denote by qD the polynomial translation
of D (via Definition 3.0.7).

Base case: s = 1. Then the proof is a single clause D taken from the axioms (the
clauses pertaining to the initial CNF formula), which translates into qD of size O(n).

For the induction step we consider the following three cases. In case D, the last clause
of P , is an axiom then qD is of size O(n). In case D, the last clause of P , was derived by
the weakening rule, then D = A ∨ B where A is a clause occurring previously in P . By
the induction hypothesis we already have the fMC proof of size O(n · (s− 1)) containing
qA. Thus, by the product rule in fMC we can derive with only a single step the formula
computing qA·B = qA · qB. The formula qA · qB has size O(n), and so we are done.

The final case to consider is when the last clause of P is a consequence of an appli-
cation of the resolution rule. Let C,D be two clauses such that C ∨D, the last clause in
P , is the resolvent of C ∨ xi and D ∨ ¬xi on the variable xi. Denote by E the clause
containing the common literals of C and D. Thus, there exist two clauses A,B having
no common literals such that C = A ∨ E and D = B ∨ E. By definition of the reso-
lution rule, A,B,E do not contain the variable xi (recall that we assume without loss of
generality that no clause in a resolution refutation contains both xi and ¬xi and we also
delete multiple occurrences of the same literal in a clause, and so C,D contain neither xi
nor ¬xi).

By the induction hypothesis we already have the multilinear monomials qA∨E∨xi =
qA ·qE · x̄i and qB∨E∨¬xi = qB ·qE ·xi. We need to derive the monomial qC∨D = qA∨B∨E =
qA · qB · qE with an fMC proof of size O(n) (one can clearly extract the precise constant
coefficient in the big O notation from the following [constant number] of fMC derivation
steps). By Proposition 3.1.4 we can prove from qA · qE · x̄i the multilinear polynomial
qA · qE · (1− xi), with a depth-2 fMC proof of size O(|qA × qE|) = O(n). Now, multiply
qA · qE · (1 − xi) by qB. Since the literals in A,B and E are pairwise disjoint, we get a
multilinear polynomial qA · qE · qB · (1− xi).

The polynomial qB ·qE ·xi is multiplied by qA, which yields the multilinear polynomial
qA · qE · qB · xi. Adding qA · qE · qB · (1 − xi) and qA · qE · qB · xi we finally arrive at
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qA · qE · qB. Note that the simulation of the resolution rule application just described is of
size O(n).

Also notice that it is possible to represent each arithmetic formula in the simulation
with a depth-2 formula (i.e., as a sum of monomials). �

3.3 Simulation Results
In this section we prove a general simulation result for fMC (Theorem 3.3.1). Specifically,
we show the following: Let π be a PCR refutation of some initial collection of multilinear
polynomials Q over some fixed field. Assume that π has polynomially many steps (i.e.,
the number of proof lines in the PCR proof sequence is polynomial). If the ‘multilin-
earization’ (i.e., the result of applying the M[·] operator – see Definition 2.5.2) of each of
the polynomials in π has a polynomial-size depth-d multilinear formula (with a plus gate
at the root), then there is a polynomial-size depth-d fMC refutation of Q. (Note that we
only require that the number of steps in π is polynomial. The size [i.e., the total number
of monomials] of the PCR proof might not be polynomially-bounded.)

A simple consequence of the simulation result is that any PC and PCR refutations of a
set of initial multilinear polynomials over some fixed field can be simulated by a depth-2
fMC refutation. Since CNF formulas are translated into sets of multilinear polynomi-
als (via Definition 3.0.7), this shows that with respect to (translations of) CNF formulas,
depth-2 fMC is at least as strong as PC and PCR.

Another merit of the simulation result is that it can help in proving upper bounds for
fMC refutations. This will be used substantially in Chapter 5.

Theorem 3.3.1 Fix a field F and let Q be a set of multilinear polynomials from
F[x1, . . . , xn, x̄1, . . . , x̄n]. Let π = (p1, . . . , pm) be a PCR refutation of Q. For each
pi ∈ π, let Φi be a multilinear formula for the polynomial M[pi]. Let S be the total size
of all formulas Φi, i.e., S = Σm

i=1|Φi|, and let d ≥ 2 be the maximal depth of all formulas
Φi. Assume that the depth of all the formulas Φi that have a product gate at the root is at
most d− 1. Then there is a depth-d fMC refutation of Q of size polynomial in S.

Corollary 3.3.2 Depth-2 fMC polynomially simulates PC and PCR.

Proof. Since PCR obviously simulates PC it is sufficient to consider only PCR proofs.
Recall that the size of a PCR proof is the total number of monomials in it. Note also
that given any multivariate polynomial q, the total number of monomials in q is greater or
equal than the total number of monomials in M[q].

Given a PCR proof π := (p1, . . . , pm), represent each multilinear polynomial M[pi]
as a sum of monomials, and denote this multilinear formula by Φi. Each Φi is of depth at
most 2.
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Let |π| denote the size of the PCR proof π, i.e., the number of monomials in π, and
let ` ≤ n be the total number of variables that appear in the polynomials in π. In light of
Theorem 3.3.1, we need to show that the total size of all the formulas Φi is polynomial
in |π|. Since |π| ≥ `, it suffices to show that the total size of all the formulas Φi (for
1 ≤ i ≤ m) is O(` · |π|).

Since each Φi is a sum of (multilinear) monomials then the total size of all the formulas
Φi is just the total size of all the monomials occurring in Φ1, . . . ,Φm (ignoring constant
factors). Each multilinear monomial in Φ1, . . . ,Φm is of size O(`). Thus (by the first
paragraph of this proof), the total size of all the formulas Φi is O(` · |π|) . �

Proof of Theorem 3.3.1. Denote by U the sequence of multilinear polynomials
M[p1] , . . . ,M[pm]. Suppose that π contains an instance of the PCR product rule: from pi
deduce x · pi, for some x ∈ {x1, . . . , xn, x̄1, . . . , x̄n}. Then U contains the polynomials
M[pi] and M[x · pi]. Note that M[x · pi] does not necessarily equal x ·M[pi]. Thus, an
instance of a PCR product rule in π does not necessarily turn into an instance of an fMC
product rule in U . This means that the sequence U does not necessarily form a legitimate
fMC proof sequence.

Nevertheless, with at most a polynomial increase in size, it is possible to turn U into a
depth-d fMC proof. That is, we build from the sequence U a depth-d fMC refutation of Q,
denoted π′. The size of π′ will be polynomial in the total size of all formulas in U . This is
done by adding to U new depth-d fMC proof sequences that simulate all instances of the
PCR product rule occurring in π (that is, depth-d fMC proof sequences of M[x · pi] from
M[pi], according to the notations of the previous paragraph).

Claim 3.3 and Lemma 3.3.3 that follow, illustrate how to build a depth-preserving
small multilinear proofs of M[x · pi] from M[pi].

Claim: Let Φ1 and Φ2 be two multilinear formulas with a plus gate at the root for the
polynomials f1, f2, respectively. Assume that both Φ1 and Φ2 contain neither xi nor x̄i.
Let d := max {dp(Φ1), dp(Φ2), 2}. Then there is a depth-d fMC proof of xi · f1 + xi · f2

from xi · f1 + f2 with size O(|Φ1|+ |Φ2|).

Proof of claim: Apply the following fMC proof sequence:

1. xi · f1 + f2 hypothesis
2. (1− x̄i) · (xi · f1 + f2) product of (1)
3. xi · x̄i Boolean axiom
4. (xi · x̄i) · f1 product of (3)
5. (1− x̄i) · (xi · f1 + f2) + (xi · x̄i) · f1 (2) plus (4)
6. xi + x̄i − 1 Boolean axiom
7. (xi + x̄i − 1) · f2 product of (6)
8. (1− x̄i) · (xi · f1 + f2) + (xi · x̄i) · f1 + (xi + x̄i − 1) · f2 (5) plus (7)

Note that the last line is equal to xi · f1 + xi · f2 .
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We need to make sure that each polynomial in the above proof sequence has a depth-d
multilinear formula of size O(|Φ1|+ |Φ2|).

The polynomials in lines 3,6 can obviously be written as constant size depth-1 multi-
linear formulas.

Considering all other lines in the proof sequence; First open parentheses. We get a sum
of constant number of terms, where each term is a product of f1 or f2 with a multilinear
monomial (or a field element, e.g. −1). For example, line 2 equals: xi · f1 + f2 − x̄i · xi ·
f1 − x̄i · f2 .

Thus, by Proposition 3.1.3, the polynomials in all the lines of the above proof sequence
have depth-d multilinear formulas of size O(|Φ1|+ |Φ2|). Claim

Lemma 3.3.3 Let pi be a polynomial from F[x1, . . . , xn, x̄1, . . . , x̄n], and let x ∈
{x1, . . . , xn, x̄1, . . . , x̄n}. Let Φ be a multilinear formula for M[pi] having a plus gate
at the root and let d := max {dp(Φ), 2}. Then there is a depth-d fMC proof of M[x · pi]
from M[pi], of size O(|Φ|).

Proof. We assume that x = xi for some xi ∈ {x1, . . . , xn} (the case of x ∈ {x̄1, . . . , x̄n}
is similar).

By Proposition 3.1.2, there are multilinear formulas ϕ1, ϕ2, ϕ3, ϕ4 such that

M[pi] = x̄i · xi · ϕ1 + x̄i · ϕ2 + xi · ϕ3 + ϕ4 (3.5)

(the equality here is between polynomials), where for all 1 ≤ j ≤ 4 : (i) ϕj does not
contain xi, x̄i , and (ii) ϕj has depth at most d and size O(|Φ|) , and (iii) ϕj has a plus
gate at the root.

Multiply the Boolean axiom x̄i · xi by ϕ1, to get

x̄i · xi · ϕ1 . (3.6)

Subtract (3.6) from (3.5). We arrive at the polynomial

x̄i · ϕ2 + xi · ϕ3 + ϕ4 . (3.7)

By (i,ii,iii) above, both ϕ1 and ϕ2 + ϕ3 + ϕ4 have depth at most d and size O(|Φ|)
multilinear formulas that do not contain xi, x̄i . Therefore, by Proposition 3.1.3, both (3.6)
and (3.7) have multilinear formulas of depth at most d and size O(|Φ|).

By Proposition 3.1.4, we can derive from (3.7), with a depth-d fMC proof of size
O(|Φ|),

(1− xi) · ϕ2 + xi · ϕ3 + ϕ4 ,

which is equal to
xi · (ϕ3 − ϕ2) + (ϕ2 + ϕ4) . (3.8)
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Since all formulas ϕj have plus gates at their root, then (ϕ3 − ϕ2) and (ϕ2 + ϕ4) have
multilinear formulas of depth dp(Φ) and size O(|Φ|). Thus, by Claim 3.3, there is a
depth-d fMC proof of

xi · (ϕ3 − ϕ2) + xi · (ϕ2 + ϕ4) = xi · ϕ3 + xi · ϕ4 , (3.9)

from (3.8), where the size of the proof is O(|Φ|).
Now, multiply the Boolean axiom x̄i · xi by (ϕ1 +ϕ2) , and add the result to (3.9). We

obtain
x̄i · xi · ϕ1 + x̄i · xi · ϕ2 + xi · ϕ3 + xi · ϕ4 = M[xi · pi] . (3.10)

Similar to (3.7), polynomial (3.10) can be written as depth-d multilinear formula of size
polynomial in O(|Φ|). �

Concluding the proof of Theorem 3.3.1. Recall that U is the sequence of multilinear for-
mulas Φ1, . . . ,Φm (corresponding to the polynomials M[p1] , . . . ,M[pm]).

Let pj, pk (for j < k ∈ [m]) be some instance of the PCR product rule in π. That is,
the polynomial pk = x · pj is deduced from pj , for some x ∈ {x1, . . . , xn, x̄1, . . . , x̄n}.
We can assume that both Φj and Φk have plus gates at their root, and so by assumption
both have depth at most d (if Φ`, for ` ∈ {j, k}, has a product gate at the root, then by
assumption the depth of the formula is at most d− 1; hence, we can let Φ` be the formula
Φ` + 0). Thus, by Lemma 3.3.3 there is a depth-d fMC proof of M[pk] = M[x · pj] from
M[pj] of size O(|Φj|). We denote this proof (sequence) by Sk. For all instances of the
PCR product rule in π, replace the formula Φk in U with the proof sequence Sk, excluding
the first formula of Sk (note that Φj the first formula of Sk, already appears in U ). Let π′

denote the new sequence of formulas obtained from U by this process.

Now, π′ is easily seen to be a depth-d fMC refutation of Q: (i) π′ ends with M[pm] =
M[1] = 1; (ii) Every arithmetic formula in π′ is a multilinear formula of depth at most d;
and (iii) For every formula Ψi in π′, computing the polynomial qi, either Ψi was added to
π′ as a formula in some proof sequence Sj (as defined above), or qi is the result of applying
M[·] on some polynomial p` from π (that is, qi = M[p`] for some ` ∈ [m]).

In the first case of (iii), Ψi is either an axiom of fMC, or a formula that was deduced
by one of fMC’s inference rules from preceding formulas in Sj .

In the second case of (iii), p` is either a (multilinear) polynomial from Q, or a Boolean
axiom of PCR, or p` was deduced by one of the two PCR inference rules from some
preceding polynomials in π. If p` is the Boolean axiom xj + x̄j − 1 of PCR, for some
j ∈ [n], then qi = p` is also a Boolean axiom of fMC. If p` is the Boolean axiom x2

j − xj ,
for some j ∈ [n], and so qi = 0 (thus, qi can be discarded from the proof; formally, the
zero polynomial can be deduced from any polynomial, by the fMC inference rules).

In case p` was deduced by the PCR product rule from some preceding polynomial pk
(k < ` ∈ [m]) in π, then by definition of S`, qi stems from preceding polynomials in S` by
an fMC inference rule. Moreover, instances of the PCR addition rule in π are transformed
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in π′ into legal instances of the fMC addition rule, as M[·] is easily seen to be a linear
operator. �

3.4 Separations of Algebraic Proof Systems and Multi-
linear Circuit Lower Bounds

In this section we use Theorem 3.3.1 to link the separation of certain algebraic proof
systems to the problem of proving multilinear arithmetic circuit lower bounds. Specifi-
cally, we show that if there is a set of multilinear polynomials Q, for which there exists
an explicit polynomial-size refutation manipulating general arithmetic circuits (i.e., not
necessarily multilinear), then proving a super-polynomial lower bound on the refutation
size of Q in a proof system manipulating multilinear circuits implies a super-polynomial
lower bound on the size of multilinear circuits computing an explicit polynomial (see Sec-
tion 2.5.1 and Definition 2.5.1 for definitions of arithmetic circuits and multilinear circuits,
respectively). In fact, this result can be generalized further (see remark after the proof of
Theorem 3.4.4). We shall exploit the fact that we work with semantic algebraic proof
systems (like fMC) in which polynomials are represented by arbitrarily chosen arithmetic
formulas computing them (this fact enabled us to prove the general simulation result in
Theorem 3.3.1).

The following defines algebraic proof systems that manipulate general and multilinear
arithmetic circuits:

Definition 3.4.1 (cMC, cPCR).
(i) The cMC (for Circuit Multilinear Calculus) proof system is identical to fMC, except
that multilinear polynomials in cMC proof sequences are represented by multilinear cir-
cuits (instead of multilinear formulas). The size of a cMC proof π is defined to be the total
sum of all the circuit-sizes in π.
(ii) The cPCR (for Circuit Polynomial Calculus with Resolution) proof system is identical
to PCR, except that polynomials in cPCR proof sequences are represented by (general)
arithmetic circuits (instead of explicit sums of monomials). The size of a cPCR proof π is
defined to be the total sum of all the circuit-sizes in π.

We now reiterate Theorem 3.3.1 where instead of dealing with depth-d multilinear
formulas we deal with multilinear circuits (not necessarily of constant-depth):

Proposition 3.4.2 Fix a field F and let Q be an unsatisfiable set of multilinear polyno-
mials from F[x1, . . . , xn, x̄1, . . . , x̄n]. Let π = (p1, . . . , pm) be a PCR refutation of Q.
For each pi ∈ π let Φi be a multilinear circuit for the polynomial M[pi] and let S be the
total size of all the multilinear circuits Φi. Then there is a cMC refutation of Q of size
polynomial in S.

Proof. First notice that any manipulation of arithmetic formulas presented in Section 3.1 is
also applicable to multilinear circuits. Thus, by a straightforward inspection of the proof
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of Theorem 3.3.1, one can verify that when substituting the phrases ‘depth-d multilinear
formulas’ by ‘multilinear circuits’ and ‘depth-d fMC’ by ‘cMC’, Theorem 3.3.1 still holds.
�

Corollary 3.4.3 Fix a field F and let Q be an unsatisfiable set of multilinear polynomials
from F[x1, . . . , xn, x̄1, . . . , x̄n]. Let π = (p1, . . . , pm) be a PCR refutation of Q, with a
polynomial (in n) number of steps.2 Assume that every cMC refutation of Q is of super-
polynomial size. Then there exists a polynomial pi ∈ π such that M[pi] has no polynomial-
size multilinear circuit.

Proof. The statement follows immediately from Proposition 3.4.2, as if all polynomials
M[pi] (for all 1 ≤ i ≤ m) had polynomial-size multilinear circuits, there would have been
also a polynomial-size cMC refutation of Q, which contradicts the assumption. �

Recall from Definition 1.1.2 that a proof system P1 has a super-polynomial (exponen-
tial, respectively) gap over a proof system P2 for a family Q := {Qn}n∈N of unsatisfiable
sets of polynomials over a field, if there exist polynomial-size P1 refutations of Q and
every P2 refutation of Q is of super-polynomial (exponential, respectively) size. In this
case we shall also say that Q super-polynomially (exponentially, respectively) separates
P1 from P2. In case we also have explicit polynomial-size proofs of Q in P1 then we shall
say that we have an explicit super-polynomial (exponential, respectively) separation of P1

from P2 for Q. The term explicit here means that there is a Turing machine that for any
given input-size n (given to the machine in unary representation) outputs the proof of Qn

in P1 and runs in time polynomial in the size of the proof (similarly, we can speak about
an explicit (family of) polynomials).

Theorem 3.4.4 Fix a field F and let Q be an unsatisfiable set of multilinear polynomials
from F[x1, . . . , xn, x̄1, . . . , x̄n]. Assume that there is an explicit super-polynomial (expo-
nential, respectively) size separation of cPCR from cMC for Q. Then there exists an
explicit multilinear polynomial g with no polynomial-size (sub-exponential size, respec-
tively) multilinear circuit.

Proof. Let (Θ1, . . . ,Θm) be the explicit polynomial-size cPCR proof sequence ofQ (every
Θi is an arithmetic circuit). For all 1 ≤ i ≤ m let pi be the polynomial computed by Θi

(in other words, we can view (p1, . . . , pm) as a PCR refutation of Q). By assumption m
is polynomially bounded by n and any cMC refutation of Q (of any depth) is of super-
polynomial size (exponential size, respectively) in n. Thus, by Corollary 3.4.3 there exists
an 1 ≤ i ≤ m such that M[pi] has no polynomial-size (sub-exponential size, respectively)
multilinear circuit.

Let z1, . . . , zm be new variables and consider the polynomial g :=
∑m

j=1 zj ·M[pj].
Then g has no polynomial-size in n (sub-exponential size in n, respectively) multilinear

2Again (as in Section 3.3), we only require that the number of steps is polynomial. The size of the PCR
proof might not be polynomially bounded.
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circuit (over F) (as if there was such a multilinear circuit Ψ computing g, we could have
obtained a polynomial-size in n (sub-exponential size in n, respectively) multilinear circuit
for M[pi] by substituting every occurrence of zj in Ψ, for j 6= i, by 0, and every occurrence
of zi in Ψ by 1). (Note that the number of variables in g is polynomially bounded by n,
since m is polynomially bounded by n.) �

Remark. Theorem 3.4.4 can be generalized further for any (reasonably defined) pair
of arithmetic circuit-classes C1, C2 that are at least as strong as multilinear formulas (that
is, when considering C1, C2 instead of arithmetic circuits and multilinear circuits, respec-
tively).

Specifically, denote by C1PCR the proof system that is similar to PCR, where polyno-
mials are represented by C1-circuits (instead of explicit sums of monomials); and denote
by C2MC the proof system that is similar to fMC, where multilinear polynomials are rep-
resented by C2-circuits (instead of multilinear formulas). It is not hard to see that if C2

is any (reasonably defined) arithmetic circuit-class that contains the class of multilinear
formulas, then Proposition 3.4.2 is still valid when one considers C2-circuits and C2MC
refutations instead of multilinear circuits and cMC refutations, respectively.

Thus, the same reasoning that was described above (i.e., in Corollary 3.4.3 and Theo-
rem 3.4.4) implies that if there is an explicit super-polynomial (exponential, respectively)
size separation of C1PCR from C2MC for some unsatisfiable set of multilinear polyno-
mials Q, then there exists an explicit multilinear polynomial g with no polynomial-size
(sub-exponential size, respectively) C2-circuit.

(In a similar manner, we can speak of C1PCR versus C2PCR refutations instead of
C1PCR versus C2MC refutations. We thus obtain that an explicit super-polynomial (expo-
nential, respectively) size separation of C1PCR from C2PCR for some unsatisfiable set of
polynomials Q implies the existence of an explicit polynomial g [not necessarily multilin-
ear] with no polynomial-size [sub-exponential size, respectively] C2-circuit.)

3.5 Tseitin’s Graph Tautologies
In this section we show an exponential gap of depth-3 fMC over resolution, PC, PCR and
bounded-depth Frege for certain Tseitin’s graph tautologies. Specifically, we show that
for any p the Tseitin mod p formula (see Definition 3.5.1) has a polynomial-size depth-3
fMC refutation over any field of characteristic q - p that includes a primitive p-th root of
unity.

Comment: In Chapter 5 (Section 5.3) we will prove the existence of different polynomial-
size depth-3 fMC proofs of the Tseitin mod p formulas (these proofs will hold over any
field of characteristic 0), as well as polynomial-size depth-3 fMC proofs of the pigeonhole
principle.
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We shall consider the generalization of the Tseitin’s graph tautologies, given in Buss
et al. (2001). This generalization can be formulated as a CNF formula, which in turn
can be reduced to a more convenient form (we observe that this reduction is efficiently
provable in depth-2 fMC). Given this latter form, the refutations of the generalized Tseitin
formulas follow in a rather straightforward manner, and we show that such refutations can
be done efficiently in depth-3 fMC.

It is worth noting that Grigoriev and Hirsch (2003) have shown a polynomial-size
constant depth refutation of the Tseitin mod 2 principle in a formal (i.e., syntactic [see
Section 1.1.1]) proof system manipulating general arithmetic formulas of constant-depth
(this proof system was denoted F-NS).

Preparatory to the generalized Tseitin principle we start by describing the (original)
Tseitin mod 2 principle (cf. Tseitin (1968)). Let G = (V,E) be a connected undirected
graph with an odd number of vertices n. The Tseitin mod 2 tautology states that there is
no sub-graph G′ = (V,E ′), where E ′ ⊆ E, so that for every vertex v ∈ V , the number of
edges from E ′ incident to v is odd. This statement is valid, since otherwise, summing the
degrees of all the vertices in G′ would amount to an odd number (since n is odd), whereas
this sum also counts every edge in E ′ twice, and so is even.

The Tseitin mod 2 principle can be generalized to obtain the Tseitin mod p principle,
as was suggested in Buss et al. (2001). Let p ≥ 2 be some fixed integer and let G =
(V,E) be a connected undirected r-regular graph with n vertices and no double edges.
Let G′ = (V,E ′) be the corresponding directed graph that results from G by replacing
every (undirected) edge in G with two opposite directed edges. Assume that n ≡ 1 (mod
p). Then the Tseitin mod p principle states that there is no way to assign to every edge in
E ′ a value from {0, . . . , p− 1}, so that:

(i) For every pair of opposite directed edges e, ē in E ′, with assigned values a, b, respec-
tively, a+ b ≡ 0 (mod p); and

(ii) For every vertex v in V , the sum of the values assigned to the edges in E ′ coming out
of v is congruent to 1 (mod p).

The Tseitin mod p principle is valid, since if we sum the values assigned to all edges
of E ′ in pairs we obtain 0 (mod p) (by (i)), where summing them by vertices we arrive at
a total value of 1 (mod p) (by (ii) and since n ≡ 1 (mod p)).

As a propositional formula (in CNF form) the Tseitin mod p principle is formulated by
assigning a variable xe,i for every edge e ∈ E ′ and every residue i modulo p. The variable
xe,i is an indicator variable for the fact that edge e has an associated value i. The following
are the clauses of the Tseitin mod p CNF formula, as translated to polynomials (we call it
the Tseitin mod p formula to emphasize that it is a translation of a CNF formula). (To be
consistent with Buss et al. (2001) we use the notation BTSG,p which stands for ‘Boolean
Tseitin mod p’.)

Definition 3.5.1 (Tseitin mod p formula (BTSG,p)). Let p ≥ 2 be some fixed integer and
let G = (V,E) be a connected undirected r-regular graph with n vertices and no double
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edges, and assume that n ≡ 1 (mod p). Let G′ = (V,E ′) be the corresponding directed
graph that results from G by replacing every (undirected) edge in G with two opposite
directed edges.

Given a vertex v ∈ V , let the edges in E ′ coming out of v be ev,1, . . . , ev,r and define
the following set of polynomials:

MODp,1(v) :=

{
r∏

k=1

xev,k,ik

∣∣∣∣ i1, . . . , ir ∈ {0, . . . , p− 1} and
r∑

k=1

ik 6≡ 1 mod p

}
.

The Tseitin mod p formula, denoted BTSG,p, consists of the following multilinear polyno-
mials, where each polynomial is easily seen to be a translation of a clause (via Definition
3.0.7):

1.
p−1∏
i=0

x̄e,i , for all e ∈ E ′

(expresses that every edge is assigned at least one value from 0, . . . , p− 1);

2. xe,i · xe,j , for all i 6= j ∈ {0, . . . , p− 1} and all e ∈ E ′
(expresses that every edge is assigned at most one value from 0, . . . , p− 1);

3. x̄e,i · xē,p−i and xe,i · x̄ē,p−i, 3

for all two opposite directed edges e, ē ∈ E ′ and all i ∈ {0, . . . , p− 1}
(expresses condition (i) of the Tseitin mod p principle above);

4. MODp,1(v) , for all v ∈ V
(expresses condition (ii) of the Tseitin mod p principle above).

Note that for every edge e ∈ E ′, the polynomials of (1,2) in Definition 3.5.1, combined
with the Boolean axioms of fMC, force any collection of edge-variables xe,0, . . . , xe,p−1 to
have exactly one true variable xe,i, for some i ∈ {0, . . . , p− 1}. Also, it is easy to verify
that, given a vertex v ∈ V , any assignment σ of 0, 1 values (to the relevant variables)
satisfies both the clauses of (1,2) and the clauses of MODp,1(v) if and only if σ corresponds
to an assignment of values from {0, . . . , p− 1} to the edges coming out of v that sums up
to 1 (mod p).

Definition 3.5.2 Let G = (V,E) be an undirected graph, and let ε > 0. The graph G has
expansion ε if for any subset S ⊆ V of vertices with |S| ≤ |V |/2, |N(S)| ≥ (1 + ε)|S|,
where N(S) is the set of all vertices from V incident to vertices in S.

Theorem 3.5.3 (Buss et al. (2001)) Let q ≥ 2 be a prime such that q - p and let F be a
field of characteristic q. Let G be an r-regular graph with n vertices and expansion ε > 0.
Then, any PCR-refutation (over F) of BTSG,p requires degree Ω(n).

3If i = 0 then xē,p−i and x̄ē,p−i denote xē,0 and x̄ē,0, respectively.
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It can be proved that there exist constants r, ε > 0 and an infinite family of r-regular
graphs {Gi}∞i=1, such that everyGi has ε expansion and ni vertices, and ni tends to infinity
as i tends to infinity (cf. Alon (1986)). Thus, for each Gi pertaining to such a family,
the corresponding set BTSGi,p contains only linear in ni many polynomials (since for
each vertex v in Gi, MODp,1(v) defines < pr many polynomials). Notice also that every
polynomial in BTSGi,p is a multilinear monomial and has a constant number of variables.
So we conclude that the total number of variables in BTSGi,p is linear in ni and the total
number of monomials in BTSGi,p is also linear in ni.

By Theorem 3.5.3, BTSGi,p has a linear in ni degree lower bound. By the previous
paragraph, this means that BTSGi,p has a linear in the total number of variables degree
lower bound. By the size-degree tradeoff proved in Impagliazzo et al. (1999), a linear
(in the number of variables) lower bound on the degree of PCR refutations implies an
exponential (in the number of variables) lower bound on the size of PCR refutations (this
tradeoff was proved for PC (Corollary 6.3 in Impagliazzo et al. (1999)), but it is also valid
for PCR as was observed in Alekhnovich et al. (2002)). Therefore, we have:

Corollary 3.5.4 Let q ≥ 2 be a prime such that q - p and let F be a field of characteristic
q. For infinitely many n, there is a graph G with n vertices, such that the Tseitin mod p
formula BTSG,p has polynomial-size (i.e., it has polynomially many monomials in n), and
any PCR refutation over F of BTSG,p has size exponential in n (i.e., the refutation has
exponentially many monomials in n).

We shall show now that if the field F in Corollary 3.5.4 contains a primitive p-th root
of unity, then for any G there is a polynomial-size depth-3 fMC refutation of BTSG,p (over
F). For this purpose, we first transform the Tseitin mod p formula into the following
multiplicative version (cf. Buss et al. (2001)):

Definition 3.5.5 (Multiplicative Tseitin mod p (TSG,p)). Let F be a field of character-
istic q - p having a primitive p-th root of unity, denoted by ω (that is, ω 6= 1 and p is the
smallest positive integer such that ωp = 1). Let G′ = (V,E ′) be the graph correspond-
ing to G as in Definition 3.5.1. Define the abbreviation ye :=

∑p−1
i=0 xe,i · ωi for every

edge e ∈ E ′. The multiplicative Tseitin mod p, denoted TSG,p, is the following set of
multilinear polynomials over F:

1. ye · yē − 1 , for all pairs of opposite directed edges e, ē ∈ E ′ ;
2.

r∏
j=1

yej − ω , for all v ∈ V , where e1, . . . , er are the edges coming out of v.

We emphasize that the formal variables of TSG,p are xe,i for all e ∈ E ′ and i ∈
{0, . . . , p− 1}. (In Buss et al. (2001) TSG,p also included the polynomials ype − 1 for
all edges e ∈ E ′. We shall not need these polynomials for the upper bound.)

Notice that every Boolean assignment to the xe,i variables (where e ∈ E ′ and i ∈
{0, . . . , p− 1}) that satisfies the polynomials in lines (1,2) and line (3) in BTSG,p, also
satisfies the polynomials in line (1) in TSG,p. Indeed, let ρ be a Boolean assignment that
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satisfies the polynomials in lines (1,2) and line (3) in BTSG,p. Then, by lines (1,2) in
BTSG,p there is exactly one variable xe,i from the variables xe,0, . . . , xe,p−1 in ye that is set
to 1 by ρ, and similarly there is exactly one variable xē,j from the variables xē,0, . . . , xē,p−1

in yē that is set to 1 in ρ. Thus, under the assignment ρ, ye = ωi and yē = ωj . By line
(3) in BTSG,p we have that i + j = 0 (mod p), and so ye · yē = ωi · ωj = 1 under the
assignment ρ. Similar reasoning shows that every Boolean assignment to the xe,i variables
(where e ∈ E ′ and i ∈ {0, . . . , p− 1}) that satisfies the polynomials in lines (1,2) and line
(4) in BTSG,p, also satisfies the polynomials in line (2) in TSG,p.

The previous paragraph shows that BTSG,p semantically implies TSG,p. In fact, by
Buss et al. (2001) there is a PCR-proof of TSG,p from BTSG,p, such that all the polynomials
in the proof are of degree at most pr:

Lemma 3.5.6 (Buss et al. (2001)) For any r-regular graph G, and for any field F of
characteristic q - p that includes a primitive p-th root of unity, there is a PCR-proof (over
F) of TSG,p from BTSG,p, where the degrees of the polynomials in the proof are at most
pr.4

Corollary 3.5.7 For any r-regular graph G with n vertices, and for any field F of char-
acteristic q - p that includes a primitive p-th root of unity, there is a depth-2 fMC (over F)
proof of TSG,p from BTSG,p of size polynomial in n, assuming r is a constant.

Proof. Since r and p are constants, then by Lemma 3.5.6 there is a PCR-proof of TSG,p
from BTSG,p of constant-degree. The results of Clegg et al. (1996) imply that any
constant-degree PCR-proof can be transformed into a polynomial-size (in the number of
variables) PCR proof. The number of (formal) variables in BTSG,p (and, hence TSG,p) is
2prn, in other words, polynomial in n. Thus, there is a PCR-proof of TSG,p from BTSG,p
of size polynomial in n. By Corollary 3.3.2, there is also such a depth-2 fMC proof of size
polynomial in n. �

The following is the main theorem of this section:

Theorem 3.5.8 Let F be a field of characteristic q - p that includes a primitive p-th root
of unity. Let G be an r-regular graph with n vertices. Then, there is a depth-3 fMC
polynomial-size (in n) refutation of BTSG,p over F.

Proof. By Corollary 3.5.7, we first derive the polynomials of TSG,p from BTSG,p, with a
depth-2 fMC proof of size polynomial in n.

Given TSG,p, the refutation idea is straightforward: Recall that we interpret a polyno-
mial t in an fMC proof sequence as the equation t = 0. Thus, the first axiom of TSG,p
interprets as ye · yē = 1, and the second axiom interprets as

∏r
i=1 yei = ω. Therefore, the

multiplication of all polynomials
∏r

i=1 yei , for all v ∈ V , equals 1, by the first axiom. On

4This result was proved in Buss et al. (2001) for PC, when one replaces in TSG,p and BTSG,p every
occurrence of x̄i (for any 1 ≤ i ≤ n) by 1− xi. Lemma 3.5.6 clearly stems from this.
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the other hand, by the second axiom, this multiplication equals ωn = ω (since n ≡ 1 (mod
p)). So we reached ω = 1, a contradiction.

More formally, the depth-3 fMC refutation goes as follows. For any v ∈ V , denote by
E ′v the set of edges from E ′ that come out of v. Let v0 be some vertex in V . Apply the
following depth-3 fMC proof sequence:

1.
∏
e∈E′v0

ye − ω hypothesis

2.

 ∏
e∈E′v0

ye − ω

 · ∏
v∈V \{v0}

∏
e∈E′v

ye

=
∏
e∈E′

ye − ω ·
∏

v∈V \{v0}

∏
e∈E′v

ye product of (1).

Now, choose a different vertex v1 6= v0 from V .

3.
∏
e∈E′v1

ye − ω hypothesis

4.

 ∏
e∈E′v1

ye − ω

 · ω · ∏
v∈V \{v0,v1}

∏
e∈E′v

ye

= ω ·
∏

v∈V \{v0}

∏
e∈E′v

ye − ω2 ·
∏

v∈V \{v0,v1}

∏
e∈E′v

ye product of (3)

5.
∏
e∈E′

ye − ω2 ·
∏

v∈V \{v0,v1}

∏
e∈E′v

ye add (2) and (4).

Continuing in the same manner for all other vertices v ∈ V , we arrive at
∏

e∈E′ ye − ωn,
which equals

6.
∏
e∈E′

ye − ω ,

over F, since n ≡ 1 (mod p).
We now substitute by 1 each product ye · yē in (6), for any two opposite directed edges

e, ē ∈ E ′. Specifically, choose a pair of opposite directed edges e0, ē0 ∈ E ′.

7. ye0 · yē0 − 1 hypothesis

8. (ye0 · yē0 − 1) ·
∏

e∈E′\{e0,ē0}

ye =
∏
e∈E′

ye −
∏

e∈E′\{e0,ē0}

ye product of (7).

In the same manner, let e1, ē1 ∈ E ′ be another pair of opposite directed edges. We can mul-
tiply ye1 ·yē1−1 by

∏
e∈E′\{e0,ē0,e1,ē1} ye and reach

∏
e∈E′\{e0,ē0} ye−

∏
e∈E′\{e0,ē0,e1,ē1} ye.

Adding this to (8) yields
∏

e∈E′ ye −
∏

e∈E′\{e0,ē0,e1,ē1} ye. Continuing this process for all
other pairs of opposite directed edges from E ′, we arrive finally at
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9.
∏

e∈E′ ye − 1 .

Subtracting (9) from (6) we reach 1 − ω. Since, ω 6= 1, then 1 − ω has an inverse in
the field, so by multiplying 1− ω by its inverse we arrive at the terminal polynomial 1.

It is easy to verify that when replacing every variable ye with its corresponding poly-
nomial

∑p−1
i=0 xe,i · ωi (which constitutes a depth-1 multilinear formula with a plus gate

at the root), every polynomial in the above proof sequence can be written as a depth-3
multilinear formula of polynomial-size (in n) with a plus gate at the root. �

3.5.1 Consequences: Separation Results

By Corollary 3.5.4 and Theorem 3.5.8, we conclude that:

Corollary 3.5.9 Over fields of any characteristic q that include a primitive p-th root of
unity, where q - p, depth-3 fMC has an exponential gap over PC and PCR for Tseitin mod
p formulas (when the underlying graphs are appropriately expanding).

It is known that the Tseitin mod 2 formulas have only exponential-size refutations in
resolution (again, when the underlying graphs are appropriately expanding; see Urquhart
(1987); Ben-Sasson and Wigderson (2001)). Moreover, Ben-Sasson (2002) proved an ex-
ponential lower bound on bounded-depth Frege proof-size of such Tseitin mod 2 formulas.
Therefore, by Theorem 3.5.8:

Corollary 3.5.10 Over fields of characteristic different than 2 depth-3 fMC has an expo-
nential gap over resolution and bounded-depth Frege for Tseitin mod 2 formulas (when
the underlying graphs are appropriately expanding).

Notice that the refutation of the Tseitin mod p formula described in the proof of The-
orem 3.5.8 uses only depth-3 multilinear formulas, with a constant number of product
gates (in other words, the root is a plus gate with a constant fan-in), or depth-2 multi-
linear formulas (by Corollary 3.5.7). Dvir and Shpilka (2006) (Theorem 6.10) showed a
deterministic polynomial-time algorithm for deciding the identity of such formulas – i.e.,
a polynomial-time algorithm that receives two (leveled) multilinear formulas of depth 3
with a constant fan-in plus gate at the root, and answers whether the two formulas compute
the same polynomial (see also Kayal and Saxena (2007)). Thus, depth-3 fMC proof sys-
tems for which all depth-3 multilinear formulas appearing in proofs have a constant fan-in
plus gate at the root constitute formal propositional proof systems (see Section 3.0.4.1)
(note that these proof systems can manipulate any kind of depth-2 or depth-1 multilinear
formulas; we only restrict the way depth-3 multilinear formulas appear). Therefore, by
Corollaries 3.5.9 and 3.5.10, we have the following:
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Corollary 3.5.11 Depth-3 fMC proof systems for which all depth-3 multilinear formulas
appearing in proofs have a constant fan-in plus gate at the root, are sound and complete
formal proof systems. Moreover, these formal proof systems are strictly stronger than PC,
PCR and resolution, and have an exponential gap over bounded-depth Frege (for Tseitin
mod 2 formulas, when the underlying field has characteristic different than 2 and the
underlying graphs are appropriately expanding).

3.6 Chapter Summary
In this chapter we introduced a semantic algebraic proof system operating with multi-
linear formulas. We established basic simulation and separation results and showed that
multilinear proofs operating with depth-3 formulas are strictly stronger than resolution,
PC and PCR (while depth-2 multilinear proofs already polynomially simulate these three
proof systems). The separation results were obtained by demonstrating short proofs for
the Tseitin mod p formulas.

In Chapter 5 we will show the existence of short multilinear proofs of depth 3 also
for the propositional pigeonhole principle. This will be done by using results established
in the next chapter. Specifically, in Chapter 4 we will study fragments of resolution over
linear equations. In Chapter 5 we will find out that these fragments can be polynomially
simulated by multilinear proofs operating with depth-3 multilinear formulas. Moreover,
we will be able to establish an exponential lower bound on such fragments of resolution
over linear equations. Nevertheless, the question of lower bounds on multilinear proofs
remains open (see discussion in Chapter 8).
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In this chapter we study extensions of resolution in which each proof-line is a disjunc-
tion of linear equations with integral coefficients.

4.1 R(lin) and its Fragments

4.1.1 Disjunctions of Linear Equations

For this section we use the convention that all the formal variables in the propositional
proof systems considered are taken from the set X := {x1, . . . , xn}.

For L a linear equation a1x1 + . . . + anxn = a0, the right hand side a0 is called the
free-term of L and the left hand side a1x1 + . . .+ anxn is called the linear form of L (the
linear form can be 0). A disjunction of linear equations is of the following general form:

(
a

(1)
1 x1 + . . .+ a(1)

n xn = a
(1)
0

)
∨ · · · ∨

(
a

(t)
1 x1 + . . .+ a(t)

n xn = a
(t)
0

)
, (4.1)

where t ≥ 0 and the coefficients a(j)
i are integers (for all 0 ≤ i ≤ n, 1 ≤ j ≤ t). We

discard duplicate linear equations from a disjunction of linear equations. The semantics
of such a disjunction is the natural one: we say that an assignment of integral values to
the variables x1, ..., xn satisfies (4.1) if and only if there exists j ∈ [t] so that the equation
a

(j)
1 x1 + . . .+ a

(j)
n xn = a

(j)
0 holds under the given assignment.

The symbol |= denotes the semantic implication relation, that is, for every collection
D1, . . . , Dm of disjunctions of linear equations,

D1, . . . , Dm |= D0

means that every assignment of 0, 1 values that satisfies all D1, . . . , Dm also satisfies D0.
In this case we also say that D1, . . . , Dm semantically imply D0.

The size of a linear equation a1x1 + . . . + anxn = a0 is
∑n

i=0 |ai|, i.e., the sum of
the bit sizes of all ai written in unary notation. Accordingly, the size of the linear form
a1x1 + . . . + anxn is

∑n
i=1 |ai|. The size of a disjunction of linear equations is the total

size of all linear equations in it.
Since all linear equations considered in this chapter (and the next one [Chapter 5])

are of integral coefficients, we shall speak of linear equations when we actually mean
linear equations with integral coefficients. Similar to resolution, the empty disjunction is
unsatisfiable and stands for the truth value FALSE.

Translation of clauses. We can translate any CNF formula to a collection of disjunctions
of linear equations in a direct manner: every clause

∨
i∈I xi ∨

∨
j∈J ¬xj (where I and J

are sets of indices of variables) pertaining to the CNF is translated into the disjunction∨
i∈I(xi = 1) ∨ ∨j∈J(xj = 0). For a clause D we denote by D̃ its translation into a

disjunction of linear equations. It is easy to verify that any Boolean assignment to the
variables x1, . . . , xn satisfies a clause D if and only if it satisfies D̃ (where TRUE is treated
as 1 and FALSE as 0).
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Note on terminology. All the proof systems considered in this chapter intend to prove
the unsatisfiability over 0, 1 values of collections of clauses (possibly, of translation of the
clauses to disjunctions of linear equations). Therefore, throughout this chapter we shall
sometimes speak about refutations and proofs interchangeably, always intending refuta-
tions, unless otherwise stated.

4.1.2 Resolution over Linear Equations – R(lin)

Defined below is our basic proof system R(lin) that enables resolution to reason with dis-
junctions of linear equations. As we wish to reason about Boolean variables we augment
the system with the axioms (xi = 0)∨(xi = 1), for all i ∈ [n], called the Boolean axioms.

Definition 4.1.1 (R(lin)) Let K := {K1, . . . , Km} be a collection of disjunctions of lin-
ear equations. An R(lin)-proof from K of a disjunction of linear equations D is a fi-
nite sequence π = (D1, ..., D`) of disjunctions of linear equations, such that D` = D
and for every i ∈ [`], either Di = Kj for some j ∈ [m], or Di is a Boolean axiom
(xh = 0) ∨ (xh = 1) for some h ∈ [n], or Di was deduced by one of the following
R(lin)-inference rules, using Dj, Dk for some j, k < i:

Resolution Let A,B be two, possibly empty, disjunctions of linear equations and let
L1, L2 be two linear equations. From A∨L1 and B ∨L2 derive A∨B ∨ (L1−L2).

Weakening From a, possibly empty, disjunction of linear equations A derive A ∨ L ,
where L is an arbitrary linear equation over X .

Simplification From A ∨ (0 = k) derive A, where A is a, possibly empty, disjunction
of linear equations and k 6= 0.

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof of the
empty disjunction from K.

Definition 4.1.2 (Size of an R(lin) proof) The size of an R(lin) proof π is the total size of
all the disjunctions of linear equations in π, denoted |π| (where coefficients are written in
unary notation).

Proposition 4.1.3 From A∨L1 and B ∨L2 one can derive A∨B ∨ (L1 +L2) with only
three applications of the resolution rule .

Proof. From B ∨ L2 derive B ∨ (0 = 0), by using the resolution rule on B ∨ L2 itself.
Using once more the resolution rule on B ∨ L2 and B ∨ (0 = 0) we get B ∨ −L2. Apply
the resolution rule on A ∨ L1 and B ∨ −L2, to get A ∨B ∨ (L1 + L2). �

Similar to resolution, in case A ∨ B ∨ (L1 − L2) is derived from A ∨ L1 and B ∨ L2

by the resolution rule, we say that A ∨ L1 and B ∨ L2 were resolved over L1 and L2,
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respectively, and we call A∨B ∨ (L1 −L2) the resolvent of A∨L1 and B ∨L2. We also
describe such an application of the resolution rule by saying that L1 was subtracted from
L2 in A ∨ L1 and B ∨ L2. In case A ∨B ∨ (L1 + L2) is derived from A ∨ L1 and B ∨ L2

by Proposition 4.1.3, we say that L1 was added to L2 in A ∨ L1 and B ∨ L2.

In light of the direct translation between CNF formulas and collections of disjunctions
of linear equations (described in the previous subsection), we can consider R(lin) to be a
proof system for the set of unsatisfiable CNF formulas:

Proposition 4.1.4 The R(lin) refutation system is a sound and complete Cook-Reckhow
(Definition 1.1.1) refutation system for unsatisfiable CNF formulas (translated into unsat-
isfiable collection of disjunctions of linear equations).

Proof. Completeness of R(lin) (for the set of unsatisfiable CNF formulas) stems from a
straightforward simulation of resolution, as we now show.

Proceed by induction on the length of the resolution refutation to show that any reso-
lution derivation of a clause A can be translated with only a linear increase in size into an
R(lin) derivation of the corresponding disjunction of linear equations Ã (see the previous
subsection for the definition of Ã).

The base case: An initial clause A is translated into its corresponding disjunction of
linear equations Ã.

The induction step: If a resolution clauseA∨B was derived by the resolution rule from
A ∨ xi and B ∨ ¬xi, then in R(lin) we subtract (xi = 0) from (xi = 1) in B̃ ∨ (xi = 0)

and Ã ∨ (xi = 1), respectively, to obtain Ã ∨ B̃ ∨ (0 = 1). Then, using the simplification
rule, we can cut-off (0 = 1) from Ã ∨ B̃ ∨ (0 = 1), and arrive at Ã ∨ B̃.

If a clause A ∨ B was derived in resolution from A by the weakening rule, then we
derive Ã ∨ B̃ from Ã by the weakening rule in R(lin). This concludes the simulation of
resolution by R(lin).

Soundness of R(lin) stems from the soundness of the inference rules.

The R(lin) proof system is a Cook-Reckhow proof system, as it is easy to verify in
polynomial-time whether an R(lin) proof-line is inferred, by an application of one of
R(lin)’s inference rules, from a previous proof-line (or proof-lines). Thus, any sequence
of disjunctions of linear equations, can be checked in polynomial-time (in the size of the
sequence) to decide whether or not it is a legitimate R(lin) proof-sequence. �

In Section 4.3 we shall see that a stronger notion of completeness (that is, implicational
completeness) holds for R(lin) and its subsystems.

4.1.3 Fragment of Resolution over Linear Equations – R0(lin)

Here we consider a restriction of R(lin), denoted R0(lin). As discussed in the introduction
(Section 1.2.2) R0(lin) is roughly the fragment of R(lin) we know how to polynomially
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simulate with depth-3 multilinear proofs. By results established in the sequel (Sections
4.4.3 and 4.6) R(lin) is strictly stronger than R0(lin), which means that R(lin) polynomially
simulates R0(lin), while the converse does not hold.

R0(lin) operates with disjunctions of (arbitrarily many) linear equations with constant
coefficients (excluding the free terms), under the following restriction: Every disjunction
can be partitioned into a constant number of sub-disjunctions, where each sub-disjunction
either consists of linear equations that differ only in their free-terms or is a (translation of
a) clause.

Every linear inequality with Boolean variables can be represented by a disjunction of
linear equations that differ only in their free-terms. So the R0(lin) proof system resembles,
to some extent, a proof system operating with disjunctions of constant number of linear
inequalities with constant integral coefficients (on the other hand, it is probable that R0(lin)
is stronger than such a proof system, as a disjunction of linear equations that differ only
in their free terms is [expressively] stronger than a linear inequality: the former can define
the PARITY function while the latter cannot).

Example of an R0(lin) proof-line:

(x1 + . . .+ x` = 1) ∨ · · · ∨ (x1 + . . .+ x` = `) ∨ (x`+1 = 1) ∨ · · · ∨ (xn = 1),

for some 1 ≤ ` ≤ n. Note that in the left part (x1 + . . .+x` = 1)∨· · ·∨(x1 + . . .+x` = `)
every disjunct has the same linear form [excluding the free term] with coefficients 0, 1,
while the right part (x`+1 = 1) ∨ · · · ∨ (xn = 1) is a translation of a clause. The next
section contains other concrete (and natural) examples of R0(lin) proof-lines.

Let us define formally the R0(lin) proof system. To this end, we introduce the follow-
ing definition.

Definition 4.1.5 (Rc,d(lin)-line) Let D be a disjunction of linear equations whose vari-
ables have integer coefficients with absolute values at most c (the free-terms are un-
bounded). AssumeD can be partitioned into at most d sub-disjunctionsD1, . . . , Dd, where
each Di either consists of (an unbounded) disjunction of linear equations that differ only
in their free-terms, or is a translation of a clause (as defined in Subsection 4.1.1). Then
the disjunction D is called an Rc,d(lin)-line.

The size of an Rc,d(lin)-line D is defined as before, that is, as the total size of all
equations in D, where coefficients are written in unary notation.

Thus, any Rc,d(lin)-line is of the following general form:∨
i∈I1

(
~a(1) · ~x = `

(1)
i

)
∨ · · · ∨

∨
i∈Ik

(
~a(k) · ~x = `

(k)
i

)
∨
∨
j∈J

(xj = bj) , (4.2)

where k ≤ d and for all r ∈ [n] and t ∈ [k], a(t)
r is an integer such that |a(t)

r | ≤ c, and
bj ∈ {0, 1} (for all j ∈ J) (and I1, . . . , Ik, J are unbounded sets of indices). Clearly, a
disjunction of clauses is a clause in itself, and so we can assume that in any Rc,d(lin)-line
only a single (translation of a) clause occurs.



Chapter 4. Resolution over Linear Equations 64

The R0(lin) proof system is a restriction of R(lin) in which each proof-line is an
Rc,d(lin)-line, for some apriori chosen constants c, d. More formally, we have the fol-
lowing definition.

Definition 4.1.6 (R0(lin)) Let K := {Kn | n ∈ N} be a family of collections of disjunc-
tions of linear equations. Then {Pn | n ∈ N} is a family of R0(lin)-proofs of K if there
exist constant integers c, d such that: (i) each Pn is an R(lin)-proof of Kn; and (ii) for all
n, every proof-line in Pn is an Rc,d(lin)-line.

The size of an R0(lin) proof is defined the same way as the size of R(lin) proofs, that is,
as the total size of all the proof-lines in the proof (where coefficients are written in unary
notation).

If Kn is a collection of disjunctions of linear equations parameterized by n ∈ N, we
shall say that Kn has a polynomial-size (in n) R0(lin) proof, if there are two constants c, d
that do not depend on n, and a polynomial p, such that for every n, Kn has R(lin) proof
of size at most p(n) in which every proof-line is an Rc,d(lin)-line.

The simulation of resolution inside R(lin) (in the proof of Proposition 4.1.4) is car-
ried on with each R(lin) proof-line being in fact a translation of a clause, and hence, an
R1,1(lin)-line (notice that the Boolean axioms of R(lin) are R1,1(lin)-lines). This already
implies that R0(lin) is a complete refutation system for the set of unsatisfiable CNF for-
mulas.

4.2 Reasoning and Counting inside R(lin) and its Subsys-
tems

In this section we illustrate a simple way to reason by case-analysis inside R(lin) and its
subsystems. This kind of reasoning will simplify the presentation of proofs inside R(lin)
(and R0(lin)) in the sequel. We will then demonstrate efficient and transparent proofs for
simple counting arguments that will also facilitate us in the sequel.

4.2.1 Basic Reasoning inside R(lin) and its Subsystems

Given K a collection of disjunctions of linear equations {K1, . . . , Km} and C a disjunc-
tion of linear equations, denote by K ∨ C the collection {K1 ∨ C, . . . ,Km ∨ C}. Recall
that the formal variables in our proof system are x1, . . . , xn.

Lemma 4.2.1 Let K be a collection of disjunctions of linear equations, and let z abbre-
viate some linear form with integer coefficients. Let E1, . . . , E` be ` disjunctions of linear
equations. Assume that for all i ∈ [`] there is an R(lin) derivation of Ei from z = ai and
K with size at most s where a1, . . . , a` are distinct integers. Then, there is an R(lin) proof
of
∨`
i=1Ei from K and (z = a1) ∨ · · · ∨ (z = a`), with size polynomial in s and `.
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Proof. Denote by D the disjunction (z = a1) ∨ · · · ∨ (z = a`) and by πi the R(lin) proof
of Ei from K and z = ai (with size at most s), for all i ∈ [`]. It is easy to verify that for
all i ∈ [`] the sequence πi∨

∨
j∈[`]\{i}(z = aj) is an R(lin) proof of Ei∨

∨
j∈[`]\{i}(z = aj)

from K and D. So overall, given D and K as premises, there is an R(lin) derivation of
size polynomial in s and ` of the following collection of disjunctions of linear equations:

E1 ∨
∨

j∈[`]\{1}

(z = aj), . . . , E` ∨
∨

j∈[`]\{`}

(z = aj) . (4.3)

We now use the resolution rule to cut-off all the equations (z = ai) inside all the
disjunctions in (4.3). Formally, we prove that for every 1 ≤ k ≤ ` there is a polynomial-
size (in s and `) R(lin) derivation from (4.3) of

E1 ∨ · · · ∨ Ek ∨
∨

j∈[`]\[k]

(z = aj) , (4.4)

and so putting k = `, will conclude the proof of the lemma.
We proceed by induction on k. The base case for k = 1 is immediate (from (4.3)). For

the induction case, assume that for some 1 ≤ k < ` we already have an R(lin) proof of
(4.4), with size polynomial in s and `.

Consider the line
Ek+1 ∨

∨
j∈[`]\{k+1}

(z = aj) . (4.5)

We can now cut-off the disjunctions
∨
j∈[`]\[k](z = aj) and

∨
j∈[`]\{k+1}(z = aj) from

(4.4) and (4.5), respectively, using the resolution rule (since the aj’s in (4.4) and in (4.5)
are disjoint). We will demonstrate this derivation in some detail now, in order to exemplify
a proof carried inside R(lin). We shall be less formal sometime in the sequel.

Resolve (4.4) with (4.5) over (z = ak+1) and (z = a1), respectively, to obtain

(0 = a1 − ak+1) ∨ E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,k+1}

(z = aj) . (4.6)

Since a1 6= ak+1, we can use the simplification rule to cut-off (0 = a1 − ak+1) from (4.6),
and we arrive at

E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,k+1}

(z = aj) . (4.7)

Now, similarly, resolve (4.4) with (4.7) over (z = ak+1) and (z = a2), respectively, and
use simplification to obtain

E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,2,k+1}

(z = aj) .

Continue in a similar manner until you arrive at

E1 ∨ · · · ∨ Ek ∨ Ek+1 ∨
∨

j∈[`]\{1,2,...,k,k+1}

(z = aj) ,
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which is precisely what we need. �

Under the appropriate conditions, Lemma 4.2.1 also holds for R0(lin) proofs. Formally
we have the following lemma.

Lemma 4.2.2 Let K be a collection of disjunctions of linear equations, and let z abbre-
viate a linear form with integer coefficients. Let E1, . . . , E` be ` disjunctions of linear
equations. Assume that for all i ∈ [`] there is an R(lin) derivation of Ei from z = ai and
K with size at most s, where the ai’s are distinct integers and where every proof-line is an
Rc,d(lin)-line. Then, assuming

∨`
i=1Ei is an Rc,d(lin)-line itself, there is an R(lin) proof of∨`

i=1Ei from K and (z = a1) ∨ · · · ∨ (z = a`), with size polynomial in s and `, and with
all proof-lines Rc,d+1(lin)-lines.

Proof. It can be verified by straightforward inspection that, under the conditions spelled
out in the statement of the lemma, each proof-line in the R(lin) derivations demonstrated
in the proof of Lemma 4.2.1 is an Rc,d+1(lin)-line. �

Abbreviations. Lemmas 4.2.1 and 4.2.2 will sometimes facilitate us to proceed inside
R(lin) and R0(lin) with a slightly less formal manner. For example, the situation in Lemma
4.2.1 above can be depicted by saying that “if z = ai implies Ei (with a polynomial-size
proof) for all i ∈ [`], then

∨`
i=1(z = ai) implies

∨`
i=1 Ei (with a polynomial-size proof)”.

In case
∨`
i=1(z = ai) above is just the Boolean axiom (xi = 0) ∨ (xi = 1), for some

i ∈ [n], and xi = 0 implies E0 and xi = 1 implies E1 (both with polynomial-size proofs),
then to simplify the writing we shall sometime not mention the Boolean axiom at all. For
example, the latter situation can be depicted by saying that “if xi = 0 implies E0 with a
polynomial-size proof and xi = 1 implies E1 with a polynomial-size proof, then we can
derive E0 ∨ E1 with a polynomial-size proof”.

4.2.2 Basic Counting inside R(lin) and R0(lin)

In this subsection we illustrate how to efficiently prove several basic counting arguments
inside R(lin) and R0(lin). This will facilitate us in showing short proofs for hard tautolo-
gies in the sequel. In accordance with the last paragraph in the previous subsection, we
shall carry the proofs inside R(lin) and R0(lin) with a slightly less rigor.

Lemma 4.2.3

(i) Let z1 abbreviate ~a · ~x and z2 abbreviate ~b · ~x. Let D1 be
∨
α∈A(z1 = α) and let

D2 be
∨
β∈B (z2 = β), where A,B are two (finite) sets of integers. Then there is a

polynomial-size (in the size of D1, D2) R(lin) proof from D1, D2 of:∨
α∈A,β∈B

(z1 + z2 = α + β) . (4.8)
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(ii) Moreover, assume that the vector ~a +~b consists of integers with absolute values at
most c (which means that D1, D2 are Rc,1(lin)-lines). Then, there is a polynomial-
size (in the size of D1, D2) R(lin) proof of (4.8) from D1, D2, with each proof-line
being an Rc,3(lin)-line.

Proof. Denote the elements of A by α1, . . . , αk. In case z1 = αi, for some i ∈ [k] then
we can add z1 = αi to every equation in

∨
β∈B (z2 = β) to get

∨
β∈B(z1 + z2 = αi + β).

Therefore, there exist k R(lin) proofs, each with polynomial-size (in |D1| and |D2|), of∨
β∈B

(z1 + z2 = α1 + β) ,
∨
β∈B

(z1 + z2 = α2 + β) , . . . ,
∨
β∈B

(z1 + z2 = αk + β)

from z1 = α1, z1 = α2 ,. . . ,z1 = αk, respectively.
Thus, by Lemma 4.2.1, we can derive∨

α∈A,β∈B

(z1 + z2 = α + β) (4.9)

from D1 and D2 in a polynomial-size (in |D1| and |D2|) R(lin)-proof. This concludes the
first part of the lemma.

Assume that ~a and~b consist of coefficients whose absolute values are at most c. Then
by a straightforward inspection of the R(lin)-proof of (4.9) from D1 and D2 demonstrated
above (and by using Lemma 4.2.2 instead of Lemma 4.2.1), one can verify the second part
of the lemma. �

An immediate corollary of Lemma 4.2.3 is the efficient formalization in R(lin) (and
R0(lin)) of the following obvious counting argument: If a linear form equals some value
in the interval (of integer numbers) [a0, a1] and another linear form equals some value
in [b0, b1] (for some a0 ≤ a1 and b0 ≤ b1), then their addition equals some value in
[a0 + b0, a1 + b1]. More formally:

Corollary 4.2.4 (i) Let z1 abbreviate ~a ·~x and z2 abbreviate~b ·~x. LetD1 be (z1 = a0)∨
(z1 = a0 +1) . . .∨(z1 = a1), and letD2 be (z2 = b0)∨(z2 = b0 + 1) . . .∨(z2 = b1).
Then there is a polynomial-size (in the size of D1, D2) R(lin) proof from D1, D2 of

(z1 + z2 = a0 + b0)∨ (z1 + z2 = a0 + b0 + 1)∨ . . .∨ (z1 + z2 = a1 + b1) . (4.10)

(ii) Moreover, assume that the vector ~a +~b consists of integers with absolute values at
most c (which means that D1, D2 are Rc,1(lin)-lines), then there is a polynomial-size
(in the size of D1, D2) R(lin) proof of (4.10) from D1, D2, with each proof-line being
an Rc,3(lin)-line.
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Lemma 4.2.5

(i) Let ~a · ~x be a linear form with n variables, and let A := {~a · ~x | ~x ∈ {0, 1}n} be
the set of all possible values of ~a · ~x over Boolean assignments to ~x. Then there is a
polynomial-size, in the size of the linear form ~a · ~x, R(lin) proof of 1∨

α∈A

(~a · ~x = α) . (4.11)

(ii) Moreover, if the coefficients in ~a have absolute value at most c, then there is a
polynomial-size (in the size of ~a · ~x) R(lin) proof of (4.11) with all proof-lines being
Rc,3(lin)-lines.

Proof. Without loss of generality, assume that all the coefficients in ~a are nonzero. Con-
sider the Boolean axiom (x1 = 0)∨ (x1 = 1) and the (first) coefficient a1 from ~a. Assume
that a1 ≥ 1. Add (x1 = 0) to itself a1 times, and arrive at (a1x1 = 0) ∨ (x1 = 1). Then,
in the resulted line, add (x1 = 1) to itself a1 times, until the following is reached:

(a1x1 = 0) ∨ (a1x1 = a1) .

Similarly, in case a1 ≤ −1 we can subtract (|a1|+ 1 many times) (x1 = 0) from itself
in (x1 = 0)∨ (x1 = 1), and then subtract (|a1|+ 1 many times) (x1 = 1) from itself in the
resulted line.

In the same manner, we can derive the disjunctions: (a2x2 = 0) ∨ (a2x2 =
a2), . . . , (anxn = 0) ∨ (anxn = an).

Consider (a1x1 = 0) ∨ (a1x1 = a1) and (a2x2 = 0) ∨ (a2x2 = a2). From these two
lines, by Lemma 4.2.3, there is a polynomial-size in |a1|+ |a2| derivation of:

(a1x1 +a2x2 = 0)∨ (a1x1 +a2x2 = a1)∨ (a1x1 +a2x2 = a2)∨ (a1x1 +a2x2 = a1 +a2) .
(4.12)

In a similar fashion, now consider (a3x3 = 0) ∨ (a3x3 = a3) and apply again Lemma
4.2.3, to obtain ∨

α∈A′
(a1x1 + a2x2 + a3x3 = α) , (4.13)

where A′ are all possible values to a1x1 + a2x2 + a3x3 over Boolean assignments to
x1, x2, x3. The derivation of (4.13) is of size polynomial in |a1|+ |a2|+ |a3|.

Continue to consider, successively, all other lines (a4x4 = 0) ∨ (a4x4 =
a4), . . . , (anxn = 0) ∨ (anxn = an), and apply the same reasoning. Each step uses a
derivation of size at most polynomial in

∑n
i=1 |ai|. And so overall we reach the desired

line (4.11), with a derivation of size polynomial in the size of ~a · ~x. This concludes the
first part of the lemma.

Assume that ~a consists of coefficients whose absolute value is at most c. Then by
a straightforward inspection of the R(lin)-proof demonstrated above (and by using the
second part of Lemma 4.2.3), one can see that this proof uses only Rc,3(lin)-lines. �

1Recall that the size of ~a · ~x is
∑n
i=1 |ai|, that is, the size of the unary notation of ~a.



Chapter 4. Resolution over Linear Equations 69

Lemma 4.2.6 For every n ∈ N, there is a polynomial-size (in n) R0(lin) proof from

(x1 = 1) ∨ · · · ∨ (xn = 1) (4.14)

of
(x1 + . . .+ xn = 1) ∨ · · · ∨ (x1 + . . .+ xn = n) . (4.15)

Proof. We show that for every i ∈ [n], there is a polynomial-size (in n) R0(lin) proof
from (xi = 1) of (x1 + . . . + xn = 1) ∨ · · · ∨ (x1 + . . . + xn = n). This concludes the
proof since, by Lemma 4.2.2, we then can derive from (4.14) (with a polynomial-size (in
n) R0(lin) proof) the disjunction (4.14) in which each (xi = 1) (for all i ∈ [n]) is replace
by (x1 + . . . + xn = 1) ∨ · · · ∨ (x1 + . . . + xn = n), which is precisely the disjunction
(4.15) (note that (4.15) is an R1,1(lin)-line).

Claim: For every i ∈ [n], there is a a polynomial-size (in n) R0(lin) proof from (xi = 1)
of (x1 + . . .+ xn = 1) ∨ · · · ∨ (x1 + . . .+ xn = n).

Proof of claim: By Lemma 4.2.5, for every i ∈ [n] there is a polynomial-size (in n) R0(lin)
proof (using only the Boolean axioms) of

(x1 + . . .+xi−1 +xi+1 + . . .+xn = 0)∨· · ·∨ (x1 + . . .+xi−1 +xi+1 + . . .+xn = n−1) .
(4.16)

Now add successively (xi = 1) to every equation in (4.16) (note that this can be done in
R0(lin)). We obtain precisely (x1 + . . .+ xn = 1) ∨ · · · ∨ (x1 + . . .+ xn = n). Claim �

Lemma 4.2.7 There is a polynomial-size (in n) R0(lin) proof of (x1 + . . . + xn = 0) ∨
(x1 + . . .+ xn = 1) from the collection of disjunctions consisting of (xi = 0) ∨ (xj = 0),
for all 1 ≤ i < j ≤ n.

Proof. We use the less formal reasoning by cases and proceed by induction on n. The base
case for n = 1 is immediate from the Boolean axiom (x1 = 0) ∨ (x1 = 1). Assume we
already have a polynomial-size proof of

(x1 + . . .+ xn = 0) ∨ (x1 + . . .+ xn = 1). (4.17)

If xn+1 = 0 we add xn+1 = 0 to both of the equations in (4.17), and reach:

(x1 + . . .+ xn+1 = 0) ∨ (x1 + . . .+ xn+1 = 1). (4.18)

Otherwise, xn+1 = 1, and so we can cut-off (xn+1 = 0) in all the initial disjunctions
(xi = 0)∨ (xn+1 = 0), for all 1 ≤ i ≤ n. We thus obtain (x1 = 0), . . . , (xn = 0). Adding
together (x1 = 0), . . . , (xn = 0) and (xn+1 = 1) we arrive at

(x1 + . . .+ xn+1 = 1) . (4.19)

So overall, either (4.18) holds or (4.19) holds; and so (using Lemma 4.2.2) we arrive at
the disjunction of (4.19) and (4.18), which is precisely (4.18). �
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4.3 Implicational Completeness of R(lin)
In this section we provide a proof of the implicational completeness of R(lin). We shall
need this property in the sequel (see Section 4.4.2). Essentially, a system is implicationally
complete if whenever something is semantically implied by a set of initial premises, then
it is also derivable from the initial premises. As a consequence, the proof of implicational
completeness in this section establishes an alternative completeness proof to that obtained
via simulating resolution (see Proposition 4.1.4). Note that we are not concerned in this
section with the size of the proofs, but only with their existence.

Formally, we say that R(lin) is implicationally complete if for every collection of dis-
junctions of linear equationsD0, D1, . . . , Dm, it holds thatD1, . . . , Dm |= D0 implies that
there is an R(lin) proof of D0 from D1, . . . , Dm.

Theorem 4.3.1 R(lin) is implicationally complete.

Proof. We proceed by induction on n, the number of variables x1, . . . , xn in
D0, D1, . . . , Dm.

The base case n = 0. We need to show that D1, . . . , Dm |= D0 implies that there is an
R(lin) proof ofD0 fromD1, . . . , Dm, where allDi’s (for 0 ≤ i ≤ m) have no variables but
only constants. This means that each Di is a disjunction of equations of the form (0 = a0)
for some integer a0 (if a linear equation have no variables, then the left hand side of this
equation must be 0; see Section 4.1.1).

There are two cases to consider. In the first case D0 is satisfiable. Since D0 has
no variables, this means precisely that D0 is the equation (0 = 0). Thus, D0 can be
derived easily from any axiom in R(lin) (for instance, by subtracting each equation in
(x1 = 0) ∨ (x1 = 1) from itself, to reach (0 = 0) ∨ (0 = 0), which is equal to (0 = 0),
since we discard duplicate equations inside disjunctions).

In the second case D0 is unsatisfiable. Thus, since D1, . . . , Dm |= D0, there is no
assignment satisfying all D1, . . . , Dm. Hence, there must be at least one unsatisfiable
disjunction Di in D1, . . . , Dm (as a disjunction with no variables is either tautological
or unsatisfiable). Such an unsatisfiable Di is a disjunction of zero or more unsatisfiable
equations of the form (0 = a0), for some integer a0 6= 0. We can then use simplification
to cut-off all the unsatisfiable equations in Di to reach the empty disjunction. By the
weakening rule, we can now derive D0 from the empty disjunction.

The induction step. Assume that the theorem holds for disjunctions with n variables.
Let the underlying variables of D0, D1, . . . , Dm be x1, . . . , xn+1, and assume that

D1, . . . , Dm |= D0 . (4.20)

We write the disjunction D0 as:

t∨
j=1

(
n∑
i=1

a
(j)
i xi + a

(j)
n+1xn+1 = a

(j)
0

)
, (4.21)
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where the a(j)
i ’s are integer coefficients. We need to show that there is an R(lin) proof of

D0 from D1, . . . , Dm.
Let D be a disjunction of linear equations, let xi be a variable and let b ∈ {0, 1}. We

shall denote by D�xi=b the disjunction D, where in every equation in D the variable xi
is substituted by b, and the constant terms in the left hand sides of all resulting equations
(after substituting b for xi) switch sides (and change signs, obviously) to the right hand
sides of the equations (we have to switch sides of constant terms, as by definition linear
equations in R(lin) proofs have all constant terms appearing only on the right hand sides
of equations).

We now reason (slightly) informally inside R(lin) (as illustrated in Section 4.2.1). Fix
some b ∈ {0, 1}, and assume that xn+1 = b. Then, fromD1, . . . , Dm we can derive (inside
R(lin)):

D1�xn+1=b, . . . , Dm�xn+1=b . (4.22)

The only variables occurring in (4.22) are x1, . . . , xn. From assumption (4.20) we clearly
have D1�xn+1=b, . . . , Dm�xn+1=b |= D0�xn+1=b. And so by the induction hypothesis there is
an R(lin) derivation of D0�xn+1=b from D1�xn+1=b, . . . , Dm�xn+1=b. So overall, assuming
that xn+1 = b, there is an R(lin) derivation of D0�xn+1=b from D1, . . . , Dm.

We now consider the two possible cases: xn+1 = 0 and xn+1 = 1.
In case xn+1 = 0, by the above discussion, we can deriveD0�xn+1=0 fromD1, . . . , Dm.

For every j ∈ [t], add successively (a(j)
n+1 times) the equation xn+1 = 0 to the jth equation

in D0�xn+1=0 (see (4.21)). We thus obtain precisely D0.
In case xn+1 = 1, again, by the above discussion, we can derive D0 �xn+1=1 from

D1, . . . , Dm. For every j ∈ [t], add successively (a(j)
n+1 times) the equation xn+1 = 1 to

the jth equation in D0�xn+1=1 (recall that we switch sides of constant terms in every linear
equation after the substitution of xn+1 by 1 is performed in D0�xn+1=1). Again, we obtain
precisely D0. �

4.4 Short Proofs for Hard Tautologies
In this section we show that R0(lin) is already enough to admit small proofs for “hard”
counting principles like the pigeonhole principle and the Tseitin graph formulas for con-
stant degree graphs. On the other hand, as we shall see in Section 4.6, R0(lin) inherits the
same weakness that cutting planes proofs have with respect to the clique-coloring tautolo-
gies. Nevertheless, we can efficiently prove the clique-coloring principle in (the stronger
system) R(lin), but not by using R(lin) “ability to count”, rather by using its (straightfor-
ward) ability to simulate Res(2) proofs (that is, resolution proofs extended to operate with
2-DNF formulas, instead of clauses).
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4.4.1 The Pigeonhole Principle Tautologies in R0(lin)

This subsection illustrates polynomial-size R0(lin) proofs of the pigeonhole principle.
This will also allow us to establish polynomial-size multilinear proofs operating with
depth-3 multilinear formulas of the pigeonhole principle in the next chapter (Section 5.3).

The m to n pigeonhole principle states that m pigeons cannot be mapped one-to-one
into n < m holes. As a propositional formula it is usually formulated: ∧

i∈[m]

∨
k∈[n]

xi,k

 −→ ∨
i<j∈[m]

∨
k∈[n]

(xi,k ∧ xj,k) , (4.23)

where each propositional variable xi,j designates that the pigeon i is mapped to the hole
j. It is clear that if m > n then PHPmn is a tautology.

The negation of (4.23), formulated as an unsatisfiable CNF formula, consists of the
following clauses:

∀i ∈ [m], xi,1 ∨ . . . ∨ xi,n
∀i < j ∈ [m]∀k ∈ [n], ¬xi,k ∨ ¬xj,k (4.24)

This translates (via the translation scheme in Section 4.1.1) into the following unsatisfiable
collection of disjunctions of linear equations, denoted ¬PHPmn :

Definition 4.4.1 The ¬PHPmn is the following set of clauses:

1. Pigeon axioms: (xi,1 = 1) ∨ · · · ∨ (xi,n = 1), for all 1 ≤ i ≤ m;

2. Hole axioms: (xi,k = 0) ∨ (xj,k = 0), for all 1 ≤ i < j ≤ m and for all
1 ≤ k ≤ n.

We now describe a polynomial-size in n refutation of ¬PHPmn inside R0(lin). For this
purpose it is sufficient to prove a polynomial-size refutation of the pigeonhole principle
when the number of pigeons m equals n + 1 (because the set of clauses pertaining to
¬PHPn+1

n is already contained in the set of clauses pertaining to ¬PHPmn , for any m > n).
Thus, we fixm = n+1. In this subsection we shall say a proof in R0(lin) is of polynomial-
size, always intending polynomial-size in n (unless otherwise stated).

By Lemma 4.2.6, for all i ∈ [m] we can derive from the Pigeon axiom (for the ith
pigeon):

(xi,1 + . . .+ xi,n = 1) ∨ · · · ∨ (xi,1 + . . .+ xi,n = n) (4.25)

with a polynomial-size R0(lin) proof.
By Lemma 4.2.7, from the Hole axioms we can derive, with a polynomial-size R0(lin)

proof
(x1,j + . . .+ xm,j = 0) ∨ (x1,j + . . .+ xm,j = 1), (4.26)

for all j ∈ [n].
Let S abbreviate the sum of all formal variables xi,j . In other words,

S :=
∑

i∈[m],j∈[n]

xi,j .
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Lemma 4.4.2 There is a polynomial-size R0(lin) proof from (4.25) (for all i ∈ [m]) of

(S = m) ∨ (S = m+ 1) · · · ∨ (S = m · n).

Proof. For every i ∈ [m] fix the abbreviation zi := xi,1 + . . . + xi,n. Thus, by (4.25) we
have (zi = 1) ∨ · · · ∨ (zi = n).

Consider (z1 = 1)∨ · · · ∨ (z1 = n) and (z2 = 1)∨ · · · ∨ (z2 = n). By Corollary 4.2.4,
we can derive from these two lines

(z1 + z2 = 2) ∨ (z1 + z2 = 3) ∨ · · · ∨ (z1 + z2 = 2n) (4.27)

with a polynomial-size R0(lin) proof.
Now, consider (z3 = 1) ∨ · · · ∨ (z3 = n) and (4.27). By Corollary 4.2.4 again, from

these two lines we can derive with a polynomial-size R0(lin) proof:

(z1 + z2 + z3 = 3) ∨ (z1 + z2 + z3 = 4) ∨ · · · ∨ (z1 + z2 + z3 = 3n) . (4.28)

Continuing in the same way, we eventually arrive at

(z1 + . . .+ zm = m) ∨ (z1 + . . .+ zm = m+ 1) ∨ · · · ∨ (z1 + . . .+ zm = m · n) ,

which concludes the proof, since S equals z1 + . . .+ zm. �

Lemma 4.4.3 There is a polynomial-size R0(lin) proof from (4.26) of

(S = 0) ∨ · · · ∨ (S = n).

Proof. For all j ∈ [n], fix the abbreviation yj := x1,j + . . . + xm,j . Thus, by (4.26) we
have (yj = 0) ∨ (yj = 1), for all j ∈ [n]. Now the proof is similar to the proof of Lemma
4.2.5, except that here single variables are abbreviations of linear forms.

If y1 = 0 then we can add y1 to the two sums in (y2 = 0) ∨ (y2 = 1), and reach
(y1 + y2 = 0) ∨ (y1 + y2 = 1) and if y1 = 1 we can do the same and reach (y1 + y2 =
1) ∨ (y1 + y2 = 2). So, by Lemma 4.2.2, we can derive with a polynomial-size R0(lin)
proof

(y1 + y2 = 0) ∨ (y1 + y2 = 1) ∨ (y1 + y2 = 2) . (4.29)

Now, we consider the three cases in (4.29): y1 + y2 = 0 or y1 + y2 = 1 or y1 + y2 = 2,
and the clause (y3 = 0) ∨ (y3 = 1). We arrive in a similar manner at (y1 + y2 + y3 =
0) ∨ · · · ∨ (y1 + y2 + y3 = 3). We continue in the same way until we arrive at (S =
0) ∨ · · · ∨ (S = n). �

Theorem 4.4.4 There is a polynomial-size R0(lin) refutation of the m to n pigeonhole
principle ¬PHPmn .
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Proof. By Lemmas 4.4.2 and 4.4.3 above, we need to show a polynomial-size refutation
of (S = m) ∨ · · · ∨ (S = m · n) and (S = 0) ∨ · · · ∨ (S = n).

Since n < m, for all 0 ≤ k ≤ n, if S = k then using the resolution and simplification
rules we can cut-off all the sums in (S = m) ∨ · · · ∨ (S = m · n) and arrive at the empty
clause. �

4.4.2 Tseitin mod p Tautologies in R0(lin)

This subsection establishes polynomial-size R0(lin) proofs of Tseitin graph tautologies
(for constant degree graphs). This will also allow us (by the result of the next chapter;
see Section 5.3) to extend the multilinear proofs of the Tseitin mod p tautologies shown in
Chapter 3 to any field of characteristic 0 (the proofs in Section 3.5 required working over
a field containing a primitive pth root of unity when proving the Tseitin mod p tautologies;
for more details see Section 5.3).

Recall the Tseitin mod p formulas from the previous chapter (Definition 3.5.1). The
following are the clauses of the Tseitin mod p CNF formula (as translated to disjunctions
of linear equations). We use the same notation BTSG,p as in Definition 3.5.1 (though,
formally, here we refer to the translation to disjunctions of linear equations, while in Def-
inition 3.5.1 this notation denotes the translation to polynomials).

Definition 4.4.5 (Tseitin mod p formulas (BTSG,p)) Let p ≥ 2 be some fixed integer
and let G = (V,E) be a connected undirected r-regular graph with n vertices and no
multiple edges, and assume that n ≡ 1 (mod p). Let G′ = (V,E ′) be the corresponding
directed graph that results from G by replacing every (undirected) edge in G with two
opposite directed edges.

Given a vertex v ∈ V , denote the edges in E ′ coming out of v by e[v, 1], . . . , e[v, r]
and define the following set of (translation of) clauses:

MODp,1(v) :=

{
r∨

k=1

(xe[v,k],ik = 0)

∣∣∣∣ i1, . . . , ir ∈ {0, . . . , p− 1} and
r∑

k=1

ik 6≡ 1 mod p

}
.

The Tseitin mod p formula, denoted BTSG,p, consists of the following (translation) of
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clauses:

1.
p−1∨
i=0

(xe,i = 1) , for all e ∈ E ′

(expresses that every edge is assigned at least one value from 0, . . . , p− 1);
2. (xe,i = 0) ∨ (xe,j = 0) , for all i 6= j ∈ {0, . . . , p− 1} and all e ∈ E ′
(expresses that every edge is assigned at most one value from 0, . . . , p− 1);
3. (xe,i = 1) ∨ (xē,p−i = 0) and (xe,i = 0) ∨ (xē,p−i = 1), 2

for all two opposite directed edges e, ē ∈ E ′ and all i ∈ {0, . . . , p− 1}
(expresses condition (i) of the Tseitin mod p principle above);
4. MODp,1(v) , for all v ∈ V
(expresses condition (ii) of the Tseitin mod p principle above).

Note that for every edge e ∈ E ′, the clauses (1,2) in Definition 4.4.5, combined with
the Boolean axioms of R0(lin), force any collection of edge-variables xe,0, . . . , xe,p−1 to
contain exactly one i ∈ {0, . . . , p− 1} so that xe,i = 1. Also, it is easy to verify that, given
a vertex v ∈ V , any assignment σ of 0, 1 values (to the relevant variables) satisfies both
the disjunctions of (1,2) and the disjunctions of MODp,1(v) if and only if σ corresponds
to an assignment of values from {0, . . . , p− 1} to the edges coming out of v that sums up
to 1 (mod p).

For the rest of this subsection we fix an integer p ≥ 2 and a connected undirected r-
regular graph G = (V,E) with n vertices and no multiple edges, such that n ≡ 1 mod p
and r is a constant. As in Definition 4.4.5, we let G′ = (V,E ′) be the corresponding
directed graph that results from G by replacing every (undirected) edge in G with two
opposite directed edges. Note that BTSG,p consists of only R1,1(lin)-lines (as translations
of clauses). We now proceed to refute BTSG,p inside R0(lin) with a polynomial-size (in
n) refutation.

Given a vertex v ∈ V , and the edges in E ′ coming out of v, denoted e[v, 1], . . . , e[v, r],
define the following abbreviation:

αv :=
r∑
j=1

p−1∑
i=0

i · xe[v,j],i . (4.30)

Lemma 4.4.6 There are constants c, d (depending only on r, p), such that for any vertex
v ∈ V in G′, there exists a constant-size (also depending only on r, p) R0(lin)-proof from
BTSG,p, containing only Rc,d(lin)-lines, of the following disjunction:

r−1∨
`=0

(αv = 1 + ` · p) . (4.31)

2If i = 0 then xē,p−i denotes xē,0.
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Proof. Let Tv ⊆ BTSG,p be the set of all disjunctions of the form (1,2,4) from Definition
4.4.5 that contain only variables pertaining to vertex v (that is, all the variables xe,i, where
e ∈ E ′ is an edge coming out of v, and i ∈ {0, . . . , p− 1}).
Claim: Tv semantically implies (4.31), that is:3

Tv |=
r−1∨
`=0

(αv = 1 + ` · p) .

Proof of claim: Let σ be an assignment of 0, 1 values to the variables in Tv that satisfies
both the disjunctions of (1,2) and the disjunctions of MODp,1(v) in Definition 4.4.5. As
mentioned above (the comment after Definition 4.4.5), such a σ corresponds to an as-
signment of values from {0, . . . , p− 1} to the edges coming out of v that sums up to 1
mod p. This means precisely that αv = 1 mod p under the assignment σ. Thus, there
exists a nonnegative integer k, such that αv = 1 + kp under σ.

It remains to show that k ≤ r − 1 (and so the only possible values that αv can get
under σ are 1, 1 + p, 1 + 2p, . . . , 1 + (r − 1)p). Note that because σ gives the value 1 to
only one variable from xe[v,j],0, . . . , xe[v,j],p−1 (for every j ∈ [r]), then the maximal value
that αv can have under σ is r(p− 1). Thus, 1 + kp ≤ rp− r and so k ≤ r − 1. Claim

From Claim 4.4.2 and from the implicational completeness of R(lin) (Theorem 4.3.1),
there exists an R(lin) derivation of (4.31) from Tv. This derivation clearly has size de-
pending only on r, p and contains only Rc,d(lin)-lines, where c, d are some two integers
that depend only on r, p. �

Lemma 4.4.7 Let c′ = max{c, 2p} and d′ = max{d, 3}, where c, d are the integers taken
from Lemma 4.4.6 (note that c′, d′ depend only on r, p). Then there is a polynomial-size
(in n) R0(lin) derivation from BTSG,p, containing only Rc′,d′(lin)-lines, of the following
disjunction:

(r−1)·n∨
`=0

(∑
v∈V

αv = n+ ` · p
)
.

Proof. Simply add successively all the equations pertaining to disjunctions (4.31), for all
vertices v ∈ V . Formally, we show that for every subset of vertices V ⊆ V , with |V| = k,
there is a polynomial-size (in n) R(lin) derivation from BTSG,p of

(r−1)·k∨
`=0

(∑
v∈V

αv = k + ` · p
)
, (4.32)

containing only Rc′,d′(lin)-lines. Thus, putting V = V , will conclude the proof

3Recall that we only consider assignments of 0, 1 values to variables when considering the semantic
implication relation |=.
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We proceed by induction on the size of V . The base case, |V| = 1, is immediate from
Lemma 4.4.6.

Assume that we already derived (4.32) with a polynomial-size (in n) R(lin) proof con-
taining only Rc′,d′(lin)-lines, for some V ⊂ V , such that |V| = k < n. Let u ∈ V \ V . By
Lemma 4.4.6, we can derive

r−1∨
`=0

(αu = 1 + ` · p) (4.33)

from BTSG,p with a constant-size proof that contains only Rc,d(lin)-lines.
Note that both (4.32) and (4.33) are R2p,1(lin)-lines. Thus, by Lemma 4.2.3, each linear

equation in (4.33) can be added to each linear equation in (4.32), with a polynomial-
size (in n) R(lin) proof that contains only R2p,3(lin)-lines. This results in the following
disjunction:

(r−1)·(k+1)∨
`=0

 ∑
v∈V∪{u}

αv = k + 1 + ` · p

 ,

which is precisely what we need to conclude the induction step. �

Given a pair of opposite directed edges e, ē in G′, denote by Te ⊆ BTSG,p the set
of all disjunctions of the form (1,2,3) from Definition 4.4.5 that contain only variables
pertaining to edges e, ē (that is, all the variables xe,j, xē,j , for all j ∈ {0, . . . , p− 1}).
Lemma 4.4.8 There are two integers c′′, d′′ that depend only on r, p, such that for any pair
of opposite directed edges e, ē in G′ and any i ∈ {0, . . . , p− 1}, there exists a constant-
size (depending only on r, p) R0(lin) proof, containing only Rc′′,d′′(lin)-lines, from Te of the
following disjunction:

(i · xe,i + (p− i) · xē,p−i = 0) ∨ (i · xe,i + (p− i) · xē,p−i = p) . (4.34)

Proof. First note that Te semantically implies

(xe,i + xē,p−i = 0) ∨ (xe,i + xē,p−i = 2) . (4.35)

The number of variables in Te and (4.35) is constant. Hence, there is a constant-size
R0(lin)-proof of (4.34) from Te. Also note that

(xe,i + xē,p−i = 0) ∨ (xe,i + xē,p−i = 2) |=
(i · xe,i + (p− i) · xē,p−i = 0) ∨ (i · xe,i + (p− i) · xē,p−i = p) .

(4.36)
Therefore, there is also an R0(lin)-proof of constant-size from Te of the lower line in (4.36)
that uses only Rc′′,d′′(lin)-lines, for some two integers c′′, d′′ depending only on r, p. �

We are now ready to complete the polynomial-size R0(lin) refutation of BTSG,p. Using
the two prior lemmas, the refutation idea is simple, as we now explain. Observe that∑

v∈V

αv =
∑
{e,ē}⊆E′

i∈{0,...,p−1}

(i · xe,i + (p− i) · xē,p−i) , (4.37)
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where by {e, ē} ⊆ E ′ we mean that e, ē is a pair of opposite directed edges in G′.
Derive by Lemma 4.4.7 the disjunction

(r−1)·n∨
`=0

(∑
v∈V

αv = n+ ` · p
)
. (4.38)

This disjunction expresses the fact that
∑

v∈V αv = 1 mod p (since n = 1 mod p). On
the other hand, using Lemma 4.4.8, we can “sum together” all the equations (4.34) (for all
{e, ē} ⊆ E ′ and all i ∈ {0, . . . , p− 1}), to obtain a disjunction expressing the statement
that ∑

{e,ē}⊆E′
i∈{0,...,p−1}

(i · xe,i + (p− i) · xē,p−i) = 0 mod p .

By Equation (4.37), we then obtain the desired contradiction. This idea is formalized in
the proof of the following theorem:

Theorem 4.4.9 Let G = (V,E) be an r-regular graph with n vertices, where r is a con-
stant. Fix some modulus p. Then, there are polynomial-size (in n) R0(lin) refutations of
BTSG,p.

Proof. Let s, t be two integers (depending only on r, p) defined as s = max{c′, c′′} and
t = max{d′, d′′}, where c′, d′ are taken from Lemma 4.4.7 and c′′, d′′ are taken from
Lemma 4.4.8.

First, use Lemma 4.4.7 to derive

(r−1)·n∨
`=0

(∑
v∈V

αv = n+ ` · p
)
, (4.39)

using only Rs,t(lin)-lines. Second, use Lemma 4.4.8 to derive

(i · xe,i + (p− i) · xē,p−i = p) ∨ (i · xe,i + (p− i) · xē,p−i = 0) , (4.40)

for every pair of opposite directed edges in G′ = (V,E ′) (as in Definition 4.4.5) and every
residue i ∈ {0, . . . , p− 1}, and using only Rs,t(lin)-lines.

We now reason inside R0(lin). Pick a pair of opposite directed edges e, ē and a residue
i ∈ {0, . . . , p− 1}. If i ·xe,i + (p− i) ·xē,p−i = 0, then subtract this equation successively
from every equation in (4.39). We thus obtain a new disjunction, similar to that of (4.39),
but which does not contain the xe,i and xē,p−i variables, and with the same free-terms.

Otherwise, i · xe,i + (p− i) · xē,p−i = p, then subtract this equation successively from
every equation in (4.39). Again, we obtain a new disjunction, similar to that of (4.39),
but which does not contain the xe,i and xē,p−i variables, and such that p is subtracted from
every free-term in every equation. Since, by assumption, n ≡ 1 mod p, the free-terms in
every equation are (still) equal 1 mod p.
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Now, note that (4.39) is an R2p,1(lin)-line, and (4.40) is an Rp,1(lin)-line, and thus the
reasoning by (two) cases (that is, i ·xe,i+(p−i) ·xē,p−i = 0 and i ·xe,i+(p−i) ·xē,p−i = p)
as demonstrated above can be done in R0(lin) using only Rs′,t′(lin)-lines, where s′, t′ are
two integers depending only on p (these s′, t′ come from using the reasoning-by-cases
which implicitly uses Lemma 4.2.2).

So overall, we applied a polynomial-size R0(lin)-proofs, containing only Rs′,t′(lin)-
lines, and reached a new R2p,1(lin)-line, in which all the free-terms in the equations equal
1 mod p.

We now continue the same process for every pair e, ē of opposite directed edges in
G′ and every residue i. Since in each such step we start from an R2p,1(lin)-line and an
Rp,1(lin)-line (as demonstrated above), then this process can be carried over in R0(lin) (as
demonstrated above, we only use Rs′′,t′′(lin)-lines in this process, for s′′ = max{s, s′} and
t′′ = max{t, t′}).

Eventually, we discard all the variables xe,i in the equations, for every e ∈ E ′ and
i ∈ {0, . . . , p− 1}, while all the free-terms in every equation remain to be equal 1 mod p.
Therefore, we arrive at a disjunction of equations of the form (0 = γ) for some γ = 1
mod p. By using the simplification rule we can cut-off all such equations, and arrive
finally at the empty disjunction. �

4.4.3 The Clique-Coloring Principle in R(lin)

In this section we observe that there are polynomial-size R(lin) proofs of the clique-
coloring principle (for certain weak parameters). This implies in particular that R(lin)
does not possess the feasible monotone interpolation property (see more details on the
interpolation method in Section 4.5).

Atserias, Bonet and Esteban (Atserias et al. (2002)) demonstrated polynomial-size
Res(2) refutations of the clique-coloring formulas (for certain weak parameters; see Theo-
rem 4.4.13 below). Thus, it is sufficient to show that R(lin) polynomially-simulates Res(2)
proofs (Proposition 4.4.12). This can be shown in a straightforward manner. As noted in
the first paragraph of Section 4.4, because the proofs of the clique-coloring formula we
discuss here only follow the proofs inside Res(2), then in fact these proofs do not take
any advantage of the capability to “count” inside R(lin) (this capability is exemplified, for
instance, in Section 4.2.2).

We start with the clique-coloring formulas (these formulas will also be used in Section
4.6). These formulas express the clique-coloring principle that has been widely used in
the proof complexity literature (cf., Bonet et al. (1997), Pudlák (1997), Krajı́ček (1997),
Krajı́ček (1998), Atserias et al. (2002), Krajı́ček (2007)). This principle is based on the
following basic combinatorial idea. LetG = (V,E) be an undirected graph with n vertices
and let k′ < k be two integers. Then, one of the following must hold:

(i) The graph G does not contain a clique with k vertices;
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(ii) The graph G is not a complete k′-partite graph. In other words, there is no way to
partition G into k′ subgraphs G1, . . . , Gk′ , such that every Gi is an independent set,
and for all i 6= j ∈ [k′], all the vertices in Gi are connected by edges (in E) to all
the vertices in Gj .

Obviously, if Item (ii) above is false (that is, if G is a complete k′-partite graph), then
there exists a k′-coloring of the vertices of G; hence the name clique-coloring for the
principle.

The propositional formulation of the (negation of the) clique-coloring principle is as
follows. Each variable pi,j , for all i 6= j ∈ [n], is an indicator variable for the fact that
there is an edge in G between vertex i and vertex j. Each variable q`,i, for all ` ∈ [k] and
all i ∈ [n], is an indicator variable for the fact that the vertex i in G is the `th vertex in the
k-clique. Each variable r`,i, for all ` ∈ [k′] and all i ∈ [n], is an indicator variable for the
fact that the vertex i in G is in the independent set G`.

Definition 4.4.10 (The Clique-Coloring formulas) The negation of the clique-coloring
principle consists of the following unsatisfiable collection of clauses (as translated to dis-
junctions of linear equations), denoted ¬CLIQUEnk,k′:

i. (q`,1 = 1) ∨ · · · ∨ (q`,n = 1), for all ` ∈ [k]

(expresses that there exists at least one vertex in G which constitutes the `th vertex
of the k-clique);

ii. (q`,i = 0) ∨ (q`,j = 0), for all i 6= j ∈ [n], ` ∈ [k]

(expresses that there exists at most one vertex in G which constitutes the `th vertex
of the k-clique);

iii. (q`,i = 0) ∨ (q`′,i = 0), for all i ∈ [n], ` 6= `′ ∈ [k]

(expresses that the ith vertex of G cannot be both the `th and the `′th vertex of the
k-clique);

iv. (q`,i = 0) ∨ (q`′,j = 0) ∨ (pi,j = 1), for all ` 6= `′ ∈ [k], i 6= j ∈ [n]

(expresses that if both the vertices i and j in G are in the k-clique, then there is an
edge in G between i and j);

v. (r1,i = 1) ∨ · · · ∨ (rk′,i = 1), for all i ∈ [n]

(expresses that every vertex of G is in at least one independent set);

vi. (r`,i = 0) ∨ (r`′,i = 0), for all ` 6= ` ∈ [k′], i ∈ [n]

(expresses that every vertex of G pertains to at most one independent set);

vii. (pi,j = 0) ∨ (rt,i = 0) ∨ (rt,j = 0), for all i 6= j ∈ [n], t ∈ [k′]

(expresses that if there is an edge between vertex i and j in G, then i and j cannot
be in the same independent set);
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Remark: Our formulation of the clique-coloring formulas above is similar to the one used
by Bonet et al. (1997), except that we consider also the pi,j variables (we added the (iv)
clauses and changed accordingly the (vii) clauses). This is done for the sake of clarity of
the contradiction itself, and also to make it clear that the formulas are in the appropriate
form required by the interpolation method (see Section 4.5 for details on the interpolation
method). By resolving over the pi,j variables in (iv) and (vii), one can obtain precisely the
collection of clauses in Bonet et al. (1997).

Atserias, Bonet and Esteban (Atserias et al. (2002)) demonstrated polynomial-size (in
n) Res(2) refutations of ¬CLIQUEnk,k′ , when k =

√
n and k′ = (log n)2/8 log log n. These

are rather weak parameters, but they suffice to establish the fact that Res(2) does not
possess the feasible monotone interpolation property.

The Res(2) proof system (also called 2-DNF resolution), first considered in Krajı́ček
(2001), is resolution extended to operate with 2-DNF formulas, defined as follows.

A 2-term is a conjunction of up to two literals. A 2-DNF is a disjunction of 2-terms.
The size of a 2-term is the number of literals in it (that is, either 1 or 2). The size of a
2-DNF is the total size of all the 2-terms in it.

Definition 4.4.11 (Res(2)) A Res(2) proof of a 2-DNF D from a collection K of 2-DNFs
is a sequence of 2-DNFs D1, D2, . . . , Ds , such that Ds = D, and every Dj is either from
K or was derived from previous line(s) in the sequence by the following inference rules:

Cut Let A,B be two 2-DNFs.

From A∨∧2
i=1 li and B∨∨2

i=1 ¬li derive A∨B, where the li’s are (not necessarily
distinct) literals (and ¬li is the negation of the literal li).

AND-introduction Let A,B be two 2-DNFs and l1, l2 two literals.

From A ∨ l1 and B ∨ l2 derive A ∨B ∨∧2
i=1 li.

Weakening From a 2-DNF A derive A ∨ ∧2
i=1 li , where the li’s are (not necessarily

distinct) literals.

A Res(2) refutation of a collection of 2-DNFs K is a Res(2) proof of the empty disjunction
� from K (the empty disjunction stands for FALSE). The size of a Res(2) proof is the total
size of all the 2-DNFs in it.

Given a collection K of 2-DNFs we translate it into a collection of disjunctions of
linear equations via the following translation scheme. For a literal l, denote by l̂ the
translation that maps a variable xi into xi, and ¬xi into 1 − xi. A 2-term l1 ∧ l2 is first
transformed into the equation l̂1 + l̂2 = 2, and then changing sides of the free-terms so that
the final translation of l1 ∧ l2 has only a single free-term in the right hand side. A disjunc-
tion of 2-terms (that is, a 2-DNF) D =

∨
i∈I(li,1 ∧ li,2) is translated into the disjunction of

the translations of the 2-terms, denoted by D̂. It is clear that every assignment satisfies a
2-DNF D if and only if it satisfies D̂.
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Proposition 4.4.12 R(lin) polynomially simulates Res(2). In other words, if π is a Res(2)
proof of D from a collection of 2-DNFs K1, . . . , Kt, then there is an R(lin) proof of D̂
from K̂1, . . . , K̂t whose size is polynomial in the size of π.

The proof of Proposition 4.4.12 proceeds by induction on the length (that is, the num-
ber of proof-lines) in the Res(2) proof. This is pretty straightforward and similar to the
simulation of resolution by R(lin), as illustrated in the proof of Proposition 4.1.4. We omit
the details.

Theorem 4.4.13 (Atserias et al. (2002)) Let k =
√
n and k′ = (log n)2/8 log log n.

Then ¬CLIQUEnk,k′ has Res(2) refutations of size polynomial in n.

Thus, Proposition 4.4.12 yields the following:

Corollary 4.4.14 Let k, k′ be as in Theorem 4.4.13. Then ¬CLIQUEnk,k′ has R(lin) refuta-
tions of size polynomial in n.

The following corollary is important (we refer the reader to Section 4.5.3 for the nec-
essary relevant definitions concerning the feasible monotone interpolation property).

Corollary 4.4.15 R(lin) does not possess the feasible monotone interpolation property.

Remark: The proof of ¬CLIQUEnk,k′ inside Res(2) demonstrated in Atserias et al. (2002)
(and hence, also the corresponding proof inside R(lin)) proceeds along the following lines.
First reduce ¬CLIQUEnk,k′ to the k to k′ pigeonhole principle. For the appropriate values
of the parameters k and k′ — and specifically, for the values in Theorem 4.4.13 — there
is a short resolution proof of the k to k′ pigeonhole principle (this was shown in Buss and
Pitassi (1997)); (this resolution proof is polynomial in the number of pigeons k, but not
in the number of holes k′, which is exponentially smaller than k).4 Therefore, in order to
conclude the refutation of ¬CLIQUEnk,k′ inside Res(2) (or inside R(lin)), it suffices to sim-
ulate the short resolution refutation of the k to k′ pigeonhole principle. It is important
to emphasize this point: After reducing, inside R(lin), ¬CLIQUEnk,k′ to the pigeonhole
principle, one simulates the resolution refutation of the pigeonhole principle, and this has
nothing to do with the small-size R0(lin) refutations of the pigeonhole principle demon-
strated in Section 4.4.1. This is because, the reduction (inside R(lin)) of ¬CLIQUEnk,k′
to the k to k′ pigeonhole principle, results in a substitution instance of the pigeonhole
principle formulas; in other words, the reduction results in a collection of disjunctions
that are similar to the pigeonhole principle disjunctions where each original pigeonhole
principle variable is substituted by some big formula (and, in particular, there are no two
integers c, d independent from the number of variables, such that these disjunctions are
all Rc,d(lin)-lines). (Note that R0(lin) does not admit short proofs of the clique-coloring
formulas as we show in Section 4.6.)

4Whenever k ≥ 2k′ the k to k′ pigeonhole principle is referred to as the weak pigeonhole principle.
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4.5 Interpolation Results for R0(lin)
In this section we study the applicability of the feasible (non-monotone) interpolation
technique to R0(lin) refutations. In particular, we show that R0(lin) admits a polyno-
mial (in terms of the R0(lin)-proofs) upper bound on the (non-monotone) circuit-size of
interpolants. In the next section we shall give a polynomial upper bound on the mono-
tone circuit-size of interpolants, but only in the case that the interpolant corresponds to
the clique-coloring formulas (whereas, in this section we are interested in the general
case; that is, upper bounding circuit-size of interpolants corresponding to any formula
[of the prescribed type; see below]). First, we shortly describe the feasible interpolation
method and explain how this method can be applied to obtain (sometime, conditional)
lower bounds on proof size. Explicit usage of the interpolation method in proof complex-
ity goes back to Krajı́ček (1994).

Let Ai(~p, ~q), i ∈ I , and Bj(~p, ~r), j ∈ J , (I and J are sets of indices) be a collection
of formulas (for instance, a collection of disjunctions of linear equations) in the displayed
variables only. Denote byA(~p, ~q) the conjunction of allAi(~p, ~q), i ∈ I , and byB(~p, ~r), the
conjunction of all Bj(~p, ~r), j ∈ J . Assume that ~p, ~q, ~r are pairwise disjoint sets of distinct
variables, and that there is no assignment that satisfies both A(~p, ~q) and B(~p, ~r). Fix an
assignment ~α to the variables in ~p. The ~p variables are the only common variables of the
Ai’s and the Bj’s. Therefore, either A(~α, ~q) is unsatisfiable or B(~α,~r) is unsatisfiable.

The interpolation technique transforms a refutation of A(~p, ~q)∧B(~p, ~r), in some proof
system, into a circuit (usually a Boolean circuit) that outputs 1 for those assignments ~α
(for ~p) for which A(~α, ~q) is unsatisfiable, and outputs 0 for those assignments ~α for which
B(~α,~r) is unsatisfiable (the two cases are not necessarily exclusive, so if both cases hold
for an assignment, the circuit can output either that the first case holds or that the second
case holds). In other words, given a refutation of A(~p, ~q) ∧B(~p, ~r), we construct a circuit
C(~p), called the interpolant, such that

C(~α) = 1 =⇒ A(~α, ~q) is unsatisfiable, and
C(~α) = 0 =⇒ B(~α,~r) is unsatisfiable.

(4.41)

(Note that if U denotes the set of those assignments ~α for which A(~α, ~q) is satisfiable, and
V denotes the set of those assignments ~α for which B(~α,~r) is satisfiable, then U and V
are disjoint [since A(~p, ~q) ∧ B(~p, ~r) is unsatisfiable], and C(~p) separates U from V ; see
Definition 4.5.2 below.)

Assume that for a proof system P the transformation from refutations of
A(~p, ~q), B(~p, ~r) into the corresponding interpolant circuit C(~p) results in a circuit whose
size is polynomial in the size of the refutation. Then, an exponential lower bound on
circuits for which (4.41) holds, implies an exponential lower bound on P-refutations of
A(~p, ~q), B(~p, ~r).
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4.5.1 Interpolation for Semantic Refutations

We now lay out the basic concepts needed to formally describe the feasible interpolation
technique. We use the general notion of semantic refutations (which generalizes any stan-
dard propositional refutation system). We shall use a close terminology to that in Krajı́ček
(1997).

Definition 4.5.1 (Semantic refutation) Let N be a fixed natural number and let
E1, . . . , Ek ⊆ {0, 1}N , where

⋂k
i=1 Ei = ∅. A semantic refutation from E1, . . . , Ek is

a sequence D1, . . . , Dm ⊆ {0, 1}N with Dm = ∅ and such that for every i ∈ [m], Di

is either one of the Ej’s or is deduced from two previous Dj, D`, 1 ≤ j, ` < i, by the
following semantic inference rule:

• From A,B ⊆ {0, 1}N deduce any C, such that C ⊇ (A ∩B).

Observe that any standard propositional refutation (with inference rules that derive
from at most two proof-lines, a third line) can be regarded as a semantic refutation: just
substitute each refutation-line by the set of its satisfying assignments; and by the sound-
ness of the inference rules applied in the refutation, it is clear that each refutation-line
(considered as the set of assignments that satisfy it) is deduced by the semantic inference
rule from previous refutation-lines.

Definition 4.5.2 (Separating circuit) Let U ,V ⊆ {0, 1}n, where U ∩ V = ∅, be two
disjoint sets. A Boolean circuit C with n input variables is said to separate U from V if
C(~x) = 1 for every ~x ∈ U , and C(~x) = 0 for every ~x ∈ V . In this case we also say that
U and V are separated by C.

Convention: In what follows we sometime identify a Boolean formula with the set of its
satisfying assignments.

Notation: For two (or more) binary strings u, v ∈ {0, 1}∗, we write (u, v) to denote the
concatenation of the u with v.

Let N = n + s + t be fixed from now on. Let A1, . . . , Ak ⊆ {0, 1}n+s and let
B1, . . . , B` ⊆ {0, 1}n+t. Define the following two sets of assignments of length n
(formally, 0, 1 strings of length n) that can be extended to satisfying assignments of
A1, . . . , Ak and B1, . . . , B`, respectively (formally, those 0, 1 string of length n + s and
n+ t that are contained in all A1, . . . , Ak and B1, . . . , B`, respectively):

UA :=

{
u ∈ {0, 1}n

∣∣∣∣ ∃q ∈ {0, 1}s , (u, q) ∈
k⋂
i=1

Ai

}
,

VB :=

{
v ∈ {0, 1}n

∣∣∣∣ ∃r ∈ {0, 1}t , (v, r) ∈
⋂̀
i=1

Bi

}
.
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Definition 4.5.3 (Polynomial upper bounds on interpolants) Let P be a propositional
refutation system. Assume that ~p, ~q, ~r are pairwise disjoint sets of distinct variables, where
~p has n variables, ~q has s variables and ~r has t variables. Let A1(~p, ~q), . . . , Ak(~p, ~q) and
B1(~p, ~r), . . . , B`(~p, ~r) be two collections of formulas with the displayed variables only.
Assume that for any such A1(~p, ~q), . . . , Ak(~p, ~q) and B1(~p, ~r), . . . , B`(~p, ~r), if there exists
a P-refutation of size S for A1(~p, ~q)∧ · · · ∧Ak(~p, ~q)∧B1(~p, ~r)∧ . . .∧B`(~p, ~r) then there
exists a Boolean circuit separating UA from VB of size polynomial in S.5 In this case we
say that P has a polynomial upper bound on interpolant circuits.

4.5.1.1 The Communication Game Technique

The feasible interpolation via communication game technique is based on transforming
proofs into Boolean circuits, where the size of the resulting circuit depends on the com-
munication complexity of each proof-line. This technique goes back to Impagliazzo et al.
(1994) and Razborov (1995) and was subsequently applied and extended in Bonet et al.
(1997) and Krajı́ček (1997) (Impagliazzo et al. (1994) and Bonet et al. (1997) did not use
explicitly the notion of interpolation of tautologies or contradictions). We shall employ the
interpolation theorem of Krajı́ček in Krajı́ček (1997) that demonstrates how to transform
a small semantic refutation with each proof-line having low communication complexity
into a small Boolean circuit separating the corresponding sets.

The underlying idea of the interpolation via communication game technique is that a
(semantic) refutation, where each proof-line is of small (that is, logarithmic) communi-
cation complexity, can be transformed into an efficient communication protocol for the
Karchmer-Wigderson game (following Karchmer and Wigderson (1988)) for two players.
In the Karchmer-Wigderson game the first player knows some binary string u ∈ U and
the second player knows some different binary string v ∈ V , where U and V are disjoint
sets of strings. The two players communicate by sending information bits to one another
(following a protocol previously agreed on). The goal of the game is for the two players to
decide on an index i such that the ith bit of u is different from the ith bit of v. An efficient
Karchmer-Wigderson protocol (by which we mean a protocol that requires the players to
exchange at most a logarithmic number of bits in the worst-case) can then be transformed
into a small circuit separating U from V (see Definition 4.5.2). This efficient transfor-
mation from protocols for Karchmer-Wigderson games (described in a certain way) into
circuits, was demonstrated by Razborov in Razborov (1995). So overall, given a seman-
tic refutation with proof-lines of low communication complexity, one can obtain a small
circuit for separating the corresponding sets.

First, we need to define the concept of communication complexity in a suitable way for
the interpolation theorem.

Definition 4.5.4 (Communication complexity; Krajı́ček (1997), Definition 4.3) Let
N = n + s + t and A ⊆ {0, 1}N . Let u, v ∈ {0, 1}n, qu ∈ {0, 1}s, rv ∈ {0, 1}t. Denote

5Here UA and VB are defined as above, by identifying the Ai(~p, ~q)’s and the Bi(~p, ~r)’s with the sets of
assignments that satisfy them.
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by ui, vi the ith bit of u, v, respectively, and let (u, qu, rv) and (v, qu, rv) denote the
concatenation of strings u, qu, rv and v, qu, rv, respectively. Consider the following three
tasks:

1. Decide whether (u, qu, rv) ∈ A;

2. Decide whether (v, qu, rv) ∈ A;

3. If one of the following holds:

(i) (u, qu, rv) ∈ A and (v, qu, rv) 6∈ A; or

(ii) (u, qu, rv) 6∈ A and (v, qu, rv) ∈ A,

then find an i ∈ [n], such that ui 6= vi;

Consider a game between two players, Player I and Player II, where Player I knows
u ∈ {0, 1}n , qu ∈ {0, 1}s and Player II knows v ∈ {0, 1}n , rv ∈ {0, 1}t. The two players
communicate by exchanging bits of information between them (following a protocol pre-
viously agreed on). The communication complexity of A, denoted CC(A), is the minimal
(over all protocols) number of bits that players I and II need to exchange in the worst-case
in solving each of Tasks 1, 2 and 3 above.6

For A ⊆ {0, 1}n+s define

Ȧ :=
{

(a, b, c)
∣∣ (a, b) ∈ A and c ∈ {0, 1}t

}
,

where a and b range over {0, 1}n and {0, 1}s, respectively. Similarly, for B ⊆ {0, 1}n+t

define
Ḃ :=

{
(a, b, c)

∣∣ (a, c) ∈ B and b ∈ {0, 1}t
}
,

where a and c range over {0, 1}n and {0, 1}t, respectively.

Theorem 4.5.5 (Krajı́ček (1997), Theorem 5.1) Let A1, . . . , Ak ⊆ {0, 1}n+s and
B1, . . . , B` ⊆ {0, 1}n+t. Let D1, . . . , Dm be a semantic refutation from Ȧ1, . . . , Ȧk and
Ḃ1, . . . , Ḃ`. Assume that CC(Di) ≤ ζ , for all i ∈ [m]. Then, the sets UA and VB (as
defined above) can be separated by a Boolean circuit of size (m+ n)2O(ζ).

4.5.2 Polynomial Upper Bounds on Interpolants for R0(lin)

Here we apply Theorem 4.5.5 to show that R0(lin) has polynomial upper bounds on its
interpolant circuits. Again, in what follows we sometime identify a disjunction of linear
equations with the set of its satisfying assignments.

6In other words, CC(A) is the minimal number ζ, for which there exists a protocol, such that for every
input (u, qu to Player I and v, rv to Player II) and every task (from Tasks 1, 2 and 3), the players need to
exchange at most ζ bits in order to solve the task.
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Theorem 4.5.6 R0(lin) has a polynomial upper bound on interpolant circuits (Definition
4.5.3).

In light of Theorem 4.5.5, to demonstrate that a certain propositional refutation system
P possesses a polynomial upper bound on interpolant circuits (see Definition 4.5.3) it
suffices to show that any proof-line of P induces a set of assignments with at most a
logarithmic (in the number of variables) communication complexity (Definition 4.5.4).
Therefore, all we need in order to establish Theorem 4.5.6 is the following lemma:

Lemma 4.5.7 Let k, d be two constants, let D be an Rk,d(lin)-line with N variables, and
let D̃ be the set of assignments that satisfy D. Then, CC(D̃) = O(logN).

Proof. Let N = n + s + t (and so D̃ ∈ {0, 1}n+s+t). For the sake of convenience we
shall assume that the N variables in D are partitioned into (pairwise disjoint) three groups
~p := (p1 . . . , pn), ~q := (q1, . . . , qs) and ~r := (r1, . . . , rt). Let u, v ∈ {0, 1}n, qu ∈ {0, 1}s,
rv ∈ {0, 1}t. Assume that Player I knows u, qu and Player II knows v, rv.

By assumption, we can partition the disjunction D into a constant number d of dis-
juncts, where one disjunct is a (possibly empty, translation of a) clause in the ~p, ~q, ~r vari-
ables (see Section 4.1.1), and all other disjuncts have the following form:∨

i∈I

(
~a · ~p+~b · ~q + ~c · ~r = `i

)
, (4.42)

where I is (an unbounded) set of indices, `i are integer numbers, for all i ∈ I , and ~a,~b,~c
denote vectors of n, s and t constant coefficients (that is, all the coefficients have an abso-
lute value at most k), respectively.

Let us denote the (translation of the) clause from D in the ~p, ~q, ~r variables by

P ∨Q ∨R ,
where P ,Q andR denote the (translated) sub-clauses consisting of the ~p, ~q and ~r variables,
respectively.

We need to show that by exchangingO(logN) bits, the players can solve each of Tasks
1, 2 and 3 from Definition 4.5.4, correctly.

Task 1: The players need to decide whether (u, qu, rv) ∈ D̃. Player II, who knows rv,
computes the numbers ~c · rv, for every ~c pertaining to every disjunct of the form shown in
Equation (4.42) above. Then, Player II sends the (binary representation of) these numbers
to Player I. Since there are only a constantly many such numbers and the coefficients in
every ~c are also constants, this amounts to O(log t) ≤ O(logN) bits that Player II sends
to Player I. Player II also computes the truth value of the sub-clause R, and sends this
(single-bit) value to Player I.

Now, it is easy to see that Player I has sufficient data to compute by herself/himself
whether (u, qu, rv) ∈ D̃ (Player I can then send a single bit informing Player II whether
(u, qu, rv) ∈ D̃).
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Task 2: This is analogous to Task 1.

Task 3: Assume that (u, qu, rv) ∈ D̃ and (v, qu, rv) 6∈ D̃ (the case (u, qu, rv) 6∈ D̃ and
(v, qu, rv) ∈ D̃ is analogous).

The first rounds of the protocol are completely similar to that described in Task 1
above: Player II, who knows rv, computes the numbers ~c · rv, for every ~c pertaining
to every disjunct of the form shown in Equation (4.42) above. Then, Player II sends the
(binary representation of) these numbers to Player I. Player II also computes the truth value
of the sub-clause R, and sends this (single-bit) value to Player I. Again, this amounts to
O(logN) bits that Player II sends to Player I.

By assumption (that (u, qu, rv) ∈ D̃ and (v, qu, rv) 6∈ D̃) the players need to deal only
with the following two cases:

Case 1: The assignment (u, qu, rv) satisfies the clause P ∨ Q ∨ R while (v, qu, rv)
falsifies P ∨Q ∨ R. Thus, it must be that ~u satisfies the sub-clause P while ~v falsifies P .
This means that for any i ∈ [n] such that ui sets to 1 a literal in P (there ought to exist
at least one such i), it must be that ui 6= vi. Therefore, all that Player I needs to do is to
send the (binary representation of) index i to Player II. (This amounts to O(logN) bits
that Player I sends to Player II.)

Case 2: There is some linear equation

~a · ~p+~b · ~q + ~c · ~r = ` (4.43)

in D, such that ~a · u+~b · qu +~c · rv = `. Note that (by assumption that (v, qu, rv) 6∈ D̃) it
must also hold that: ~a · v+~b · qu +~c · rv 6= ` (and so there is an i ∈ [n], such that ui 6= vi).
Player I can find linear equation (4.43), as he/she already received from Player II all the
possible values of ~c · ~r (for all possible ~c ’s in D).

Recall that the left hand side of a linear equation ~d · ~x = ` is called the linear form
of the equation. By assumption, there are only constant d many distinct linear forms in
D. Since both players know these linear forms, we can assume that each linear form has
some index associated to it by both players. Player I sends to Player II the index of the
linear form ~a · ~p+~b · ~q+~c ·~r from (4.43) in D. Since there are only constantly many such
linear forms in D, it takes only constant number of bits to send this index.

Now both players need to apply a protocol for finding an i ∈ [n] such that ui 6= vi,
where ~a · ~u +~b · qu + ~c · rv = ` and ~a · ~v +~b · qu + ~c · rv 6= `. Thus, it remains only to
prove the following claim:

Claim: There is a communication protocol in which Player I and Player II need at most
O(logN) bits of communication in order to find an i ∈ [n] such that ui 6= vi (under the
above conditions).

Proof of claim: We invoke the well-known connection between Boolean circuit-depth and
communication complexity. Let f : {0, 1}N → {0, 1} be a Boolean function. Denote by
dp(f) the minimal depth of a bounded fan-in Boolean circuit computing f . Consider a
game between two players: Player I knows some ~x ∈ {0, 1}N and Player II knows some
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other ~y ∈ {0, 1}N , such that f(~x) = 1 while f(~y) = 0. The goal of the game is to find an
i ∈ [N ] such that xi 6= yi. Denote by CC′(f) the minimal number of bits needed for the
two players to communicate (in the worst case7) in order to solve this game.8 Then, for
any function f it is known that dp(f) = CC′(f) (see Karchmer and Wigderson (1988)).

Therefore, to conclude the proof of the claim it is enough to establish that the function
f : {0, 1}N → {0, 1} that receives the input variables ~p, ~q, ~r and computes the truth value
of ~a · ~p+~b ·~q+~c ·~r = ` has Boolean circuit of depth O(logN). In case all the coefficients
in ~a,~b,~c are 1, it is easy to show9 that there is a Boolean circuit of depth O(logN) that
computes the function f . In the case that the coefficients in ~a,~b,~c are all constants, it is
easy to show, by a reduction to the case where all coefficients are 1, that there is a Boolean
circuit of depth O(logN) that computes the function f . We omit the details. Claim �

4.5.3 Feasible Monotone Interpolation

Here we formally define the feasible monotone interpolation property to complement
Theorem 4.4.15. The definition is taken mainly from Krajı́ček (1997). Recall that for
two binary strings of length n (or equivalently, Boolean assignments for n propositional
variables), α, α′, we denote by α′ ≥ α that α′ is bitwise greater than α, that is, that
for all i ∈ [n], α′i ≥ αi (where α′i and αi are the ith bits of α′ and α, respectively).
Let A(~p, ~q), B(~p, ~r) be two collections of formulas in the displayed variables only, where
~p, ~q, ~r are pairwise disjoint sequences of distinct variables (similar to the notation at the
beginning of Section 4.5). Assume that there is no assignment that satisfies both A(~p, ~q)
and B(~p, ~r). We say that A(~p, ~q), B(~p, ~r) are monotone if one of the following conditions
hold:

1. If ~α is an assignment to ~p and ~β is an assignment to ~q such that A(~α, ~β) = 1, then
for any assignment ~α′ ≥ ~α it holds that A(~α′, ~β) = 1.

2. If ~α is an assignment to ~p and ~β is an assignment to ~r such that B(~α, ~β) = 1, then
for any assignment ~α′ ≤ ~α it holds that B(~α′, ~β) = 1.

Fix a certain proof system P . Recall the definition of the interpolant function (cor-
responding to a given unsatisfiable A(~p, ~q) ∧ B(~p, ~r); that is, functions for which (4.41)
in Section 4.5 hold). Assume that for every monotone A(~p, ~q), B(~p, ~r) there is a trans-
formation from every P-refutation of A(~p, ~q)∧B(~p, ~r) into the corresponding interpolant
monotone Boolean circuit C(~p) (that is, C(~p) uses only monotone gates10) and whose size

7Over all inputs ~x, ~y such that f(~x) = 1 and f(~y) = 0.
8The measure CC ′ is basically the same as CC defined earlier.
9Using the known O(logN)-depth bounded fan-in Boolean circuits for the threshold functions: the

majority functions haveO(log n)-depth circuits, and the threshold functions have a constant-depth reduction
to the majority functions (cf., Vollmer (1999), Theorem 1.24 and Section 1.41).
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is polynomial in the size of the refutation (note that for every monotone A(~p, ~q), B(~p, ~r)
the corresponding interpolant circuit must compute a monotone function;11 the interpolant
circuit itself, however, might not be monotone, namely, it may use non-monotone gates).
In such a case, we say that P has the feasible monotone interpolation property. This
means that, if a proof system P has the feasible monotone interpolation property, then an
exponential lower bound on monotone circuits that compute the interpolant function cor-
responding to A(~p, ~q)∧B(~p, ~r) implies an exponential-size lower bound on P-refutations
of A(~p, ~q) ∧B(~p, ~r).

Definition 4.5.8 (Feasible monotone interpolation property) Let P be a propositional
refutation system. Let A1(~p, ~q), . . . , Ak(~p, ~q) and B1(~p, ~r), . . . , B`(~p, ~r) be two col-
lections of formulas with the displayed variables only (where ~p has n variables, ~q
has s variables and ~r has t variables), such that either (the set of satisfying assign-
ments of) A1(~p, ~q), . . . , Ak(~p, ~q) meet condition 1 above or (the set of satisfying as-
signments of) B1(~p, ~r), . . . , B`(~p, ~r) meet condition 2 above. Assume that for any
such A1(~p, ~q), . . . , Ak(~p, ~q) and B1(~p, ~r), . . . , B`(~p, ~r), if there exists a P-refutation for
A1(~p, ~q)∧ · · · ∧Ak(~p, ~q)∧B1(~p, ~r)∧ . . .∧B`(~p, ~r) of size S then there exists a monotone
Boolean circuit separating UA from VB (as defined in Section 4.5.1) of size polynomial in
S. In this case we say that P possesses the feasible monotone interpolation property.

4.6 Size Lower Bounds
In this section we establish an exponential-size lower bound on R0(lin) refutations of the
clique-coloring formulas. We shall employ the theorem of Bonet, Pitassi and Raz in Bonet
et al. (1997) that provides exponential-size lower bounds for any semantic refutation of the
clique-coloring formulas, having low communication complexity in each refutation-line.

First we recall the strong lower bound obtained by Alon and Boppana (Alon and Bop-
pana (1987)) (improving over Razborov (1985); see also Andreev (1985)) for the (mono-
tone) clique separator functions, defined as follows (a function f : {0, 1}n → {0, 1} is
called monotone if for all α ∈ {0, 1}n, α′ ≥ α implies f(α′) ≥ f(α)):

Definition 4.6.1 (Clique separator) A monotone boolean functionQn
k,k′ is called a clique

separator if it interprets its inputs as the edges of a graph on n vertices, and outputs 1 on
every input representing a k-clique, and 0 on every input representing a complete k′-
partite graph (see Section 4.4.3).

Recall that a monotone Boolean circuit is a circuit that uses only monotone Boolean
gates (for instance, only the fan-in two gates ∧,∨).

10For instance, a monotone Boolean circuit is a circuit that uses only ∧,∨ gates of fan-in two (see also
Section 4.6). In certain cases, the monotone interpolation technique is also applicable for a larger class of
circuits, that is, circuits that compute with real numbers and that can use any nondecreasing real functions
as gates (this was proved by Pudlák in Pudlák (1997)).

11That is, if α′ ≥ α then C(α′) ≥ C(α).
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Theorem 4.6.2 (Alon and Boppana (1987), Theorem 3.9) Let k, k′ be integers such
that 3 ≤ k′ < k and k

√
k′ ≤ n/(8 log n), then every monotone Boolean circuit that

computes a clique separator function Qn
k,k′ requires size at least

1

8

(
n

4k
√
k′ log n

)(
√
k′+1)/2

.

For the next theorem, we need a slightly different (and weaker) version of communi-
cation complexity, than that in Definition 4.5.4.

Definition 4.6.3 (Worst-case partition communication complexity) Let X denote n
Boolean variables x1, . . . , xn, and let S1, S2 be a partition of X into two disjoint sets
of variables. The communication complexity of a Boolean function f : {0, 1}n → {0, 1}
is the number of bits needed to be exchanged by two players, one knowing the values
given to the S1 variables and the other knowing the values given to S2 variables, in the
worst-case, over all possible partitions S1 and S2.

Theorem 4.6.4 (Bonet et al. (1997), Theorem 5) Every semantic refutation of
¬CLIQUEnk,k′ (for k′ < k) with m refutation-lines and where each refutation-line
(considered as a the characteristic function of the line) has worst-case partition commu-
nication complexity ζ , can be transformed into a monotone circuit of size m · 23ζ+1 that
computes a separating function Qn

k,k′ .

In light of Theorem 4.6.2, in order to be able to apply Theorem 4.6.4 to R0(lin), and
arrive at an exponential-size lower bound for R0(lin) refutations of the clique-coloring
formulas, it suffices to show that R0(lin) proof-lines have logarithmic worst-case partition
communication complexity:

Lemma 4.6.5 Let c, d be two constants, and let D be an Rc,d(lin)-line with N variables.
Then, the worst-case partition communication complexity ofD is at mostO(logN) (where
D is identified here with the characteristic function of D).

Proof. The proof is similar to the proof of Lemma 4.5.7 for solving Task 1 (and the
analogous Task 2) in Definition 4.5.4. �

By direct calculations we obtain the following lower bound from Theorems 4.6.2, 4.6.4
and Lemma 4.6.5:

Corollary 4.6.6 Let k be an integer such that 3 ≤ k′ = k − 1 and assume that 1
2
·

n/(8 log n) ≤ k
√
k ≤ n/(8 log n). Then, for all ε < 1/3, every R0(lin) refutation of

¬CLIQUEnk,k′ is of size at least 2Ω(nε).

When considering the parameters of Theorem 4.4.13, we obtain a super-polynomial
separation between R0(lin) refutations and R(lin) refutations, as described below.

From Theorems 4.6.2,4.6.4 and Lemma 4.6.5 we have (by direct calculations):
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Corollary 4.6.7 Let k =
√
n and k′ = (log n)2/8 log log n. Then, every R0(lin) refutation

of ¬CLIQUEnk,k′ has size at least nΩ
(

logn√
log logn

)
.

By Corollary 4.4.14, R(lin) admits polynomial-size in n refutations of ¬CLIQUEnk,k′
under the parameters in Corollary 4.6.7. Thus we obtain the following separation result:

Corollary 4.6.8 R(lin) is super-polynomially stronger than R0(lin).

Comment: Note that we do not need to assume that the coefficients in “R0(lin) proof-
lines” are constants for the lower bound argument. If the coefficients in “R0(lin) proofs-
lines” are only polynomially bounded (in the number of variables) then the same lower
bound as in Corollary 4.6.7 also applies. This is because “R0(lin) proof-lines” in which
coefficients are polynomially bounded integers, still have low (that is, logarithmic) worst-
case partition communication complexity.

4.7 Relations with Extensions of Cutting Planes
In this section we tie some loose ends by showing that, in full generality, R(lin) polyno-
mially simulates R(CP) with polynomially bounded coefficients, denoted R(CP*). First
we define the R(CP*) proof system – introduced in Krajı́ček (1998) – which is a common
extension of resolution and CP* (the latter is cutting planes with polynomially bounded
coefficients). The system R(CP*), thus, is essentially resolution operating with disjunc-
tions of linear inequalities (with polynomially bounded integral coefficients) augmented
with the cutting planes inference rules.

A linear inequality is written as

~a · ~x ≥ a0 , (4.44)

where ~a is a vector of integral coefficients a1, . . . , an, ~x is a vector of variables x1, . . . , xn,
and a0 is an integer. The size of the linear inequality (4.44) is the sum of all a0, . . . , an
written in unary notation (this is similar to the size of linear equations in R(lin)). A
disjunction of linear inequalities is just a disjunction of inequalities of the form in (4.44).
The semantics of a disjunction of inequalities is the natural one, that is, a disjunction is
true under an assignment of integral values to ~x if and only if at least one of the inequalities
is true under the assignment. The size of a disjunction of linear inequalities is the total
size of all linear inequalities in it. We can also add in the obvious way linear inequalities,
that is, if L1 is the linear inequality ~a · ~x ≥ a0 and L2 is the linear inequality ~b · ~x ≥ b0,
then L1 + L2 is the linear inequality (~a+~b) · ~x ≥ a0 + b0.

The proof system R(CP*) operates with disjunctions of linear inequalities with inte-
gral coefficients (written in unary notation), and is defined as follows (our formulation is
similar to that in Kojevnikov (2007)):12

12When we allow coefficients to be written in binary notation, instead of unary notation, the resulting
proof system is denoted R(CP).
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Definition 4.7.1 (R(CP*)) Let K := {K1, . . . , Km} be a collection of disjunctions of
linear inequalities (whose coefficients are written in unary notation). An R(CP*)-proof
from K of a disjunction of linear inequalities D is a finite sequence π = (D1, ..., D`) of
disjunctions of linear inequalities, such thatD` = D and for each i ∈ [`]: either Di = Kj

for some j ∈ [m]; or Di is one of the following R(CP*)-axioms:

1. xi ≥ 0, for any variable xi;

2. −xi ≥ −1, for any variable xi;

3. (~a · ~x ≥ a0) ∨ (−~a · ~x ≥ 1− a0), where all coefficients (including a0) are integers;

or Di was deduced from previous lines by one of the following R(CP*)-inference rules:

1. Let A,B be two, possibly empty, disjunctions of linear inequalities and let L1, L2

be two linear inequalities.

From A ∨ L1 and B ∨ L2 derive A ∨B ∨ (L1 + L2).

2. Let L be some linear equation.

From a, possibly empty, disjunction of linear equations A derive A ∨ L.

3. Let A be a, possibly empty, disjunction of linear equations.

From A ∨ (0 ≥ 1) derive A.

4. Let c be a non-negative integer.

From (~a · ~x ≥ a0) ∨ A derive (c~a · ~x ≥ ca0) ∨ A.

5. Let A be a, possibly empty, disjunction of linear inequalities, and let c ≥ 1 be an
integer.

From (c~a · ~x ≥ a0) ∨ A derive (a · ~x ≥ da0/ce) ∨ A.

An R(CP*) refutation of a collection of disjunctions of linear inequalities K is a proof of
the empty disjunction from K. The size of a proof π in R(CP*) is the total size of all the
disjunctions of linear inequalities in π, denoted |π|.

In order for R(lin) to simulate R(CP*) proofs, we need to fix the following translation
scheme. Every linear inequality L of the form ~a · ~x ≥ a0 is translated into the following
disjunction, denoted L̂:

(~a · ~x = a0) ∨ (~a · ~x = a0 + 1) ∨ · · · ∨ (~a · ~x = a0 + k) , (4.45)

where k is such that a0 +k equals the sum of all positive coefficients in ~a, that is, a0 +k =
max~x∈{0,1}n (~a · ~x) (in case the sum of all positive coefficients in ~a is less than a0, then we
put k = 0). An inequality with no variables of the form 0 ≥ a0 is translated into 0 = a0

in case it is false (that is, in case 0 < a0), and into 0 = 0 in case it is true (that is, in case
0 ≥ a0). Note that since the coefficients of linear inequalities (and linear equations) are
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written in unary notation, any linear inequality of size s translates into a disjunction of
linear equations of size O(s2). Clearly, every 0, 1 assignment to the variables ~x satisfies
L if and only if it satisfies its translation L̂. A disjunction of linear inequalities D is
translated into the disjunction of the translations of all the linear inequalities in it, denoted
D̂. A collection K := {K1, . . . , Km} of disjunctions of linear inequalities, is translated
into the collection

{
K̂1, . . . , K̂m

}
.

Theorem 4.7.2 R(lin) polynomially-simulates R(CP*). In other words, if π is an R(CP*)
proof of a linear inequality D from a collection of disjunctions of linear inequalities
K1, . . . , Kt, then there is an R(lin) proof of D̂ from K̂1, . . . , K̂t whose size is polynomial
in |π|.

Proof. By induction on the number of proof-lines in π.
Base case: Here we only need to show that the axioms of R(CP*) translates into

axioms of R(lin), or can be derived with polynomial-size (in the size of the original R(CP*)
axiom) R(lin) derivations (from R(lin)’s axioms).

R(CP*) axiom number (1): xi ≥ 0 translates into the R(lin) axiom (xi = 0)∨(xi = 1).
R(CP*) axiom number (2): −xi ≥ −1, translates into (−xi = −1)∨ (−xi = 0). From

the Boolean axiom (xi = 1) ∨ (xi = 0) of R(lin), one can derive with a constant-size
R(lin) proof the line (−xi = −1) ∨ (−xi = 0) (for instance, by subtracting twice each
equation in (xi = 1) ∨ (xi = 0) from itself).

R(CP*) axiom number (3): (~a ·~x ≥ a0)∨(−~a ·~x ≥ 1−a0). The inequality (~a ·~x ≥ a0)
translates into

h∨
b=a0

(~a · ~x = b) ,

where h is the maximal value of ~a · ~x over 0, 1 assignments to ~x (that is, h is just the sum
of all positive coefficients in ~a). The inequality (−~a · ~x ≥ 1− a0) translates into

f∨
b=1−a0

(−~a · ~x = b) ,

where f is the maximal value of−~a ·~x over 0, 1 assignments to ~x (that is, f is just the sum
of all negative coefficients in ~a). Note that one can always flip the sign of any equation
~a · ~x = b in R(lin). This is done, for instance, by subtracting twice ~a · ~x = b from itself.
So overall R(CP*) axiom number (3) translates into

h∨
b=a0

(~a · ~x = b) ∨
f∨

b=1−a0

(−~a · ~x = b) ,

that can be converted inside R(lin) into

a0−1∨
b=−f

(~a · ~x = b) ∨
h∨

b=a0

(~a · ~x = b) . (4.46)



Chapter 4. Resolution over Linear Equations 95

LetA′ := {−f,−f + 1, . . . , a0 − 1, a0, a0 + 1, . . . , h} and letA be the set of all possible
values that ~a · ~x can get over all possible Boolean assignments to ~x. Notice that A ⊆ A′.
By Lemma 4.2.5, for any ~a · ~x, there is a polynomial-size (in the size of the linear form
~a · ~x) derivation of

∨
α∈A(~a · ~x = α). By using the R(lin) weakening rule we can then

derive
∨
α∈A′(~a · ~x = α) which is equal to (4.46).

Induction step: Here we simply need to show how to polynomially simulate inside
R(lin) every inference rule application of R(CP*).

Rule (1): Let A,B be two disjunctions of linear inequalities and let L1, L2 be two linear
inequalities. Assume we already have a R(lin) proofs of Â ∨ L̂1 and B̂ ∨ L̂2. We need to
derive Â∨ B̂ ∨ L̂1 + L2. Corollary 4.2.4 shows that there is a polynomial-size (in the size
of L̂1 and L̂2; which is polynomial in the size of L1 and L2) derivation of L̂1 + L2 from
L̂1 and L̂2, from which the desired derivation immediately follows.

Rule (2): The simulation of this rule in R(lin) is done using the R(lin) weakening rule.

Rule (3): The simulation of this rule in R(lin) is done using the R(lin) simplification rule
(remember that 0 ≥ 1 translates into 0 = 1 under our translation scheme).

Rule (4): Let c be a non-negative integer. We need to derive ̂(c~a · ~x ≥ ca0) ∨ Â from
̂(~a · ~x ≥ a0)∨ Â in R(lin). This amounts only to “adding together” c times the disjunction
̂(~a · ~x ≥ a0) in ̂(~a · ~x ≥ a0)∨ Â. This can be achieved by c many applications of Corollary

4.2.4. We omit the details.

Rule (5): We need to derive ̂(~a · ~x ≥ da0/ce)∨ Â, from ̂(c~a · ~x ≥ a0)∨ Â. Consider the
disjunction of linear equations ̂(c~a · ~x ≥ a0), which can be written as:

(c~a · ~x = a0) ∨ (c~a · ~x = a0 + 1) ∨ . . . ∨ (c~a · ~x = a0 + r) , (4.47)

where a0 + r is the maximal value c~a · ~x can get over 0, 1 assignments to ~x. By Lemma
4.2.5 there is a polynomial-size (in the size of ~a · ~x) R(lin) proof of∨

α∈A

(~a · ~x = α) , (4.48)

where A is the set of all possible values of ~a · ~x over 0, 1 assignments to ~x.
We now use (4.47) to cut-off from (4.48) all equations (~a · ~x = β) for all β < da0/ce

(this will give us the desired disjunction of linear equations). Consider the equation (~a·~x =
β) in (4.48) for some fixed β < da0/ce. Use the resolution rule of R(lin) to add this
equation to itself c times inside (4.48). We thus obtain

(c~a · ~x = cβ) ∨
∨

α∈A\{β}

(~a · ~x = α) . (4.49)
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Since β is an integer and β < da0/ce, we have cβ < a0. Thus, the equation (c~a · ~x = cβ)
does not appear in (4.47). We can then successively resolve (c~a · ~x = cβ) in (4.49)
with each equation (c~a · ~x = a0), . . . , (c~a · ~x = a0 + r) in (4.47). Hence, we arrive at∨
α∈A\{β} (~a · ~x = α). Overall, we can cut-off all equations (~a · ~x = β), for β < da0/ce,

from (4.48). We then get the disjunction∨
α∈A′

(~a · ~x = α) ,

where A′ is the set of all elements of A greater or equal to da0/ce (in other words, all
values greater or equal to da0/ce that ~a · ~x can get over 0, 1 assignments to ~x). Using
the weakening rule of R(lin) (if necessary) we can arrive finally at the desired disjunction

̂(~a · ~x ≥ da0/ce), which concludes the R(lin) simulation of R(CP*)’s inference Rule (5).
�

4.8 Chapter Summary
In this chapter we explored extensions of resolution of varying strength that operate with
disjunctions of linear equations instead of clauses. We demonstrated efficient proofs for
counting arguments in resolution over linear equations and its fragments. We showed
that already a proper fragment of resolution over linear equations is capable of efficiently
proving certain hard formulas. We also obtained exponential lower bounds on fragments
of resolution over linear equations using the monotone interpolation technique, and pro-
vided a simulation of full cutting planes proofs with polynomially bounded coefficients
by resolution over linear equations.

In the next chapter we shall link resolution over linear equations with multilinear
proofs. Specifically, we show that depth-3 multilinear proofs can polynomially simulate
R0(lin) proofs.
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In this chapter we apply the results about resolution over linear equations from Chapter
4 to obtain new results for multilinear proof systems. In particular, we shall demonstrate
a polynomial simulation of R0(lin) by multilinear proofs operating with depth-3 formu-
las. This simulation will rely heavily on the fact that multilinear symmetric polynomials
have small depth-3 multilinear formulas over fields of characteristic 0 (see Preliminaries,
Section 2.5.4).

5.1 From R(lin) Proofs to PCR Proofs
Here we demonstrate a general and straightforward translation from R(lin) proofs into
PCR proofs over fields of characteristic 0. We use the term “translation” in order to dis-
tinguish it from a simulation; since here we are not interested in the size of PCR proofs.
In fact we have not defined the size of PCR proofs at all. We shall be interested only in
the number of steps in PCR proofs.

From now on, all polynomials and arithmetic formulas are considered over some fixed
field F of characteristic 0. Recall that any field of characteristic 0 contains (an isomorphic
copy of) the integer numbers, and so we can use integer coefficients in the field.

Definition 5.1.1 (Polynomial translation of R(lin) proof-lines) Let D be a disjunction
of linear equations:(

a
(1)
1 x1 + . . .+ a(1)

n xn = a
(1)
0

)
∨ · · · ∨

(
a

(t)
1 x1 + . . .+ a(t)

n xn = a
(t)
0

)
. (5.1)

We denote by D̂ its translation into the following polynomial:1(
a

(1)
1 x1 + . . .+ a(1)

n xn − a(1)
0

)
· · ·
(
a

(t)
1 x1 + . . .+ a(t)

n xn − a(t)
0

)
. (5.2)

If D is the empty disjunction, we define D̂ to be the polynomial 1.

It is clear that every 0, 1 assignment to the variables in D, satisfies D, if and only if D̂
evaluates to 0 under the assignment.

Proposition 5.1.2 Let π = (D1, . . . , D`) be an R(lin) proof sequence of D`, from some
collection of initial disjunctions of linear equations Q1, . . . , Qm. Then, there exists a PCR
proof of D̂` from Q̂1, . . . , Q̂m with at most a polynomial in |π| number of steps.

Proof. We proceed by induction on the number of lines in π. The base case is the trans-
lation of the axioms of R(lin) via the translation scheme in Definition 5.1.1. An R(lin)
Boolean axiom (xi = 0) ∨ (xi = 1) is translated into xi · (xi − 1) which is already a
Boolean axiom of PCR.

1This notation should not be confused with the same notation in Section 4.4.3.
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For the induction step, we translate an R(lin) inference rule application into a
polynomial-size PCR proof sequence as follows. We use the following simple claim:

Claim: Let p and q be two polynomials and let s be the minimal size of an arithmetic
formula computing q. Then one can derive from p in PCR the product q · p, with only a
polynomial in s number of steps.

Proof of claim: By induction on s. Claim

Assume that Di = Dj ∨L was derived from Dj using the weakening inference rule of
R(lin), where j < i ≤ ` and L is some linear equation. Then, by Claim 5.1, D̂i = D̂j · L̂
can be derived from D̂j with a derivation of at most polynomial in |Dj ∨ L| many steps.

Assume thatDi was derived fromDj whereDj isDi∨(0 = k), using the simplification
inference rule of R(lin), where j < i ≤ ` and k is a non-zero integer. Then, D̂i can be
derived from D̂j = D̂i · −k by multiplying with −k−1 (via the Addition rule of PCR).

Thus, it remains to simulate the resolution rule application of R(lin). Let A,B be two
disjunctions of linear equations and assume that A ∨ B ∨ ((~a − ~b) · ~x = a0 − b0) was
derived in π from A ∨ (~a · ~x = a0) and B ∨ (~b · ~x = b0).

We need to derive Â · B̂ · ((~a−~b) ·~x−a0 + b0) from Â · (~a ·~x−a0) and B̂ · (~b ·~x− b0).
This is done by multiplying Â · (~a · ~x − a0) with B̂ and multiplying B̂ · (~b · ~x − b0) with
Â (using Claim 5.1), and then subtracting the resulted polynomials from each other. �

Remark: When translating R(lin) proofs into PCR proofs we actually do not make any
use of the “negative” variables x̄1, . . . , x̄n. Nevertheless, the multilinear proof systems
make use of these variables in order to polynomially simulate PCR proofs (see Theorem
3.3.1 and its proof in Chapter 3 Section 3.3).

We shall need the following corollary in the sequel:

Corollary 5.1.3 Let c, d be two constants, let π = D1, . . . , D` be an R(lin) proof of D`

using only Rc,d(lin)-lines, and let s be the maximal size of an Rc,d(lin)-line in π. Then there
are two constants c′, d′ that depend only on c, d and a PCR proof π′ of D̂` with polynomial-
size in |π| number of steps, and such that every line of π′ has size at most polynomial in s
and is a translation (via Definition 5.1.1) of an Rc′,d′(lin)-line.

Proof. The simulation of R(lin) by PCR shown above, can be thought of as, first, consid-
ering D̂1, . . . , D̂` as the “skeleton” of a PCR proof of D̂`. And second, for each Di that
was deduced by one of R(lin)’s inference rules from previous lines, one inserts the cor-
responding PCR proof sequence that simulates the appropriate inference rule application
(as described in the proof of Proposition 5.1.2). By definition, those PCR proof-lines that
correspond to lines in the skeleton D̂1, . . . , D̂` are translations of Rc,d(lin)-lines (with size
at most polynomial in s). Thus, to conclude the proof of the corollary, one needs only
to check that for any Rc,d(lin)-line Di that was deduced by one of R(lin)’s inference rules
from previous Rc,d(lin)-lines (as demonstrated in the proof of Proposition 5.1.2), the in-
serted corresponding PCR proof sequence uses only translations of Rc′,d′(lin)-lines (with
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size polynomial in s), for two constants c′, d′ that depend only on c, d. This can be verified
by a straightforward inspection. �

5.2 From PCR Proofs to Multilinear Proofs
First recall the general simulation result (Theorem 3.3.1) proved in Chapter 3. This theo-
rem states the following: Let π be a PCR refutation of some initial collection of multilinear
polynomials Q over some fixed field. Assume that π has polynomially many steps (that
is, the number of proof lines in the PCR proof sequence is polynomial). If the multilin-
earization (namely, the result of applying the M[·] operator [Definition 2.5.2]) of each of
the polynomials in π has a polynomial-size depth d multilinear formula (with a plus gate
at the root), then there is a polynomial-size depth-d fMC refutation of Q.

5.2.1 Multilinearization of Polynomials

Here we show that multilinear proofs operating with depth-3 multilinear formulas (that is,
depth-3 fMC) over fields of characteristic 0 polynomially simulate R0(lin) proofs. In light
of Proposition 5.1.3 and Theorem 3.3.1, to this end it suffices to show that for constants
c, d, any Rc,d(lin)-line D translates into a corresponding polynomial p (via the translation
in Definition 5.1.1) such that M[p] has a multilinear formula of size polynomial (in the
number of variables) and depth at most 3 (with a plus gate at the root) over fields of
characteristic 0.

We need the following simple properties (given without a proof):

Proposition 5.2.1 Fix a field F and let X be a finite set of variables.

• If p, q are two symmetric polynomials over X , then the product p · q is also a
symmetric polynomial over X;

• If p is a symmetric polynomial over X , then M[p] is a multilinear symmetric poly-
nomial over X .

From Theorem 2.5.4 and Proposition 5.2.1 we get:

Corollary 5.2.2 Let F be a field of characteristic 0 and let X be a set of ` variables. If p
is a product of (one or more) symmetric polynomials overX (over the field F), then M[p]
has a depth-3 multilinear formula of size polynomial (in `), with a plus gate at the root.

We shall also need the following more general proposition, which might be interesting
by itself:

Proposition 5.2.3 Let F be a field of characteristic 0. For a constant c, let X1, . . . , Xc be
c finite sets of variables (not necessarily disjoint), where Σc

i=1|Xi| = ` . Let f1, . . . , fc be
c symmetric polynomials over X1, . . . , Xc (over the field F), respectively. Then, there is
a depth-3 multilinear formula for M[f1 · · · fc] of size polynomial (in `), with a plus gate
at the root.
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Remark. Note the difference between Corollary 5.2.2 and Proposition 5.2.3. Corollary
5.2.2 speaks about a (finite) unbounded product of symmetric polynomials over the same
set of variables. On the other hand, Proposition 5.2.3 speaks about a product of con-
stant number of symmetric polynomials over different (but not necessarily disjoint) sets
of variables.

Proof. We shall need the following two basic claims (given without a proof).

Claim: Let X be a set of ` variables x1, . . . , x`, and let p1, p2 be two multilinear
polynomials over X such that for all 0, 1 assignments to x1, . . . , x`, p1(x1, . . . , x`) =
p2(x1, . . . , x`). Then p1 = p2 as formal polynomials.

Since symmetric polynomials are invariant under renaming of variables then restricted
to 0, 1 assignments the values of symmetric polynomials are determined only by the num-
ber of 1’s in their input variables. Formally, if p is a symmetric polynomial of degree d
from F[X] in ` variables, then there is a polynomial h of degree at most d in one variable,
such that for 0, 1 assignments to x1, . . . , x`, p(x1, . . . , x`) = h(x1+. . .+x`). Hence, if we
let Y1, . . . , Ym be pairwise disjoint subsets of X = {x1, . . . , x`}, such that

⊎m
i=1 Yi = X ,

then we have the following:

Claim: Let p be a symmetric polynomial from F[X] of degree d, then there is a polynomial
h of degree at most d in m variables, such that for all 0, 1 assignments to x1, . . . , x`,

p(x1, . . . , x`) = h

(∑
xi∈Y1

xi, . . . ,
∑
xi∈Ym

xi

)
.

We are now ready to prove Proposition 5.2.3. Let X :=
⋃c
i=1Xi. Let m := 2c and

partition X into at most m disjoint subsets as follows. For every J ⊆ [c], let XJ :=⋂
i∈J Xi \

⋃
i∈[c]\J Xi and define the abbreviation

zJ :=
∑
xi∈XJ

xi . (5.3)

(This way, the variables in Xi are exactly the variables that occur in all zJ , such that
i ∈ J ⊆ [c].) Let J1, . . . , Jm be all the subsets of [c], and let zk denote zJk , for every
1 ≤ k ≤ m.

We clearly have,

M

[
c∏
i=1

fi

]
= M

[
c∏
i=1

M[fi]

]
. (5.4)

By Proposition 5.2.1, for all 1 ≤ i ≤ c, M[fi] is a (multilinear) symmetric polynomial.
Thus, by Claim 5.2.1, for all 1 ≤ i ≤ c there exists a polynomial gi(y1, . . . , ym) of degree
at most ` (with at most m variables), such that M[fi] = gi(z1, . . . , zm) for all assignments
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of 0, 1 values to the variables inXi (note that gi(y1, . . . , ym) is not necessarily a multilinear
polynomial in the yj’s).2

Hence, by (5.4) for all assignments of 0, 1 to the variables in X,

M

[
c∏
i=1

fi

]
= M

[
c∏
i=1

gi(z1, . . . , zm)

]
(5.5)

(note that the multilinearization operator M[·] in the right hand side of (5.5) operates on
the polynomial

∏c
i gi(z1, . . . , zm) considered as a polynomial in the X variables).

Therefore, by Claim 5.2.1, the two sides of (5.5) are equal as formal polynomials (over
X). Since c and m are constants,

∏c
i gi(y1, . . . , ym) can be written as a sum of polynomi-

ally many monomials in the variables y1, . . . , ym. Thus, when substituting zj’s for yj’s (for
all 1 ≤ j ≤ m),

∏c
i gi(z1, . . . , zm) can be written as a sum of polynomially many prod-

ucts of the form
∏m

j=1 z
ej
j (where the ej’s stand for some non-negative integers). Hence,

by linearity of M[·], the right hand side of (5.5) can be written as a sum of polynomially
many terms of the form M

[∏m
j=1 z

ej
j

]
. It remains only to prove the following:

Claim: Every polynomial of the form M
[∏m

j=1 z
ej
j

]
(where the ej’s stand for some non-

negative integers) has a depth 3 multilinear formula (in the variables in X) of size polyno-
mial in ` and a plus gate at the root .

Proof of claim: Since the sets of variables that occur in each of the zj’s are pairwise

disjoint, M
[∏m

j=1 z
ej
j

]
=
∏m

j=1 M
[
z
ej
j

]
. For every 1 ≤ j ≤ m, zejj is a product of

symmetric polynomials (in (not necessarily all) the variables in X). Thus, by Corollary
5.2.2, M

[
z
ej
j

]
can be written as a sum of polynomially (in `) many products of linear

polynomials (in other words, a polynomial-size leveled depth 3 multilinear formula with
a plus gate at the root). Since m is a constant,

∏m
j=1 M

[
z
ej
j

]
can be written as a sum

of polynomially many terms, where each term is a product of (polynomially many) linear
polynomials over disjoint sets of variables. In other words, we have reached a polynomial-
size (in `) depth 3 multilinear formula. Claim

This completes the proof of Proposition 5.2.3. �

Lemma 5.2.4 Let s, t be two constants that do not depend on n, let D be an Rs,t(lin)-
line with n variables and let p = D̂ (see Definition 5.1.1). Then, M[p] has a depth-3
multilinear formula over fields of characteristic 0, with a plus gate at the root and size at
most polynomial in the size of D.

Proof. Assume that the underlying variables of D are ~x = x1 . . . , xn. By assumption, we
can partition the disjunction D into a constant number t of disjuncts, where one disjunct

2For any 1 ≤ k ≤ m, the variable yk actually occurs in gi if and only if i ∈ Jk. The other variables yk
are still indicated for ease of writing.
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is a (possibly empty, translation of a) clause C, and all other disjuncts have the following
form:

m∨
i=1

(~a · ~x = `i) , (5.6)

where the `i’s are integers, m is not necessarily bounded and ~a denotes a vector of n
constant integer coefficients, each having absolute value at most s.

Suppose that the clause C is
∨
i∈I xi ∨

∨
j∈J ¬xj , and let us denote by q =

∏
i∈I(xi−

1) ·∏j∈J xj the polynomial representing C.
Consider a disjunct as shown in (5.6). Since the coefficients ~a are constants (having

absolute value at most s), ~a ·~x can be written as a sum of constant number of linear forms,
each with the same constant coefficient. In other words, ~a·~x can be written as z1 +. . .+zd,
for some constant d, where for all i ∈ [d]:

zi := b ·
∑
j∈J

xj , (5.7)

for some J ⊆ [n] and some constant integer b. We shall assume without loss of generality
that d is the same constant for every disjunct of the form (5.6) inside D (otherwise, take d
to be the maximal such d).

Thus, (5.6) is translated (via the translation scheme in Definition 5.1.1) into:
m∏
i=1

(z1 + ...+ zd − `i) . (5.8)

By fully expanding the product in (5.8), we arrive at:

∑
r1+...+rd+1=m

(
αrd+1

·
d∏

k=1

zrkk

)
, (5.9)

where the ri’s are non-negative integers, and where the αr’s, for every 0 ≤ r ≤ m are just
integer coefficients, formally defined as follows (this definition is not essential; we present
it only for the sake of concreteness):

αr :=
∑
U⊆[m]
|U |=r

∏
j∈U

(−`j) . (5.10)

Claim: The polynomial D̂ (the polynomial translation of D) is a linear combination (over
F) of polynomially (in |D|) many terms, such that each term can be written as

q ·
∏
k∈K

zrkk ,

where K is a collection of a constant number of indices, rk’s are non-negative integers,
and the zk’s and q are as above (that is, the zk’s are linear forms, where each zk has a single
coefficient for all variables in it, as in (5.7), and q is a polynomial translation of a clause).
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Proof of claim: By assumption, the total number of disjuncts of the form (5.6) in D is≤ t.
Consider the polynomial (5.9) above. In D̂, we actually need to multiply at most t many
polynomials of the form shown in (5.9) and the polynomial q.

For every j ∈ [t] we write the (single) linear form in the jth disjunct as a sum of
constantly many linear forms zj,1 + . . . + zj,d, where each linear form zj,k has the same
coefficient for every variable in it. Thus, D̂ can be written as:

q ·
t∏

j=1


∑

r1+...+rd+1=mj

(
α(j)
rd+1
·

d∏
k=1

zrkj,k

)
︸ ︷︷ ︸

(?)

 , (5.11)

(where the mj’s are not bounded, and the coefficients α(j)
rd+1 are as defined in (5.10) except

that here we add the index (j) to denote that they depend on the jth disjunct inD). Denote
the maximal mj , for all j ∈ [t], by m0. The size of D, denoted |D|, is at least m0. Note
that since d is a constant, the number of summands in each (middle) sum in (5.11) is
polynomial in m0, which is at most polynomial in |D|. Thus, by expanding the outermost
product in (5.11), we arrive at a sum of polynomially in |D| many summands. Each
summand in this sum is a product of t terms of the form designated by (?) in Equation
(5.11), multiplied by q. Claim

It remains to apply the multilinearization operator (Definition 2.5.2) on D̂, and verify
that the resulting polynomial has a depth-3 multilinear formula with a plus gate at the root
and of polynomial-size (in |D|). Since M[·] is a linear operator, it suffices to show that
when applying M[·] on each summand in D̂, as described in Claim 5.2.1, one obtains a
(multilinear) polynomial that has a depth-3 multilinear formula with a plus gate at the root,
and of polynomial-size in the number of variables n (note that clearly n ≤ |D|). This is
established in the following claim:

Claim: The polynomial M
[
q ·∏k∈K z

rk
k

]
has a depth-3 multilinear formula of

polynomial-size in n (the overall number of variables) and with a plus gate at the root
(over fields of characteristic 0), under the same notation as in Claim 5.2.1.

Proof of claim: Recall that a power of a symmetric polynomial is a symmetric polynomial
in itself. Since each zk (for all k ∈ K) is a symmetric polynomial, then its power zrkk is
also symmetric. The polynomial q is a translation of a clause, hence it is a product of two
symmetric polynomials: the symmetric polynomial that is the translation of the disjunction
of literals with positive signs, and the symmetric polynomial that is the translation of the
disjunction of literals with negative signs. Therefore, q ·∏k∈K z

rk
k is a product of constant

number of symmetric polynomials. By Proposition 5.2.3 M
[
q ·∏k∈K z

rk
k

]
(where here

the M[·] operator operates on the ~x variables in the zk’s and q) is a polynomial for which
there is a polynomial-size (in n) depth-3 multilinear formula with a plus gate at the root
(over fields of characteristic 0). Claim �
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We now come to the main result of this chapter.

Corollary 5.2.5 Multilinear proofs operating with depth-3 multilinear formulas (that is,
depth-3 fMC proofs) polynomially-simulate R0(lin) proofs.

Proof. Immediate from Corollary 5.1.3, Theorem 3.3.1 and Proposition 5.2.4.
For the sake of clarity we repeat the chain of transformations needed to prove the sim-

ulation. Let π be a given R0(lin) proof that uses only Rc,d(lin)-lines, for c, d two constant
integers. We first use Corollary 5.1.3 to transform π into a PCR proof π′, with number of
steps that is at most polynomial in |π|, and where each line in π′ is a polynomial transla-
tion of some Rc,d(lin)-line with size at most polynomial in the maximal line in π (which is
clearly at most polynomial in |π|). Thus, by Proposition 5.2.4 each polynomial in π′ has
a corresponding multilinear polynomial with a polynomial-size in |π| depth-3 multilinear
formula (and a plus gate at the root). Therefore, by Theorem 3.3.1, we can transform π′

into a depth-3 fMC proof with only a polynomial (in |π|) increase in size. �

5.3 Applications to Multilinear Proofs: Small Depth-3
Multilinear Proofs

5.3.0.1 The Pigeonhole Principle

Recall the propositional formulation of the pigeonhole principle described in Chapter 4
Section 4.4.1. The two sets of clauses in (4.24) translate via Definition 3.0.7 to the follow-
ing set of polynomials:

Pigeons : ∀i ∈ [m], x̄i,1 · · · x̄i,n
Holes : ∀i < j ∈ [m]∀k ∈ [n], xi,k · xj,k (5.12)

By Theorem 4.4.4, R0(lin) admits polynomial-size (in n) refutations of the m to n
pigeonhole principle (for any m > n) (as defined in Definition 4.4.1). Thus, Corollary
5.2.5 yields:

Theorem 5.3.1 For any m > n there are polynomial-size (in n) depth-3 fMC refutations
of the m to n pigeonhole principle PHPmn (over fields of characteristic 0).

Haken (1985) showed an exponential lower bound on the size of resolution refutations
of the pigeonhole principle (where the number of holes is n and the number of pigeons is
n+ 1). Pitassi et al. (1993) and, independently, Krajı́ček et al. (1995) showed exponential
lower bounds on the size of proofs of the pigeonhole principle in bounded-depth Frege
(again, where the number of holes is n and number of pigeons is n+ 1). Razborov (1998)
and, subsequently, Impagliazzo et al. (1999) showed exponential lower bounds on the
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size (and degree) of PC-refutations of a different low degree version of the pigeonhole
principle. In this low degree version the Pigeon polynomials of (5.12) are replaced by
1 − (xi,1 + . . . + xi,n), for all i ∈ [m]. This low degree version is not a translation of
a CNF formula. Our upper bound is also applicable to this low-degree version of the
pigeonhole principle (however, this would not yield a separation of fMC from PC and
PCR as we consider these proof systems as proof systems for (polynomial translations of)
CNF formulas).

Grigoriev and Hirsch (2003) showed polynomial size refutations of the pigeonhole
principle (i.e., polynomials (5.12)) for a formal (syntactic) propositional proof system
denotedF-PC (see the discussion on the fMC proof system in Chapter 3 and Chapter 6 for
more on syntactic algebraic proof systems) that manipulates general arithmetic formulas.
Their refutations operate with general arithmetic formulas of constant-depth.

By the discussion above we have:

Corollary 5.3.2 Depth-3 fMC over fields of characteristic 0 has an exponential gap over
resolution and bounded-depth Frege for the pigeonhole principle.

Since depth-3 fMC polynomially simulates resolution (Proposition 3.2.2) then by
Corollary 5.3.2 depth-3 fMC is strictly stronger than resolution.

5.3.0.2 Tseitin mod p Formulas

Corollary 5.2.5 and Theorem 4.4.9 yield:

Theorem 5.3.3 LetG be an r-regular graph with n vertices, where r is a constant, and fix
some modulus p. Then there are polynomial-size (in n) depth-3 fMC refutations of Tseitin
mod p formulas BTSG,p (over fields of characteristic 0).

The polynomial-size refutations of Tseitin graph tautologies here are different than
those demonstrated in Chapter 3 (Section 3.5). Theorem 5.3.3 establishes polynomial-
size refutations over any field of characteristic 0 of Tseitin mod p formulas, whereas the
former proofs required the field to contain a primitive pth root of unity. On the other
hand, the refutations in Section 3.5 of Tseitin mod p formulas do not make any use of the
semantic nature of the fMC proof system, in the sense that they do not utilize the fact that
the base field is of characteristic 0. (The latter fact enables one to efficiently represent any
symmetric [multilinear] polynomial by a depth-3 multilinear formula.)

5.4 Chapter Summary
In this chapter we linked together the results of the previous two chapters (Chapters 3, 4).
Specifically, we showed that depth-3 multilinear proofs can already polynomial simulate
a certain considerably strong fragment of R(lin) (namely, R0(lin)). As a consequence
we obtained polynomial upper bounds on depth-3 multilinear proofs of the propositional
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pigeonhole principle and the Tseitin’s mod p formulas (the latter is different from the short
proofs demonstrated in Chapter 3).
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This chapter aims at developing further the theory of algebraic proof complexity. Here,
instead of establishing propositional tautologies, we shall consider algebraic proof systems
establishing that a given arithmetic formula computes the zero polynomial (or, equiva-
lently, that two given arithmetic formulas compute the same polynomial). We begin with
the basic definition of the model and then we continue (in Section 6.5) with the problem
of proving lower bounds.

6.1 Preliminaries
For a graph G we write |G| to denote the number of vertices in G. For an edge directed
from u to v in G, we also say that u points to v.

Assumptions on arithmetic formulas in this chapter. In this chapter it will be con-
venient to consider all arithmetic formulas as labeled trees with fan-in at most two and
where field elements can only label leaves, and not edges (compare this to the definition
of arithmetic formulas in Section 2.5.1). An arithmetic with a plus or product gate at the
root is said to be a plus formula or product formula, respectively. Given an arithmetic
formula Φ a subformula of Φ is any (not necessarily proper) subtree of Φ. We say that an
arithmetic formula ϕ occurs in an arithmetic formula ϕ′ if ϕ is a subformula of ϕ′. In this
case we also say that ϕ′ contains ϕ as a subformula.

We write Φ1 ≡ Φ2 if Φ1 and Φ2 are two syntactically equal formulas (equal as labeled
trees; not to be confused with equality between polynomials). For a formula Φ and a node
v in Φ, we write Φv to denote the subformula of Φ whose root is v. We write Φ{ψ}v to
denote the formula Φ where the subtree rooted by v in Φ is replaced1 by ψ. We write
Φ{ψ} (without explicitly displaying v) to mean that ψ is a subformula of Φ.

Constant-depth arithmetic formulas. We shall consider bounded-depth formulas.
Since we deal in this chapter with formulas with fan-in two, a depth-d formula will mean
that there is an a priori constant d that bounds the number of alternations between plus and
product gates in every path in the formula-graph (given a path p from the root to a leaf,
the number of alternations between plus and product gates is the number of alternations
between consecutive blocks of the same gate-labels). A formula Φ is said to be a ΣΠΣ . . .
formula (where ΣΠΣ . . . has d ≥ 1 symbols) if every path in Φ starting at the root and
ending in the immediate ancestor of a leaf in the formula-graph of Φ is labeled with a block
of (zero or more) consecutive plus gates followed by a block of (zero or more) consecu-
tive product gates and so forth (d times). If moreover, a ΣΠΣ . . . (with d ≥ 1 symbols)
formula Φ contains a path starting at the root and ending in the immediate ancestor of a
leaf that is labeled with a block of one or more consecutive plus gates followed by a block
of one or more consecutive product gates and so forth (d times), then we say that Φ is a
proper ΣΠΣ . . . formula. The definition of (proper) ΠΣΠ . . . formulas is similar.

1Note that Φv is identified here with the labeled tree rooted in v, and not with all the formulas that are
equivalent to the labeled tree rooted in v. In other words, when we replace Φv by ψ in Φ, we only replace
the subtree of Φ whose root is v, by the tree ψ.
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Comment: When considering depth-3 formulas we shall slightly change the definition
of depth (see Section 6.2.1) in order to conform to the standard definition of depth-3
arithmetic formulas (that is, as a sum of products of linear forms).

Notational conventions. In this chapter we deal exclusively with arithmetic formulas,
and so we will often use the term “formula” to mean an arithmetic formula. Recall that
given two formulas Φ1 and Φ2, we write Φ1 + Φ2 and Φ1 × Φ2 to designate the formulas
with a plus (respectively, product) gate at the root and Φ1,Φ2 as its two children. We
will also use parenthesis to designate explicitly the structure of formulas. For example,
(x1 + x2) + (x3 + x4) means that (x1 + x2) and (x3 + x4) are the two subformulas
attached to the root gate (while, (x2 + x3), for instance, is not a subformula of the main
formula). Most often we will not care for the associativity and order of multiplication and
addition, to the effect that we shall not write explicitly the parentheses in formulas, like
in Φ1 × Φ2 × Φ3. Further, we write

∏
i∈I Φi, where I is some set of indices, to mean the

product formula whose products are all Φi (for i ∈ I), where we ignore the associativity of
subformulas (formally, every product gate in this formula is still of fun-in 2; though this is
not essential). Similarly, we will write

∑
i∈I Φi for the plus formula of all Φi (i ∈ I). Also,

we will sometimes abuse notation by identifying arithmetic formulas with the polynomials
they compute.

6.2 Analytic Symbolic Proofs of Polynomial Identities
Let us fix our underlying field F. Unless otherwise stated, from this point on, all formulas
will be arithmetic formulas computing polynomials in F[x1, . . . , xn]. An arithmetic for-
mula computes the zero polynomial if the polynomial computed at the root of the formula
is the zero polynomial (e.g., the formula x1 + (−1× x1)). In this section we describe our
underlying proof system, that is, analytic symbolic proof systems for polynomial identities.
The system introduced here is complete and sound for the set of arithmetic formulas com-
puting the zero polynomial. In other words, every formula computing the zero polynomial
has a proof (completeness), and only formulas computing the zero polynomial have proofs
(soundness).

Definition 6.2.1 (Derivation rule) A derivation rule is a pair of formulas F,G, written
as:

F(?)
G
,

where (?) is the name of the derivation rule. Let Φ be a formula and v a node in Φ.
Assume that Φv ≡ F (that is, Φ ≡ Φ{F}v). Then, given the formula Φ and the derivation
rule (?), we can derive from Φ the formula Φ{G}v, in which case we say that Φ{G}v was
derived from Φ by the derivation rule (?) applied on v.

Notation: Let Φ be a formula and v a node in Φ, such that Φv ≡ F , and suppose that
Φ{G}v was derived from Φ by the derivation rule (?) applied on v. Then we will say that



Chapter 6. Symbolic Proofs of Polynomial Identities 112

the derivation rule was applied in or on ψ, in case ψ is a subformula of Φ that contains v.
Further, in this case we call the formula G the consequence of the application of rule (?).
We write

Φ{F}v
(?)

Φ{G}v
,

to denote the above derivation rule application, where (?) designates the name of the rule
that was applied in order to derive the formula in the lower-line from the formula in the
upper-line. (It should be clear from the context that this latter notation is meant to denote a
proof sequence [see Definition 6.2.3 below], and not the description of a derivation rule.)

The following definition formulates the standard polynomial-ring axioms, where “non-
analytic” rules are kept out (see discussion below).

Definition 6.2.2 (Polynomial-ring analytic derivation rules) The following rules are
the polynomial-ring analytic derivation rules (where Q1, Q2, Q3 range over all arithmetic
formulas computing polynomials in F[x1, . . . , xn]):

Zero element rules:
0×Q1

0
0 +Q1

Q1

Unit element rules:
1×Q1

Q1

Q1

1×Q1

Scalar rules: let α, α1, α2 be elements in F.

α1 + α2 (where α = α1 + α2)α

α1 × α2 (where α = α1 · α2)α
α (where α = α1 · α2)

α1 × α2

Commutativity:
Q1 +Q2

Q2 +Q1

Q1 ×Q2

Q2 ×Q1

Associativity:
Q1 + (Q2 +Q3)

(Q1 +Q2) +Q3

Q1 × (Q2 ×Q3)

(Q1 ×Q2)×Q3

Forward distributivity:
Q1 × (Q2 +Q3)

(Q1 ×Q2) + (Q1 ×Q3)

Backward distributivity:
(Q1 ×Q2) + (Q1 ×Q3)

Q1 × (Q2 +Q3)
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Comment: It is easy to show that by using the commutativity and associativity (to the left)
rules in Definition 6.2.2, one can efficiently simulate the associativity to the right rules.

Definition 6.2.3 (Analytic symbolic proofs of polynomial identities) Let Φ and Φ′ be
two arithmetic formulas (computing the same polynomial in F[x1, . . . , xn]). An analytic
symbolic derivation of Φ′ from Φ is a sequence of arithmetic formulas ψ1, . . . , ψm such
that ψ1 ≡ Φ, ψm ≡ Φ′, and for all 1 < i ≤ m, ψi is derived from ψi−1 by applying the
polynomial-ring analytic derivation-rules (applicable on any subformula) from Definition
6.2.2. If the initial formula Φ computes the zero polynomial and Φ′ is the formula 0, then
we call such a derivation of Φ′ from Φ an analytic symbolic proof of Φ.

The length of an analytic symbolic proof (or derivation) is defined to be the number
of proof-lines in the proof (derivation, respectively).

We shall prove the completeness (and soundness) of analytic symbolic proofs in Sec-
tion 6.4.

Discussion about analytic symbolic proofs and the subformula property. Let us ex-
plain our choice of derivation rules in Definition 6.2.2. Recall from the introductory chap-
ter (Section 1.2.3.3) that we aim at formulating analytic symbolic proofs, that is, a system
that enjoys a sort of subformula property. The intuitive interpretation of this property in
our setting would be to prevent the prover from using “clever tricks” (or “detours”) when
proving polynomial identities, in the sense that one cannot introduce new algebraic formu-
las that might help in efficiently proving the identities (like, introducing new monomials
or new formulas, later to be cut-off in the proof).

The subformula property usually states that every formula that appears in an analytic
proof sequence π of T also appears in the terminal proof-line T . In our setting this should
mean that the consequence (i.e., lower-line) in any rule may only contain subformulas
already appearing in the premise (i.e., upper-line) of the rule. (Note that in a standard
sequent calculus proof, the proof starts with the axioms and terminates in a tautology; this
should be analogous, in our setting, to a symbolic proofs of an arithmetic formula com-
puting the zero polynomial taken backward: one starts from the “axiom” formula 0 and
develops the formula computing the zero-polynomial; thus, whereas the subformula crite-
rion usually requires that every formula in an upper-line of a rule occurs as a subformula
in the lower-line of the rule, we should require that every (sub)formula in a lower-line of a
rule should appear in some sense in the upper-line of the rule.) However, in our system we
cannot follow precisely this requirement, since the two distributivity rules might change
the structure of subformulas (for instance, (Q1 × Q2) in the lower-line of the forward
distributivity rule is not a subformula of the upper-line Q1 × (Q2 + Q3)). Nevertheless,
analytic symbolic proofs keep a relaxed subformula property (a “sub-monomial property”,
so to speak), as we now explain.

We say that a monomial is syntactically computed by an arithmetic formula Φ if it
occurs in the set of monomials that results when expanding all the monomials in Φ while
using no canceling of monomials (no canceling of monomials occurs also in any gate
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of Φ, not just the root gate).2 In analytic symbolic proofs we have the following “sub-
monomial property”: If π is an analytic symbolic proof and the formula Φ is a proof-line
(not a proper subformula in a proof-line) in π, then every monomial that is syntactically
computed by Φ either is syntactically computed by the initial proof-line (again, not a
proper subformula of the initial proof-line), or is the sum of (two or more) monomials that
are syntactically computed in the initial proof-line. This way, the number of monomials
syntactically computed by each proof-line does not increase along the proof sequence. We
shall not prove this statement formally here, and so this idea should only be kept as an
intuition in the mind of the reader.

Consider the following three (sound) derivation rules (absent from our system):

(i) Q1

Q1 + 0
; (ii) 0

0×Q1
; (iii) α

α1 + α2
(where α = α1 +α2, for α1, α2, α ∈ F).

We explain now how the choice not to include the above three rules helps us in keeping
the relaxed form of the subformula property in our proof system. First, given Φ, one cannot
simply derive Φ + ∆−∆ from Φ, where ∆ is any non-empty formula. Note that for this
derivation to be possible, we would need the following derivation sequence that uses rules
(i) and (ii) above:

Φ apply rule (i)
Φ + 0 apply rule (ii)

Φ + 0×∆
Φ + (1− 1)×∆

Φ + 1×∆ + (−1)×∆

Φ + ∆ + (−1)×∆ .

Second, if we had the rule (iii) in our proof system it would be possible to add arbitrary
number of new monomials that are syntactically computed by proof-lines throughout the
proof, as the following example illustrates:

3× (x1 × x2)
apply rule (iii)

(2 + 1)× (x1 × x2)

2× (x1 × x2) + 1× (x1 × x2)
. . .

6.2.1 Depth-3 formulas and depth-3 analytic symbolic proofs

We now consider analytic symbolic proofs of polynomial identities operating with depth-3
arithmetic formulas. The standard definition of depth-3 (and specifically ΣΠΣ) arithmetic
formulas includes all formulas that can be written as a sum of products of linear poly-
nomials. In other words, according to the standard definition, a ΣΠΣ formula Φ (in the

2A monomial here means a product of variables with its scalar coefficient.
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variables x1, . . . , xn) can be written as:

Φ ≡
m∑
i=1

di∏
j=1

Lij , (6.1)

where the Lij’s are linear polynomials in the variables x1, . . . , xn.
Due to the syntactic nature of our symbolic proof system, we require that a field ele-

ment α ∈ F that multiplies a (polynomial computed by a) formula f is written as α × f ,
where the product gate × is written explicitly. This makes, in our setting, the polynomial
in (6.1) to be a depth-4 formula, that is a ΣΠΣΠ (the reason is that variables inside a
linear polynomial Lij might have coefficients, which makes Lij a ΣΠ formula). In order
to include polynomials of the form shown in Equation (6.1) in our depth-3 proof systems
we define the following class of formulas.

Definition 6.2.4 (Σ̂ and ΣΠΣ̂ formulas) A Σ̂ formula is a ΣΠΣ arithmetic formula (ac-
cording to the definitions in the beginning of this chapter), such that the bottom ΠΣ level
may include only field elements or products of a single variable with a sum (of zero or
more) field elements. (Accordingly a ΣΠΣ̂ formula is a ΣΠΣΠΣ arithmetic formula where
the bottom ΣΠΣ level is Σ̂.)

Example: The formula (2 + 4 + 1)× x1 + 3× x2 + (1 + 2)× x3 + 1 , is a Σ̂ formula. The
formula 3× 2 is not a Σ̂ formula.

Thus, a Σ̂ formula is a formula computing a linear form (we need to include sums of
fields elements as coefficients and not just a single field element as a coefficient, since this
will enable us to add two linear forms using only Σ̂ formulas). Note that indeed any sum
of products of linear polynomials can be computed by a ΣΠΣ̂ formula.

We conclude that when dealing with depth-3 proof systems we will in fact assume that
all formulas in the proofs are ΣΠΣ̂ formulas.

Definition 6.2.5 (Depth-3 analytic symbolic proofs) A depth-3 analytic symbolic
derivation (proof) is an analytic symbolic derivation (proof, respectively) in which every
proof-line is a ΣΠΣ̂ formula.

We shall prove the completeness of depth-3 analytic symbolic proofs in Section 6.4
(this is done by proving the completeness of a fragment of depth-3 analytic symbolic
proofs).

Example: A typical application of the backward distributivity rule inside depth-3 sym-
bolic proofs proceeds according to the following scheme:

∆ +
d∏
j=1

Lj × L′ +
d∏
j=1

Lj × L′′

∆ +
d∏
j=1

Lj × (L′ + L′′)

,
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where L′, L′′ and the Lj’s are formulas of linear polynomials in the variables x1, . . . , xn
and ∆ is any possibly empty formula (note that the two occurrences of

∏d
j=1 Lj in the

upper-line must be identical).
(When exchanging the upper- and lower- lines, we get a typical application of the

forward distributivity rule.)

6.3 The Structure of Symbolic Proofs
In this section we develop terminology and concepts for dealing with structural properties
of symbolic proofs. The notions developed here are suitable mainly for dealing with
small depth symbolic proofs, as the notions mainly take into account the top gates of the
formulas in the proofs. This will suffice for stating and proving our main lower bounds.

We will identify a certain graph structure induced by symbolic proofs. The idea is
to partition the graph into levels, each level corresponds to a proof-line. Each node in
level i corresponds to one summand of the formula in the ith line of the proof. From each
summand (that is, a vertex in the graph) there will be edge(s) directed to its “immediate
ancestor(s)” in the previous line. The formal definition follows.

Definition 6.3.1 (Underlying graph of analytic symbolic proof) Let π = (Φ1, . . . ,Φm)
be an analytic symbolic proof. Define the underlying directed acyclic graph of π denoted
Gπ as follows. The graph Gπ has m levels and edges may only go from level i to level
i− 1, for 1 < i ≤ m (the vertices in level 1 have no outgoing edges). For any 1 ≤ i ≤ m,
write Φi as ϕ1 + . . .+ϕ`i , for some `i ≥ 1, where every ϕj is either a product formula or a
formula containing only a single leaf. Then, the ith level ofGπ consists of `i vertices, each
vertex is labeled by a different summand ϕj from Φi and if 1 ≤ i < m then the incoming
edges of level i (from vertices in level i + 1) are defined as follows (we shall sometime
abuse notation by identifying a vertex in the graph Gπ with its label and a level in the
graph Gπ with its corresponding proof-line in π):

(i) In case no rule was applied on ϕj in level i, for j ∈ [`i] (see notation after Definition
6.2.1), then ϕj appears (as a single vertex) in both level i and level i+ 1, and we put
an incoming edge from ϕj in level i+ 1 to ϕj in level i.

(ii) Assume that a rule different from the forward distributivity rule was applied on ϕj
in level i, for j ∈ [`i]. Since ϕj is in a separate vertex in Gπ and some rule was
applied on ϕj (in the ith step in π) then it must be that ϕj is a product formula (and
not a single leaf formula). It can be verified by a straightforward inspection of the
derivation rules (Definition 6.2.2) that a consequence of any rule different from the
forward distributivity rule is not a plus formulas, and so the consequence of ϕj in
proof-line i + 1 in π is (still) a product formula. This implies that there is a single
vertex ϕ′j in level i + 1 which is the consequence of ϕj . We define ϕj in level i to
have a single incoming edged from ϕ′j in level i+ 1.
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(iii) In case the forward distributivity rule was applied on ϕj in level i, for j ∈ [`i], on
the root gate of ϕj (again, see notation after Definition 6.2.1), then the consequence
of ϕj in level i+ 1 is a sum of two formulas denoted ψ0 + ψ1. Thus (by definition of
the vertices in Gπ), level i + 1 contains two vertices ψ0 and ψ1, and we define ϕj to
have two incoming edges, one from ψ0 and one from ψ1.

(iv) In case the forward distributivity rule was applied in ϕj in level i, for j ∈ [`i], but
not on the root gate of ϕj , then the consequence of ϕj in level i+1 must be a product
formula denoted ϕ′j . We define ϕj in level i to have a single incoming edged from ϕ′j
in level i+ 1.

(v) In case the backward distributivity rule was applied on ϕj and ϕj+1 in level i, for
j ∈ [`i − 1] (note that the backward distributivity rule must be applied on a plus
formula, and so it must involve two vertices in level i of Gπ), then the consequence
of ϕj + ϕj+1 in level i + 1 is a product formula denoted ψ. We define ϕj to have an
incoming edge from ψ in level i+ 1.

Notation: For a vertex v in Gπ we denote by v̇ the formula that labels v and by level(v)
the level of Gπ in which v occurs.

Example. The following derivation:

((x1 × x2) + (2× (x1 + (x1 + 3)) + (−1× (2× (x1 + 3) + x1 × (x2 + 2))))

((x1 × x2) + (2× x1) + (2× (x1 + 3)) + (−1× (2× (x1 + 3) + x1 × (x2 + 2))))

(x1 × x2) + (2× x1) + (2× (x1 + 3)) + (−1× (2× (x1 + 3))) + (−1× (x1 × (x2 + 2)))

(x1 × x2) + (2× x1) + (2× (x1 + 3)) + ((−1× 2)× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × x2) + (2× x1) + (2× (x1 + 3)) + (−2× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × x2) + (x1 × 2) + (2× (x1 + 3)) + (−2× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × (x2 + 2)) + (2× (x1 + 3)) + (−2× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × (x2 + 2)) + ((2− 2)× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × (x2 + 2)) + (0× (x1 + 3)) + (−1× (x1 × (x2 + 2)))

(x1 × (x2 + 2)) + (−1× (x1 × (x2 + 2)))

(1× (x1 × (x2 + 2))) + (−1× (x1 × (x2 + 2)))

((1− 1)× (x1 × (x2 + 2)))

(0× (x1 × (x2 + 2)))

0

has the corresponding graph structure shown in Figure 6.1 (we ignore the associativity
rule applications).

6.3.1 Regular Analytic Symbolic Proofs

We define here a fragment of analytic symbolic proofs, called regular analytic symbolic
proofs, which mimics to some extent a tree-like structure on analytic symbolic proofs. We
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(x1 × x2)

(x1 × x2)

(x1 × x2)

(x1 × x2)

(x1 × x2)

(2× (x1 + (x1 + 3)))

(2× (x1 + 3))

(x1 × 2)

(2× (x1 + 3))(2× x1)

(2× (x1 + 3))(2× x1)

(2× (x1 + 3))(2× (x1 + 3))(2× x1)

(2× (x1 + 3))(2× x1)

(−1× (2× (x1 + 3) + x1 × (x2 + 2)))

(−1× (x1 × (x2 + 2)))(−1× (2× (x1 + 3)))

(−1× (x1 × (x2 + 2)))

(−1× (2× (x1 + 3) + x1 × (x2 + 2)))

(−1× (x1 × (x2 + 2)))((−1× 2)× (x1 + 3))

(−2× (x1 + 3)) (−1× (x1 × (x2 + 2)))(−2× (x1 + 3))

(x1 × x2) (2× (x1 + 3)) (−1× (x1 × (x2 + 2)))(−2× (x1 + 3))

(−1× (x1 × (x2 + 2)))(−2× (x1 + 3))(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))((2− 2)× (x1 + 3))(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))(0× (x1 + 3))(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))0(x1 × (x2 + 2))

(−1× (x1 × (x2 + 2)))(x1 × (x2 + 2))

(1× (x1 × (x2 + 2))) (−1× (x1 × (x2 + 2)))

0

((1− 1)× (x1 × (x2 + 2)))

(0× (x1 × (x2 + 2)))

Figure 6.1: Underlying graph of an analytic symbolic proof (this proof is also regular [see
Definition 6.3.4]). A single shaded vertex in a level means that a derivation rule is applied on this
vertex (that is, an application rule is applied on one of the gates [formally, nodes] in the formula
labeling the vertex). Two shaded vertices in a level means that the backward distributivity rule is
applied in π on the plus gate (in the corresponding proof-line in π) that has the two shaded vertices
as its children.

shall use the following two definitions for that purpose.
Atomic formulas are essentially formulas computing single monomials:

Definition 6.3.2 (Atomic and non-atomic formulas) A formula Φ is atomic if it has the
form φ1 × · · · × φk, for k ≥ 1, where each φi (1 ≤ i ≤ k) is either a variable or a sum of
one or more field elements; otherwise, Φ is said to be non-atomic.

Example: The formulas (1 + 2)× x2× x1 and 1× 3× x1 are atomic formulas, as well as
the formula 0 and the formula x1. The formula x2 + 3 is a non-atomic formula.

Definition 6.3.3 Given a proof π and its underlying graph Gπ let G′ be the subgraph of
Gπ induced by considering only the non-atomic vertices in Gπ, and let v be a vertex in G′.
Then, Tv(Gπ) is defined to be the directed subgraph of G′ induced by all the vertices (in
G′) reachable from v via a directed-path in G′ (including v itself).

The idea of the regularity condition of analytic symbolic proofs we are about to define
is to guarantee that if a forward distribution rule is applied on A× (B +C), which breaks
the formula into the sum of two terms A×B andA×C , then the two formulasA×B and
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A×C, as well as any other two formulas that originate from A×B and A×C (possibly
also originating by other formulas), might not be united together again by means of the
backward distributivity rule (in fact, this rule is the only rule that can “unite” two separate
summands into a product formula) .

In the terminology of the graph structure of analytic symbolic proofs (Definition 6.3.1)
the regularity condition means that a vertex v in a proof-graph cannot have two edge-
disjoint (directed) paths starting in v and leading to the same vertex.

Definition 6.3.4 (Regular analytic symbolic proofs) Let π be an analytic symbolic
proof. We say that π is a regular analytic symbolic proof (or regular proof for short),
if for every (non-atomic) vertex v in Gπ, the subgraph Tv(Gπ) is a tree.3

In other words, analytic symbolic proofs are regular if for every (non-atomic) vertex
w in their underlying proof-graph there are no two distinct directed paths originating in w
that reach a common vertex (different from w).

Example: Figure 6.1 illustrates a regular analytic symbolic proof. One can verify that for
every (non-atomic) vertex w in the graph there are no two distinct directed paths originat-
ing in w that reach a common vertex.

Comment: In the definition of regular proofs we need to specifically refer to non-atomic
vertices (through the definition of Tv(Gπ)) for the following reason. If for no vertex v
in Gπ does one get by two distinct (directed) paths from v to a vertex corresponding
to an initial summand (in the initial formula), then some formulas computing the zero
polynomial might not be provable. Consider for example the formula (x1 + 1) × (x1 −
1)−x1×x1−1. This formula computes the zero polynomial. However, the first term (from
the left) is a product formula that when expanded, contains the two canceling monomials
x1 × −1 and 1 × x1. Thus, in order to reach the formula 0 we must enable these two
terms to cancel each other (that is, to derive the (sub-)formula 0 from them). Hence, this
amounts to a vertex labeled ((1− 1)×x1) in Gπ from which two distinct paths lead to the
same initial summand (x1 + 1)× (x1 − 1).

We use the following simple structural proposition in the next sections. Essentially,
the proposition states that if there is a derivation starting with ∆ + Θ and terminates in
∆′ + ϕ, and ϕ in the terminal line was “originated” only from Θ in the initial line, then
there is a derivation starting in Θ and terminating in ∆′′ + ϕ for some possibly empty
formula ∆′′.

Proposition 6.3.5 Let Θ and ∆ be two formulas, and assume that ϕ is a product formula
(or a single leaf formula) such that there is a regular analytic symbolic derivation π start-
ing from ∆ + Θ and deriving ∆′ + ϕ, where ∆′ is any possibly empty formula. Denote by
Gπ the underlying graph of π, and let v be the vertex in the maximal level of Gπ that is
labeled with ϕ. Let T be the set of vertices of Tv(Gπ), let A be the set of all the vertices

3The intention here, of course, is that Tv(Gπ) is a tree also when considered as an undirected graph, that
is, when replacing every directed edge in Tv(Gπ) with an undirected one.
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in level 1 of Gπ, and let B be the set of all the vertices that are labeled with summands
of Θ in the first level of Gπ. If (T ∩A) ⊆ B , then there is a regular analytic symbolic
derivation π′ starting from Θ alone and deriving ∆′′ + ϕ, where ∆′′ is any possibly empty
formula.

Proof. Starting from Tv(Gπ), we construct a new graph G′ that is a legitimate underlying
graph of a regular analytic symbolic proof of ∆′′ + ϕ, where ∆′′ is any possibly empty
formula (we ignore the order of additions).

Let G′ := Tv(Gπ).
Step I: For every u ∈ B\T, we add to every level 1 ≤ j ≤ level(v) in4 G′ a new copy

of u, and put an edge from u in level j to u in level (j − 1) in G′ (for 1 < j ≤ level(v)).
Step II: For all vertices w in Tv(Gπ) such that w 6= v, we do the following. Let

` = level(w). By definition of Tv(Gπ) there is a vertex u ∈ T such that w has an incoming
edge from u in Tv(Gπ) (since there is a directed path from v to w in Tv(Gπ)). Assume
that there is a vertex r ∈ Gπ \T such that w has an incoming edge from r. Then,

(i) we add the vertex r to level `+ 1 in G′; and
(ii) we add an edge from r to w in G′; and
(iii) we add to every level j > ` + 1 in G′ a new copy of r, and put an edge from r in

level j to r in level (j − 1) in G′.

We claim that G′ is the underlying graph of a regular analytic symbolic derivation
starting from Θ and deriving ∆′′ + ϕ, for some possibly empty formula ∆′′. Note that
the first level of G′ consists precisely of the summands of Θ, and that the last level of G′

contains the vertex v. Moreover, G′ conforms to the regularity conditions: no vertex in G′

has two distinct (non trivial) directed paths that reach the same vertex in G′.
Thus, we only need to show that G′ constitutes a legal analytic symbolic derivation.

To this end, it suffices to show that every level j > 1 in G′ corresponds to a proof-line that
is derivable from the previous level j− 1, and that the edges from vertices in level j to the
vertices in level j − 1 in G′ are legal (that is, conform to the definition of an underlying
graph of an analytic symbolic proof):

Let w be a vertex in level j > 1 in G′, and consider the following cases:

1. If w 6∈ T and w was added in Step I to G′, then w was added to G′ along with a
single outgoing edge that points into another copy of w in level j − 1 in G′, and so
we are done.

2. If w ∈ T, then, by definition, there is an edge from w to another vertex u ∈ T and
hence u is in G′. In case u has fan-in 1 in Gπ we are done.

Otherwise, there is a (unique) vertex r 6= w in Gπ such that r has an edge e pointing
to u in Gπ. By the construction of G′ (Step II, items (i) and (ii) above), both r and
the edge e are in G′, and so both w and r and their outgoing edges correspond to a
legal derivation. This takes care of all the vertices in level j in G′ that are not in T,
as well as all the vertices r added to G′ in level j, in Step II, item (i) above.

4Clearly, every vertex in Tv(Gπ) retain the same level it had in Gπ .
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3. If w 6∈ T and w was added to G′ in Step II, item (iii) above, then w has a single
outgoing edge that points to a copy of w in level j − 1 of G′, and we are done.

�

Comment: By inspecting the proof of Proposition 6.3.5, it is evident that the statement
of this proposition also holds for regular analytic symbolic proofs operating with depth-3
formulas. We shall use this fact in the sequel.

6.4 Completeness
Recall that when dealing with depth-3 formulas computing the zero polynomial, we as-
sume that the formulas are in fact ΣΠΣ̂ formulas (Definition 6.2.4).

Theorem 6.4.1 (Completeness of regular analytic depth-3 symbolic proofs) Regular
analytic depth-3 symbolic proofs are complete in the sense that every depth-3 formula
computing the zero polynomial has such a proof; and sound in the sense that only
formulas computing the zero polynomial have such proofs.

Proof sketch: Soundness stems from the soundness of the derivation rules: every derivation
rule that is applied on some formula Φ yields a formula computing the same polynomial
as Φ. We turn to proving completeness.

We first expand all the (formulas of) monomials (including their coefficients, and with
no cancelations applied anywhere) in each summand in the initial ΣΠΣ̂ formula. This step
requires only the successive application of the forward distributivity rule. In particular,
assume that Φ ≡ ψ1 + . . . + ψk, for some k ≥ 1, is a ΣΠΣ̂ formula computing the zero
polynomial, where each ψi is a ΠΣ̂ formula. Then, applying the forward distributivity rule
on the root product gate of a summand ψi (for i ∈ [k]), yields a new ΣΠΣ̂ formula.

Next we derive the 0 formula from every group of canceling monomials. Thus, we
arrive at a sum of 0’s formulas. This can be further reduced into a single 0 by the zero
element rule.

By simple inspection of the underlying graph of the above proof it is easy to see that the
graph obtained is regular: Every non-atomic vertex has only a single (directed) path that
ends at the vertex labeled with a summand from the initial line. Thus, every non-atomic
vertex v trivially induces a tree, via Tv(Gπ), in the underlying graph, which precisely
means that the proof is regular.

In the same manner we can get the completeness and soundness properties for unre-
stricted depth regular symbolic proofs for the set of all formulas that compute the zero
polynomial.

Theorem 6.4.2 Analytic symbolic proofs are sound and complete for the set of formulas
computing the zero polynomial.
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Proof. Soundness stems from the soundness of the derivation rules. For completeness,
we first expand all the (formulas of) monomials (including their coefficients, and with
no cancelations applied anywhere) in each summand in the initial formula (and without
taking care for the depth of formulas). Then we proceed as in the proof of Theorem 6.4.1.
�

6.5 Lower Bounds
In this section we demonstrate exponential-size lower bounds on the length of regular
analytic symbolic proofs operating with depth-3 formulas of certain polynomial identi-
ties. The hard instances will be built from small depth-3 formulas that we already met in
previous chapters, that is, formulas for the elementary symmetric polynomials over large
enough fields.

6.5.1 Hard Formulas

We shall consider from now on all arithmetic formulas to compute polynomials over the
field of complex numbers C. The following depth-3 formula will serve as our hard in-
stance.

Symn :≡ r0 × (x1 + b0)× (x2 + b0)×· · · × (xn + b0) +

r1 × (x1 + b1)× (x2 + b1)×· · · × (xn + b1) +

· · · (6.2)
rn × (x1 + bn)× (x2 + bn)×· · · × (xn + bn) −1 ,

where r0, . . . , rn are some n + 1 complex numbers and b0, b1, . . . , bn are n + 1 distinct
non-zero complex numbers (each of which is different from 1).

The jth summand in Symn, for 0 ≤ j ≤ n, is a ΠΣ formula (and hence specifically a
ΠΣ̂ formula) and is denoted An,j . In other words,

An,j ≡ rj × (x1 + bj)× (x2 + bj)× . . .× (xn + bj) , (6.3)

and so

Symn ≡
n∑
j=0

An,j − 1 .

Proposition 6.5.1 There exist complex numbers r0, . . . , rn and n + 1 distinct nonzero
complex numbers b0, . . . , bn (each of which is different from 1), so that Symn computes
the zero polynomial.
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Proof. Consider the polynomial 1 as the symmetric multilinear polynomial of degree
0. By Theorem 2.5.4 in the preliminaries (Chapter 2, Section 2.5.4), there is a depth-3
multilinear arithmetic formula Φ with a plus gate at the root computing 1 where Φ has a
special form: specifically, by Equation 2.4 in the proof of Theorem 2.5.4, this formula Φ
can be written as:

n∑
j=0

rj ·
n∏
i=1

(xi + bj) ,

for any chosen distinct bj’s complex numbers. (Also notice that there must be at least one
nonzero ri (0 ≤ i ≤ n).) �

6.5.2 Key Lemma: Lower Bounds on Deriving One Formula from
Another

In this subsection we show a lower bound on the length of regular analytic symbolic
derivations operating with ΣΠΣ̂ formulas needed to derive a certain formula from another
formula. Specifically, we provide two formulas Φ and Ψ, such that starting from Φ one
cannot efficiently derive any formula that contains Ψ as a subformula. This will then
facilitate us in the next subsection (when proving lower bounds on the length of proofs of
formulas computing the zero polynomial, that is, on the derivation length needed to reach
the formula 0). Note that the task of deriving a certain formula from a different formula,
and the task of proving that a formula computes the zero polynomial (by deriving the
zero formula) are not necessarily identical tasks since our derivation rules are asymmetric
(Definition 6.2.2).5

We work in depth-3 from now on, and specifically with ΣΠΣ̂ formulas.

Definition 6.5.2 (Derivable subformulas) Let Φ be a formula. The collection of all for-
mulas Ψ for which there is an analytic symbolic derivation of Ψ from Φ are said to be
the formulas derivable from Φ. If B is the set of all formulas derivable from Φ then the
set of all subformulas of formulas in B is called the set of subformulas derivable from Φ,
denoted deriv(Φ).

Example: Let Φ be the Σ formula (xi + b1). Then, the derivable formulas from Φ are,
e.g., (xi + b1), (b1 +xi) and all Σ̂ formulas

∏
i∈I cj ×

(∏
k∈K aj × xi +

∏
j∈J bj

)
, where∏

i∈I ci =
∏

k∈K ak = 1 and
∏

j∈J bj = b1. Note that (xi + b2 + b3) is not derivable from
(xi + b1), even when b2 + b3 = b1 is true in the field; this stems from the definition of
our derivation rules (Definition 6.2.2). Further, xi, b1 and (xi + b1), for instance, are in

5To see this, observe that deriving ψ1 from ψ2 means that we can derive ψ1 − ψ1 from ψ2 − ψ1, and
thus we can derive 0 from ψ2 −ψ1. On the other hand, deriving 0 from ψ2 −ψ1 does not imply that we can
derive ψ1 from ψ2 (note that we cannot start from ψ2, add −ψ1 +ψ1 to yield ψ2−ψ1 +ψ1, and then derive
0 from the first two summands to yield ψ1; this is because we would need a rule to introduce the formula
−ψ1 + ψ1 in the first step, and we do not have such a rule in analytic symbolic proofs).
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derive(xi + b1), while (xi + b0) 6∈ derive(xi + b1) (in case b0 6= b1) (see Proposition 6.5.9
for a proof).

The following definition is basically the transitive closure of a formula under “for-
ward” and “backward” applications of all rules excluding the two distributivity rules (un-
less the distributivity rules are applied inside Σ̂ formulas).

Definition 6.5.3 (Simple descendants and simple ancestors) Given a formula Ψ we de-
fine Cl(Ψ) as the smallest set of formulas containing Ψ and satisfying the following: As-
sume that ∆ is a formula and v is some node in the (tree of) ∆, then:

(i) If ∆{φ+ 0}v ∈ Cl(Ψ), then ∆{φ}v ∈ Cl(Ψ) ;

(ii) If ∆{α1 + α2}v ∈ Cl(Ψ), then ∆{α}v ∈ Cl(Ψ) for α, α1, α2 ∈ F, such that α =
α1 + α2 ;

(iii) ∆{φ× 1}v ∈ Cl(Ψ) iff ∆{φ}v ∈ Cl(Ψ) ;

(iv) ∆{α1×α2}v ∈ Cl(Ψ) iff ∆{α}v ∈ Cl(Ψ) , for α, α1, α2 ∈ F such that α = α1×α2 ;

(v) ∆{φ2 ◦ φ1}v ∈ Cl(Ψ) iff ∆{φ1 ◦ φ2}v ∈ Cl(Ψ) , where ◦ ∈ {+,×};

(vi) ∆{(φ1 ◦ φ2) ◦ φ3}v ∈ Cl(Ψ) iff ∆{φ1 ◦ (φ2 ◦ φ3)}v ∈ Cl(Ψ) , where ◦ ∈ {+,×};

(vii) ∆
{(∑

j∈J αj +
∑

k∈K αk

)
× xi

}
v
∈ Cl(Ψ) (where |J |, |K| ≥ 1 and for all j ∈ J

and k ∈ K, αj, αk ∈ F ) iff ∆
{

(
∑

j∈J αj)× xi +
(∑

k∈K αk
)
× xi

}
v
∈ Cl(Ψ) ;

(viii) ∆
{(∑

j∈J αj

)
× (xi + xj)

}
v
∈ Cl(Ψ) iff

∆
{(∑

j∈J αj

)
× xi +

(∑
j∈J αj

)
× xj

}
v

, where αj ∈ F (for all j ∈ J) and

|J | ≥ 1.

Whenever Ψ′ ∈ Cl(Ψ) we call Ψ′ a simple descendant of Ψ , and Ψ a simple ancestor of
Ψ′. Given a formula Ψ we denote by Cl−(Ψ) the set of all simple ancestors of Ψ, that is,
the set of all Φ such that Ψ ∈ Cl(Φ).

Note: Observe that Cl−(Ψ) is closed under the specified derivation rules when they are
applied “backward” on the formulas in Cl−(Ψ). Also note that the only items in Definition
6.5.3 that are asymmetric are items (i) and (ii).

Comment: The last two clauses (vii) and (viii) in Definition 6.5.3 intend to deal with dis-
tributivity rules applied inside Σ̂ formulas only (and those distributivity rule applications
whose consequence is a Σ̂ formula).
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We shall use the following abbreviation (this is identical to Symn when excluding the
first summand An,0).

Initn :≡ r1 × (x1 + b1)× (x2 + b1)× · · · × (xn + b1) +

r2 × (x1 + b2)× (x2 + b2)× · · · × (xn + b2) +

· · · (6.4)
rn × (x1 + bn)× (x2 + bn)× · · · × (xn + bn)

−1 .

We thus have, by Equation (6.3):

Initn ≡
n∑
j=1

An,j − 1 . (6.5)

Definition 6.5.4 (Proper Σ̂ formulas) A proper Σ̂ formula is a Σ̂ formula which is a plus
formula (that is, it has a plus gate at the root). A proper ΠΣ̂ formula is a proper ΠΣ
formula where the Σ formulas in the bottom levels are replaced by proper Σ̂ formulas.
Similarly, a proper ΣΠΣ̂ formula is a proper ΣΠΣ formula where the Σ formulas in the
bottom levels are replaced by proper Σ̂ formulas.

Note that every proper Σ formula (Section 6.1) is a proper Σ̂ formula, while not every
proper Σ̂ formula is a Σ formula.

Lemma 6.5.5 (Key lower bound) Let π be a regular analytic symbolic proof operating
with ΣΠΣ̂ formulas, and with the initial formula in π being Initn, for some positive n ∈ N.
Let Gπ be the corresponding graph of π. Assume that v is a vertex in Gπ labeled with Φ,
which is a simple ancestor of

ψ ×
m∏
k=1

Ψk ,

where ψ is any possibly empty formula, and for every k ∈ [m], i ∈ [n] and j ∈ [n], Ψk is
a proper Σ̂ formula, such that Ψk 6∈ deriv(xi + bj). Then |Tv(Gπ)| ≥ 2m.

Proof. We go by induction on m. The idea is to build inductively and in a bottom-up
fashion, starting with v, the tree Tv(Gπ), by considering all the possible rules that can
derive the formula Φ.

Base case: m = 1. The formula Φ is a simple ancestor of ψ × Ψ1, where ψ is some
possibly empty formula6 and Ψ1 is a proper Σ̂ formula that is not a subformula derivable
from (xi + bj), for all j ∈ [n] and all i ∈ [n]. Observe that (for any positive n ∈ N) every
proper Σ̂ formula that occurs in Initn has the form (xi + bj), for some j ∈ [n] and i ∈ [n].

6Note that in this case (i.e., when m = 1), since Ψ1 is a proper Σ̂ formula, ψ is in fact a non-empty
formula, as by definition of Gπ , the vertex v cannot be labeled with a plus formula.



Chapter 6. Symbolic Proofs of Polynomial Identities 126

Thus, Φ is different from every subformula in the initial formula Initn, and so the number
of proof-lines in π is at least 2, and we are done.

Induction case: We have that Φ is a simple ancestor of ψ ×∏m
k=1 Ψk, where ψ is some

possibly empty formula, m > 1 and the Ψk’s are proper Σ̂ formulas. We shall use the
following main technical lemma (whose proof is given in Section 6.5.4).

Lemma 6.5.6 (Technical lemma) If m > 1 then (under the conditions stated in Lemma
6.5.5) there exists a vertex y in Tv(Gπ), such that there is a path from v to y in Tv(Gπ),
and y has two outgoing edges to two (distinct) vertices u,w, so that: u and w are labeled
with two simple ancestors of the following product formulas

ψ0 ×
m−1∏
k=1

Ψ′k and ψ1 ×
m−1∏
k=1

Ψ′′k , (6.6)

respectively, where ψ0, ψ1 are some possibly empty formulas, and for all k ∈ [m − 1],
i ∈ [n] and j ∈ [n], Ψ′k,Ψ

′′
k are some proper Σ̂ formulas such that Ψ′k 6∈ deriv(xi + bj)

and Ψ′′k 6∈ deriv(xi + bj).

Given Lemma 6.5.6, we can then use the induction hypothesis on the two vertices
u,w (whose existence is guaranteed by the lemma), showing that |Tu(Gπ)| ≥ 2k−1 and
|Tw(Gπ)| ≥ 2k−1. By the regularity condition we know that Tu(Gπ) and Tw(Gπ) have
no common vertices (note that v̇ is a non-atomic formula [Definition 6.3.2] and so indeed
Tv(Gπ) is a tree [Definition 6.3.4]). Therefore, |Tv(Gπ)| ≥ |Tu(Gπ)| + |Tw(Gπ)| ≥ 2k,
which concludes the proof of Lemma 6.5.5. �

In the next section we shall need the following simple generalization of Lemma 6.5.5:

Corollary 6.5.7 Let π be a regular symbolic proof operating with ΣΠΣ̂ formulas, and
with the initial formula in π being ∆+Initn, for some ΣΠΣ̂ formula ∆ and some positive
n ∈ N. Let Gπ be the corresponding graph of π. Assume that v is a vertex in Gπ labeled
with Φ, which is a simple ancestor of

ψ ×
m∏
k=1

Ψk ,

where ψ is any possibly empty formula, and for every k ∈ [m], i ∈ [n] and j ∈ [n], Ψk is
a proper Σ̂ formula, such that Ψk 6∈ deriv(xi + bj). Let T be the set of vertices of Tv(Gπ)
and let A be the set of all vertices in level 1 of Gπ that are subformulas in ∆ (i.e., those
corresponding to summands in ∆ in the initial line). If T ∩A = ∅, then |Tv(Gπ)| ≥ 2m.

Proof. Immediate from Lemma 6.5.5 and Proposition 6.3.5. �
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6.5.3 Main Lower Bound: Regular Depth-3 Proofs

In this subsection we demonstrate how to use the Key Lemma 6.5.5 in order to prove a
lower bound on the proof length of Symn, that is, a lower bound on the size of derivation
starting with Symn and terminating with the formula 0.

The main result of this chapter is the following:

Theorem 6.5.8 Every regular analytic symbolic proof operating with ΣΠΣ̂ formulas of
Symn has length 2Ω(n).

Comment: The number of variables in Symn is ` = n · (n + 1), and so Theorem 6.5.8
gives a lower bound of 2Ω(

√
`).

The rest of this subsection is dedicated to the proof of Theorem 6.5.8. The proof
idea goes as follows. We begin by considering the summand An,0 in the first line of π.
We expand An,0 by applying the forward distributivity rule as much as we like (without
using the backward distributivity rule, but possibly with applying other rules). In case
we expand too much (i.e., exponentially many) summands, we are done. Otherwise, the
expansion of An,0 yields a summand Φ which is a simple ancestor of ψ×∏m

k=1 Ψk , where
m is big enough (that is, m ≥ n/2), and Φ conforms to the conditions in Key Lemma
6.5.5 excluding the fact that the initial line of the proof is not necessarily Initn. Since,
by assumption, no forward distributivity rule applications are applied on Φ the backward
distributivity must be applied on it sometime. We can then show that in this case there
exists a vertex v in the underlying graph Gπ of π that fully conforms to the conditions
stated in Key Lemma 6.5.5 (more correctly, v fully conforms to the conditions stated in
Corollary 6.5.7), which concludes the lower bound proof.

For every k ∈ [n], we put
Ψk :≡ (xk + b0) .

Proposition 6.5.9 For all k, i, j ∈ [n], Ψk 6∈ deriv(xi + bj).

Proof. By the definition of the derivation rules (Definition 6.2.2), no rule can increase the
number of plus gates in a formula, except for the forward distributivity rule

Q1 × (Q2 +Q3)

(Q1 ×Q2) + (Q1 ×Q3)
:

every plus gate that occurs in (a substitution instance of) Q1 in the upper-line Q1× (Q2 +
Q3), appears twice in the lower-line (Q1×Q2) + (Q1×Q3). Note that for this increase in
the number of plus gates to happen, the upper-line Q1 × (Q2 + Q3) must contain at least
two plus gates. Thus, if Φ′ is derived from Φ via an analytic symbolic derivation, and Φ
contains only one plus gate, then Φ′ contains at most one plus gate. We conclude that for
all i, j ∈ [n], any formula derivable from (xi + bj) contains at most one plus gate.

Assume by a way of contradiction that there is a formula ϕ ∈ deriv(xi + bj), such that
there exists k ∈ [n] for which (xk + b0) occurs inside ϕ. Since ϕ has only one plus gate,
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ϕ ≡ φ × (xk + b0), for some possibly empty formula φ (when ignoring associativity of
formulas and the order of multiplication). By the soundness of the proof system, we get
that φ×(xk+b0) and (xi+bj) compute the same polynomial. But, by assumption, bj 6= b0

for all j ∈ [n], and so for all k ∈ [n], (xi + bj) cannot be factored by (xk + b0). �

Fix a regular depth-3 analytic symbolic proof π of Symn, and letGπ be the correspond-
ing underlying graph of π. Note that the first line of π is Symn ≡ An,0 +Σn

j=1An,j−1, and
so the first level of Gπ has a unique vertex labeled with (the product formula) An,0. Let
S be the set of all vertices v in Gπ such that v̇ is non-atomic (Definition 6.3.2) and every
(directed) path that originates in v terminates in the vertex that is labeled with An,0. Let

T be the subgraph of Gπ induced by the vertices in S .

Proposition 6.5.10 The graph T is a binary tree rooted at An,0 (where every vertex is
directed from leaves toward the root).7

Proof. This stems directly from the regularity condition on the structure of π. Formally,
assume by a way of contradiction that there is a (possibly undirected) cycle C in T , and
let u be a vertex in C, where level(u) is the maximal level in Gπ. Since u is in a cycle it
has two edges adjacent to two distinct vertices w, v in C. But then the fan-out of u in Gπ

(considered as a directed graph) is 2, as both v and w must be in a smaller level than the
level of u (by assumption on the maximality of level(u), and since no two vertices in the
same level of a proof-graph are connected with an edge). Both v and w have a directed
path leading to An,0 in Gπ, and so u has two different paths leading to An,0, in contrast
to the regularity condition which forbids this case (since, Tu(Gπ) is a tree, rooted at u).
This shows that T is a tree. To show that T is a binary tree, we only need to note that by
definition, every vertex in Gπ has fan-in at most 2. �

Recall the definition of a subformula in a proof-line being the consequence of some
derivation rule (Notation after Definition 6.2.1). Also recall that a derivation rule is applied
outside a subformula ψ if (in the terminology used in Notation after Definition 6.2.1) the
vertex v is not in ψ.

Proposition 6.5.11 No vertex in T is (labeled with) a consequence of the backward dis-
tributivity rule applied outside a Σ̂ formula.8

Proof. By definition no vertex inGπ is labeled with a plus formula. Hence, all vertices in T
are labeled with (not necessarily proper) ΠΣ̂ formulas (since the proof is restricted to ΣΠΣ̂
formulas only). The upper-line in the backward distributivity rule is (Q1×Q2)+(Q1×Q3).

7T is a tree also when considered as an undirected graph.
8Here we identify the vertices in T with the corresponding vertices in Gπ (where the latter correspond,

as always, to subformulas occurring in π).
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Assume, by a way of contradiction, that there is a vertex v in T , such that v is a
consequence of the backward distributivity rule applied on (a substitution instance of)
(Q1×Q2) + (Q1×Q3) and (Q1×Q2) + (Q1×Q3) is not a Σ̂ formula. In case (Q1×Q2)
and (Q1 × Q3) appear in two distinct vertices u,w in Gπ, then we get that v has two
outgoing edges pointing to u and w. By the definition of T , this means that both u and w
have directed paths reaching the root of T , which contradicts the regularity condition.

Otherwise, (Q1 ×Q2) + (Q1 ×Q3) occurs in the label of some single node w. Since
no single node is labeled with a plus formula, it must be that w is labeled with a product
formula that contains (Q1×Q2)+(Q1×Q3) as a subformula. This means that w contains
a proper ΠΣΠ formula, where the middle ΣΠ formula is not a Σ̂ formula (since (Q1 ×
Q2) + (Q1 ×Q3) is not a Σ̂ formula). A contradiction to assumption. �

The following proposition exploits our restriction to depth-3 formulas.

Proposition 6.5.12 Let π be an analytic symbolic proof operating with ΣΠΣ̂ formulas.
Let v be a node in Gπ labeled with a ΠΣ̂ formula and let ` = level(v). If the forward
distributivity rule is applied in v̇ (in the `th proof-line of π), and the rule is applied outside
a Σ̂ formula and further the consequence of the rule application is not a Σ̂ formula, then
v must have fan-in 2.

Proof. The idea is that a forward distributivity rule cannot be applied “inside” a product
formula (excluding the case when it is applied inside a Σ̂ formula, or when the conse-
quence of the rule application is a Σ̂ formula), as this would result in a formula having
depth > 3.

Formally, the formula v̇ can be written as L1 × · · · × Lk, for some k ≥ 1, where each
Li is a Σ̂ formula. If k = 1 then the proposition trivially holds, since every application
of the forward distributivity rule would be applied inside a Σ̂ formula, in contrast to the
assumption.

Otherwise, k > 1. Suppose that an application of the forward distributivity rule on
some subformula occurring in v̇ was performed outside a Σ̂ formula. A vertex labeled
with a formula on which the forward distributivity is applied either has fan-in 1 or 2 (and
not 0). Assume by a way of contradiction that v has fan-in 1 and let u be the vertex that
points to v. By the definition of the forward distributivity rule (Definition 6.2.2) u̇ must be
a product formula (since every vertex is labeled either with a product formula or a single
leaf; and a single leaf cannot be the consequence of the forward distributivity rule) that
resulted from distributing some subformula

∏
i∈I Li over some Σ̂ formula Lr ≡ ∆1 + ∆2,

for some non-empty I ⊆ [k]. This means that u is labeled with(∏
i∈I

Li ×∆1 +
∏
i∈I

Li ×∆2

)
×
∏
j∈J

Lj ,

for J = ([k] \ I) \ {r}, where J is non-empty (as otherwise, u was a plus for-
mula). Therefore, u is a ΠΣΠ formula where the middle ΣΠ level consists of formu-
las that are not Σ̂ formulas (since by assumption the consequence of the rule application
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(∏
i∈I Li ×∆1 +

∏
i∈I Li ×∆2

)
is not a Σ̂ formula). This contradicts our assumption

that all proof-lines are ΣΠΣ̂ formulas. We then conclude that v must have two immediate
children. �

A simple path in a binary tree is (the set of vertices that are included in) any path in
the tree that starts in a vertex with a sibling (or else starts in the root) and goes down along
the path (further away from the root) until it reaches a vertex that has two sons. Formally,
in T , we define simple paths as follows:

Definition 6.5.13 (Simple path) Let P be the path (v1, v2, . . . , vk), for k ≥ 1, in the tree
T , beginning with the vertex v1 and ending in vk (where v1 is the vertex closest to the
root). If the following three conditions hold then the path P is said to be a simple path in
T .

(i) v1 points to no vertex (in which case v1 is the root of T ), or v1 points to a vertex v0

such that v0 has fan-in 2;

(ii) vk has fan-in 2;

(iii) all vertices excluding vk in the path have fan-in at most 1.

Proposition 6.5.14 Let P be a simple path in T , in which the first (that is, closest
to the root) vertex is labeled with a formula from Cl

(
ψ ×∏k∈K (xk + b0)

)
, for some

possibly empty formula ψ, and some K ⊆ [n]. Then, for every vertex v in P , v̇ ∈
Cl
(
ψ ×∏k∈K (xk + b0)

)
.

Proof. Assume that P has more than one vertex (as otherwise the statement is trivial).
Suppose that all the vertices in the simple path, excluding the first one, are not the con-
sequences of applying one of the two distributivity rules. Thus, the lemma stems directly
from the definition of a simple descendant (Definition 6.5.3).

Otherwise, there exists a vertex v in the simple path (different from the first vertex in
P ) that is a consequence of an application of one of the two distributivity rules.

By Proposition 6.5.11, v is not a consequence of the backward distributivity rule.
Then, suppose that v is a consequence of the forward distributivity rule application. In
case the forward distributivity rule was applied inside a Σ̂ formula or the consequence
of the forward distributivity rule application is a Σ̂ formula, then again the lemma stems
directly from the definition of a simple descendant. Otherwise, the forward distributivity
rule application meets the conditions in Proposition 6.5.12, and so we obtain a vertex in
the simple path P (that is, the vertex to which v points) that has fan-in 2, in contrast to the
definition of simple paths. �

Proposition 6.5.15 Let v be a vertex in T such that v̇ is a simple descendant of ψ ×∏
k∈K(xk + b0), where ψ is any possibly empty formula and K ⊆ [n], such that |K| > 1.

Assume that v has two vertices u,w pointing to it. Then, u,w are the consequences of
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applying the forward distributivity rule on v̇ (in π), and u,w are labeled with a simple
descendant of ψ′×∏k∈K′(xk+b0) and ψ′′×∏k∈K′(xk+b0), respectively, whereK ′ ⊆ K
and |K ′| ≥ |K| − 1, and ψ′ and ψ′′ are some two formulas.

Proof. First note that the only derivation rule that can result in v having two sons is the
forward distributivity rule. Thus the forward distributivity rule was applied on v̇ in π.

Given an application of the forward distributivity rule, let us call the (substitution
instance of) the subformula (Q2 +Q3) (in the upper-line of the rule Q1× (Q2 +Q3)), the
principal sum. Thus, every application of the forward distributivity rule must break the
principal sum into two subformulas Q2 and Q3 in the lower-line of the rule Q1 × Q2 +
Q1 ×Q3.

Under the conditions in the statement of the proposition, there are only two cases to
consider. The first is that the principal sum of the distributivity rule applied on v̇ is a sum
(xj + b0), for some j ∈ K;9 the second, is that the principal sum is some subformula in ψ.

In the first case, we obtain that u,w are labeled with a simple descendant of ψ′ ×∏
k∈K′(xk + b0) and ψ′′ ×∏k∈K′(xk + b0), respectively, where K ′ = K \ {j} (and so
|K ′| = |K| − 1), and ψ′ and ψ′′ are some two formulas, which is precisely what we need
to show.

In the second case, the principal sum that breaks into two subformulas is a part of ψ,
and so both u,w are labeled each with a simple descendant of ψ′ ×∏k∈K(xk + b0), and
ψ′′ ×∏k∈K(xk + b0), respectively, for some two formulas ψ′, ψ′′, which concludes the
proof of the lemma. �

The following proposition is similar to Proposition 6.5.15.

Proposition 6.5.16 Let w be a vertex in Gπ (not necessarily in T ) and assume that w
has fan-out 2 with two edges pointing to the vertices v and u. Suppose that v̇ is a simple
descendant of ψ×∏k∈K(xk + b0), where ψ is some possibly empty formula and K ⊆ [n]
such that |K| > 1. Then w is the consequence of applying the backward distributivity rule
on v and u (in π; in fact the rule was applied on the plus gate that has v̇ and u̇ as its two
sons), and u is labeled with a simple descendant of ψ′×∏k∈K′(xk + b0), where K ′ ⊆ [n]
and |K ′| ≥ |K| − 1, and ψ′ is some possibly empty formula.

Proof. This is similar to the proof of Proposition 6.5.15. We omit the details. �

Proposition 6.5.17 If v is a vertex in T , then v̇ does not compute the zero polynomial.

Proof. The root formula of T is An,0. Without loss of generality, we can assume that r0 in
An,0 is nonzero (there must be at least one nonzero ri, for 0 ≤ i ≤ n, as otherwise Symn

9Note that one cannot derive from (xj + b0) any other formulas (ignoring the order) other than (1×xj +
b0) as any other formula will be a non Σ̂ formula, which will result in v̇ not to be a ΣΠΣ̂ formula.
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would not compute the zero polynomial). Let P be (the set of vertices in) the path in T
starting in the root and leading to the vertex v. We show by induction on the length of P
that every vertex in P is labeled with a formula that can be written as follows (ignoring
the order of multiplication and addition):∏

k∈K

ck ×
∏
j∈J

xj ×
∏
i∈I

(d× xi + b0) , (6.7)

for three possibly empty sets of indices J, I ⊆ [n] and K and where the ck’s are nonzero
field elements and d is a possibly empty field element (and so the formula computes a
nonzero polynomial).

The base case is immediate (it is the root formula An,0). For the induction step, we
consider all possible rule applications and show that they preserve the induction statement.

The backward distributivity rule is not applicable in P , by definition of T , unless it is
applied inside a Σ̂ formula, which is impossible in this case.

Note that there are no coefficients multiplying the b0’s. This is because by definition
of a Σ̂ formula, such a formula does not contain a product of two or more field elements.
Also, notice that every rule, different from the distributivity rules applied on the formula
(6.7), keeps the induction statement (this can be verified by straightforward inspection).
For the forward distributivity rule, it is easy to see that this rule may only transform a
formula of the form (6.7) into two other formulas, each of the form (6.7). �

We now transform the tree T into a full binary tree (that is, a tree in which every vertex
has either fan-in 2 or fan-in 0; a full binary tree might not be balanced, though). This is
done by contracting all simple paths in T (that is, contracting all edges pertaining to a
simple path). Formally, we perform the following process on T . Let u be a vertex in T
that has fan-in 1 (in T ) and denote by w the (single) vertex in T that points to u. Replace
w with u (in other words, the edge from w to u is contracted and the edge(s) going into
w now go into u [and u keeps its label]). Continue this process until there are no vertices
of fan-in 1 in the graph. We thus obtain a full binary tree with the root being the vertex
labeled with An,0. Denote by T ′ the graph just constructed.

Notation:

1. We identify the vertices common to both T and T ′.
2. The level of a vertex v in the full binary tree T ′ should not be confused with the

level level(v) of the same vertex v in Gπ. To avoid confusion we shall explicitly
write in what follows the level of v in T ′ when referring to the former measure.

Lemma 6.5.18 For 0 ≤ i ≤ n− 1, let v be a vertex in the ith level of (the full binary tree)
T ′ (if such a level exists in T ′). Then, v̇ is a simple descendant of ψ ×∏k∈K(xk + b0),
where K ⊆ [n] and |K| ≥ n− i, and ψ is any possibly empty formula.
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Proof. Note that the root of T ′ is labeled with An,0 and that

An,0 ≡ r0 ×
∏
i∈[n]

(xi + b0) ∈ Cl

(
ψ ×

∏
k∈K

(xk + b0)

)
, (6.8)

for [n] = K and where ψ = r0.
Consider the (not necessarily simple) path P in T (not in T ′) starting from the root

and reaching v. By the definition of T ′, this path (formally, only the vertices of this path)
consists in moving along i consecutive simple paths in T and then moving one edge further
to v (if i = 0 then we start from the root of T , and stay there).

By (6.8) and Proposition 6.5.14, all the vertices in the first simple path in P are labeled
with elements of Cl

(
ψ ×∏k∈K(xk + b0)

)
.

Starting in the last vertex of the first simple path we can move along P (further away
from the root) to its son w. By definition the last vertex of every simple path has two sons
(and so w has a sibling in T ). Hence, we can apply Proposition 6.5.15 to conclude that
ẇ ∈ Cl

(
ψ′ ×∏k∈K(xk + b0)

)
, for some |K| ⊆ [n] such that |K| ≥ n− 1, and where ψ′

is some possibly empty formula.
Using the same reasoning, after moving along P through i consecutive simple paths,

and then moving one edge down to v, we conclude that v̇ ∈ Cl
(
ψ′ ×∏k∈K(xk + b0)

)
,

where K ⊆ [n] such that |K| ≥ n− i, and ψ′ is some possibly empty formula. �

Concluding the proof of Theorem 6.5.8. Let v be a leaf in T ′ having the minimal level
` in the full binary tree T ′.
Case 1: ` ≥ n/2. In this case T ′ is a full binary tree where all leaves are of level at least
n/2. This means that the number of vertices in T ′ is at least as the number of vertices of a
complete binary tree with n/2 levels (a complete binary tree is a full and balanced binary
tree). Thus, the number of vertices in T ′ is at least 2n/2 − 1. Since every vertex in T ′
appears in T and thus also appears in Gπ, we get that |Gπ| = 2Ω(n).

Case 2: ` < n/2. By Proposition 6.5.18:

v̇ ∈ Cl

(
ψ ×

∏
k∈K

(xk + b0)

)
, (6.9)

where K ⊆ [n] such that |K| ≥ n− ` > n/2 (and ψ is some possibly empty formula).
From now on, we will consider v as a vertex in Gπ. By the definition of T , there are

only two cases that account for v being a leaf in T : (i) the vertex v is of fan-in 0 in Gπ; or
(ii) there is a (unique) vertex w in Gπ that has an out-going edge pointing to v and further
there is a directed path in Gπ starting from w and terminating in (the first level of Gπ) in a
vertex different from the root of T (i.e., different from the vertex labeled with An,0).

In case (i), v must be labeled with the formula 0 (this can be checked by inspection of
the derivation rules [Definition 6.2.2]). But by Proposition 6.5.17, v̇ does not compute the
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zero polynomial, and so we arrive at a contradiction.
In case (ii), the vertex w has fan-out 2 (since every directed path in Gπ starting in

v terminates in the root of T by definition of T ). Thus, w has an out-going edge that
goes into v and another out-going edge that goes into a vertex we denote by u. Now, by
(6.9) and Proposition 6.5.16 we conclude that u is labeled with a simple descendant of
ψ×∏k∈K(xk + b0) , where K ⊆ [n] such that |K| ≥ n− `− 1 > n/2− 1 (and ψ is some
possibly empty formula).

By the regularity condition we have that the trees Tv(Gπ) and Tu(Gπ) have no com-
mon vertices. This in turn means that the conditions of Corollary 6.5.7 hold for the vertex
u (since, by regularity, u does not have a directed path that reaches An,0 in the initial line
in π, and so every directed path beginning at u must terminate in the initial line in a sum-
mand pertaining to Initn) which implies that |Tu(Gπ)| > 2n/2−1, and so we conclude that
|Gπ| = 2Ω(n).

6.5.4 Proof of Technical Lemma 6.5.6

Here we prove the main technical lemma. For the sake of convenience, we repeat it fully
here:

Lemma 6.5.6 (Technical lemma) Let π be a regular analytic symbolic proof operating
with ΣΠΣ̂ formulas, and with the initial formula in π being Initn, for some positive n ∈ N.
Let Gπ be the corresponding graph of π. Assume that v is a vertex in Gπ labeled with Φ,
which is a simple ancestor of

ψ ×
m∏
k=1

Ψk ,

where m > 1 and ψ is any possibly empty formula, and for every k ∈ [m], i ∈ [n]
and j ∈ [n], Ψk is a proper Σ̂ formula, such that Ψk 6∈ deriv(xi + bj). Then, there
exists a vertex y in Tv(Gπ), such that there is a path from v to y in Tv(Gπ), and y has
two outgoing edges to two (distinct) vertices u,w, so that: u and w are labeled with two
simple ancestors of the following product formulas

ψ0 ×
m−1∏
k=1

Ψ′k and ψ1 ×
m−1∏
k=1

Ψ′′k , (6.10)

respectively, where ψ0, ψ1 are some possibly empty formulas, and for all k ∈ [m − 1],
i ∈ [n] and j ∈ [n], Ψ′k,Ψ

′′
k are some proper Σ̂ formulas such that Ψ′k 6∈ deriv(xi + bj)

and Ψ′′k 6∈ deriv(xi + bj).

Denote by F the set of simple ancestors of all formulas
∏m

k=1 Ψk where each Ψk

(from the statement of the lemma) is substituted by some Ψ′k, such that Ψk is a derivable
subformula from Ψ′k. Formally, we have:

F :=

{
Cl−

(
m∏
k=1

Ψ′k

) ∣∣∣∣ ∀k ∈ [m], Ψk ∈ deriv(Ψ′k)

}
.
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By the definitions of a simple closure (Definition 6.5.3) and of derivable subformulas
(Definition 6.5.2), we have the following simple properties:

Fact 6.5.19 1. deriv(·) is transitive: if φ0 ∈ derive(φ1) and φ1 ∈ derive(φ2), then
φ0 ∈ derive(φ2).

2. For all φ ∈ Cl−(Ψ), Ψ ∈ deriv(φ). (On the other hand, Ψ ∈ deriv(φ) does not
necessarily imply φ ∈ Cl−(Ψ) (see Definition 6.5.2).)

3. From the above two facts: If Ψk ∈ deriv(Ψ′k), then for all φ ∈ Cl−(Ψ′k) it holds that
Ψk ∈ deriv(φ).

Proposition 6.5.20 Every formula in F is a simple ancestor of
∏m

k=1 Ψ′k , where, for
every k ∈ [m], i ∈ [n] and j ∈ [n], Ψ′k 6∈ deriv(xi + bj), and Ψ′k contains at least one plus
gate.10

Proof. Assume by a way of contradiction that Ψ′k ∈ deriv(xi + bj), for some k ∈ [m],
i ∈ [n] and j ∈ [n]. By Ψk ∈ deriv(Ψ′k) , and by the transitivity of deriv(·), we have that
Ψk ∈ deriv(xi + bj), which contradicts the assumption on the Ψk’s (in Lemma 6.5.6).

Further, since Ψk ∈ deriv(Ψ′k), for every k ∈ [m] , and since Ψk is a proper Σ̂ formula,
every Ψ′k must contain at least one plus gate (this can be verified by inspecting the defini-
tion of deriv(·) and the derivation rules [Definition 6.2.2]). �

Proposition 6.5.21 No member of F occurs as a subformula in the initial proof-line.

Proof. Every formula in F must contain at leastm > 1 products of ψk’s, such that k ∈ [m]
and ψk ∈ Cl−(Ψ′k) and Ψ′k 6∈ deriv(xi + bj), for all i ∈ [n] and j ∈ [n]. By Item 3 in
Fact 6.5.19 and by Ψk ∈ deriv(Ψ′k) we get that Ψk ∈ deriv(ψk). By assumption (Lemma
6.5.6), Ψk 6∈ deriv(xi + bj), for all i ∈ [n] and j ∈ [n], and so ψk 6∈ deriv(xi + bj) (for all
i ∈ [n] and j ∈ [n]).

On the other hand, no formula in F contains products of (non empty) ψk’s for which
ψk 6∈ deriv(xi + bj), for all i ∈ [n] and j ∈ [n]. This concludes the proof. �

Proposition 6.5.22 (Critical transition) There is a directed path (with 0 or more edges)
from v to some vertex y in Tv(Gπ), where level(v) ≥ level(y) > 1, such that: ẏ contains a
subformula which is an element of F , while the preceding level level(y)− 1 corresponds
to a proof-line that does not contain a subformula which is an element of F .

10When considering only ΣΠΣ̂ formulas, the condition that Ψ′k contains at least one plus gate may be
replaced by the condition that Ψ′k is a proper Σ̂ formula (note that in the definition of F we have not
restricted the depth of formulas).
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(Note that m > 1 and so Φ and all formulas in F are product formulas, which means
that every formula in F may occur [as a complete formula] only in a label of at most one
vertex in each level.11)

Proof. Assume by a way of a contradiction that there is no such y. Note that v̇ contains a
subformula from F , since clearly

∏m
k=1 Ψk ∈ F . It is evident (by Definition 6.3.1) that

every vertex in a proof-graph has a path originating in that vertex and terminating in the
first level of the graph. Therefore, since there is no y that meets the conditions stated in
the claim, every vertex in Gπ, on the path from v to a vertex in the first level, must contain
a subformula from F . Thus, the initial proof line contains a subformula from F , which
contradicts Proposition 6.5.21. �

To conclude for now, let y be the vertex whose existence is guaranteed by Proposition
6.5.22, put ` = level(y) and let A{Θ} denote the formula that corresponds to the (whole)
level `, where

Θ :≡ ẏ

(note that since Θ is the label of a vertex, Θ is in fact just a summand in A). Then we can
write

A{Θ′}t
(?)A{Θ}t

(6.11)

to denote the transformation made from level (i.e., proof-line) ` − 1 to level (i.e., proof-
line) `, obtained by some derivation rule (?), where t is a node in A and:

there exists a subformula θ in Θ such that θ ∈ F (6.12)
there is no subformula θ in A{Θ′}t such that θ ∈ F . (6.13)

Proposition 6.5.23 Both the formula Θ and the formula θ are proper ΠΣ̂ formulas (Def-
inition 6.5.4).

Proof. By definition, Ψk is a proper Σ̂ formula, for every k ∈ [m]. Since Ψk ∈ derive(Ψ′k)
for all k ∈ [m], Ψ′k must contain some plus formula, for all k ∈ [m] (this can be verified
by inspection of the derivation rules [Definition 6.2.2]). Hence, since m > 1, θ ∈ F
must contain a product of at least two formulas, each of which contains a plus formula.
Therefore, also the formula Θ must contain a product of at least two formulas, each of
which contains a plus formula. Since Θ is a label of some vertex, it must be that Θ in this
case is a product formula. And since we work with ΣΠΣ̂ formulas, Θ must be a proper ΠΣ̂
formula. Further, since θ occurs in Θ (and θ contains a product of two proper Σ̂ formulas),
θ is also a proper ΠΣ̂ formula. �

In order to prove Lemma 6.5.6 we will demonstrate that y above is the vertex stated in
the statement of this lemma. Specifically, we will consider all possible rules (?) that can

11In other words, there are no two vertices s, t, at the same level and a formula Θ ∈ F , such that one
subformula of Θ occurs in ṡ and a different subformula of Θ occurs in ṫ.
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be applied in (6.11) above, and conclude that there must be two outgoing edges from y
into two vertices that meet the requirements of Lemma 6.5.6.

Notation: Assume, for example, that the rule (?) applied in (6.11) is Q1 + 0
Q1

, and

let ϕ be some formula. Then we shall say, for instance, that ϕ occurs in the upper-line
Q1 + 0, to mean that ϕ occurs in some substitution instance ∆ of Q1 + 0 (and that clearly
∆ occurs in A{Θ′}t from (6.11)). In other words, when referring to occurrences in upper
and lower lines of rules that are formulated with formulas in the variables Q1, Q2, Q3, we
are formally referring to substitution instances of these variables.

Definition 6.5.24 (Closure of F under derivation rules) We say that F is closed under
some derivation rule (?) (or under certain instances of the derivation rules), if whenever a
formula ∆ is transformed via (?) (or via a certain instance of the derivation rule) into ∆′,
and ∆′ contains a subformula in F , then ∆ also contains a subformula in F . 12

Case 1: The rule (?) is one of the following: commutativity, associativity, unit element
rules, zero element rules or scalar rules; or the rule (?) is a distributivity rule applied
in a Σ̂ formula or the consequence of applying (?) is a Σ̂ formula (the last two options
correspond to the transformations made in the last two clauses in Definition 6.5.3). By the
definition of F (and by the definition of a simple closure [Definition 6.5.3]), F is closed
under these rules (Definition 6.5.24). Thus, proof-line ` − 1 contains a formula which is
an element in F , and we arrive at a contradiction with (6.13).

Case 2: The rule (?) is forward distributivity applied differently from that in Case 1 (that
is, it is not applied inside a Σ̂ formula and its consequence is not a Σ̂ formula):

Q1 × (Q2 +Q3)

(Q1 ×Q2) + (Q1 ×Q3)
.

We consider the possible occurrences of the lower line (Q1×Q2) + (Q1×Q3) inA{Θ}t,
and conclude that this case does not hold.

(i) There is no subformula of Θ that occurs in the lower line (Q1 ×Q2) + (Q1 ×Q3).

Thus, proof-line `− 1 contains Θ as a subformula, in contrast to (6.13).

(ii) (A substitution instance of) (Q1 ×Q2) + (Q1 ×Q3) is a proper subformula of Θ.

By assumption (made in Case 2) (Q1 × Q2) + (Q1 × Q3) is not a Σ̂ formula. Note
that (Q1×Q2)+(Q1×Q3) is a proper ΣΠ formula when considered as a formula in
the propositional variables Q1, Q2, Q3 (and not necessarily as a substitution instance
of these variables). Since (Q1 ×Q2) + (Q1 ×Q3) is not a Σ̂ formula and since Θ is
a proper ΠΣ̂ formula (Proposition 6.5.23), we arrive at a contradiction.

12Note that here we demand that F is closed under a derivation rule, if it is closed when the rule is applied
“backward” on a formula in F .
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(iii) The formula Θ is (a substitution instance of the whole formula) (Q1 ×Q2) + (Q1 ×
Q3).

This is contradictory to Θ being a product formula (Proposition 6.5.23).

(iv) The formula Θ is (a substitution instance of) (Q1 ×Q2).

Suppose that Q2 is not a Σ̂ formula. Then it ought to be a proper ΠΣ̂ (by Proposition
6.5.23). Thus, Q1× (Q2 +Q3) (from the upper-line) is a proper ΠΣΠΣ̂ formula that
appears in proof-line `− 1 in π. This contradicts our assumption that all proof-lines
are ΣΠΣ̂ formulas.

Therefore, Q2 is a Σ̂ formula. Assume that Q2 is Σ̂ formula denoted ∆ that occurs in
θ ∈ F (see (6.12)). Then, the upper line Q1× (Q2 +Q3) is just Θ with Q3 added to
one of the Σ̂ products in it. Note that if F ∈ F and F ′ is the result of adding some
formula to one of the Σ̂ products occurring inside F , then F ′ ∈ F ; this is because
for every two formulas ∆1,∆2, Ψk ∈ deriv(∆1) implies Ψk ∈ deriv(∆1 + ∆2)
(by definition of deriv(·)).13 Thus, the upper line Q1 × (Q2 + Q3) still contains an
element of F in contrast with (6.13).

(v) The formula Θ is (Q1 ×Q3). This is analogous to the previous sub-case (iv).

(vi) The formula Θ is a substitution instance of one of Q1 or Q2 or Q3.

Thus, Θ occurs also in the upper-line (and hence in line ` − 1 of the proof), which
contradicts (6.13).

Case 3: The rule (?) is the backward distributivity

(Q1 ×Q2) + (Q1 ×Q3)

Q1 × (Q2 +Q3)
,

applied differently from that in Case 1 (that is, it is not applied inside a Σ̂ formula and its
consequence is not a Σ̂ formula14). Thus, (Q1 ×Q2) + (Q1 ×Q3) is not a Σ̂ formula.

We shall consider the possible occurrences of the lower-lineQ1×(Q2+Q3) inA{Θ}t,
and conclude that the upper-line (Q1 × Q2) + (Q1 × Q3) constitutes in Tv(Gπ) the two
vertices u,w to which y points, and that u,w meet the conditions stated in the lemma
(Lemma 6.5.6).

(i) There is no subformula of θ that occurs in the lower-line Q1 × (Q2 +Q3).

Thus, proof-line `− 1 contains θ as a subformula, in contrast to (6.13).

13Here we use the fact that deriv(·) is defined as the derivable subformulas, and not just derivable formu-
las.

14In the case of the backward distributivity rule, these two options are the same, since the latter transfor-
mation is also applied inside a Σ̂ formula.
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(ii) There is a only a proper subformula of θ that occurs in Q1 × (Q2 + Q3) (that is, θ
does not occur fully in Q1 × (Q2 +Q3)).

Recall that θ is a product formula (Proposition 6.5.23), and so we can write θ as
Πi∈Iθi for some set of formulas θi, i ∈ I . The only possibility in the current case is
that there is a partition of I into two nonempty subsets of indices I = I0] I1, so that
θ can be partitioned into two products; one is the product of all θi, i ∈ I0, and the
other is the product of all θi, i ∈ I1 (we ignore the order in which the θi’s occur in
θ), and such that: either Q1 or (Q2 +Q3) or Q1× (Q2 +Q3) is the formula

∏
i∈I0 θi

and the product of all θi, i ∈ I1, does not occur in the lower-line Q1 × (Q2 + Q3).
Since θ ≡ Πi∈Iθi, it must be that

∏
i∈I1 θi multiplies Q1 × (Q2 +Q3) inside A{Θ}t.

This means that inA{Θ′}t, the formula
∏

i∈I1 θi multiplies (Q1×Q2) + (Q1×Q3).
Since (Q1×Q2) + (Q1×Q3) is not a Σ̂ formula, ẏ contains a proper ΠΣΠ formula,
where the middle ΣΠ level does not consist of only Σ̂ formula, which contradicts
our assumption that all proof-lines are ΣΠΣ̂ formulas.

(iii) The formula θ occurs (fully) in Q1 × (Q2 +Q3).

(1) θ occurs in one of Q1, Q2, Q3. Thus, θ occurs also in the upper-line (and hence
in line `− 1 of the proof), which contradicts (6.13).15

(2) θ occurs in (Q2 + Q3) and item (iii1) above does not hold. This is impossible
since θ is a product formula (Proposition 6.5.23).

(3) θ occurs inQ1×(Q2 +Q3), and the above two items (iii1) and (iii2) do not hold.
Assume that there exists a proper subformula τ of θ such that τ ∈ F and τ
occurs fully in Q1. Hence, the upper-line also contains τ and we arrive at a
contradiction with (6.13).
Otherwise, we are left only with the following case to consider. Write θ as
Πi∈Iθi, for some Σ̂ formulas θi, i ∈ I (since θ is a proper ΠΣ̂ formula [Propo-
sition 6.5.23], it is possible to write θ in this way). It must be that there exists a
j ∈ I such that θj ≡ ∆0 + ∆1, where ∆0,∆1 are Q2, Q3, respectively; and Q1 isψ × ∏

i∈I\{j}

θi

 ,

where ψ is some possibly empty formula. Therefore, (Q1×Q2) and (Q1×Q3)
from the upper-line are:ψ × ∏

i∈I\{j}

θi

×∆0 and

ψ × ∏
i∈I\{j}

θi

×∆1 ,

respectively. Thus, we only need to show that these are precisely the two vertices
u,w as stated in the lemma (Equation (6.10)). The proof of this is straightfor-
ward and we show it formally for the sake of completeness:

15This subcase can be shown impossible to meet also due to the depth-3 restriction.
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Claim: The formula
(
ψ ×∏i∈I\{j} θi

)
×∆0 is a simple ancestor of the product

formula ψ0×
∏

k∈K Ψ′k , where ψ0 is any, possibly empty, formula andK ⊆ [m]
such that |K| = m− 1 and for every k ∈ K, i ∈ [n] and j ∈ [n], Ψ′k is a proper
Σ̂ formulas such that Ψ′k 6∈ deriv(xi + bj). (The proof of the right hand side

formula
(
ψ ×∏k∈I\{j} θi

)
×∆1 is similar.)

Proof of claim: We know that Πi∈Iθi ∈ F , and so by Proposition 6.5.20 Πi∈Iθi
is a simple ancestor of ψ0×

∏m
k=1 Ψ′k , where ψ0 is some possibly empty formula

and for every k ∈ [m], i ∈ [n] and j ∈ [n], Ψ′k 6∈ deriv(xi + bj), where Ψ′k
contains at least one plus gate. Since each Ψ′k contains at least one plus gate and
every proof-line is a ΣΠΣ̂ formula then in fact each Ψ′k is a proper Σ̂ formula.

Therefore,
(
ψ ×∏k∈I\{j} θi

)
× ∆0 constitutes a simple ancestor of ψ0 ×∏

k∈K Ψ′k , where ψ0 is some possibly empty formula and k ∈ K whereK ⊆ [m]

and |K| = m − 1, and for all i ∈ [n] and j ∈ [n] and k ∈ K, Ψ′k is a proper Σ̂
formulas such that Ψ′k 6∈ deriv(xi + bj). Claim

This concludes the proof of Lemma 6.5.6.

6.6 Chapter Summary
In this chapter we studied the complexity of symbolic proofs that establish polynomial
identities. This study is motivated by connections with semantic algebraic propositional
proof system, and by connections to the problem of polynomial identity testing. We in-
troduced an analytic fragment of symbolic proofs of polynomial identities, which is anal-
ogous to some extent with the notion of analytic proofs in propositional logic. We then
proved an exponential lower bound on the size of analytic symbolic proofs operating with
depth-3 arithmetic formulas under a certain regularity condition on the structure of proofs.
The hard instances we used were based on small formulas for the symmetric polynomials
(over large enough fields) that we already met in previous chapters.
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In this chapter we introduce and study sound and complete propositional proof systems
for the set of unsatisfiable CNF formulas under the promise that every CNF formula is
either unsatisfiable or has many satisfying assignments.

7.1 Preliminaries and Notations
Let A,B be two propositional formulas. We write A ≡ B as an abbreviation for (A →
B) ∧ (B → A). The notation A 6≡ B abbreviates ¬(A ≡ B). We say that A semantically
implies B, denoted by A |= B, iff every satisfying assignment to A also satisfies B.

A kCNF formula is a CNF with all clauses containing k literals each. The width of a
clause D is the number of literals in it, denoted |D|. The size of a CNF formula K is the
total number of clauses in it, denoted |K|. The width of a CNF formulaK is the maximum
width of a clause in K. We denote by K ′ ⊆ K that K ′ is a sub-collection of clauses from
K.

Recall the definition of the resolution refutation system (Definition 2.2.1 in the prelim-
inaries Chapter 2). For an unsatisfiable CNF formula K the resolution refutation size of
K is the minimal size of a resolution refutation of K and is denoted S(K). Similarly, the
resolution refutation width of K is the minimal width of a resolution refutation of K and
is denoted w(K). If the family of CNF formulas {Kn | n ∈ N} has polynomial-size res-
olution refutations we say that resolution can efficiently certify the unsatisfiability of Kn.
Similarly, if the family of clauses {Dn | n ∈ N} has polynomial-size resolution proofs
from Kn we say that Dn is efficiently provable from Kn.

7.1.1 Size-Width Tradeoffs

We now recall the general approach for proving size lower bounds on resolution refu-
tations developed by Ben-Sasson and Wigderson (2001). The basic idea is that a lower
bound on the resolution refutation width of a CNF formula K implies a lower bound on
the resolution refutation size of K:

Theorem 7.1.1 (Ben-Sasson and Wigderson (2001)) Let K be a CNF formula of width
r, then

S(K) = exp

(
Ω

(
(w(K)− r)2

n

))
.

7.1.2 Boolean Circuit Encoding

The promise axioms we introduce use Boolean circuits to define the set of assignments
to be discarded (see Section 7.2). Therefore, as resolution operates only with clauses, we
need to encode Boolean circuits as collections of clauses (CNF formulas). We assume that
all Boolean circuits use only three gates: ∨,∧,¬ (though this is not necessary) where ∨
(denoting OR) and ∧ (denoting AND) have fan-in 2 and ¬ (denoting NOT) has fan-in 1. Let
C be a Boolean circuit with m input bits and n output bits. Let W = {w1, . . . , wm} be
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the m input variables of C and let X denote the n variables {x1, . . . , xn}. We consider
the n output bits of C as the outputs of n distinct circuits C1(W ), . . . , Cn(W ) in the W
variables, and we write C(W ) ≡ X to mean that X equals the output of C(W ) (that is,
C1(W ) ≡ x1 ∧ · · · ∧Cn(W ) ≡ xn). This notation can be extended in a similar manner to
C(W1) ≡ C ′(W2) and C(W1) 6≡ C ′(W2).

There exists a CNF formula F (in both the W variables and new extension variables)
that encodes the circuit C. This means that there are n new extension variables (among
other extension variables) y1, . . . , yn in F such that for all assignments a: F (a) = 1 iff
C(w1(a), . . . , wm(a)) = y1(a) ◦ · · · ◦ yn(a), where we denote by wi(a) the truth value of
wi under the assignment a and by ◦ the concatenation of Boolean bits. In other words,
F expresses the fact that y1, . . . , yn are the output bits of C. If C is of size s (that is, the
number of Boolean gates in C is s), then the size of F is O(s · log(s)). Therefore, if C is
of size polynomial in n then F is also of polynomial-size in n. We denote by ‖C(W )‖ the
CNF formula F that encodes C(W ).

For most purposes, we will not need an explicit description of how the encoding of
Boolean circuits as CNF formulas is done through ‖C(W )‖. Nevertheless, in Section 7.3
we need to ensure that resolution can efficiently prove several basic facts about the en-
coded circuits. For this reason, and for the sake of concreteness of the promise axioms
(Definitions 7.2.3 and 7.2.4) we provide the precise definition of the encoding in the ap-
pendix (Section 7.5.1), in addition to proving some of the encoding’s basic (proof theoret-
ical) properties. The interested reader can look at the appendix for any missing details, but
anyone willing to accept the existence of an efficient CNF encoding of Boolean circuits
that is also intensional for resolution (in the sense that resolution can efficiently prove
basic properties of the encoded circuits) can skip Section 7.5.1 without risk.

7.2 Promise Proof Systems
In this section we define precisely the model of refutations under a promise. As discussed
in the introduction chapter (Section 1.2.4), we work with the resolution refutation system
as our underlying system and augment it with a new set of axioms that we call the promise
axioms. We call this proof system promise resolution. The promise axioms are meant
to express the fact that we can discard a certain number of truth assignments from the
space of all truth assignments and still be able to certify (due to the promise) whether the
input CNF is unsatisfiable or not. Each promise resolution refutation can use at most one
promise axiom.

From now on, throughout this chapter, we shall assume that the underlying variables of
the CNF formulas that are meant to be refuted are taken from the set X := {x1, . . . , xn}.
The X variables are called the original variables. Any other variable that appears in a
(promise resolution) refutation is called an extension variable.

Definition 7.2.1 (CNF formulas under a promise) Let Λ be a fixed function in n (the
number of X variables) such that 0 ≤ Λ(n) ≤ 2n. The function Λ is called the promise.
The set of CNF formulas under the promise Λ consists of all CNF formulas in the X
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variables that are either unsatisfiable or have more then Λ(n) satisfying assignments (for
n = |X|).

The refutation systems we build are sound and complete for the set of CNF formulas
under a (given) promise. That is, every unsatisfiable CNF formula has a refutation in the
system (this corresponds to completeness), while no CNF having n variables and more
than Λ(n) satisfying assignments has a refutation in it (this corresponds to soundness
under the promise). Soundness (under the promise) is achieved by requiring that resolution
should prove the fact that we discard the right number of assignments (see Section 7.2.1
for details).

Recall the notion of assignment discarding discussed in the introduction chapter (Sec-
tion 1.2.4). Formally we have:

Definition 7.2.2 (Assignment discarding) Let A be a CNF in the X variables that can
contain (but does not necessarily contain) extension variables (that is, variables not from
X). We say that an assignment to the X variables a is discarded by A if there is no
extension of a (to the extension variables in A) that satisfies A.

7.2.1 Promise Axioms

7.2.1.1 Big Promise

We first concentrate on a promise of a constant fraction of assignments (for a smaller
promise the axiom is similar; see below).

Let the promise (see Definition 7.2.1) be Λ = ε · 2n, for a constant 0 < ε < 1 (we
fix this Λ throughout this subsection), and let r = dlog(1/ε)e and t = 2r − 1. Let C be
a sequence of Boolean circuits C := (C(1), . . . , C(t)). Assume that each C(i) has n − r
input bits and n output bits and computes the Boolean map fi : {0, 1}n−r → {0, 1}n.
Assume further that the fi’s are all injective maps and that the images of all these maps
are pairwise disjoint. Denote by Im(fi) the image of the map fi. For simplicity, we call
the union ∪ti=1Im(fi) the image of C and denote it by Im(C). By the definition of r, we
have 2n−r ≤ ε · 2n, and by the injectivity and pairwise disjointness of the images of the
fi’s we have:

|Im(C)| = t · 2n−r = (2r − 1) · 2n−r = 2n − 2n−r ≥ 2n − Λ . (7.1)

Therefore, we can treat Im(C) as the set of all possible truth assignments for the original
variables X , without losing soundness: If K is unsatisfiable then there is no assignment
in Im(C) that satisfies K; and if K is satisfiable then according to the promise it has more
than Λ satisfying assignments, which means that there is at least one assignment in Im(C)
that satisfies K. This idea is formulated as a propositional formula as follows:

Definition 7.2.3 (Promise Axiom for Λ = ε · 2n) Let the promise be Λ = ε · 2n, for a
constant 0 < ε < 1, and let r = dlog(1/ε)e and t = 2r − 1. Let C be a sequence of



Chapter 7. Propositional Proofs under a Promise 145

Boolean circuits C := (C(1), . . . , C(t)). Assume that each C(i) has n− r input bits and n
output bits and let W1 and W2 be two disjoint sets of n− r extension variables each. The
promise axiom PRMC,Λ is the CNF encoding (via the encoding defined in Section 7.5.1)
of the following Boolean formula:(

t∧
i=1

(
C(i)(W1) ≡ C(i)(W2)→ W1 ≡ W2

)
∧ ∧

1≤i<j≤t
C(i)(W1) 6≡ C(j)(W2)

)
−→

t∨
i=1

C(i)(W1) ≡ X.

The promise axiom PRMC,Λ expresses the fact that if each circuit in C computes an
injective map (this is formulated as ∧ti=1(C(i)(W1) ≡ C(i)(W2)→ W1 ≡ W2)), and if the
images of the maps computed by each pair of circuits in C are disjoint (this is formulated
as ∧1≤i<j≤tC

(i)(W1) 6≡ C(j)(W2)), then we can assume that the assignments to the origi-
nal variables X are taken from the image of C (this is formulated as ∨ti=1C

(i)(W1) ≡ X).
The fact that the image of C is of size at least 2n − Λ is expressed (due to Equation (7.1))
by the number of input bits (that is, n− r) of each circuit in C and the number of circuits
in C (that is, t). Also note that the promise axiom is of polynomial-size as long as the
circuits in C are (since 1/ε is a constant).

The following claim shows that the promise axioms are sound with respect to the
promise Λ, in the sense that they do not discard too many truth assignments:

Claim: The promise axiom PRMC,Λ discards at most Λ truth assignments. That is, there
are at most Λ distinct assignments a to the X variables such that PRMC,Λ |= X 6≡ a.

Proof of claim: Assume that some Boolean map computed by some circuit in C is not in-
jective. Then any assignment to the X variables has an extension ρ (to the extension vari-
ables in the promise axiom) that falsifies the premise of the main implication in PRMC,Λ

and thus ρ satisfies PRMC,Λ. Therefore no assignments to X are discarded.
Similarly, assume that the images of some pair of maps computed by two circuits in

C are not disjoint. Then, again, any assignment to the X variables has an extension that
satisfies PRMC,Λ, and so no assignments to X are discarded.

Assume that all the Boolean maps computed by circuits in C are injective and have
pairwise disjoint images. Then every assignment satisfies the premise of the main impli-
cation in the promise axiom PRMC,Λ. Therefore, it suffices to show that the consequence
of the main implication of the axiom (that is, ∨ti=1C

(i)(W1) ≡ X ) discards at most Λ
assignments to the X variables. By definition (of the encoding of the circuits) for all as-
signments a to the X variables that are in Im(C) there is an extension of a that satisfies
∨ti=1C

(i)(W1) ≡ X . Now, all the circuits C(i) compute injective maps with pairwise dis-
joint images, and thus by Equation (7.1) there are at least 2n − Λ distinct elements (that
is, assignments) in Im(C). Hence, at least 2n − Λ assignments to the X variables are not
discarded. Claim
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7.2.1.2 Smaller Promise

We now formulate promise axioms for promises smaller than ε · 2n. Specifically, we shall
work with a promise of Λ = 2δn for a constant 0 < δ < 1 (we fix this Λ throughout this
subsection). For such a promise, the promise axiom is similar to Definition 7.2.3, except
that the number of input bits of each circuit in C needs to be modified accordingly. (We
shall use the same terminology as that used above for the Big Promise.)

Definition 7.2.4 (Promise Axiom for Λ = 2δn) Let the promise be Λ = 2δn, for a con-
stant 1 < δ < 1, and let t = d(1− δ)ne. Let C be a sequence of Boolean circuits
C := (C(1), . . . , C(t)). Assume that for each 1 ≤ i ≤ t the circuit C(i) has n − i input
bits and n output bits. Let W1, . . . ,Wt and W ′

1, . . . ,W
′
t be 2t disjoint sets of extension

variables1, where for all 1 ≤ i ≤ t, Wi,W
′
i consist of n− i variables each. The promise

axiom PRMC,Λ is the CNF encoding (via the encoding defined in Section 7.5.1) of the
following Boolean formula:

(
t∧
i=1

(
C(i)(Wi) ≡ C(i)(W ′

i )→ Wi ≡ W ′
i

)
∧ ∧

1≤i<j≤t
C(i)(Wi) 6≡ C(j)(Wj)

)
−→

t∨
i=1

C(i)(Wi) ≡ X.

Note that the promise axiom is of polynomial size as long as the circuits in C are (since
t ≤ n).

Also note that the proof of Claim 7.2.1.1 did not use the parameters r and t (which
determine the number of input bits in the circuits in C and the number of circuits in C,
respectively) but only the size |Im(C)|. Thus, the same claim holds also for the promise
axiom in Definition 7.2.4, which means that this promise axiom discards at most 2n −
|Im(C)| truth assignments, for some sequence of circuits in C that compute injective maps
with pairwise disjoint images. Therefore, we need to verify that |Im(C)| ≥ 2n−Λ, for all
C that consists of circuits computing injective maps with pairwise disjoint images.

Notice that for all 1 ≤ i ≤ t the circuit C(i) computes a Boolean map, denoted fi, such
that fi : {0, 1}n−i → {0, 1}n. Assume that all the fi’s are injective and that the images of
each pair of functions fi, fj , for 1 ≤ i 6= j ≤ t, are disjoint. Then, we have:

|Im(C)| =

(
1

2
+

1

22
+

1

23
+ · · ·+ 1

2t

)
· 2n =

(
1− 1

2t

)
· 2n

= 2n − 2n−d(1−δ)ne ≥ 2n − 2δn = 2n − Λ

Also note that |Im(C)| ≤ 2n − 2δn−1 and so if the circuit in C are injective with pairwise
disjoint images then PRMC,Λ discards at least 2δn/2 truth assignments.

1We have not been very economical in adding extension variables here; but this is not essential.
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7.2.2 Promise Resolution

Definition 7.2.5 (Promise resolution) Let Λ be the promise (see Definition 7.2.1) and let
K be a CNF in the X variables. A promise resolution (under the promise Λ) proof of the
clause D from a CNF formula K is a sequence of clauses D1, D2, . . . , D` such that:

(1) Each clause Dj is either a clause of K or a clause of a promise axiom PRMC,Λ

(where PRMC,Λ is either a big or a smaller promise axiom as defined in Defini-
tions 7.2.3 and 7.2.4 and C is an arbitrary sequence of circuits with the prescribed
input and output number of bits), or a resolvent of two previous clauses in the
sequence, or a consequence of the weakening rule applied to one of the previous
clauses in the sequence;

(2) The sequence contains (the clauses of) at most one promise axiom;

(3) The last clause D` = D .

The size, width and refutations of promise resolution is defined the same as in resolu-
tion.

Note that promise resolution is a Cook-Reckhow proof system: it is possible to ef-
ficiently verify whether a given CNF is an instance of the promise axiom, and hence to
verify whether a sequence of clauses constitute a legitimate promise refutation. This can
be done by “decoding” the CNF that encodes the promise axiom PRMC,Λ and then check-
ing that each circuit in C has the right number of input and output bits (we discuss this
issue in some more detail in the appendix Section 7.5.1).

Proposition 7.2.6 Let Λ be the promise (where Λ is either ε·2n or 2δn, for 0 < ε, δ < 1).
Then promise resolution under the promise Λ is a sound and complete proof system for
the set of CNF formulas under the promise Λ (see Definition 7.2.1). In other words, every
unsatisfiable CNF has a promise resolution refutation and every CNF that has more than
Λ satisfying assignments does not have promise resolution refutations.

Proof. Completeness stems from completeness of resolution. Soundness under the
promise Λ stems from Claim 7.2.1.1 (which, by the notes after Definition 7.2.4, holds
for both the big and the smaller promise axioms). �

7.2.3 Discussion

Let K be an unsatisfiable CNF formula in n variables, PRMC,Λ a promise axiom (where
the circuits in C all compute injective and pairwise disjoint Boolean maps) and let S :=
Im(C) ⊆ {0, 1}n (such that |S| ≥ 2n − Λ). Then, one can think of a promise resolution
refutation of K using the axiom PRMC,Λ as containing two separate parts:
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(i) a resolution ‘refutation’ of K where the space of truth assignments is restricted to
S;

(ii) a resolution proof that |S| ≥ 2n − Λ.

Note that if we want to consider promise resolution as having only part (i), then we
can modify (actually, strengthen) the promise axiom into ∨ti=1C

(i)(W ) ≡ X . However,
this choice means losing the soundness of the proof system under the promise (that is, the
soundness with respect to CNF formulas under a promise as defined in Definition 7.2.1),
since we do not have any guarantee that the circuit C discards at most Λ assignments (and
so CNF formulas with more than Λ satisfying assignments might have refutations in such
a system).

It is possible to use any number of axioms of the form C(i)(W ) ≡ X , as long as
resolution can prove both the injectivity of each of the maps computed by the circuits C(i)

introduced and the pairwise disjointness of these maps (as formulated by a propositional
formula similar to the formulation in the promise axioms), and provided that the circuits
C(i) have number of input bits that induce the right size of domains (that is, that the total
size of their domains is at least 2n − Λ).

It is also possible to modify the promise axioms to suit any chosen size of promise Λ
(possibly, only an approximation of Λ). This can be achieved by choosing a sequence of
circuits with the appropriate size of domain (explicitly expressed by the number of input
bits in each circuit in the sequence, and the total number of circuits).

Some comments about the formulation of the promise axioms are in order.

Comment 1: Note that we could not use only a single circuit C in the promise axioms (in
contrast to a sequence of circuits), because that way we would not have the possibility of
controlling the size of the domain of C and efficiently verifying that this size is the correct
one inside resolution. To see this, note that if the number of input variables to C is n (the
number of original variables) and the map computed by C is (provably) injective then C
does not discard any assignment. If, on the other hand, the number of input variables to
C is less than n, then C discards at least half the truth assignments, which might be too
many.

Comment 2: Also note that in order to discard assignments we cannot use a seemingly
more natural axiom of the form C(W ) 6≡ X for some circuit C (with domain of size
Λ). The reason is that this would not discard assignments in the image of C: it is not
necessarily true that C(W ) 6≡ X |= X 6≡ b for all b ∈ {0, 1}n such that b ∈ Im(C) (notice
that even for such a b there might be some assignment a for which C(a) 6≡ b).

On the other hand, Jan Krajı́ček notes (Krajı́ček (2007)) that it is possible to discard
assignments by an axiom of the form C(W ) 6≡ X , where C is a fixed circuit with domain
of size at most Λ (that is, it has k < n number of input bits, where 2k ≤ Λ), and where
the rule of using this axiom is that we can introduce any instance of C(W ) 6≡ X where
all the variables in W are substituted by constants 0, 1 and variables from X . This choice
of axioms simplifies somewhat the actual formulation of the promise axioms, as it does
not require that C computes an injective Boolean map. However, a possible drawback
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of such a formulation is the following: It is possible that for certain circuits (of the ap-
propriate number of input and output bits) we shall need to use exponentially many such
axiom instances to discard all (or most of) the assignments pertaining to the image of the
circuits. In contrast to this, our formulation of the promise axioms above enables a single
instance of a promise axiom using any circuit (more correctly, a sequence of circuits of
the appropriate number of input and output bits) to discard all the assignments outside the
image of the circuit.

7.3 Big Promise: Upper Bound
In this section, we show that under the promise Λ = ε·2n , for any constant 0 < ε < 1, res-
olution can efficiently certify the unsatisfiability of all unsatisfiable 3CNF formulas. The
proof method resembles the algorithm presented by Trevisan in Trevisan (2004). For a
constant k, this algorithm receives a kCNF formula K and deterministically approximates
the fraction of satisfying assignments of K within an additive error of ε. The running time
of the algorithm is linear in the size of K and polynomial in 1/ε.

The idea behind the refutations in this section is based on the following observation:
given a 3CNF formula K and a constant c, either there are 3(c − 1) variables that hit2 all
the clauses in K or there are at least c clauses in K over 3c distinct variables denoted by
K ′ (that is, each variable in K ′ appears only once). In the first case, we can consider all
the possible truth assignments to the 3c variables inside resolution: if K is unsatisfiable
then any such truth assignment yields an unsatisfiable 2CNF formula, which can be effi-
ciently refuted in resolution (cf. Cook (1971)). In the second case, we can make use of a
promise axiom to efficiently refuteK ′ (this set of clauses has less then Λ satisfying assign-
ments, for sufficiently large c). Specifically, in the second case, we construct a sequence
of small circuits C for which any satisfying assignment for K ′ is provably in resolution
(with polynomial-size proofs) outside the image of C.

The following is the main result of this section:

Theorem 7.3.1 Let 0 < ε < 1 be a constant and let Λ = ε · 2n be the given promise.
Then every unsatisfiable 3CNF with n variables has a polynomial-size (in n) resolution
refutation under the promise Λ.

This theorem is a consequence of the three lemmas that follow.

Lemma 7.3.2 Let K be a 3CNF formula. For every integer c one of the following holds:
(i) there is a set of at most 3(c − 1) variables that hit all the clauses in K; or (ii) there
is a sub-collection of clauses from K, denoted K ′, with at least c clauses and where each
variable appears only once in K ′.

2A set of variables S that “hit all the clauses in a CNF formula K” is a set of variables for which every
clause in K contains some variable from S.
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Proof. Assume that c > 2 (otherwise the lemma is trivial). Suppose that there is no set of
at most 3(c − 1) variables that hit all the clauses in K and let D1 be some clause in K.
Then, there ought to be a clauseD2 fromK that contains 3 variables that are not already in
D1 (or otherwise, the 3 (distinct) variables inD1 hit all the clauses inK, which contradicts
the assumption). In a similar manner we can continue to add new clauses from K until we
reach a set of c clauses D1, D2, . . . , Dc, where no variable appears more than once in this
set of clauses. �

If case (i) of the prior lemma holds, then the following lemma suffices to efficiently
refute the 3CNF:

Lemma 7.3.3 Let c be constant and K be an unsatisfiable 3CNF formula in the X vari-
ables (where n = |X|). Assume that there is a set S ⊆ X of at most 3(c − 1) variables
that hit all the clauses in K. Then there is a polynomial-size (in n) resolution refutation
of K.

Proof sketch: We simply run through all truth assignments to the variables in S (since
|S| ≤ 3(c − 1), there are only constant number of such truth assignments). Under each
truth assignment to the S variables,K becomes an unsatisfiable 2CNF. It is known that any
unsatisfiable 2CNF has a polynomial-size resolution refutation (cf. Cook (1971)). Thus,
we can refute K with a polynomial-size resolution refutation.

If case (ii) in Lemma 7.3.2 holds, then it suffices to show that resolution under a big
promise can efficiently refute any 3CNF formula T with a constant number of clauses
(for a sufficiently large constant), where each variable in T occurs only once (such a T
is of course satisfiable, but it has less than an ε fraction of satisfying assignments for a
sufficiently large number of clauses). This is established in the following lemma.

Lemma 7.3.4 Fix the constant c = 3dlog7/8(ε/2)e. Let Λ = ε · 2n, where 0 < ε < 1
is a constant and n is sufficiently large. Assume that T is a 3CNF with c/3 clauses (and
c variables) over the X variables, where each variable in T occurs only once inside T .
Then there is a polynomial-size resolution refutation of T under the promise Λ.

Proof. The proof consists of constructing a sequence of polynomial-size circuits C (where
the parameters of the circuits in C are taken from Definition 7.2.3; that is, r = dlog(1/ε)e
and t = 2r − 1), such that: (i) resolution can efficiently prove the injectivity and the
pairwise disjointness of the images of the circuits in C; and (ii) there is a polynomial-size
refutation of T and PRMΛ,C . In other words, there is a polynomial-size derivation of the
empty clause from the clauses of both T and PRMΛ,C .

Without loss of generality we assume that the variables in T are x1, . . . , xc. The se-
quenceC consists of the circuitsC(1), . . . , C(t), where each circuitC(i) has n−r input bits
and n output bits. Denote the Boolean circuit that computes the jth output bit of C(i) by
C

(i)
j and let the input variables of all the circuits in C beW := {w1, . . . , wn−r}. As shown
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in equation (7.1), since the circuits in C are intended to compute injective and pairwise
image-disjoint maps, the image of C would be of size 2n − 2n−r. We now define the map
that each circuit in C computes.

First, we determine the Boolean functions computed by the output bits in positions
c + 1, . . . , n in all the circuits in C. For all 1 ≤ i ≤ t and all c + 1 ≤ j ≤ n let C(i)

j (W )
compute the (j − r)th input variable wj−r.

Second, we need to determine the rest of the output bits for all the circuits in C, that
is, we need to determine the Boolean functions computed by C

(i)
j , for all 1 ≤ i ≤ t

and all 1 ≤ j ≤ c. Our intention is that for all 1 ≤ i ≤ t, the (single output) circuits
C

(i)
1 , . . . , C

(i)
c should compute (when combined together) a Boolean map, denoted by fi,

from c − r input bits W 0 := {w1, . . . , wc−r}, to c output bits. The jth output bit of fi
(which is computed by C(i)

j ) is denoted by fi,j , for 1 ≤ j ≤ c. In other words, fi(W 0) =

fi,1(W 0) ◦ · · · ◦ fi,c(W 0), where ◦ denotes concatenation of bits (we shall describe the
functions fi below). Summing it up for now, we have the following:

C
(1)
1 (W 0) = f1,1(W 0), . . . , C

(1)
c (W 0) = f1,c(W 0),

C
(1)
c+1(wc−r+1) = wc−r+1, . . . , C

(1)
n (wn−r) = wn−r

...
...

C
(t)
1 (W 0) = ft,1(W 0), . . . , C

(t)
c (W 0) = ft,c(W 0),

C
(t)
c+1(wc−r+1) = wc−r+1, . . . , C

(t)
n (wn−r) = wn−r,

(7.2)

where C(i)
j (wk) = wk denotes the fact that C(i)

j outputs the (input) variable wk (in which
case we assume that the circuit C(i)

j consists of only a single gate: the variable wk); and
where C(i)

j (W 0) = fi,j(W 0) denotes the fact that C(i)
j computes the function fi,j in the

c− r input variables W 0.
We now describe the requirements of the functions fi,j . Specifically, let B ⊆ {0, 1}c

be the set of all falsifying assignments3 to T and denote by Im(fi) the image of fi, for all
1 ≤ i ≤ t. We need the fi’s functions to map every input (over c − r input bits) to a
truth assignment (over the c variable x1, . . . , xc) that falsifies T (that is, a truth assignment
from B). We also need the fi’s to be injective and have pairwise disjoint images by the
requirements of the promise axiom (Definition 7.2.3). So that, overall, the Boolean maps
computed by the circuits in C would discard all the truth assignments that satisfy T . To
prove the existence of such fi’s we need the following proposition:

Proposition 7.3.5 There exists a collection of Boolean functions fi, where 1 ≤ i ≤ t, for
which the following three properties hold.

1. ∪ti=1Im(fi) ⊆ B;

2. All the fi’s are injective and have pairwise disjoint images;

3Note that the assignments here are actually partial truth assignments with respect to X , that is, they
give truth values only to the variables x1, . . . , xc (these are all the variables in T ).
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3. All the fi’s depend on a constant number of input variables: w1, . . . , wc−r (and
hence, all the fi,j’s depend only on these variables).

Proof. Each fi should depend on c− r variables and should be injective, and further, each
pair of fi’s should have disjoint images; thus we have:∣∣∣∣∣

t⋃
i=1

Im(fi)

∣∣∣∣∣ = t · 2c−r = (2r − 1) · 2c−r = 2c · (1− 2−r) . (7.3)

Hence, to prove the existence of the collection of fi’s with the required three properties
it suffices to show that | ∪ti=1 Im(fi)| ≤ |B|, and by (7.3) it suffices to show:

2c · (1− 2−r) ≤ |B| . (7.4)

Observe that the fraction of distinct assignments that satisfy T is equal to the proba-
bility (over all truth assignments to T ) that a uniformly chosen random truth assignment
satisfies all the c/3 clauses in T , which is equal to(

7

8

)c/3
=

(
7

8

)dlog7/8(ε/2)e

, (7.5)

and so

|B| = 2c ·
(

1−
(

7

8

)dlog7/8(ε/2)e)
.

Therefore, for (7.4) to hold it remains to show

2−r ≥
(

7

8

)dlog7/8(ε/2)e
,

which holds because

2−r = 2−dlog(1/ε)e ≥ 2− log(1/ε)−1 = 2− log(1/ε)/2

= ε/2 =
(

7
8

)log7/8(ε/2) ≥
(

7
8

)dlog7/8(ε/2)e
.

�

Having established the existence of functions fi for which the three conditions in
Proposition 7.3.5 hold, we define each circuit C(i)

j , for 1 ≤ i ≤ t and 1 ≤ j ≤ c, to
compute the function fi,j . Since the domain of each fi,j is constant (that is, 2c−r) each
C

(i)
j can be of constant size.

Note that the circuits inC = (C(1), . . . , C(t)) indeed compute t injective Boolean maps
that have pairwise disjoint images. Disjointness of images stems from the fact that the fi’s
functions all have disjoint images, and injectivity stems from the fact that the fi’s are all
injective, and that for each 1 ≤ i ≤ t, the Boolean map computed byC(i)

c+1◦. . .◦C(i)
n (again,

◦ denotes concatenation of bits) is exactly the identity map id : {0, 1}n−c → {0, 1}n−c.
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To complete the proof of Lemma 7.3.4, we need to show that resolution can efficiently
prove that indeed the circuits in C all compute injective Boolean maps and have pairwise
disjoint images (as well as to efficiently refute T when assuming that X can take only
assignments from the image of C). This is done in the following claim:

Claim: Let C be the sequence of circuits as devised above, and let PRMC,Λ be the corre-
sponding (big) promise axiom. Then there is a polynomial-size resolution refutation of T
and PRMC,Λ.

Proof of claim: The proof follows by considering the encoding of the (big) promise ax-
iom PRMC,Λ via the encoding scheme in the appendix (Section 7.5.1) and showing how
resolution can prove the empty clause from T and this encoding. Here we shall use a less
formal description; more details can be found in the appendix.

First we need resolution to prove the premise of the main implication in PRMC,Λ.
This breaks into two parts corresponding to ∧ti=1

(
C(i)(W1) ≡ C(i)(W2)→ W1 ≡ W2

)
and ∧1≤i<j≤tC

(i)(W1) 6≡ C(j)(W2).
For the first part, we need to refute the statement expressing that C contains some

circuit C(i) that computes a non-injective Boolean map. This can be efficiently refuted in
resolution: Assume (inside resolution) that C(i)(W 1) ≡ C(i)(W 2) , for some 1 ≤ i ≤ t,
then by (7.2) we can efficiently prove (inside resolution) that for all c− r+1 ≤ j ≤ n− r
it happens that w(1)

j ≡ w
(2)
j (where w(1)

j is the jth variable in W 1, and w
(2)
j is the jth

variable in W 2) (see details in the appendix, and in particular Section 7.5.1.3). Thus, it
remains to refute the statement that for some 1 ≤ j ≤ c − r it happens that w(1)

j 6≡ w
(2)
j .

This is indeed a contradiction by definition of the circuits in C (as they compute injective
maps). Since all the output bits w(1)

j , w
(2)
j for 1 ≤ j ≤ c−r, are computed by constant size

circuits C(i)
j for 1 ≤ j ≤ c − r and 1 ≤ i ≤ t (with constant number of input variables),

such a contradiction can be refuted in constant size resolution refutation (again, see more
details in the appendix).

The disjointness of the images of the (maps computed by the) circuits in C is also
efficiently provable inside resolution in a similar manner, and we shall not describe it
here.

Therefore, we arrive (inside resolution) at the consequence of the main implication in
the promise axiom: ∨ti=1C

(i)(W 1) ≡ X . It remains to refute T and ∨ti=1C
(i)(W 1) ≡ X .

Again, T has a constant number of variables (that is, c). Consider only the cir-
cuits that output to the variables x1, . . . , xc in ∨ti=1C

(i)(W 1) ≡ X: these are the circuits
C

(i)
1 , . . . , C

(i)
c for all 1 ≤ i ≤ t. We shall denote the set of these circuits by C ′. The

(functions computed by) the circuits in C ′ depend on a constant number of variable W 0

and they have constant size. Denote by Z the subformula of PRMC,Λ that contains the
(encoding of) the circuits in C ′ including the encoding of the statement that for some
1 ≤ i ≤ t the variables x1, . . . , xc are equal to the output of the circuits C(i)

1 , . . . , C
(i)
c .

By the definition of the circuits in C (see condition (1) in Proposition 7.3.5) Z discards
all the satisfying assignments of T (over the c variables in T )4. Thus, T and Z constitute

4We have abused notation here, as we defined assignment discarding of only complete assignments to X
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together a contradiction of constant size (as there are no satisfying assignments for both T
and Z). Therefore, there is a constant size resolution refutation of T and Z. Claim

This concludes the proof of Lemma 7.3.4. �

7.4 Smaller Promise: Lower Bound
In this section, we prove an exponential lower bound on the size of resolution refutations
under the promise 2δn, for any constant 0 ≤ δ ≤ 1. The lower bound apply to random
3CNF formulas with O(n3/2−ε) number of clauses, for 0 < ε < 1

2
(where n is the number

of variables in the 3CNF). This lower bound matches the known lower bound on resolution
refutation-size for random 3CNF formula (without any promise). Basically, the proof
strategy of our lower bound is similar to that of Ben-Sasson and Wigderson (2001), except
that we need to take care that every step in the proof works with the augmented (smaller)
promise axiom.

The lower bound is somewhat stronger than described above in two respects. First, we
show that restricting the set of all truth assignments 2n to any smaller set (that is, not just
those sets defined by small circuits) that consists of 2n−2δn assignments (for any constant
0 ≤ δ ≤ 1), does not give resolution any advantage in the average-case. One can think of
such a restriction as modifying the semantic implication relation |= to take into account
only assignments from some prescribed set of assignments S, such that |S| = 2n− 2δn (in
other words, for two formulas A,B, we have that A |= B under the restriction to S iff any
truth assignment from S that satisfies A also satisfies B). Formally, this means that the
lower bound does not use the fact that the restricted domain of size 2n − 2δn is defined by
a sequence C of polynomial-size circuits (nor the fact that the circuits in C ought to have
polynomial-size resolution proofs of their injectivity and pairwise disjointness).

Second, we could allow for a promise that is bigger than 2δn, and in particular for a
promise of 2n(1−1/n1−ξ) = 2n/2n

ξ , for some constant 0 < ξ < 1 (see remark after Theorem
7.4.2 below). The actual proof of the lower bound uses the smaller promise of 2δn, but the
proof for a 2n/2n

ξ promise is the same. (Although we have not defined precisely how the
promise axioms are formulated in the case of a promise equal to 2n/2n

ξ , it is possible to
formulate such promise axioms along the same lines described in Definition 7.2.4.)

The following defines the usual average-case setting of 3CNF formulas (there are
other definitions that are essentially similar):

Definition 7.4.1 (Random 3CNF formulas) For a 3CNF formula K with n variables X
and β · n clauses, we say that β is the density of K. A random 3CNF formula on n
variables and density β is defined by picking β · n clauses from the set of all 23 ·

(
n
3

)
clauses, independently and indistinguishably distributed, with repetitions.

while here we say that Z discards a partial assignment to the variables x1, . . . , xc only. But the definition
of such partial assignment discarding is similar (consider the variables x1, . . . , xc to be the only original
variables).
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We say that an event (usually a property of a 3CNF in n variables and density β)
happens with high probability if it happens with 1 − o(1) probability in the specified
probability space (usually random 3CNF formulas as defined in Definition 7.4.1).

Our goal is to prove a lower bound on the average-case refutation-size of 3CNF for-
mulas taken from the set of 3CNF formulas under a promise as defined in Definition 7.2.1
(note that the probability space defined in Definition 7.4.1 is defined over a different set
of 3CNF, that is, the set of all 3CNF formulas). For this purpose, we define a proba-
bility space over the set of 3CNF formulas under a promise: The distribution of random
3CNF formulas under a promise Λ on n variables and density β is the distribution of ran-
dom 3CNF formulas in Definition 7.4.1 conditioned on the event that the 3CNF is either
unsatisfiable or has more than Λ(n) satisfying assignments.

We now argue that to satisfy our goal to prove a lower bound on the average-case proof
complexity of 3CNF formulas under a promise, it is sufficient to prove the lower bound
result considering the distribution of random 3CNF formulas as defined in Definition 7.4.1.

It is well known that almost all 3CNF formulas with a density β above a certain con-
stant threshold (say, 5) are unsatisfiable. This means that any property of a 3CNF (with
density above the threshold) that happens with high probability in the distribution in Def-
inition 7.4.1 also happens with high probability in the distribution of random 3CNF for-
mulas under a promise Λ(n) (as defined above); this is because there are only a fraction
o(1) of 3CNF formulas (with a given fixed number of variables n and a given fixed den-
sity β above the threshold) that are satisfiable (and moreover have at least one satisfying
assignment but less than Λ(n) satisfying assignments). Thus, if we prove that with high
probability a random 3CNF formula has no small promise resolution refutation then it
implies also that with high probability a random 3CNF formula under a promise has no
small promise resolution refutation. Therefore, we shall consider from now on only the
distribution of 3CNF formulas as defined in Definition 7.4.1, and forget about the other
distribution.

7.4.1 The Lower Bound

Throughout this section we fix 0 < δ < 1 and Λ = 2δn. We also fix an arbitrary instance of
a promise axiom PRMC,Λ (from Definition 7.2.4; where C is a sequence of the appropriate
number of circuits, and each circuit in C have the appropriate number of input and output
bits). For K a CNF formula, we denote by Vars(K) the set of variables that occur in K.

The following is the main theorem of this section. The lower bound rate matches that
appearing in Ben-Sasson and Wigderson (2001) for resolution.

Theorem 7.4.2 Let 0 < δ < 1 and 0 < ε < 1/2. With high probability a random 3CNF
formula with β = n1/2−ε requires a size exp(Ω(β−4/(1−ε) ·n)) resolution refutation under
the promise Λ = 2δn.

Remark: As mentioned above, we could allow in Theorem 7.4.2 for a promise that is
bigger than 2δn, and precisely for a promise of 2n(1− 1

n1−ξ ) = 2n/2n
ξ , for any constant ξ
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such that ε
(1−ε) < ξ < 1 (for instance, this allows for a promise of 2n/2n

1/3).

The proof strategy of Theorem 7.4.2 is to show that with high probability for a random
3CNF formulaK with density β = n1/2−ε, a resolution refutation under the promise 2δn of
K must contain some clause D of large width. Then we can apply the size-width tradeoff
from Theorem 7.1.1 to reach the appropriate size lower bound.

In order to illustrate an exponential lower bound via the size-width tradeoff of Theo-
rem 7.1.1, we need to guarantee that all the initial clauses (that is, all the axiom clauses)
are of constant width. The 3CNF formula K is certainly of constant width, but the clauses
pertaining to the promise axiom PRMC,Λ might not be (see the appendix Section 7.5.1
for a detailed specification of these clauses). We solve this problem as follows. First, we
add yet more extension variables to encode the clauses of the promise axiom with new
constant width clauses. Second, we note that the original clauses of the promise axiom
can be derived by a linear-size resolution proof from the new constant width version of the
promise axiom (therefore, if there is a polynomial-size resolution refutation of K using
the original promise axiom, then there is also a polynomial-size resolution refutation of
K using the new constant width version of the promise axiom). Finally, we prove the
exponential lower bound on resolution augmented with the constant width version of the
promise axiom (instead of the original clauses pertaining to the promise axiom).

We now explain how to get the new constant-width promise axiom from the clauses
pertaining to the original promise axiom from Definition 7.2.4 (as depicted in the ap-
pendix). Let E = `1 ∨ . . . ∨ `m be a clause in the promise axiom that has more than
constant width (that is, `i’s are literals and m = ω(1)). Then, we replace the clause E
with the following collection of clauses:

`1 ∨ e1, ¬e1 ∨ `2 ∨ e2, ¬e2 ∨ `3 ∨ e3, . . . ,¬em−1 ∨ `m, (7.6)

where the ei’s are new extension variables. By resolving on the ei variables, one after the
other, it is possible to derive with a linear-size resolution proof the original clause E from
the clauses in (7.6) (consider the first two clauses (from left) in (7.6), and resolve over the
variable e1, then the resolvent of this step is resolved over the variable e2 with the third
clause in (7.6), and so forth). (Note that every truth assignment that satisfies (7.6) also
satisfies E, and so any clause that is semantically implied by E (see the preliminaries,
Section 7.1) is also semantically implied by (7.6). This means that the new constant width
version of the promise axiom discards the same truth assignments to the variables X as
the original version of the promise axiom.)

Thus, from now on in this section we assume that the promise axiom consists of clauses
of a constant width.

The rest of this section is devoted to the proof of Theorem 7.4.2.
For a clause D define:

η(D) := min
{
|K ′|

∣∣∣ K ′ ⊆ K and (PRMC,Λ ∪K ′) |= D
}
.
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Remark: We use the symbol η to distinguish it from a similar measure µ used in Ben-
Sasson and Wigderson (2001): Here we require the minimal set of clauses from K that
combined with the axiom PRMC,Λ semantically imply D.

We show that with high probability for a random 3CNF formula with density β =
n1/2−ε, for 0 < ε < 1/2, the following is true:

1. Let k = 2n · (80β)−2/(1−ε). Then η(�) ≥ k.

2. Any refutation of K must contain a clause D such that k/2 ≤ η(D) ≤ k.

3. Any clauseD from 2 must have large width, and specifically |D| ≥ εn(80β)−2/(1−ε).

Note that by Theorem 7.1.1, Item 3 above concludes the proof of Theorem 7.4.2.
The following two definitions are similar to those in Ben-Sasson and Wigderson (2001)

(we refer directly to 3CNF formulas instead of 3-uniform hypergraphs):

Definition 7.4.3 (CNF Expansion) For a 3CNF formula K with density β = n1/2−ε, for
0 < ε < 1/2, the expansion of K is

e(K) := min

2|Vars(K ′)| − 3|K ′|
∣∣∣∣∣
K ′ ⊂ K and
n · (80β)−2/(1−ε) ≤ |K ′|
≤ 2n · (80β)−2/(1−ε)

 .

Definition 7.4.4 (Partial matchability) A 3CNF formula K with density β = n1/2−ε,
for 0 < ε < 1/2, is called partially matchable if for all K ′ ⊂ K such that |K ′| ≤
2n · (80β)−2/(1−ε) we have |Vars(K ′)| ≥ |K ′|.

The next lemma gives two properties of random 3CNF formulas that occur with high
probability (see the appendix of Ben-Sasson and Wigderson (2001) for a proof). We then
use this lemma to show that with high probability 1,2,3 above hold.

Lemma 7.4.5 (Beame et al. (2002)) Let 0 < ε < 1/2 and let K be a random 3CNF with
n variables and density β = n1/2−ε, then with high probability:

1. e(K) ≥ εn(80β)−2/(1−ε); and

2. K is partially matchable.

We now prove 1. In light of part (2) in Lemma 7.4.5, in order to prove that with high
probability 1 holds it is sufficient to prove the following:

Lemma 7.4.6 Let K be a 3CNF formula in the X variables with density β = n1/2−ε, for
0 < ε < 1/2. If K is partially matchable then η(�) ≥ 2n · (80β)−2/(1−ε).
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Proof. By partial matchability of K, for all K ′ ⊂ K such that |K ′| ≤ 2n · (80β)−2/(1−ε)

it happens that |Vars(K ′)| ≥ |K ′|. Thus, by Hall’s Theorem we can choose a distinct
variable (representative) from each clause in K ′ and set it to satisfy its clause. Clearly,
|Vars(K ′)| ≤ 3|K ′| ≤ 6n · (80β)−2/(1−ε), and so there is a (partial) truth assignment ρ to
at most 6n · (80β)−2/(1−ε) variables in X that satisfies K ′. Since β = n1/2−ε,

6n · (80β)−2/(1−ε) = 6 · 80−2/(1−ε) · nε/(1−ε), (7.7)

which, by 0 < ε < 1/2, is equal to O(nλ) for some 0 < λ < 1. Thus for sufficiently large
n there are more than δn variables from X not set by ρ, which means that there are more
than 2δn different ways to extend ρ into truth assignments (to all the variables in X) that
satisfy K ′.5 Since the promise axiom PRMC,Λ can discard up to 2δn truth assignments to
the X variables, we get that PRMC,Λ ∪K ′ is satisfiable (any assignment to X that is not
discarded by PRMC,Λ can be extended to the extension variables in a way that satisfies
PRMC,Λ).

We have thus showed that every collection K ′ containing at most 2n · (80β)−2/(1−ε)

clauses from K and augmented with the promise axiom PRMC,Λ is satisfiable. This im-
plies in particular that η(�) ≥ 2n · (80β)−2/(1−ε). �

We now prove 2. Note that the resolution rule is sub-additive with respect to η in the
sense that for all three clauses E,F,D such that D is a resolvent of E and F , it holds that

η(E) + η(F ) ≥ η(D).

We also clearly have that for every axiom clause E (either from K or from the promise
axiom):

η(E) = 1.

Let
k = 2n · (80β)−2/(1−ε).

By Lemma 7.4.6, with high probability for a 3CNF formula K with density β = n1/2−ε

(for 0 < ε < 1/2) it happens that η(�) ≥ k. By sub-additivity of the resolution rule with
respect to η, in any resolution refutation ofK under the promise Λ, there ought to be some
clause D such that

k/2 ≤ η(D) ≤ k.

We now prove 3. Let D be a clause such that k/2 ≤ η(D) ≤ k from 2 and let K ′ be
the (minimal) set of clauses from K for which PRMC,Λ ∪K ′ |= D and k/2 ≤ |K ′| ≤ k.
We shall prove that (with high probability for a random 3CNF) |D| ≥ εn(80β)−2/(1−ε). In
light of Lemma 7.4.5 part (1), in order to prove this, it is sufficient to prove the next two
lemmas.

5Actually, for sufficiently large n there are more than Ω(n − nε/(1−ε)) such variables, from which we
can assume the bigger promise Λ = 2n/2n

ξ

, for any ε
(1−ε) < ξ < 1, as noted in the remark after Theorem

7.4.2.
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Define ∂K ′, called the boundary of K ′, to be the set of variables in K ′ that occur only
once in K ′ (in other words, each variable in ∂K ′ appears only in one clause in K ′).

Lemma 7.4.7 |∂K ′| ≥ e(K).

Proof. Every variable not in ∂K ′ must be covered by at least two distinct clauses inK ′, and
so |Vars(K ′)| ≤ |∂K ′|+ 1

2
·(3|K ′|−|∂K ′|). Thus, we have |∂K ′| ≥ 2|Vars(K ′)|−3|K ′| ≥

e(K) (where the last inequality is by Definition 7.4.3 and since k/2 ≤ |K ′| ≤ k). �

Lemma 7.4.8 |D| ≥ |∂K ′|.

Proof. Let xi ∈ ∂K ′, for some 1 ≤ i ≤ n, and denote by Ki the (unique) clause from K ′

that contains xi. Assume by a way of contradiction that xi does not occur in D.
By minimality of K ′ with respect to η and D there exists an assignment α (here we

treat α as a total truth assignment, that is, a truth assignment to both the X variables and
the extension variables in the promise axiom) such that

(K ′ \Ki)(α) = 1 and D(α) = 0 (7.8)

(as otherwise (K ′ \ Ki) |= D which clearly implies PRMC,Λ ∪ (K ′ \ Ki) |= D, which
then contradicts the minimality of K ′ with respect to η and D).

By assumption, xi occurs neither in K ′ \Ki nor in D. Hence, we can flip the value of
α on xi so that Ki(α) = 1 while still keeping (7.8) true. We thus have:

K ′(α) = 1 and D(α) = 0 (7.9)

Since |K ′| ≤ k, we have that |Vars(K ′)| ≤ 3k = 6n · (80β)−2/(1−ε) (recall that |K ′| is
the number of clauses in K ′). If |D| ≥ |∂K ′| we are done. Otherwise,

|Vars(K ′)|+ |D| < |Vars(K ′)|+ |∂K ′| ≤ 2|Vars(K ′)| ≤ 12n · (80β)−2/(1−ε).

Thus, similar to equation (7.7), for sufficiently large n, the total number of distinct vari-
ables in K ′ and D is at most |Vars(K ′)| + |D| = O(nλ), for some 0 < λ < 1. This
means that for sufficiently large n there are more than δn variables from X for which flip-
ping the value of α on them still validates (7.9).6 Hence, there are more than 2δn distinct
assignments to the X variables for which (7.9) holds.

The promise axiom PRMC,Λ discards at most 2δn assignments to the X variables. This
means that there are at most 2δn assignments ρ to the X variables that falsify PRMC,Λ

(that is, that every extension of ρ to all the extension variables falsifies PRMC,Λ), while all
other assignments ρ to the X variables have an extension (to all the extension variables)
that satisfies PRMC,Λ. Thus, by the previous paragraph there ought to be at least one

6Again, similar to what was noted in the proof of Lemma 7.4.6, for sufficiently large n there are actually
more than Ω(n− nε/(1−ε)) such variables.
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assignment ρ to the X variables that has an extension ρ′ to the extension variables, such
that

PRMC,Λ(ρ′) = 1 , K ′(ρ′) = 1 and D(ρ′) = 0, (7.10)

which contradicts the assumption that PRMC,Λ ∪K ′ |= D. �

7.5 Appendix: Encodings

7.5.1 Encoding of Boolean Circuits and Promise Axioms

In this section we describe in detail how the promise axiom (see Definition 7.2.3) is en-
coded as a CNF formula. As mentioned in Section 7.1.2, by Cook’s Theorem there is
always an efficient way to encode a Boolean circuit as a CNF formula using extension
variables (that is, a CNF with size O(s · log(s)) can encode a circuit of size s). However,
we shall need to be more specific regarding the actual way the encoding is done since
we require that resolution should be able to efficiently prove some basic facts about the
encoded circuits.

7.5.1.1 Boolean Circuit Encoding

The following definition is similar to the circuit encoding defined in Alekhnovich et al. in
Alekhnovich et al. (2004) (note that it deals with a single output bit Boolean circuit):

Definition 7.5.1 (Encoding of Boolean circuits) Let C(W ) be a Boolean circuit (with
∨,∧ as fan-in two gates and ¬ a fan-in one gate) andm input variablesW := w1, . . . , wm
and a single output bit. For every gate v of the circuit C we introduce a special extension
variable yv. For input gates wj (1 ≤ j ≤ m) we identify ywj with wj . We denote by y1

the literal y and by y0 the literal ¬y. The CNF formula ‖C(W )‖ consists of the following
clauses:

(i) yε̄1v1
∨ yε̄2v2

∨ yπ◦(ε1,ε2)
v , where v is a ◦ ∈ {∨,∧} gate in C and v1, v2 are the two input

gates of v in C and 〈ε1, ε2〉 is any vector in {0, 1}2 and π◦ is the truth table function of ◦
(and 0̄ = 1, 1̄ = 0);

(ii) yε̄1v1
∨ yπ¬(ε1)

v , where v is a ¬ gate in C and v1 is the single input gates of v in C,
and ε1 ∈ {0, 1} and π¬ is the truth table function of ¬.

We write ‖C(W )‖(y) to indicate explicitly that the output gate v of C is encoded by
the extension variable y.

7.5.1.2 Encoding of the Promise Axioms

We now give a rather detailed description of how the promise axioms are encoded as
CNF formulas. We shall consider only the ‘big’ promise axiom (Definition 7.2.3), but the
other variant (Definition 7.2.4) is similar. We encode the promise axioms in a bottom-up
manner, encoding the sub-formulas separately, and then combining all of them together.
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We assume that a Boolean circuit C(W ) with n output bits is encoded as n distinct cir-
cuits and we write ‖C(W )‖(Y ) to indicate explicitly that the output gates v1, . . . , vn of C
are encoded by the extension variables y1, . . . , yn (where Y := {y1, . . . , yn}). This means
that ‖C(W )‖(Y ) is the CNF formula ∧ni=1‖Ci(W )‖(yi), where Ci(W ) is the circuit com-
puting the ith output bit of C(W ) and yi is the variable that encodes (see Definition 7.5.1)
the (single) output bit ofCi(W ). We also require that if the (function computed by the) cir-
cuit C(W ) does not depend,7 on some input bit wi, then wi does not occur in the encoding
of C(W ).

Let 1 ≤ k ≤ t (where the parameter t is taken from Definition 7.2.3). We first encode
as a CNF formula the negation of following sub-formula from the promise axiom:

C(k)(W 1) ≡ C(k)(W 2) → W 1 ≡ W 2 .

We denote this CNF encoding by ¬INJk (where INJ stands for injective).

Definition 7.5.2 (¬INJk) Let 1 ≤ k ≤ t and m = n − r (all the parameters are taken
from Definition 7.2.3). Let W 1 := {w(1)

1 , . . . , w
(1)
m } , W 2 := {w(2)

1 , . . . , w
(2)
m } , Y k :=

{y(k)
1 , . . . , y

(k)
n } and Zk := {z(k)

1 , . . . , z
(k)
n } be sets of new distinct extension variables.

The CNF formula ¬INJk consists of the following set of clauses:

1. ||C(k)(W 1)||(Y k); ||C(k)(W 2)||(Zk) (expresses that Y k, Zk are the output bits of
C(k)(W 1), C(k)(W 2), respectively);

2. ¬ui ∨¬y(k)
i ∨ z(k)

i ; ¬ui ∨ y(k)
i ∨¬z(k)

i , for all 1 ≤ i ≤ n (expresses that ui implies
y

(k)
i ≡ z

(k)
i );

3. vi ∨ w(1)
i ∨ w(2)

i ; vi ∨ ¬w(1)
i ∨ ¬w(2)

i ; for al 1 ≤ i ≤ m (expresses that ¬vi implies
w

(1)
i ≡ w

(2)

i );

4. u1, . . . , un (expresses that Y ≡ Z);

5. ¬v1 ∨ . . . ∨ ¬vm (expresses that W 1 6≡ W 2);

For simplicity of writing we introduce the following notation: Let ` be a literal and let
A be a CNF formula. We denote by `©∨A the set of clauses (that is, the CNF formula) that
results by adding to each clause of A the literal `.

We now encode as a CNF formula denoted by ¬INJ the negation of

t∧
k=1

(
C(k)(W 1) ≡ C(k)(W 2) → W 1 ≡ W 2

)
.

Definition 7.5.3 (¬INJ) The CNF formula ¬INJ consists of the following set of clauses:

7We say that a Boolean function f does not depend on an input bit wi if for all input assignments α to
f , flipping the truth value of wi in α does not change the value of f .
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1. ¬pk©∨¬INJk for al 1 ≤ k ≤ t (expresses that INJk implies ¬pk);

2. p1 ∨ . . . ∨ pt (expresses ∨tk=1¬INJk.)

In a similar manner one can encode as a CNF the negation of the formula∧
1≤i<j≤t

(
C(i)(W 1) 6≡ C(j)(W 2)

)
,

denoted by ¬DSJ (where DSJ stands for disjoint). We shall not develop the encoding
precisely, as this is pretty much similar to ¬INJ.

The last part of the promise axiom we need to encode is the formula

t∨
i=1

C(i)(W 1) ≡ X.

We denote the CNF encoding of this formula by RST (which stands for restriction). Again,
this is similar to the encoding of ¬INJ, but we show how to encode it anyway, since we
would like to illustrate in the sequel how resolution can use RST to efficiently prove some
basic facts about the X variables (in the case the circuits in C have certain simple form).

Definition 7.5.4 (RST) For every 1 ≤ k ≤ t, recall that Y k := {y(k)
1 , . . . , y

(k)
n } are the

output variables of ||C(k)(W 1)|| from Definition 7.5.2. The CNF formula RST consists of
the following set of clauses:

1. ¬f (k)
i ∨¬y(k)

i ∨xi; ¬f (k)
i ∨y(k)

i ∨¬xi for all 1 ≤ i ≤ n (expresses that f (k)
i implies

y
(k)
i ≡ xi);

2. ¬hk ∨ f (k)
1 , . . . ,¬hk ∨ f (k)

n (expresses that hk implies Y k ≡ X);

3. h1 ∨ . . . ∨ ht (expresses
t∨
i=1

Y k ≡ X .)

Finally, the promise axiom PRMC,Λ is the following CNF formula:

Definition 7.5.5 (CNF encoding of PRMC,Λ) The CNF encoding of the promise axiom
PRMC,Λ consists of the following clauses:

1. ¬q1©∨¬INJ (expresses that INJ implies ¬q1);

2. ¬q2©∨¬DSJ (expresses that DSJ implies ¬q2);

3. q1©∨ (q2©∨RST) (expresses ¬INJ ∨ ¬DSJ ∨ RST, which is equivalent to INJ ∧
DSJ)→ RST ).
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7.5.1.3 Proving Basic Facts About Encoded Circuits inside Resolution

The following simple claim illustrates how one can reason inside resolution, and specif-
ically can “eliminate implications” inside resolution. Consider, for instance, line 1 in
PRMC,Λ (Definition 7.5.5). This line expresses that INJ implies ¬q1. In other words, it is
logically equivalent to INJ → ¬q1. Assume that we already know INJ (which formally
means that we have a resolution refutation of ¬INJ). We would like to arrive inside reso-
lution at ¬q1. The following straightforward claim illustrates how to do this in resolution.

Claim: Let A be an unsatisfiable CNF formula with a resolution refutation of size s and
let ` be any literal. Then there is a resolution proof of ` from `©∨A of size s.

Proof of claim: Assume that the resolution refutation of A is the sequence of clauses
A1, . . . , As, where As = � (the empty clause). Then ` ∨ A1, . . . , ` ∨ As is a resolution
proof of `∨� = ` from `©∨A (we assume that ` is not in anyAi; or else, by the weakening
rule, the claim also holds). Claim

Note that Claim 7.5.1.3 implies that if there is a refutation of ¬INJ of size s, then there
is also a proof of ¬q1 of the same size s, from line 1 in PRMC,Λ (Definition 7.5.5).

We now illustrate how resolution can efficiently prove a certain simple fact about sim-
ple circuits. This is needed (among other efficient proofs of similar simple facts) in order
to show the upper bound in Section 7.3 (and specifically, it is used in Claim 7.3). Other
similar facts about the Boolean circuits constructed in Section 7.3 can be proved inside
resolution in a similar manner, and we shall not describe these proofs here.

For some 1 ≤ k ≤ t, let C(k) be a circuit from a sequence of circuits C (as in the
promise axioms), where m and n are the number of input and output variables of C(k),
respectively. Assume that the ith output bit of C(k) computes the jth input bit wj for some
1 ≤ j ≤ m and 1 ≤ i ≤ n. We require that resolution can efficiently refute (the encoding
via Definition 7.5.2 of):

C(k)(W 1) ≡ C(k)(W 2) ∧ w(1)
j 6≡ w

(2)
j

(note that by assumption this is clearly a contradiction).
Since C(k)

i just computes the jth input bit wj , then in fact we can assume that the
encoding ‖C(k)

i (W )‖(yi) consists of only the single clause wj (remember that by Defini-
tion 7.5.1 we identify between the variable encoding an input gate with the input variable
wj itself; and here we know that wj is also the output variable). Thus, by 2 in Defini-
tion 7.5.2 we have that the output bit yj of C(k)

i (W 1) equals the output bit zj of C(k)
i (W 2),

and yj is actually w(1)
j and zj is actually w(2)

j . Therefore, by Definition 7.5.2 3, we can
prove vj . So, by one resolution rule applied to 7.5.2 5, we are left with ∨i 6=jvi.

Assume that all but a constant number of the output bits of C(k) compute some (dis-
tinct) input bit wj , for some 1 ≤ j ≤ m (this assumption corresponds to the circuits
we build in Section 7.3). Then the process described in the previous paragraphs can be
iterated for all such output bits of C(k), in order to cut off (that is, resolve over) all the
vj variables in clause 5 in Definition 7.5.2, until we reach only a disjunction of constant
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number of variables vj instead of clause 5 in 7.5.2.
We are thus left with a constant number of circuits depending only on a constant

number of input variables. Therefore, we can now refute with a polynomial-size resolution
refutation the encoding of

C(k)(W 1) ≡ C(k)(W 2) ∧W 1 6≡ W 2 (7.11)

(if indeed the circuit C(k) computes an injective map, which means that (7.11) is unsatis-
fiable).

7.5.1.4 Comments on Decoding the Encoded Promise Axioms

To assert that promise resolution is a Cook-Reckhow proof system (see the first paragraph
in Section 1.2.4.1 for a definition) we need to make sure that a promise resolution refuta-
tion can be identified as such in polynomial-time. For this, one needs to be able to verify
whether a given CNF is an instance of the promise axiom.

As mentioned in Section 7.2, this can be done by “decoding” the CNF that encodes
the promise axiom PRMC,Λ and then checking that each circuit in C has the right number
of input and output bits. Here we illustrate how this can be achieved.

First, it is possible to identify which are the clauses pertaining to the promise axioms
out of all the clauses in the refutation (for instance, any clause used as an axiom that is
not one of the clauses of the CNF meant to be refuted). Second, it is possible to identify
which are the clauses of the promise axiom that are part of the circuit encoding (that is,
clauses in line 1 in Definition 7.5.2). It is then possible to decode the circuits from the
encoding, and check that the circuits are legitimate ones and have the intended number of
input and output variables (we omit the details).

7.6 Chapter Summary
This chapter establishes a new framework of propositional proof systems that are able to
separate the unsatisfiable CNF formulas from the set of CNF formulas having many sat-
isfying assignments. We analyzed the complexity of basic cases pertaining to such proof
systems. In particular, we demonstrated an exponential separation between the case of a
big promise (a constant fraction of all truth assignments) and the average-case proof com-
plexity of refutations under a smaller promise (that is, a promise of 2δn, for any constant
0 < δ < 1).
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In this thesis we explored new proof systems for establishing propositional tautologies
and related languages. We studied the complexity of these proof systems and compared
their strength to other previously studied proof systems.

In the first parts of the thesis (Chapters 3–5) we focused on semantic algebraic proof
systems operating with multilinear formulas and their relations with extensions of the
resolution proof system operating with disjunctions of linear equations. Specifically, we
showed that multilinear proofs operating with depth-3 multilinear formulas are somewhat
close to a certain (proper) fragment of resolution operating with linear equations (that
is, the R0(lin) proof system). Moreover, the monotone interpolation via communication
game technique yields exponential-size lower bounds on R0(lin) proofs, by the results in
Chapter 4. Therefore, an important question that remains open is this:

Open problem 1: Can any super-polynomial lower bound on the size of multilinear proofs
operating with depth-3 multilinear formulas be proved via the monotone interpolation
technique?

We observed in Chapter 4 that there are polynomial-size R(lin) refutations of the
clique-coloring formulas (for certain weak parameters, that is, when the formulas ex-
press, loosely speaking, the separation of k-cliques from complete k′-partite graphs, where
k =

√
n and k′ = (log n)2/8 log log n). We were unable to polynomially-simulate these

R(lin)-refutations by multilinear proofs (of any depth). Thus, the following question
(which stands in contrast to open problem 1, above) arises:

Open problem 2: Are there polynomial-size multilinear proofs of the clique-coloring
formulas (for these values of k, k′, or for stronger values1).

A positive answer to this question would show that multilinear proofs do not posses
the feasible monotone interpolation property (Definition 4.5.8).2 Showing polynomial-
size multilinear proofs of the clique-coloring formulas would also separate multilinear
proofs from cutting planes proofs, by known exponential-size lower bounds on cutting
planes proofs (cf. Pudlák (1997)).

With respect to the strength of full R(lin) proofs, the following problem remains open:

Open problem 3: Demonstrate super-polynomial lower bounds on R(lin) proofs.

We observed that R(lin) does not possess the monotone interpolation property (it ad-
mits polynomial-size proofs of the clique-coloring formulas, as noted above). Further-

1That is, for values of k, k′ that yield stronger lower-bounds on monotone circuits separating k-cliques
from complete k′-partite graphs.

2Note that this does not rule out entirely the possibility of using the monotone interpolation technique to
obtain exponential-size lower bounds for multilinear proof systems. This is because, if the transformation
from refutations of formulas to monotone circuits computing the corresponding interpolant functions, is
done with only a quasi-polynomial increase in size, then one could still obtain an exponential-size lower
bound on the refutations (as the lower bounds on monotone circuits separating k-cliques from complete
k′-partite graphs are exponential [for the appropriate values of k, k′]).
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more, it can be shown that R(lin) polynomially simulates Res(k) for any k (for a definition
of Res(k) see Krajı́ček (2001)), and so R(lin) is a considerably strong system (note that
some lower bounds for Res(k) proofs use “counting principles” as hard formulas [cf. At-
serias et al. (2002), Segerlind et al. (2002), Razborov (2002-2003)]; while R(lin) [and
even its proper subsystem R0(lin)] is suited to efficiently prove these formulas). There-
fore, providing super-polynomial lower bounds on R(lin) proofs would probably require
new techniques to be developed.

Another question that arises with respect to the R(lin) system concerns the relative
strength gained by proofs operating with equalities versus inequalities. In this respect,
two questions seem relevant:

Open problem 4: Does the cutting planes proof system (either with polynomially bounded
coefficients or not) polynomially simulate R0(lin)?

Open problem 5: Does R(CP*) polynomially simulate R(lin)? (We have shown that the
converse simulation is true.)

The following problem is most probably easy to accomplish:
Open problem 6: Can the efficient refutations of the pigeonhole principle and the Tseitin
mod p formulas in R0(lin) be transformed directly into proofs in algebraic proof systems
of a Cook-Reckhow type that operate with general (namely, not necessarily multilinear)
arithmetic formulas? This in turn would simplify corresponding algebraic proofs (over
the field of rationals) for the corresponding two (families of) formulas demonstrated in
Grigoriev and Hirsch (2003).

After investigating semantic algebraic propositional proof systems, we turned into
symbolic proofs that establish polynomial identities written as arithmetic formulas. Such
symbolic proofs were already considered in the literature on algebraic propositional proof
systems (cf. Buss et al. (1996/97); Grigoriev and Hirsch (2003)) (see the discussion in
Section 1.2.3.2): in this setting one usually requires that any proof-line (that is, an arith-
metic formula) in the algebraic propositional proof is treated as a (“syntactic”) term and
is derived as such from previous proof-lines via the polynomial-ring axioms applied on
any subformula. (This way, one obtains a Cook-Reckhow proof system operating with
arithmetic formulas, instead of semantic algebraic proof systems.)

Our study was thus motivated, among other things, by the question whether semantic
algebraic proof systems are stronger than their Cook-Reckhow counterparts. We demon-
strated an exponential lower bound on proofs in an analytic fragment of full symbolic
proof systems, operating with depth-3 formulas under a structural regularity condition.
The main general problem left open is of course the following:

Open problem 7: Improve the lower bound result to stronger fragments of symbolic
proofs of polynomial identities, than that shown in Chapter 6.

In particular it would be interesting to see whether there exist short general (that is,
non-analytic) depth-3 symbolic proofs for the identities based on the symmetric polyno-
mials. In case no such short proofs exist (or even no such short proofs operating with only
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depth-3 multilinear formulas), it would imply that the short (semantic) multilinear proofs
demonstrated in this thesis do not transform naturally into syntactic algebraic proofs.

In Chapter 7 we introduced an studied the complexity of a new framework of proposi-
tional proof systems that are able to separate the unsatisfiable CNF formulas from the set
of CNF formulas having many satisfying assignments. We used resolution as the underly-
ing proof system. One question we have not addressed is the following:

Open problem 8: What can be gained (if at all) when one augments a stronger proof
system than resolution, like bounded-depth Frege proof system or Frege proof system, with
the promise axioms (for a small promise like 2δn; since for a big promise we showed that
already resolution can efficiently refute all unsatisfiable 3CNF formulas)?

Another question that arises is this:

Open problem 9: Does the fact that we require the Boolean circuits in the promise axioms
to be provably injective and to provably posses disjoint images (that is, provably inside
resolution) constitutes a real restriction with respect to the sizes of refutations?

(Note that the lower bound proof for resolution under the promise 2δn in Section 7.4
did not make use of the requirements that the Boolean circuits in the promise axioms
should be provably injective and to provably posses disjoint images.)

In other words, we ask whether there is a sequence of circuits C(1), . . . , C(t) for which
adding the axiom ∨ti=1C

(i)(W ) ≡ X (where the parameter t and the number of variables
in m are taken from the smaller promise axiom 7.2.4) to resolution (or a stronger proof
system) gives a super-polynomial speed-up for some contradictory family of formulas over
standard resolution (or the stronger proof system); but that we cannot prove efficiently in
resolution (or the stronger proof system) that C(1), . . . , C(t) are injective or that they have
pairwise disjoint images?

A different and more general task is to come up with other natural models of propo-
sitional proof systems that capture a “relaxed” notion of soundness. For instance, Pitassi
(2006) suggested considering “approximate proofs” in the framework of algebraic proof
systems.

Finally, we have not dealt directly in this chapter with the promise Λ = 2n/poly(n),
though a similar upper bound (with a similar proof) to that shown in Section 7.3 might
also holds for this promise (when the promise axiom is modified accordingly). In this
respect it is worth mentioning that Krajı́ček (2007) observed that the work of Razborov
and Rudich (1997) implies the existence (under a cryptographic conjecture) of a Boolean
function g with nδ input bits (denoted by y1, . . . , ynδ ) and n output bits (denoted by
g1(y1, . . . , ynδ), . . . , gn(y1, . . . , ynδ)), for any constant 0 < δ < 1, that has the fol-
lowing property: given any CNF formula K in n variables x1, . . . , xn, substituting
g1(y1, . . . , ynδ), . . . , gn(y1, . . . , ynδ) for the original xi variables in K yields a new CNF
formula that is unsatisfiable only if K has at most 2n/nω(1) satisfying assignments. This
means that under the promise 2n/poly(n) the substitution g is sound: any unsatisfiable
CNF formula (clearly) stays unsatisfiable after the substitution, while any CNF with more
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than 2n/poly(n) satisfying assignments stays satisfiable after the substitution.
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Paul Beame, Russell Impagliazzo, Jan Krajı́ček, Toniann Pitassi, and Pavel Pudlák (1996).
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London
Math. Soc. (3), 73(1):1–26, 1996. 1.1.1

Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks (2002). The efficiency of
resolution and Davis-Putnam procedures. SIAM J. Comput., 31(4):1048–1075, 2002.
1.1, 1.2.4.1, 8, 7.4.5

Eli Ben-Sasson (2001). Expansion in Proof Complexity. PhD thesis, Hebrew University,
Jerusalem, Israel, September 2001. 8

Eli Ben-Sasson (2002). Hard examples for the bounded depth Frege proof system. Com-
putational Complexity, 11(3-4):109–136, 2002. 1.2.1.2, 3.5.1

Eli Ben-Sasson and Russell Impagliazzo (1999). Random CNF’s are hard for the polyno-
mial calculus. In Proceedings of the IEEE 40th Annual Symposium on Foundations of
Computer Science (New York, 1999), pages 415–421. IEEE Computer Soc., Los Alami-
tos, CA, 1999. 1.2.1.1, 1.2.1.2

Eli Ben-Sasson and Avi Wigderson (2001). Short proofs are narrow—resolution made
simple. J. ACM, 48(2):149–169, 2001. 1.2.1.2, 1.2.4.1, 8, 1.2.4.2, 3.5.1, 7.1.1, 7.1.1,
7.4, 7.4.1, 7.4.1, 7.4.1, 7.4.1

Archie Blake (1937). Canonical expression in boolean Algebra. PhD thesis, University
of Chicago, 1937. 1.1.2

Maria Luisa Bonet, Toniann Pitassi, and Ran Raz (1997). Lower bounds for cutting planes
proofs with small coefficients. The Journal of Symbolic Logic, 62(3):708–728, 1997.
1.2.2.1, 1.2.2.2, 4.4.3, 4.4.3, 4.5.1.1, 4.6, 4.6.4

Samuel R. Buss (1986). Bounded Arithmetic, volume 3 of Studies in Proof Theory. Bib-
liopolis, 1986. 1.1

Samuel R. Buss (1997). Bounded arithmetic and propositional proof complexity, pages
67–121. In: Logic of Computation, H. Schwichtenberg, ed. Springer-Verlag, Berlin,
1997. 1.1

Samuel R. Buss and Toniann Pitassi (1997). Resolution and the weak pigeonhole prin-
ciple. In Computer science logic (Aarhus, 1997), volume 1414 of Lecture Notes in
Comput. Sci., pages 149–156. Springer, Berlin, 1997. 4.4.3

Samuel R. Buss, Russell Impagliazzo, Jan Krajı́ček, Pavel Pudlák, Alexander A.
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Russell Impagliazzo, Pavel Pudlák, and Jiřı́ Sgall (1999). Lower bounds for the poly-
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ספיקות של נוסחאות - כאלו אשר מוכיחות את האי, כלומר( הפרכהלהיות מערכות  7המערכות בפרק 
CNF.(  

מספר המשתנים של  nפונקציה של  Λעבור , Λרזולוציה תחת הבטחה נגדיר את המערכת , בהתאם לכך
לא ספיקה יש  CNFלכל נוסחת בה , כה פסוקית המרחיבה את רזולוציהלהיות מערכת הפר, CNF-ה

בצורה  .השמות מספקות אין הפרכה במערכתΛ -בעלת יותר מ CNFהפרכה במערכת ואילו לכל נוסחת 
שאם נוסחה תחת ההבטחה  CNF-זו אנו מקבלים מערכת הוכחה שהיא שלמה ונאותה לקבוצת נוסחאות ה

   .השמות לא מספקות Λ-מ יותראינה ספיקה הרי שיש לה  
בין מערכות ) במקרה הממוצע(מוביל להפרדה אקספוננציאלית  Λאנו מראים ששינוי גודל ההבטחה 

  .כלהלן, קטנות יותר Λגדולות יותר לאלו עם הבטחות  Λהוכחה בעלות הבטחות 
  

  : חסם עליון
שבר קבוע מסך כל ההשמות , קרי( פרמטר ההבטחה הנתון=2n·ε Λקבוע כלשהו ויהא >1ε 0>יהא 

תחת  n-משתנים לא ספיק יש הפרכת רזולוציה בגודל פולינומיאלי ב nעם  3CNFאזי לכל . )האפשריות
  .Λההבטחה 

  
  :חסם תחתון

Λקבוע כלשהו ויהא>1δ 0>יהא  2 משתנים אין  nעם  מקרי 3CNF-אזי ל. פרמטר ההבטחה הנתון  
הוא  3CNF-בהינתן שמספר הפסוקיות ב, Λתחת ההבטחה ) n-ב(אקספוננציאלית - הוכחת רזולוציה תת

O(n3/2-ε) , 0עבור<ε<½.  
  
  

  :התוצאות אודות מערכות הוכחה תחת הבטחה פורסמו ב
  

Nachum Dershowitz and Iddo Tzameret. Complexity of propositional proofs under 
a promise. Proceedings of the Thirty-Fourth International Colloquium on Automata, 
Languages and Programming (ICALP), pages 291–302, 2007.  



  
  :לינאריות- שימושים להוכחות מולטי

  :לינאריות- לבין הוכחות מולטיR0(lin) המקשר בין , מוקדש להוכחת המשפט הבא 5פרק 
  

מעל שדה עם מציין  3לינארית מעומק - לינאריות בהן כל שורה היא נוסחה מולטי- הוכחות מולטי :משפט
  .R0(lin)-מסמלצות פולינומיאלית הוכחות ב, 0
  

הם החסמים , 4המובאים בפרק  R0(lin)מסקנה מיידית של משפט זה והחסמים העליונים על הוכחות 
המבוססות ) Tseitin(צייטין ובך היונים וטאוטולוגיות לינאריות של עקרון ש-העליונים על הוכחות מולטי

  .על גרפים
  

לינאריות - התוצאות אודות רזולוציה מעל דיסיונקציות של שויונות לינאריים ושימושים להוכחות מולטי
  :בפורסמו 

  
Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear 
proofs. Annals of Pure and Applied Logic, 155(3):194-224, 2008. 
 
 
 

  הוכחות סימבוליות של שויונות פולינומיים
שנוסחה אריתמטית נתונה מחשבת את בהן כל הוכחה מהווה עדות לכך  מערכות הוכחה נציג 6בפרק 

 Фתהי , בפרט .הפולינומים-האקסיומות של חוגגזרו מכללי ההיסק של מערכות אלו י. פולינום האפס
מחשבת  Ф-לכך ש הוכחה סימבולית. כלשהו המחשבת את פולינום האפס Fנוסחה אריתמטית מעל שדה 

כך , 0ומסתיימת בנוסחה  Фהמתחילה בנוסחה , את פולינום האפס היא סדרה של נוסחאות אריתמטיות
סחה נו- ידי החלפה של תת-נובעת מהשורה הקודמת לה על) פרט לשורה הראשונה(שכל שורה בהוכחה 

  .Fהפולינומים מעל השדה -חוג אקסיומות שלאחרת בהתאם לנוסחה -בתת
  

נגדיר מערכת הוכחה , במערכות פסוקיות בוליאניות הוכחות אנליטיותבאופן אנאלוגי למושג של 
אם לאורך ההוכחה לא ניתן  אנליטיתהוכחה סימבולית תקרא : סימבולית אנליטית לשויונות פולינומיים

בהינתן הנוסחה התחילית , לדוגמה. שאינן נובעות מהנוסחה התחילית) נוסחאות-או תת(להכניס נוסחאות 
Ф ,לא ניתן להסיק ממנה את הנוסחה  Ф+f-f , עבור נוסחהf כלשהי.  
  

פולינומיים הוכחות אנליטיות של שויונות על  - הראשון מסוגו  -נוכיח חסם תחתון  6.5סעיף  6בפרק 
הדומה לתנאי המגביל את (תחת תנאי מבני מסויים , 3המשתמשות בנוסחאות אריתמטיות מעומק 

השויונות הפולינומיים עבורם נוכיח את החסם התחתון מבוססים על  ).עץ-ההוכחות להיות דמויות
  .קודמיםלינאריים בהם השתמשנו בפרקים ה-נומים הסימטריים המולטילפולי 3נוסחאות קטנות מעומק 

  
  

  חסמים על הוכחות פסוקיות תחת הבטחה
שהן  )רזולוציהכל מערכת המכילה את של ה אפשרית כהרחב(נציג מערכות הוכחה פסוקיות  7בפרק 

תחת ההבטחה שאם נוסחה אינה ספיקה הרי שיש , שלמות ונאותות עבור קבוצת הטאוטולוגיות הפסוקיות
נגדיר את , כיוון שנעסוק  בעיקר במערכת הרזולוציה והרחבות שלה. השמות לא מספקות" הרבה"לה  



Krají

  
הוכחה נכתבת כדיסיונקציה של משוואות -זו המערכת החזקה יותר בה כל שורת :R(lin)מערכת 
  .לינאריות
 R0(lin) -הוכחה ב- כל שורת .לעיל R(lin)מערכת ממש של -זו המערכת המהווה תת :R0(lin)מערכת 

, אך לא בהכרח למקדם החופשי(היא דיסיונקציה של משוואות לינאריים עם מקדמים קבועים למשתנים 
דיסיונקציות -תחת ההגבלה שהדיסיונקציה ניתנת לחלוקה למספר קבוע של תת, )לקבוע במשוואה, קרי

דיסיונקציה -או שהתת) פרט לקבוע החופשי(דיסיונקציה מכילה את אותה הצורה הלינארית -כך שכל תת
  .פסוקית) תרגום של(היא 

  
  :חסמים עליונים

  :כלהלן R(lin)-ו R0(lin(הוכחות  חסמים עליונים עלנדגים  4בפרק 
  

 ;R0(lin) -הוכחות פולינומיאליות של עקרון שובך היונים הפסוקי ב .1
 ;R0(lin)-בם המבוססות על גרפי) Tseitin(צייטין טאוטולוגיות הוכחות פולינומיאליות של  .2
-clique(צביעה - הוכחות פולינומיאליות של טאוטולוגיות המבוססות על עקרון הקליק .3

coloring (ב-R(lin).  
  
  

  :תוצאות אינטרפולציה
המתאימים ) interpolants(נציג חסמים עליונים פולינומיאליים על אינטרפולנטים  4.5סעיף  4בפרק 

של נוסחה נתונה כלשהי ניתן להמיר למעגל  R0(lin)נראה שכל הוכחת , כלומר; R0(lin)להוכחות 
המחשב את פונקציה  )הנתונה R0(lin)-בהוכחת ה(בעל גודל פולינומיאלי  )לא בהכרח מונוטוני(בוליאני 

נשתמש במשפט האינטרפולציה למערכות הוכחה  .)אם קיימת כזו פונקציה(האינטרפולציה של הנוסחה 
  .ček [1997]סמנטיות של 

  
  :חסמים תחתונים

  :נציג את החסם התחתון הבא 4.5סעיף  4בפרק 
-clique(צביעה -המבוססות על עקרון הקליקאקספוננציאליות לטאוטולוגיות -אין הוכחות תת :משפט

coloring (ב- .R0(lin) 
 

שהיא  ,Bonet, Pitassi & Raz (Bonet et al. [1997]) ידי שימוש בתוצאה של-משפט זה יוכח על
 .תוצאת אינטרפולציה) בצורה מובלעת(
 

 :cutting planes-קשרים עם הרחבות של מערכת ה
Krajíček [1998] מערכת ההציג מערכת פסוקית המשלבת בין רזולוציה ל-cutting planes . המערכת

חסומים  R(CP)שויונים במערכת - כאשר המקדמים באי ).להגדרה 4.6ראה סעיף ( R(CP)-סומנה ב
אנו מראים את תוצאת  4.6בסעיף . R(CP*)ידי -פולינומיאלית המערכת המתקבלת מסומנת על

  :הסימולציה הבאה
  

  .R(CP*)מסמלצת פולינומיאלית את  R(lin) :משפט
  

  ).R(lin)מסמלצת פולינומיאלית את  R(CP*)אם , כלומר( מתמתקייהטענה ההפוכה איננו יודעים אם 



ידי -לינארית על-להוכחה מולטי PCRאנו מציגים תוצאת סימולציה כללית המאפשרת לעבור מהוכחת 
קטנה  אריתלינ-מולטי מת נוסחהיבמידה וקי, לינארי- לפולינום מולטי PCR-הוכחה ב-הפיכת כל שורת

  .ההוכחה-המתאים לשורתלינארי -מולטיהלפולינום 
   

  :לינאריות-יחסמים עליונים על הוכחות מולט
לינאריות המשתמשות -הוכחות מולטי חסמים עליונים פולינומיאליים עלנראה , 3.5סעיף  3בפרק 

 .םהמבוססות על גרפי) Tseitin(צייטין של טאוטולוגיות  3בנוסחאות מעומק 
נעשה זאת בעזרת תוצאת סימולצית ( לינאריות- נוכיח עוד חסמים עליונים על הוכחות מולטי, 5בפרק 
  :)4המבוססת על תוצאות מפרק  ]5.2.5מסקנה [כללית 
 ;של עקרון שובך היונים הפסוקי 3לינאריות המשתמשות בנוסחאות מעומק -הוכחות מולטי •
) Tseitin(צייטין של טאוטולוגיות  3לינאריות המשתמשות בנוסחאות מעומק -הוכחות מולטי •

 .םהמבוססות על גרפי
 

לבין  3לינאריות מעומק - מכך ומתוצאות קודמות אנו מקבלים הפרדה אקספוננציאלית בין הוכחות מולטי
  .PCR-ו PC, מערכות ההוכחה רזולוציה

  
  :אריתמטייםקשר עם חסמים תחתונים על מעגלים 

משתמשים בתוצאת הסימולציה הכללית שנידונה לעיל כדי להוכיח את הטענה אנו , 3.4סעיף  3בפרק 
פולינומיאלית מפורשת של הוכחות אלגבריות המשתמשות במעגלים אריתמטיים -הפרדה סופר: הבאה

רת הפרדה גור, לינאריים- לבין הוכחות אלגבריות המשתמשות במעגלים אריתמטיים מולטי) כלליים(
  .לינאריים- לבין מעגלים אריתמטיים מולטי) כלליים(פולינומיאלית בין מעגלים אריתמטיים - סופר

  
בהן , לינאריות נובעים מתוצאות אודות הרחבות של רזולוציה-חלק מהחסמים העליונים להוכחות מולטי

  .בסעיף הבאכפי שנראה , הוכחה היא דיסיונקציה של שויונות לינאריים עם מקדמים שלמים-כל שורת
  

  :פורסמו כחלק מהמאמרים הבאיםלינאריות -התוצאות אודות הוכחות מולטי
 
Ran Raz and Iddo Tzameret. The strength of multilinear proofs. Comput. 
Complexity , 17(3):407-457, 2008. 
 
Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear 
proofs. Annals of Pure and Applied Logic, 155(3):194-224, 2008. 

  
  

רזולוציה מעל דיסיונקציות של שויונות לינאריים ושימושים להוכחות 
  לינאריות- מולטי

המשלבות היסקים אלגבריים ולוגיים כהרחבות , בעלות כח שונה, פסוקיותשתי מערכות  גדירנ 4בפרק 
הוכחה במערכות אלו היא דיסיונקציה של משוואות לינאריות עם - כל שורת. של מערכת הרזולוציה

    של משוואה לינארית הגודל. מקדמים שלמים הנכתבים בייצוג אונרי
,הערכים של הערכים המוחלטים של המקדמים  מוגדר להיות סכום  … כאשר המקדמים נכתבים ( ,

∑, כלומר, )ביצוג אונרי | הגודל של דיסיונקציה של משוואות לינאריות הוא סכום הגדלים של  . |
  .כל המשוואות הלינאריות בדיסיונקציה



  

  קונקרטיות פסוקיות הוכחהמערכות 
המשפחה הראשונה מכילה מערכות  .מערכות הוכחהשל ספציפיות שתי משפחות בסעיף זה נסקור בקצרה 

 או, וגםקשרים הלוגיים עם ה(הוכחה נכתבת כנוסחה בוליאנית - בהן כל שורת, כחה לוגיות סטנדרטיותהו
במערכת פרגה נתונה יש  .)מערכות מסוג הילברט או( הפְרֶגֶ מערכות מערכות אלו נקראות ). שלילהו

היא  τפרגה של טאוטולוגיה -תהוכח. נאותים אקסיומות וכללי היסק) סכימות של(קבוצה סופית של 
הוכחה היא או אקסיומה או נובעת -כך שכל שורת ,τהמסתיימת בנוסחה  סדרה של נוסחאות בוליאניות

במובן , מערכות פרגה הן מערכות שלמות ונאותות .לשהוידי הפעלה של כלל היסק כ-קודמות עלמשורות 
  .במערכת פרגה הנתונההוכחה לה  שנוסחה היא טאוטולוגיה אם ורק אם קיימת

  
מערכות ההוכחה זוהי משפחת . אותה נזכיר משחקת תפקיד מרכזי בתיזה משפחת מערכות ההוכחה השניה

אולם בניגוד  .ולוגיות פסוקיותטח טאולהוכי, כמקודם ,ןמטרת, מערכות אלו. הפסוקיות האלגבריות
 .)השדה נקבע מראש(מעל שדה  משתנים-רבפולינום היא כל שורה בהוכחה אלגברית  ,למערכות פרגה

ידי שימוש - על) סתירות מפריכים, באופן שקול או(במערכות אלגבריות פסוקיות מוכיחים טאוטולוגיות 
בלבד  pומהפולינום  p+qניתן להסיק את  q-ו pמהפולינום , לדוגמה. בכללי היסק אלגבריים בסיסיים

היא קבוצת הפתרונות של  pהוכחה כגון -כאשר הסמנטיקה המיועדת של שורת. p·q ניתן להסיק את
את השלמות של  .הם אכן נאותים שבדוגמהשכללי ההיסק האלגבריים ניתן להיווכח  ,p=0המשוואה 

 Hilbert's(ידי שימוש במשפט האפסים של הילברט -לל עלכ-מערכות הוכחה אלגבריות מוכיחים בדרך
Nullstellensatz( .  

  
-מערכות בהן כל שורת, כלומר. סמנטיותלעיתים ניתן להתייחס למערכות הוכחה אלגבריות כאל מערכות 

. רח בצורה המפורשת בה נכתבת השורהאך לא בהכ, הוכחה נובעת מקודמותיה במובן הסמנטי בלבד
יעיל המסוגל להכריע אם שורת ההוכחה אכן נובעת  דטרמיניסטיאין בהכרח אלגוריתם , במילים אחרות

ידוע  ,)(Schwartz [1980], Zippel [1979] בהסתמך על תוצאות קודמות, למרות זאת .מקודמותיה
ראה ( ליעי הסתברותישניתן לבדוק את נכונותן של הוכחות אלגבריות סמנטיות אלו באמצעות אלגוריתם 

Pitassi [1997]  אלגבריותהוכחה לסקירה אודות מערכות(.  
  

התיזה ניתנת לחלוקה . אופי אלגברי ותרובן בעל, בתיזה זו נפתח ונבחן מספר רב של מערכות הוכחה
  .לארבעה פרקים מרכזיים כלהלן

  

  אריותלינ-הוכחות מולטי
- הוכחה היא פולינום מולטי- כל שורתבה ) סמנטית(פסוקית אלגברית  אנו מציגים מערכת הוכחה 3בפרק 

לינאריות - לגבי הוכחות מולטי. לינארית- הנכתב כנוסחה מולטי) קבוע מראש(לינארי מעל שדה כלשהו 
  :את התוצאות הבאות אנו מראים

  
  : סימולציות

 2לינאריות מעומק -יטלינאריות שעובדות עם נוסחאות מול-אנו מראים כי בעזרת הוכחות מולטי 3בפרק 
  .PCR-ו PC, ניתן לבצע סימולציה פולינומיאלית של מערכות ההוכחה רזולוציה, בלבד



אלגבריות ופסוקיות מחקרים בסיבוכיות של הוכחות  
  

  תקציר
  
 
 

המצוי בקו התפר בין תורת הסיבוכיות החישובית לבין הלוגיקה סיבוכיות של הוכחות הוא תחום חקר ה
 או יעילות להן יש הוכחות קצרותסיווג הטענות של  הבעיה מצויההתחום מרכז ב. והחישובית המתמטית
עלינו לשקול בדרך ) feasible(בבואנו לעסוק בסיווג הוכחה כיעילה  .ותת נתונות הוכחה פורמליובמערכ

המופיעים  ניםהסימאת מספר , קרי, את אורך או גודל ההוכחה, ראשית: כלל שני מרכיבים של ההוכחה
את מחלקת הסיבוכיות , ובמובן הטכני - בהם משתמשת ההוכחה " המושגים"ושנית את ; בסדרת ההוכחה

  .ממנה לקוחות שורות ההוכחה
כתורה שעניינה בגדלים של , קרי, תיזה זו מהווה תרומה למחקר בסיבוכיות של הוכחות במובן הרחב

מרבית התיזה תעסוק בפיתוח ובחינה של הוכחות בעלות אופי אלגברי  .הוכחות סימבוליות כלשהן
נקשור בין שאלות אודות מערכות , מעבר לכך. הסקה אלגברית ובוליאניתיחדיו ומערכות המשלבות 

  . ההוכחה שנציג לבין שאלות בסיבוכיות אלגברית
  

  סיבוכיות של הוכחות פסוקיות 
  

או ( מערכת הוכחה פורמליתהוא המושג של  הפסוקיותוכחות המושג המרכזי של תורת הסיבוכיות של הה
 Cook and Reckhow [1979]):( Reckhow-ו Cookידי -כפי שהוגדר על) אבסטרקטית

  
המקבל כקלט נוסחה פסוקית  Aמערכת הוכחה פורמלית היא אלגוריתם בעל זמן ריצה פולינומיאלי  :הגדרה

F  ומחרוזתπ  ההוכחה של "  לכאורה את(סופי מעל אלפבית F(" , כך שקיימת מחרוזתπ  המקיימת
A(F,π)=1  אם ורק אםF פסוקית היא טאוטולוגיה.  

  
  :השאלה המרכזית בתחום היא כלהלן, ו למערכת הוכחה פסוקיתזבהינתן הגדרה כללית 

  
מהו הגודל הקטן ביותר ; טאוטולוגיה פסוקית נתונה Fמערכת הוכחה פסוקית נתונה ותהא  Aתהא 

  ? Fשל הטאוטולוגיה  A-של הוכחה ב
  

אם לכל , Reckhow -ו Cook כפי שהראו(לשאלה זו יש חשיבות מכרעת הן בסיבוכיות של חישובים 
, ]ותבגודל הטאוטולוגי[הוכחות פולינומיאליות שאין להן טאוטולוגיות  קיימותמערכת הוכחה פורמלית 

; )מעלהו(ר ראשון תורות חלשות של אריתמטיקה מסדבחקר ו המתמטית הן בלוגיקה; )NP≠coNPזי א
לכל הפחות , אמיץקשר  זושאלה ל ,כמו כן. והן בשאלות אודות יעילות של כלי הוכחה אוטומטיים

  .עם שאלות בסיבוכיות של מעגלים בוליאניים, מבחינת הטכניקות ורוח ההוכחות בתחום
  
  





  תמצית
  

באמצעות סיבוכיות של הוכחות הוא תחום מפותח שמרכזו בסיווג הטענות אותן ניתן להוכיח חקר ה
המוטיבציות והשורשים של תחום זה באים הן מתורת . הוכחות קצרות במערכת הוכחה פורמלית נתונה
 ההוכחמערכות בפיתוח ובחינה של  ברובה עוסקתזו תיזה . הסיבוכיות החישובית והן מהלוגיקה המתמטית

בין התיזה מקשרת , בנוסף. המשלבות הסקה אלגברית ובוליאניתהוכחה בעלות אופי אלגברי ומערכות 
התוצאות המרכזיות בתיזה  .שאלות אודות מערכות ההוכחה שנציג לבין שאלות בסיבוכיות אלגברית

  .כלהלן, ניתנות לחלוקה לארבעה חלקים
- אנו מציגים מערכות אלגבריות פסוקיות שעובדות עם נוסחאות מולטיבחלק הראשון של התיזה 

לינאריות מעומק לכל -מולטיאריות המשתמשות בנוסחאות לינ- כי הוכחות מולטי אנו מראים. לינאריות
) -ואף הפרדה אקספוננציאלית מ(מהוות מערכת הוכחה חזקה דיה כדי לאפשר סימולציה של  3היותר 

בנוסף לכך נראה קשר בין הוכחת חסמים תחתונים מפורשים  .מערכות הוכחה פסוקיות מקובלות אחרות
  .לינאריות- מולטי הוכחות עלהוכחת חסמים תחתונים לבין ) כלליים(על מעגלים אריתמטיים 
אנו מציגים מערכות פסוקיות המשלבות היסקים אלגבריים ולוגיים כהרחבות של בחלקה השני של התיזה 

הוכחה במערכות אלו היא דיסיונקציה של משוואות לינאריות עם מקדמים -כל שורת. ולוציהמערכת הרז
ין כדי יחזקות ד -שלהן ממש מערכות -ואף תת -כי מערכות אלו נראה . שלמים הנכתבים בייצוג אונרי

נוכיח חסמים תחתונים , מאידך. טענות קשותשל  )בעלות גודל פולינומיאלי, קרי(יעילות לאפשר הוכחות 
נקשור את , מעבר לכך. מסוימותעבור טענות , מערכות אלו-אקספוננציאליים על גודל ההוכחות של תת

  .3לינאריות מעומק - להוכחות מולטי ללוהמערכות ה-תת
הוכחה -מערכות בהן כל שורת, קרי, סמנטיותחלק ממערכות ההוכחה האלגבריות אותן נציג הן מערכות 

במילים (אך לא בהכרח בצורה המפורשת בה נכתבת השורה , נובעת מקודמותיה במובן הסמנטי בלבד
יעיל המסוגל להכריע אם שורת ההוכחה אכן נובעת  דטרמיניסטיאין בהכרח אלגוריתם , אחרות

נראה כיצד להפוך הוכחה אלגברית סמנטית להוכחה סינטקטית , בחלקה השלישי של התיזה). מקודמותיה
כל נעשה זאת באמצעות הצגה של מערכות הוכחה בהן ). פולינומיאליכזו הניתנת לזיהוי בזמן , קרי(

כללי ההיסק של מערכות . ת נתונה מחשבת את פולינום האפסהוכחה מהווה עדות לכך שנוסחה אריתמטי
של מערכות -על תת - הראשון מסוגו  - חסם תחתון  נוכיח. הפולינומים-אלו יהיו האקסיומות של חוג

  .מערכת זו
שלמות  שהן, כהרחבות של רזולוציה, מערכות הוכחה פסוקיות ציגנ, בחלק הרביעי והמסיים של התיזה

         תחת ההבטחה שאם נוסחה אינה ספיקה הרי שיש לה ,הטאוטולוגיות הפסוקיותונאותות עבור קבוצת 
 נראה). כלשהו Λידי פרמטר -על במפורש מבוטא "הרבה" המדדכאשר ( השמות לא מספקות " הרבה""  

 בעלות הוכחה בין מערכות) במקרה הממוצע(מוביל להפרדה אקספוננציאלית  Λששינוי גודל ההבטחה 
Λ :שבר קבוע מסך כל ההשמות האפשריות, קרי(גדולות יותר  Λ הבטחות ε · לאלו עם הבטחות ) 2

Λ קרי( קטנות יותר ,Λ 2(.  
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  מחקרים בסיבוכיות של
   הוכחות אלגבריות ופסוקיות
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  מאת
  

  עידו צמרת
  
  
  

  בהנחיית
  

  רן רז' נחום דרשוביץ ופרופ' פרופ
  
  
  

  אביב-לסנאט של אוניברסיטת תלהוגש 
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