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Abstract

In the multiparty number-in-hand set disjointness problem, we have k players, with private
inputs X1, ..., X C [n]. The players’ goal is to check whether ﬂlzzl X, = 0. It is known that
in the shared blackboard model of communication, set disjointness requires Q(nlog k + k) bits
of communication, and in the coordinator model, it requires Q(kn) bits. However, these two
lower bounds require that the players’ inputs can be highly correlated.

We study the communication complexity of multiparty set disjointness under product dis-
tributions, and ask whether the problem becomes significantly easier, as it is known to become
in the two-party case. Our main result is a nearly-tight bound of ©(n!~'/¥ 4+ k) for both the
shared blackboard model and the coordinator model. This shows that in the shared blackboard
model, as the number of players grows, having independent inputs helps less and less; but in
the coordinator model, when k is very large, having independent inputs makes the problem
much easier. Both our upper and our lower bounds use new ideas, as the original techniques

developed for the two-party case do not scale to more than two players.
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Chapter 1

Introduction

The set disjointness problem is a central problem in communication complexity, and lower
bounds on the communication complexity of set disjointness have wide-ranging applications
in circuit complexity, streaming algorithms, data structures, distributed computing, and other
areas (the many variants of the problem and its applications have inspired several surveys,
e.g., [CP10, Sheld]). Moreover, the search for lower bounds for set disjointness in various
settings and models has led to the development of powerful combinatorial and information-
theoretic techniques, which are now ubiquitous in communication complexity.

In its simplest form, the set disjointness problem asks two players, Alice and Bob, to de-
termine whether their inputs sets, X,Y C {1,...,n} (resp.) intersect. The celebrated lower
bound of [SK87, Raz90] shows that Q(n) bits must be exchanged between the players, even us-
ing randomness and allowing for a constant error probability. However, before the linear lower
bound was proven, [BFS86] showed that under product distributions — that is, if we require
that the players’ inputs be independent of one another — the communication complexity of dis-
jointness is only ©(y/n) bits (with constant distributional error over the input distribution). In
other words, set disjointness is significantly easier under product distributions than it is under
arbitrary input distributions.

In recent years, the study of set disjointness has been extended to the multiparty setting,
where we have k players with inputs X',..., X* C [n], and our goal is to determine whether
ﬂee[k] X* = (). Here and throughout the thesis, we study the number-in-hand model, where
each input X; is known only to player i (rather than the number-on-forehead model, where
each input X; is known to all the players except player i). A promise version of disjointness
has important applications in streaming (see, e.g., [AMS99, BJKS02, Gro09]), and connections
and applications in distributed computing and auction theory have led to the development of
further lower bounds [WZ13, BCK™14, BEO*13, BO15, BO17]. In particular, it is known
that in the shared blackboard model, where the players communicate by writing messages on a
“shared blackboard” that all players can see, the communication cost of k-party set disjointness
is ©(nlogk + k) [BO15]. On the other hand, in the coordinator model, where players can
only interact by sending and receiving messages to a special party called the coordinator, the
communication cost rises to ©(kn) [BEO'13]. These lower bounds imply communication lower
bounds in the message-passing model, where a large number of servers compute on an input
that is partitioned between them (see [WZ12, WZ13, CSWZ16, ABB*19, HRVZ20] and many



others for examples of upper and lower bounds in this setting).

Our results. In this thesis we study multiparty set disjointness under product distributions,
and ask whether and by how much restricting to product distributions makes the problem easier.
Recall that for unrestricted set disjointness, the shared blackboard model and the coordinator
model display a gap of ©(k) (in the shared blackboard the complexity is ©(n log k+k), but in the
coordinator it is ©(kn)). Curiously, we show that under product distributions, as the number
of players increases, disjointness converges to the same cost in both models: the communication
complexity is (:)(nl_l/ k+k) for both. This means that in the shared blackboard, the more players
we have, “the less useful” it is to restrict to product distributions — the problem becomes harder
and harder as k increases, until for k = Q(logn) players it becomes as hard as it is for arbitrary
distributions, up to polylogarithmic factors. On the other hand, in the coordinator model,
the more players we have, the more useful it is to restrict to product distributions (assuming
k = Q(logn)): since the unrestricted cost is ©(kn) [BEO'13], the gap between the restricted
and the unrestricted costs grows with the number of players.

The formal statement of our results is as follows. Let Disj’;:; denote the task of solving k-

player disjointness over n elements, with distributional error at most € over the input distribution

.

Theorem 1. For any constant € € (0,1), any n,k € N, and any product distribution u over
{O7 l}nxk}

1. If k <logn, then the expected communication complexity of Disjzzz 18
o O(k+n'"Y*logn[loglogn/logk]) in the shared blackboard model, and
o O(kn'~Y*logn[loglogn/logk]) in the coordinator model.

2. If k > logn, then in both the shared blackboard and coordinator models, the expected

communication cost of Disj! is O(k + nlog?n).

Our lower bound is proven for the shared blackboard model, but it also applies to the

coordinator model, which the shared blackboard can simulate at no additional cost:

Theorem 2. For a sufficiently small constant error e € (0, 1), there exists a product distribution

1 such that the expected communication cost of Disjﬁ’; 18

1. Q(k+ nl_%/kz), if k <logn/6; and

2. Q(k +n/log?n), if k > logn/6.
Applications. Beyond its intrinsic interest, our lower bound of Q(n!~'/*) implies lower
bounds for the communication cost of various statistical and graph problems, when the in-

put is partitioned between k servers, and each server’s input is independent of the others’. Set

disjointness reduces to many such problems, so lower bounds carry over. For example, using the



reduction from [WZ13],! we get a communication lower bound of Q(n'~/*) on graph connec-
tivity with k servers, even in a graph where the presence or absence of each edge is independent
of all the other edges (but the edges are not identically distributed). The ultimate conclusion
is that this problem, and others like it, do not become trivial when the servers’ inputs are

independent.

Our techniques. Interestingly, it turns out that neither the upper bound nor the lower bound
technique of [BFS86] readily generalize to k > 2 players.? Therefore, we came up with a new
upper bound based on different ideas than [BFS86], and whereas [BFS86] used a combinatorial
lower bound argument (the corruption bound), our lower bound is information theoretic. In
Chapter 6, we sketch the upper and lower bounds of [BFS86], and explain why they break down
when there are more than two players.

Our lower bound also does not use the typical direct sum argument [CSWYO01] that is
often used in information-theoretic disjointness lower bounds (e.g., in [BJKS02, Gro09, Jay09,
BEO'13, BO15, BGK15, BO17]). We believe that our approach may have applications in other
settings that are not amenable to the standard direct sum, such as proving information-theoretic
lower bounds for the number-on-forehead model.

Next, we sketch the usual approach to information-theoretic disjointness lower bounds, and

why it does not quite work for our setting.

Information-theoretic lower bounds for disjointness. Information-theoretic lower bounds
in communication complexity measure the amount of information that a communication pro-

tocol must reveal about the inputs of the players. Since this information is always bounded by

the length of the protocol’s transcript, a lower bound on the information cost of a function im-

plies a communication lower bound as well. Working with information can be more convenient

because of properties such as the chain rule — essentially, information is additive, and allows us

to formalize statements such as “the information revealed about X,Y together is the sum of

the information about X and the information about Y.

Many information-theoretic lower bounds for disjointness work only for protocols with small
worst-case error: even though the lower bound works with a hard input distribution, we require
the protocol to solve every input with low error, including inputs that are not in the support
of the hard distribution. This approach is unsuitable for us, because we are interested in
distributional error: we are given a product input distribution w, and the protocol only needs to
have low error probability over the average input drawn from p. The textbook [RY20] gives a
distributional version of the two-party lower bound, which forms the basis of our lower bound.

It is convenient to view the inputs X, Y to the players as the characteristic vectors of their

sets. The lower bound of [RY20] works with the following input distribution z:3

'Tn [WZ13] the reduction is from a different problem, which [WZ13] defined and analyzed, as [WZ13] preceded
the disjointness lower bound of [BEO™13]. However, the reductions of [WZ13] are easily modified to work with
disjointness instead.

2Nor do the techniques of [BGK15], which interpolated between the ©(n) unrestricted cost and the ©(y/n)
cost for product distributions, by showing that when the players’ inputs have mutual information k between
them, the communication complexity is ©(y/n(k 4+ 1)). The upper bound in [BGK15] is a clever modification
of [BFS86], and the lower bound is an adaptation of Razborov’s lower bound [Raz90].

3 As does Razborov’s original lower bound [Raz90], using different constants.



e We choose a random coordinate i € [n], and sample (X;,Y;) ~uniform {0, 1}2.
e For each remaining coordinate j # i, we sample (X;,Y}) ~uniform {(0,0), (1,0),(0,1)}.

Note that under p we have Disj(X,Y) = = (X; AY;), because no coordinate other than i can
be in the intersection. The proof then shows that any protocol that sends o(n) bits can typically
only reveal o(n)/n = o(1) bits about X;,Y;, and that o(1) bits do not suffice to discover whether
X; AY; = 1. Therefore, any protocol with communication o(n) must have high error.*

The distribution p given above is not a product distribution. When we work with a product
distribution, we can no longer have the answer to disjointness depend only on a single coordinate
which we as external observers know, but the protocol does not (this implies dependence between
the inputs). Instead, a hard product distribution for disjointness is one where the answer
is “spread out” over all the coordinates: let y/ be the distribution where all the input bits
X1,...,Xn, Y1,...,Y, are iid Bernoulli variables with probability 1/,/n of being 1.° Now, each
i € [n] has probability 1/n of being in the intersection, independent of the other coordinates.
Together, we get a constant probability that there is an intersection.

The main source of technical difficulty in our lower bound is that under 4/, it is not enough
to argue that the protocol cannot reveal much information about a typical single coordinate
i € [n]. A single coordinate has probability only 1/n of being in the intersection! Instead,
we must argue that even after observing the transcript of the protocol, there is a large set of
coordinates that we have learned very little about, and which remain nearly independent of
one another. We then carefully “add up” the tiny uncertainty that the protocol has about
each individual coordinate, and prove that all together the protocol cannot distinguish the case

where the input is disjoint from the case where it is intersecting.

Organization. The remainder of the thesis is organized as follows. In Chapter 2 we introduce
our notation and review some basic notions from information theory that are used in our
lower bound proof. Next, we give our protocol for product distributions in Chapters 3 and
4. Next, in Chapter 5, we prove our Q(nl_l/ k) lower bound for disjointness under a product
distribution. Finally, in Chapter 6, we discuss in detail the limitations of the upper and lower
bound techniques that were introduced in [BFS86], which motivated the development of our

new upper bound and lower bound techniques.

“This is a highly informal description of the lower bound, and it glosses over many crucial details. We refer
the interested reader to the excellent presentation in [RY20].

5This is very nearly the distribution used in [BFS86], except that there the inputs were two uniformly
distributed sets of size v/n. For our purposes it is nicer to avoid the dependencies between coordinates.



Chapter 2

Preliminaries

The shared blackboard model. We have k players with private inputs X', ..., X* who
wish to cooperate in order to compute some function f(X?!,..., X¥) of their inputs. At each
point in time, one (and only one) player is allowed to write a message on the shared blackboard,
visible to all players. The identity of the player whose turn it is to speak, is a deterministic
function of everything written on the shared blackboard so far. At the end of the execution, the
last player writes the value of f(X',..., X*) on the shared blackboard. A transcript of a certain

execution is everything that was written on the shared blackboard during that execution.

The coordinator model. In this model, the players communicate over private channels.
There is an extra player without any input — the coordinator, and the players may only com-
municate with the coordinator. At the end of the protocol, the coordinator computes the value
F(X1, ..., X*) and sends it to the first player. The transcript of an execution of a protocol, is
everything transmitted by the players and coordinator during the execution.

In both shared blackboard and coordinator models, the players (and coordinator) are allowed

to use public random bits.

Notation. We use boldface to denote random variables. We will denote by Xlk the i-th
coordinate of player k. Consider a set of random variables {Xf}ie[nLge[k]. Throughout this

thesis, we will use the following notations:

xt=xt... Xt

X t.=xt . . . xt-t xt+1 . Xxk
X<t.—xt . . . xt!
X;=X},... XF

Let J C [n], i € [n]. Then:

Xﬁ = {X;}jeJ
J<i2:{j€¢]’j<i}
X5, = {X}es



Sometimes for a € {0,1}, we will denote by Xf}@_ = a the event:

(3t e} A\ (=)

J€J<i

and similarly, denote by X; = @ the event:

(Xi=a)= A\ (X{=a).

Le(k]

For some random variables A ~ p and B, and b in the support of B, we denote by A|p—p
a random variable distributed according to the distribution u|p—p. Finally, we sometimes use
D (p || p’) as short-hand notation for the KL divergence between two Bernoulli random variables

with probabilities p,p’ (resp.) of being 1.

Problem statement. In this thesis, we study the Disjointness problem, defined as follows:
for X1,..., X* € {0, 1}"™

k
Disj, ,(X',..., X") = /n\ \/ ~x{

i=1¢=1

Background on information theory. Our lower bound is based on information theory, we

therefore require the following notions:

Definition 1 (Entropy and conditional entropy). Let X ~ u be a random variable with support
X- Then the entropy of X is:

1

Pr(X = z)log —— .
= Pr( wlog 5 =)
TEX

For two jointly distributed random variables X andY ~ uy the conditional entropy of X given
Y is:
H(X|Y):= E [HX|Y =y).

Yy~py

Definition 2 (KL-divergence). For two distributions p,u’ supported over a set x, the KL

D (u]| ) =) nl) Z)

TEX

divergence of p from p' is:

Definition 3 (Mutual information and conditional mutual information). Let A and B be

random variables. The mutual information between A and B 1is:
I(A; B):=H(A)— H(A | B).
For an event £, we sometimes denote:

I(A; B|&):=1(Alg; Ble).



For random variables A, B,C, the conditional mutual information between A and B given C
18:
I(A; B|C):=H(A|C)—H(A|B,C).

We require the following properties of mutual information, and technical Lemmas:

Property 1. Let A, B be RVs, then:
(A5 B)=E[D(Alp || 4)].

Property 2 (Data processing inequality). Let A, B be RVs, and let f be a function defined
over the support of A, then we have that:

I(f(A); B)<I(A; B).
Property 3 (Monotonicity of mutual information). Let A, B, B’, C be RVs, then:
I(A; B|C)<I(A; B,B"|C),
Property 4 (Public V.S. private information). Let A, B, B’, C be RVs, then:
I (A; B‘B',C’) <I(A; B,B'|C).
The following is a convenient criterion for testing independence of RVs:
Lemma 1. Let Ry,..., R, be RVs. Vi € [n] denote:
R ,=R;,...,.R,_1,R11,...,R,,

Then:
Ry, ..., R, are independent <= Vi€ [n]:1(R;; R_;)=0.

Proof. * = 7: Assume that Ry,..., R, are independent. By definition, Vry,...,r, such that
Vj € [n], rj € support(R;), we have that:

Pr (;\Ri:n) :ﬁPr(&:ri). (2.1)

Now let i € [n]. We will prove that Vry,...,r, such that Vj € [n], r; € support(R;), denote by
{R_; =r_;} the event:

{R_Z' = 7“_1‘} = /\ Rj =T ¢,
JeM\{i}
Then we have that:

Pr (R, =r ANR_;, = ’l“,i) = Pr (R,L = T‘Z') - Pr (R,Z = T‘,i) . (22)

before proving (2.2), note that it implies the claim, as by the properties of KL-divergence, it



will imply that:
D (Rini || RZ' X Rfi) = 0,

Hence we will get that:

I (Rl ) R_i) =D (R,ZR_Z H Ri X R_Z')

i

As required. Let us now proceed to prove (2.2). Observe that by (2.1), it is enough to show
that:
Pr(R_;=r_;)= H Pr(R; =ryj).
gemN\{i}

Now observe that:

Pr(Rj=r)= »  Pr(Ri=riAR;=r1) (law of total probability)
r; €support(R;)

= Z Pr(R; =1;) H Pr(R; =1y) (by (2.1))

ri€support(R;) jem\{i}

= H Pr (R] == ’I"j) Z Pr (R,L == T‘Z')

je[n\{i} ri€support(R;)

= H Pr (Rj = T‘j) 5
Jem\{i}

Which proves (2.2), as required.
“ <=7 Now assume that Vi € [n] : | (R; ; R—;) = 0. Vi € [n], denote:

R<z‘ = Rl, e 7Rz'—1-
Observe that Vi € [n]:

I(Ri; Re;) <I(R;; R_;) (by the monotonicity of mutual information [3])

0, (by assumption)
Hence:

D(R;R;||R; x Re;) =1 (R;; R;)
=0.

By the properties of KL divergence, this implies that Vri,...,r; such that Vj € [, r; €
support(R;), we have that:

Prl R, =m; A /\ Rj:Tj :PI‘(R,L:T‘Z)PI' /\ Rj:Tj
Jjeli—1] Jjeli—1]

10



By an easy induction on i € [n], this implies that Vri,...,r, such that Vj € [n], r; €
support(R;), we have that:

Pr (/\I%L :ri> :HPr(R4- =1),
i=1 i=1
Which implies that R;,..., R, are independent, as required. O
Corollary 1. Let X', ..., X* be independent RVs such that V¢ € [k]:
Xt =x!..., X,
For RVs X¢{,...,Xt, and let I, ..., I}, C [n], then X}l, ... ,X}“k are independent RVs.

Proof. Observe that V¢ € [k]:

VR VAR R

I(Xf[; XL, X xen ...,X}“k) < (Xf; Xl,...,Xg‘l,X”l,...,Xk)
(by the monotonicity of mutual information [3])
—1(x* x)

=0, (by Lemma [1])

Hence by Lemma [1]: X}l, X Z are independent RVs. O

11



Chapter 3
Upper Bound for Small &

In this chapter we present a protocol for the case where k < logn. We begin by showing how to
handle input distributions that have a constant (or “small enough”) expected intersection size,

and then give a general protocol that can handle any product distribution.

3.1 Useful Lemmas

We begin by stating a few technical lemmas that will be useful later.

Lemma 2 (Holder’s inequality). Let p,q > 0 be such that % + % =1, neN, and ay,...,ay,
bi...,b, € Rzo. Then:

1 1
n n ) n q
S (X))
i=1 i=1 i=1
And in particular:

1
noo n ? 1
E af < E a; | n e
i=1 i=1

3.2 Handling Distributions with a Small Expected Intersection

Overview. Recall that we are trying to show a protocol for Disj,, , with communication
complexity O(k 4+ n'~/*) in the shared blackboard model, and O(kn'~1/*) in the coordinator
model. In this section we will show such a protocol for the simple case where the expected
intersection size of the product distribution is O(1) (note that in general it may be as large as
n). Beyond just solving disjointness, the protocol computes the pointwise-AND of the inputs,
and produces a witness, in the form of a string W € ([k] U {T})", such that

o If /\]Z:1 X! =0, then W; is the index of a player ¢ € [k] such that X! = 0 (if there is more
than one such player, one is chosen according to a deterministic rule described in the next

section).
o If AP, X! =1, then W; = T.

We will refer to this protocol as our base protocol.

12



The base protocol is based on the following observation: if the expected intersection size is
small, then for most elements i € [n], there is at least one player that is “not too likely” to have
1 in its input. This is because if all players are likely to have ¢ in their input, then i is likely
to be in the intersection, but we assumed that the expected intersection size is small. The base
protocol partitions the elements [n] into sets I', ..., I*, such that in total, for all players £ € [k],
the expected sizes of X! N I* sum up to O(n'~1/%). This partition is fixed in advance (before
the inputs are seen).

We now describe the base protocol in the shared blackboard model; the protocol for the
coordinator model is similar and defined formally in the next section. When the protocol
begins, each player ¢ announces X*NI¢, and any element in I*\ X* (that is, any element of I*
that is missing from player ¢’s input) is immediately ruled out, as we know that it cannot be in

the intersection. For the remaining elements,

T:= ) x‘nr,
Le(k]

we go over the players in order; each player £ announces T\ X t. we then remove these elements
from T, setting T < T N X*¢. After going through all the players, if T' # (}, we announce that

the inputs are not disjoint, and otherwise we announce that they are disjoint.

Details of the protocol. Fix n,k € N, and let X!,..., X* C {0,1}" be independent RVs
representing the players’ inputs. For ¢ € [n], we let Z; be an indicator for an intersection in

coordinate i: i
z; =\ Xxi.
/=1
Also, let S denote the expected intersection size:
n k
>z N x* ] :
i=1 (=1

We prove that there exists a partition of the elements to the players, such that in expectation,

S =E =FE

the players’ actual inputs do not contain most of the elements assigned to them. This allows us
to quickly rule out many elements, and focus on a small set of remaining candidates that might

still be in the intersection.
Lemma 3. There exists a partition I',... I* of [n] such that
k n
E [Z ‘Xﬁmlf‘] < ZE[Zi]l/k < §U/kp1=1/k
(=1 i=1

Proof. For each i € [n], by Corollary 1 we have that X,}, ... ,Xik are independent, hence we

have:

E[Z]=E

Z\IXf] —ﬁE x/].

13



Thus, there exists some ¢ € [k] such that
E [Xﬂ <E[Z]"*.
We use this to construct the partition: define, for each ¢ € [k],
1°:=0,

1= {ien] ( E[X{] <E[Z]/*}\ 1

Now we have:

k k k k
EIY |xnr| | =B | x| =YY E[X{] <Y Y E[Z)
/=1 (=1 eIt (=1 eIt =1 et
n
=> E[z]'* (I',...,I"* is a partition)
=1

n 1k s 1-1/k
< <ZE[Zi]) (Z 1) (Hélder’s inequality (2))

i=1
_ gl/k,1-1/k ]

We are now ready to describe the base protocol. As we mentioned above, in addition
to solving set disjointness, the protocol produces a witness, a string W € ([k]U{T})" that
indicates for each coordinate that is not in the intersection the index of some player that has 0
in this coordinate. The witness is a deterministic function of the transcript of the protocol.

In the shared blackboard model, the protocol proceeds as follows.
(1) Each player ¢ € [k] announces X* N I*. Let

T:= ) X'nI’
Lek]

be the set written on the board. Following this step, only elements in T° remain candidates

for being in the intersection.

(2) We go over the players in order, £ = 1,...,k: player £ announces T*~1\ X*, and all players
update T? := T 1 n X

(3) We announce that the intersection is empty iff T = (.
The witness W is defined as follows: for each i € [n],
o If i ¢ TO, then we set Wj to the index ¢ such that i € I*.
o If i € TV, then since TF C T*~1 C ... C TV, there are two cases:

— If i € T* then we set W; = T,

— If i ¢ T* then there is exactly one index £ € [k] such that i € T*~'\ T, and we set
W, to this index.

14



In the coordinator model, the protocol proceeds as follows.

(1) Each player ¢ € [k] sends X* N I’ to the coordinator.

(2) The coordinator sends
T:=|JX'nr
Lelk]
to all players. Following this step, only elements in T remain candidates for being in the

intersection.
(3) Each player ¢ € [k] sends X* N T to the coordinator.

(4) The coordinator sends the witness W = {W;},_p to all players. The witness is defined as
follows: for each i € [n], denote by ¢ the index such that i € I*. Then:

o Ifi ¢ T, then we set W, = /.
e [f i € T, then there are two cases:

— If for all ¢ € [k]\ {¢}, we have that i € X* then we set W; = T,
— If exists ¢/ € [k] \ {£} such that i ¢ X* then we set W; to be the minimal such

index /.
(5) We announce that there is an intersection iff W contains a T.

Lemma 4. The base protocol always solves disjointness correctly and produces a proper witness.
Its expected bit complezity is O (k + (Z?:l E [Zz-]l/k> log n) = O(k + SV*n'=Y¥*logn) in the

shared blackboard model, and O ((ZleE [Zl-]l/k> k(logn + log k)) = O(SYkp!=1/kE(logn +

log k)) in the coordinator model.

Proof. We prove the claim for the shared blackboard; the analysis in the coordinator model is

similar.

Correctness. Observe that the protocol outputs “intersecting” iff some coordinate of W' is
T. Thus, it is sufficient to prove that the witness W is a proper witness, that is, W; is the index
of some player ¢ with Xf = 0 if there is such a player, and T otherwise; this implies that indeed
the sets are intersecting iff some coordinate of W is T. The fact that the witness is proper is
evident from the protocol: for each coordinate i, if i ¢ T? and i € I¢, then we have i & X, so
setting W; = £ is proper. Otherwise, if i € T/~1\ T, then i ¢ X*, because T = T/~ n X*.
And finally, if i € T*, then we have i € X* for all £ € [k], and accordingly we set W; = T.

Bit complexity. In the first step of the protocol, the set written on the board is | J oc k] Xinrt,
which has expected size O <Z?:1E[Zi]1/k) = O(S'*n'=Y/*) by Lemma 3. Therefore, the
expected number of bits on the board in this step is O (k + <Z?:1 E [Zi]l/k) log n) =O0(k+
S/ kpl=1/kog n). In the second step, each coordinate in T is written at most once, so the
expected cost is again O (k + (Z?Zl E [Zi]l/k> log n) = O(k + SVkn!=1k1ogn).

Note that in both protocols (i.e. for the shared blackboard and coordinator models), each

player talks at most twice (including the coordinator). O
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3.3 The General Protocol

3.3.1 High-Level Plan: Exploiting Correlations

The base protocol handles distributions where the expected intersection size is constant; now
suppose we have an input distribution where the intersection is large. If the probability that
the inputs intersect is close to 1, we can simply guess that the inputs do intersect (and risk
erring, but only with small probability). Thus, assume that Pr ﬂge[k} Xt £ @] < 1—¢ for some
e € (0,1). Together, the fact that the expected intersection size is large, while the probability of
an intersection is bounded away from 1, imply that the indicators Z1,..., Z, of an intersection
in the individual coordinates must be correlated. We would like to exploit this correlation to
reduce the general case to the base case (where we have a constant-sized intersection).

The reduction takes a recursive form: in each step, we find a maximal set I C [n] of
“negatively-correlated” coordinates (not in the usual sense of negative correlation, but rather

in a sense we define below). We would naively like to have the following properties:
Property 5. The expected intersection size inside I, E [Ziel Zi], is constant.

Intuitively, this property holds because the coordinates in I are negatively correlated with
one another, so if one of them is in the intersection, the others tend not to be. Therefore, we
can use the base protocol to check whether there is an intersection inside I, and if there is, we
halt.

Property 6. The remaining coordinates, [n|\ I, are “positively correlated” with the coordinates
in I (otherwise we would add them to I).

This means that conditioned on the event that there is no intersection in I, the expected
intersection size in [n] \ I is much smaller than the prior. We recur on the set [n] \ 1.

As it turns out, the above plan yields a protocol with ~ logn iterations, each with an
expected communication cost of O(k + n'~'/¥logn). We would like to reduce the number
of iterations to ~ loglogn/logk (without increasing the expected communication cost per
iteration), as the resulting protocol will have both better round complexity as well as better

overall communication cost. For this purpose, we weaken our first requirement to:
Property 7. The set I satisfies thaty ;' | E [Zi]l/k =0 (nl_l/k).

Note that by Holder’s inequality this property is indeed weaker than property 5, hence in-
tuitively it should hold for the same reasons. Moreover, observe that by Lemma 4, using prop-
erty 7, we have that the expected communication cost per iteration is still O(k + nl=Vklog n),
as with property 5. Weakning property 5 will allow us to add more indices to the set I (at each
iteration), so the protocol will require less iterations to complete; in the next sections will show
formally that loglogn/log k iterations are enough.

Our protocol works only for product distributions; in order to recur on the set [n] \ I, we
must ensure that the players’ inputs remain independent conditioned on what they have seen so
far. For the shared blackboard, this is easy — all players see the full transcript of the protocol on

the board, and it is well-known that conditioning on the transcript of a protocol does not create
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dependence between the inputs. In the coordinator model, however, the players do not see the
entire transcript — only the coordinator does; each player sees only the messages the coordinator
sent it, and these messages can create dependencies. To break any such dependencies, the
coordinator sends to all players the witness W that it computed from their messages, and we
prove that conditioned on the witness, the (remaining) players’ inputs remain independent.
We note that while the base protocol is described in Section 3.2 as operating on the universe
[n], this is merely for the sake of convenience. In the sequel, when we call the base protocol,
we let I C [n] be the set of coordinates on which we want to solve disjointness using the base

protocol.

3.3.2 Negatively-Correlated Coordinates

Recall that a pair of real-valued random variables A, B are said to be negatively correlated if

Cov(A,B) =E[A-B] - E[A]E[B] < 0.

This definition is easily extended to a larger number of random variables, Rj,..., R,,, by
requiring that
m m
E\[[R:| <]]E[Ri.
i=1 i=1

We will generalize this notion further, by using a weighted version of the last inequality. For
the sake of concreteness, we restrict attention to Bernoulli random variables, but the definition

is easily stated for real-valued variables as well.

Definition 4 (p-negatively-correlated indicators). Let ¢ : [0,1] — [0,1] be a function. The

Bernoulli random variables By, ..., By, are said to be p-negatively correlated if:

E

[Ta- B»] <[[a-¢EB]).

=1 =1

Note that in the special case where m = 2 and ¢ is the identity function, the new definition
coincides with the standard definition of negative correlation for two variables 1 — By, 1 — Bs.
The reason we take the complements (1 — B;) instead of the indicators themselves (B;) is that
we are actually interested in the event of not having an intersection in a given coordinate, and
the indicator for this event is 1 — Z; (for coordinate 7).

The following two properties of p-negatively-correlated indicators are key to our protocol.
First, we can relate the expectations of these variables to the probability that none of them

take the value 1, as follows:
Lemma 5. If By, ..., By, are p-negatively-correlated, then

m — 3% o(E[BI])
Pr (/\(Bi—0)> <e = :

=1

'For two random variables By,Ba, we have that Cov(Bi, B2) = Cov(l — By,1 — Bs) hence By, By are
negatively correlated iff 1 — By, 1 — B> are negatively correlated
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Proof. We can write

Pr <7\(Bz:())> =Pr (ﬁ(l—BﬂIl) =E

H(l—Bi)].

i=1 i=1 i=1
Since By, ..., By, are p-negatively-correlated, and using the fact that 1 —x < e™® for all x > 0,
we have
" " " - 3 o(B(B)
: [H (1- Bi>] <[la-e@B)) < [[e@BD —c &7
i=1 i=1 i=1
This proves the claim. O

The next property asserts that if we have a maximal subset I of p-negatively-correlated
indicators out of some larger set of indicators, then conditioned on all indicators in I taking the

value zero, we can bound the expected sum of the remaining indicators:

Lemma 6. Let By, ..., B, be Bernoulli random variables, and let I C [m] be a mazimal subset
such that {B;},c; are p-negatively-correlated. Let J :=[m]\ I. If Pr (B; =0) > 0, then

Proof. By linearity of expectation, it suffices to show that for each j € J,
E [BiB; = 0] < o(E[By]).

To that end, let j € J. Since I C [m] is maximal and j ¢ I, the indicators {B;},.; U {B;} are

not p-negatively-correlated, so

ki [(1 -Bj)- ][~ Bi)] > (1-@E[B))- [T (1 - ¢(E[B]). (3.1)

iel i€l

For the left-hand side, we can write

E

(1—Bj)-H(1—BZ~)] =Pr

il

(Bj:O)/\H(l—BZ-):ll

iel

:Pr(Bj:0‘B[:0)Pr<H(l—Bi):l>

icl

o)

icl

:PI'(B]‘:O’BIIG)E

<Pr(B;=0|B;=0) [[(1-¢(E[B]))),
i€l

where the last step used the fact that {B;},.; are p-negatively-correlated. Together with (3.1),
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we obtain

(1-@E[B])- [0~ E[Bi])) > Pr(B;=0|Br=0)- [[(1 - ¢E[B]).  (32)
icl iel
Since ¢’s range is [0,1], the term [[;.; (1 — p(E[B;])) is non-negative, and in fact it must be
positive (otherwise (3.2) cannot hold). Dividing both sides of (3.2) by this term yields

1-¢E[Bj]))>Pr(B;=0|B;=0)=1-E[B; | B; =0],
and the claim follows. ]

3.3.3 Partitioning the Coordinates

Let us define a concrete ¢ : [0,1] — [0,1] and a partition [n] = I U J of the coordinates, as

follows:
1/k
p(z) = =17k (3.3)

and let I C [n] be a maximal set of indices such that {Z;},.; is ¢-negatively-correlated. As
above, let J := [n] \ I.
Based on the properties established above for p-negatively-correlated indicators, we obtain

the following properties of the partition [n] = I U J.

Lemma 7. For all e € (0,1), if Pr (ﬂif:l X = Q)) > €, then

> E[Z]F < <1> n'=1k,
€

el

Proof. By Lemma 5 and our definition of ¢,

k
o~ Tier EIZ)omimE _ =5 o(E(Z)) > py <ﬂ X = @) > €.
/=1

Taking the natural logarithm and re-arranging yields the claim. O

Lemma 8. Conditioned on having no intersection in I, the expected intersection size in J is

bounded by
) 1/k

n

>z

=1

E|> Z|Z,=0 g(E

jeJ
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Proof. Using Lemma 6, we obtain

Lk

EE:ZZ' Zr=0 Eéji: zg: ],l/k

jed jeJ

1 n /k /s p 1-1/k
< =ik (ZE [Zz]> (Z 1 (by Holder’s inequality)
" i=1 i=1

) 1/k 1/k
_ . 1-1/k _
_nl_l/k<IE ) n /_<IE ) . O

3.3.4 Preserving Independence

Let I = {i1,...,im} C [n] be the set of coordinates on which we call the base protocol, let
Ii,..., It C I be the partition computed by the base protocol, and let W; € ([k]U{T})™
the witness returned (as defined in Section 3.2). Finally, let J = [n] \ I be the set on which we

will recur if we do not find an intersection inside I.

n n

>

i=1

i=1

We prove that conditioned on the witness Wy, the players’ (remaining) inputs remain inde-

pendent:

Lemma 9. For each concrete witness w € support(Wry), the random variables X},, e ,Xf} are

independent conditioned on the event Wi = w.

Proof. For this proof it is convenient to use the language of mutual information. To prove that

the inputs are independent, by Lemma 1 it suffices to show that for each ¢ € [k] we have
|(X§; X;f‘lew) —0.

Now observe that the for every w € ([k]U{T})™, the event {W; = w} is equivalent to some
partial assignment to the random variables X f and X;Z. Let us denote by Y/ ,Yff the random
variables of X f,X;e that get assigned under the event {W; = w}, and denote by @,b their
respective assignments, i.e. under these notations, the event {W; = w} is equivalent to the
event {Yf =aA YI_K = 5}. Hence it suffices to show that:

|(X§-; XJZ)YIZZE/\YI’£:B> —0.
In fact, since mutual information is non-negative, it suffices to show that:
l . —L 4 -\ _
|(XJ, X; ‘YI,YI )_o,

but observe that this holds, since:

I (va Xt ) 1f[7 _L}) <l (XJ7Y1 ; X_z Yﬂe) (property 4)
<l (XZ; X_Z) (property 3)
=0 (Lemma 14-assumption)
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3.3.5 The Protocol

We are now ready to describe our full protocol. Throughout the protocol, all players keep track

of the following;:

e The set U C [n] of coordinates that have not been ruled out as being in the intersection;

initially, U = [n].

e A witness W € ([k] U {T})[”N] for the coordinates we have already handled. For conve-
nience, we represent the witness as the concatenation of the individual witnesses returned

by calls to the base protocol. The witness is initially empty.

Our protocol will execute in several iterations, calling the base protocol once at each itera-
tion, and may stop at the end of an iteration under certain conditions. Assuming the protocol
reaches the r-th iteration, we will denote by W,. the witness returned by the base protocol at
that iteration, and otherwise we have that W, equals the empty string. We further denote by

W<, the concatenation of the witnesses Wi,..., W,.

Notation 1. Let W = Wi o---oW,; be a concatenation of r witnesses, we define |W| :=r, and
w|W to be to be the distribution of players’ inputs after seeing the witness W, i.e. conditioned
on the event W<, = W.

The protocol executes as follows:

loglogn

1. Repeat for N := [ log k

w iterations:

(la) The players compute (without communication):

i. For each remaining coordinate ¢ € U, the value

pi = <“I|[;3V [Zi]) :

ii. A maximal subset I C U such that {Z;},.; are p-negatively-correlated. (If there
is more than one such subset, the players choose one using some predetermined

mechanism, e.g., they choose the lexicographically-smallest one.) Let J := U\ I.

k
(1b) If Pryw < N X f = @) < ¢, the players output “intersecting” and halt the protocol.
(=1

(1c) Otherwise, the players run the base protocol on X}, ..., X¥.

(1d) The players examine the witness w returned by the base protocol: if it indicates
that there is an intersection, they announce “intersecting” and halt. Otherwise, the
players update the universe and the distributions as follows: they set U <+ .J, and

W <« W ow (where o stands for concatenation).
2. Finally, the players run the base protocol on X}, ..., X (’} and output its answer.
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3.3.6 Analysis

Next, we analyze the expected communication cost and the error of the protocol. In the sequel,
we typically use the subscript r € [N] to indicate values associated with iteration r in Step 1 of

the protocol. For convenience, we sometimes refer to step 2 as iteration N + 1.

Expected communication cost. We analyze the cost of the protocol in the shared black-
board model; the analysis for the coordinator model is similar.

For each r = 1,..., N, let C, denote the number of bits sent during the r-th iteration in
Step 1 of the protocol, or 0 if we do not reach the r-th iteration, and let Cy1 be the number
of bits sent in Step 2 of the protocol, or 0 if we do not reach Step 2.

Note that at each iteration r € [N], the base protocol determintes if there is an intersection
for some set of coordinates, We will denote this set of coordinates as I, C [n] (or the empty set
if we do not reach the r-th iteration). Similarly, we define U, C [n] to be the set of coordinates
that have not been ruled out as being in the intersection in the beginning of the r-th iteration.
For simplicity, we define J, := U, \ I,.

We define R to be the number of iterations completed in Step 1 of the protocol before
halting, or IV + 1 if the protocol reached Step 2. Finally, it will also be convenient sometimes
to use the notation W, to denote W<, _1.

Note that since our protocol is deterministic, for all » € [N] we have that the witness W<,
is a deterministic function of the inputs (and the input distribution). We can also “read off”
the global variables U,., I,,, W, from W,, and determine exactly when the protocol halted.

We will use the following notation:

Notation 2. for eachr =1,...,N+1, Let W, be the set of witnesses w<, of length lw<,| =r—1
that imply that the protocol reached the r-th iteration, and such that

k
Pr Xt =0 >e
,LL‘UJ<,,. (Q Ir )

We begin by bounding the expected communication cost of the individual iterations in
Step 1:

Lemma 10. In the shared blackboard model, for each r =1,..., N we have

E[C/]=0 (k: = Vkog n) .

Proof. The only communication in a given iteration results from calling the base protocol on the
sets X 1T, ey X ]I"T, and this only occurs if we reach iteration r and do not halt in Step 1b (where,
if the intersection probability is too high, we halt and guess that the inputs are intersecting).

Thus, we need only consider the witnesses in W,. For each such w<, € W,, Lemma 7 asserts

that )
Z E [Z]"* <In <> nt=1/k,
€

iel, plw<r
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Plugging this bound into Lemma 4, we obtain

E [C/]=0 <k +nt" Yk log n) .

.u‘|w<'r‘

Since this holds point-wise for any witness w<, € W,., and since C, = 0 whenever W, ¢ W,,

all together we have
E[C,] = E[C, | W] Pr(W,) +0- Pr(-W,) = O (k+n'*logn) . 0
B B 3 2

Next, we show that in each iteration of Step 1, if we do not halt, then the expected in-
tersection size decreases by the k-th root compared to the previous iteration, until it becomes

constant. Let
So= () Xuv,| =) %
Le(k] €U,
denote the intersection size at the beginning of the r-th iterations of Step 1, or 0 if the protocol

has already halted prior to iteration r.

Lemma 11. For each1 <r <N

E[S, 1] <E[S,]V*.
B B

Proof. Let us consider again the set of witnesses W, of length r» — 1 that imply that the protocol
reaches Step 1c in the r-th iteration, and invokes the base protocol. First, observe that Lemma 8

implies that for every w, € W,.:

E [Sy41|21,=0]< E [S]VF.

,u|w<r N‘w<r

Let us obtain a similar equation without the conditioning on the event Zy, = 0 ; observe that
for every w<, € W,, if Z. # 0 then the protocol halts before the r + 1-th iteration, hence by
definition S,,1 = 0. Hence for every w., € W,:

E [Sys1]= Pr (Z;,=0) E [Sr41|Z1, =0]+ Pr (Z5 #0)-0

plw<r plwer plwr plw<r
< E [S1] 21 =0
M|w<r
< E [S]V*.
M|w<'r

Since this holds point-wise for any witness w<, € W,, and since S, = 0 whenever W, ¢ W,,
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all together we have:

E[S 1] = > Pr(Wer =we) E [Sril
w<rEsupport(Wer) HIW<r
= Y (W =wo) B [Spu]
w<7‘€Wr H lu“w<7‘
< 3 Pr(We=uw) E [S]VF
H u‘w<r
W<rEW
< > Pr(We, =we,) E [S]'*
w<rEsupport(Wey) plw<r
<E [Sr]l/k . (Jensen’s inequality)
o
Which completes the proof. a

Corollary 2. We have E, [Sn41] <2

Proof. Applying Lemma 11 N times, we get that

£ (S 1] < (Ig [Sﬂ) "

Since E, [S1] < n and kN = klloglogn/logk] > logilogn — Jogn we get that

1/kN
(]E [Sl]> < nl/logn =2,
n

which completes the proof. O
Corollary 3. We have E,, [Cn11] = O(k +n'~YFlogn).

Proof. Whenever R < N, we do not reach Step 2 of the protocol, and both Cny; = 0 and
Sn+1 = 0 by definition, hence we have that:

ElCxn]=Pr(R=N+1)E[Cyn.|R=N+1],
and similarly we have that:
IE[SNH] =Pr(R= N+1)IE[SN+1 |R=N +1].

When R = N + 1, we do call the base protocol, and by Lemma 4 the expected communication
cost is:

E[Cnt1 |R=N+1=0(k+E[Syi | R=N+1]"*n'="*logn).

7 T
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All together we have:

IE[CN-i-l]:Pr(R:N""l)IE[CN-i-l|R:N+1]

=Pr(R=N+1)0k~+E[Sys1 | R=N+1]"*n'=*1ogn)
W
= Ok +E[Syp]Y*n'~*logn)
o

= O(k+n'"Y*logn),

Where the last equality follows from Corollary 2. O

Putting everything together, we see that the expected communication cost of the protocol
is given by
N
Y Co+ CNH] < (N +1)O(k +n'~"Y*logn)

r=1

E
I

= O(k + [loglog n/ log k1n* =¥ log n).

Error probability. For every r € [N], let W, denote the set of witnesses w., of length
|w<r| =7 — 1 that imply that the protocol reached the r-th iteration and we have that:

k
Pr Xt =0 <e
,LL‘”LU<T (ﬂ Ir )

Recall that if W, € Wc.,, then the protocol will halt in Step 1b of the r-th iteration, and
declare that the player’s inputs are intersecting.

Observe that the protocol may only err if in some iteration r, we have that W, € W,
but the players’ inputs are disjoint. In addition, observe that the events {Wc1 € Wee1}, ...,
{Wcon € Wee n} are disjoint events, as the event W, € W, implies that the protocol halts
in the r-th iteration. All together this implies that:

k
Pr ( the protocol errs ) = Pr <E|7‘ € [NJWep € Wee,r A m X = (Z)>

7 7 i
k

— Z Pr <W<T € Weer A ﬂ Xt = @) (disjoint events)
relr) " =1

k
= Z Z I:Lr (Wep =we,) Pr (ﬂ Xt — @)
/=1

TE[R] w<’l‘€W<é,r #|w<7‘ -
k
< Z Z Pr(We, =w<,) Pr (ﬂ Xfr = @)
TE[R] W<rEWce,r K M|w<r /=1

< Z Z Pr(W., =w<,)-€  (by the definition of W, )
T’E[R] W<r€EWce,r

=e€- Z Pr(We, e Wee,) <€ (disjoint events)
rer) " 7
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Chapter 4

Upper Bound for Large k

When k = Q(logn), it is no longer worthwhile to use our protocol from Chapter 3, as n'~1/* =

©(n) in this case. Instead we give a much simpler protocol that exploits the fact that when
working with a product distribution, any coordinate that has £2(logn) expected zeroes (across
all players) also has negligible probability of being in the intersection.

The following lemma is a simple special case of Chernoff, which we prove for the sake of

completeness:

Lemma 12. Fiz o € (0,a), and let A = Aj,..., A, where Aq,..., A, are independent

Bernoulli random variables satisfying

E ZAi] > In(1/). (4.1)
Then
Pr (A = 6) <«
Proof. We can write
Pr(4=0) =[]0~ Pr(a;=1)) <e m A=
i=1
— X EA] _ ~In(l/a) _ O

Corollary 4. Let i € [n] be a coordinate such that E[|{¢ € [k] : X! =0}|] > In(n/e). Then
Pr (z € Neepyy X€> < €/n.

Proof. Follows from the lemma, by taking A = (1-X},...,1— sz) Observe that the random

variables 1 — X!,...,1 — Xlk are indeed independent, since for every ¢ € [k], we have that:

|<1 —Xf; 1-X ... —Xffl,l —Xf“,...,l —sz) < (Xf; XZJ) (property 2)

=0 (Lemma 1)

Hence by Lemma 1, the RVs 1 — Xil, B Xf are independent. ]
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The protocol. Corollary 4 implies a simple deterministic simultaneous protocol: “ignore”
any coordinate where the number of expected zeroes exceeds n /e, and send all the zeroes in the
remaining coordinates. Let I C [n] be the set of coordinates i such that Pr (z € ﬂte[k] X t) >
¢/n. Each player ¢ € [k] executes the following:

1. Let Sy = {i € I | X} = 0}.

2. Announce Sy, by writing it on the board (for the shared blackboard model) or sending it

to the coordinator (in the coordinator model).

3. Announce “intersecting” iff ﬂte[k] St # (0. (This is evaluated by each player in the shared

blackboard model, or by the coordinator in the coordinator model.)

Lemma 13. The protocol errs with probability at most € and communicates O (k + nlog(n/e)logn)

bits in expectation.

Proof. By Corollary 4, for each coordinate i € I we have E [|{¢ € [k] : X} = O}H < In(n/e).
Thus, the expected number of zeroes in X}, ..., X% is bounded by |I|-In(n/€) = O (n (logn + log(1/e))).
Hence the expected communication complexity of the protocolis O (k + n (logn + log(1/¢)) logn).
As for the error, observe that the protocol errs iff there is an intersection outside I. However,
I consists only of coordinates i € [n] such that Pr (z € Neepy X Z) < €/n. By union bound,

Pr 3i¢]:i€ﬂX€ SZPr ieﬂXf <n-(e/n)=ce. O
Lek] igl Lelk]
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Chapter 5

Lower Bound

In this chapter we prove our lower bound of Q(n'~1/%¥/k?) for Disjointness under product dis-
tributions, assuming that & = O(logn). For k = w(logn), this trivially implies a lower bound
of Q(n/log?n): simply take O(logn) players whose inputs are drawn from g, and pad up to k
by adding k& — O(logn) more players with a fixed input of [n].

The lower bound is information theoretic. We begin by introducing the notation that will
be used throughout the proof, reviewing the relevant definitions, and stating some technical

lemmas.

5.1 Preliminaries

5.1.1 Useful Inequalities

The following technical facts will be used in the proof.
Fact 1. For each m € R™ we have (1 — %)m <1/e.

Fact 2 (Bernoulli’s Inequality). For each t > 1 and x € [0, 1],
(1—xz)'>1—at.

5.1.2 Information Theory

We state several technical lemmas that will be used to bound the effect of conditioning on various
random variables and events in the proof, as well as to move between mutual information, KL

divergence, and probabilities of Bernoulli random variables.

Lemma 14. Let p € (0,1/3), p' € (0,1) and a € (0,1/2). If D(p||p’) < pa?/401In2, then
l—a<p/p<l+a.

Lemma 15. Fiz o € (0,1/2). Let A ~ B(p), where p € (0,1/3), and let B be a random
variable and b € support(B). Finally, let p’ € (0,1) such that A|g—p ~ B(p'). If

pa?

" 40In2’

I(A; B)<Pr(B=5b)
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then
p/
—ec(l-a,14a).
p
Lemma 16. Let A, B,C be random variables such that A is independent of C. Then
I(A;B)+1(A;C | B)=1(A;B| C),

and in particular:

1. (Conditioning on an independent variable does not decrease information,):

I(A;B) <I(A;B|C),

2. (Reversal lemma):

I(A;C | B) <1(A; B | C).

Claim 1 (Removing obstructions). Let X, X’ Y, Y’ be RVs, such that the pair (X,X") is
independent of the pair (Y,Y’), and let y € support(Y'). Then:

(X Y'X'|Y =y)=1(X; X'|Y =y) =1(X; X).

5.1.3 Properties of Communication Protocols

Lemma 17 (Protocols do not create dependencies between their inputs). Let M denote the

transcript of a deterministic protocol I1 over the inputs X', ..., X*, and let £ € [k]. Then

(X5 X4 M) <X X0.

5.2 Setup: Constants and Distributions

Let:
B 1
L 800e
. 1
an = o
ay=1/2.

Let C' > 0 be a constant that satisfies all the following requirements:

1 1 1 1

< < . 5.1
ajapyC — 2560Iln2 — 12801n2 < 1001n2 (5:1)
Note that it is enough to take:
25601n 2
C =000 (5.2)
Qo
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The number of players and the input size. Let N € N be such that for every n > N,

<1 _ i)n > 2ie (5.3)

We consider only input sizes n > N. As for the number of players k, we require

9 << logn'
— 7 log6
Note this implies that:
! < L 5.4)
RS (5.

The input distribution. Fixn > N. The input distribution for our lower bound is given by

Jo= = XX i,

where 1 \"
Lyl :...:uXk:Ber<n1/k) .

That is, all the input bits are iid Bernoulli random variables with probability 1/n
Let X1, ..., X" be the players’ respective inputs. Let &y denote the event that ﬂfe[k] Xt =

1/k of being 1.

0.
Property 8. Under u we have Pr (&) > 1/(2e).

Proof. Since the players’ inputs are independent, and the coordinates of each input are also

independent,
. 1 \5\" 1\" _ 1
o _ _ ‘_ _ _
Pr () X‘=0 _H 1-Pr| A\ X/ =1 _<1_<nl/k>> _(1—n) >
Le[k] 1=1 Le[k]

where the last inequality holds by our choice of n > N. O

5.3 Proof of the Lower Bound

The formal statement of our lower bound is as follows:

Theorem 3. Every deterministic protocol 11 for Disj,, . in the shared blackboard model with

transcript length at most nl_%/(CkQ) errs with probability at least €1 on the the input distribution
L.

In order to prove the theorem, fix a deterministic protocol II for Disj,, ; with transcript
length at most n'~* /(Ck?). We will show that II's error must be at least e;. We assume that

Il’s error is at most 1/(8e), as otherwise II's error trivially exceeds €; < 1/(8e). Let the random
variable M =11 (Xl, e ,Xk) denote the transcript of IT on inputs X',..., X* € {0,1}".
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5.3.1 High Level Overview of the Proof

We will show that if the protocol’s transcript is short, then the protocol errs with some constant
probability, implying that protocols that ensure low (enough) error require long transcripts.

We will start by defining a set of “good” transcripts G. Observe that under our input
distribution p, a low-error protocol must output “non-intersecting” with constant probability,
because p has constant probability that the inputs will not intersect. Moreover, if the protocol’s
transcript is short, we expect it to give little information about the typical coordinate Xf and
its relation to other coordinates. We therefore define G to be the set of transcripts satisfying
these two requirements, and note that the protocol’s transcript is in G with constant probability.
We will show that every transcript in G has a constant error probability, which will complete
the proof.

Next, given a transcript m € G, we continue by defining a good set of coordinates J(m). By
definition of G, the transcript m does not tell us much about most coordinates i € [n], so we let
J(m) be a set of 2(n) coordinates that m does not convey much information about, and which
remain “nearly independent” given m.

Next, for all and indices i € J(m), we denote by & -; the event that an intersection did not
occur at any index of J(m) lower than i. We continue by showing that for all players ¢ € [k],
we have that:

Pr (Xf =1 ‘ M=m,& ; X = I) ~ Pr (Xf - 1) , (5.5)

as proving (5.5) will imply that every ¢ € J(m) has intersection probability roughly 1/n, hence
bounding away from 1 the probability that the inputs are indeed disjoint, implying that the
transcript errs with constant probability.

Now, observe that as a first step towards proving (5.5), by the definition of G we have that
for all transcripts m € G, indices i € J(m), and players ¢ € [k]:

Pr(szl’M:m)zPr(szl).

Secondly, since the random variables Xf and Xfe are independent (even conditioned on M =

m), we have that:
Pr(szl‘M:m,XfZ:T) :Pr<Xf:1‘M:m),
So it suffices to show that:
Pr (Xf —1 j M =m, X5 :I,gm,@-) ~ Pr (Xf —1 ‘ M =m, X5 :I) . (56)

In order to show that (5.6) holds, we first show that for all coordinates i € [n] and players [ € [k]

we have that:

[ (Xf, 15®,<¢

M =m, X =T) <1 (X} X5,

M = m) . (5.7)

Note that (5.7), together with the definition of J(m) tells us that the value of X! does not give

a lot of information about whether the event & _; occurred or not (and vice versa), even con-
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ditioned on the event {M = m, X~ = T}.! Intuitively this should imply (5.6), but technically,
since mutual information is in fact an average over events, we still need to show that the event
Ep,<il pr=m x<¢=7 is likely (say, occurs with constant probability).

In order Zto show that the event & ;| Mem X<t=T 18 likely, first observe that the event
&p.<i|M=m must be likely, as it upper bounds the [;robability that the inputs are disjoint (and
hence that the transcript answers correctly). So it is only left to verify that the supplementary
condition Xfe = 1 does not reduce the probability of & .; too much. We now consider a
sequence of events: {X;? = 1},{X 3 = T},...,{X~" = 1}, and aim to show that for all
1</l <t

1
6SD (189,0- ‘M:myfol=T7 150’@- |M:m,Xi<Z/+1:T> = O (k) (58)

(for a suitably small constant), as this together with the triangle inequality will imply that:

PI‘ (5(2)7<i

M =m, X = T) —Q(1).

Finally, we show that eq. (5.8) holds by appealing to (5.7) again, and applying Pinsker’s in-

equality.”

5.3.2 Good Transcripts

Denote by G C support(M) the set of transcripts m that satisfy all the following requirements:
1. The output of the protocol upon producing transcript m is “non-intersecting”.

2. The amount of information that the transcript conveys about the input, and similarly the
amount of dependencies it creates between the coordinates of any individual input, is “not

much higher than average”:

n 1
>3 (0 (K haamw || X0 10X XL M=) < S (59)
i=1 Le[k]

To show that there is a constant probability of getting a good transcript, we show that
there is constant probability that the first condition holds, and a very high probability that the
second condition holds. For convenience, let us denote by G; the set of transcripts that satisfy

requirement ¢ € {1,2}.

Claim 2. We have that:
Pr(M € Gy) > 1/(4e).

Proof. Recall that by assumption, it holds that:

1
Pr (M errs) < —.
8e

!This roughly follows from the fact that Ep,<i is a function of X ;_,, which by the definition of J does not
give a lot of information about X7.

2In order to move from mutual information to KL-divergence (which is needed for Pinsker’s inequality), we
use the fact that the event {Xf/Jrl = 1} is not “too unlikely”.
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Now, for the probability that M € (1, that is, that the transcript announces “non-intersecting”,
we have
Pr(M € Gy) > Pr (& A M does not err) > Pr (&) —

Pr (M errs) >
Claim 3. We have Pr(M € G3) > 1 —ay
Proof. First note that

5.10
CkQ ( )
|(X1, X" M) _ Z|(Xf; M‘Xd)
Lek]
>3 (XE : M) (X!, X <! independent + Lemma 16)
Lek]
0. J4
- | <Xi .M ‘ X<Z-)
Lelk] i=1
By the chain rule, for each ¢ € [k] and i € [n],
(xts M ‘ x4) =1(x!s M) +1(xf5 x4 | M) (Lemma 16)
- o (K )] (0 x
Together with (5.10), we have

M ‘ <i | M= m)]
b
nl_% "
>

Lelk] i=1
= B | 30300 (X namm || X7) 41 (X0 XL >
telk] i=1 |
(linearity of expectation)
=E |22 D<Xf!M:m HXf) +I(X‘ xt,
| i=1 tefk]

yields:

)

Finally, since mutual information and KL-divergence are non-negative, Markov’s inequality

(355 0 (e ) 1 (10

1 nl*l
M = m)

k

< ay.
“ay CR2 | -TM
All together, we see that there is decent probability of getting a good transcript

O
Lemma 18. We have Pr(M € G) > 1/(8e)
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Proof. We have shown that Pr (M € G1) > 1/(4e) and Pr (M ¢ G32) < apr = 1/(8e). It follows
that

Pr(M e G)=Pr(M € Gy ANM € G9) > Pr(M € G1) — Pr(M ¢ G3) > 1/(8e). O

5.3.3 Good Subset of Indices and Its Properties

We show that for any good transcript m, there is a large subset J = J(m) C [n] of indices that
m “does not give a lot of information about”, and which are nearly-independent of one another

given m.

Lemma 19. For each m € G, there exists a set J = J(m) C [n] of size |J| > (1 —ay)n, such
that for alli e J, { € [k]:

1. D(Xf|M=m H Xf) < 1/(ayopn Cnt'*k2), and
2.1 (Xf, Xii ‘ M = m) < 1/(ayapCnl'/*E?).
Proof. Denote by J C [n] the set of indices that satisfy:

1 1 1

> (D (Xfnamm || X0) +10X0 5 X5 M =m)) < Ll

Le(k]

By the definition of G (5.3.2) and Markov’s inequality, |J| > (1—a.s)n. Since mutual information

and KL divergence are non-negative, we have, for each i € J and ¢ € [k],
1. D (X{|M=m H Xf) < 1/(ajapCnt/*k?), and
2. 1(Xf; X5, } M =m) < 1/(agapCnt/*k?).

Finally, observe that by the monotonicity of mutual information (property 3):

| (Xf >

Mzm)ﬁl(Xf;Xii

Mzm),

and this completes the proof.
O

We use J as short-hand notation for J(m), when m is clear from the context. We also refer
to the indices i € J as “good indices” (or “good coordinates”), but we note that this is slight
abuse of the definition, because it is the set J that is good (not the individual indices in it).

One key property of the coordinates in J is that since M does not give much information

about the indices in J(M ), their posterior probabilities given M are close to the prior:

Lemma 20. For each m € G, i € J(m) and ¢ € [k],

1—L 141
0 _ _ 1k 1k
Pr(XZ I‘M m)E(nl/k : nl/k>.
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Proof. By definition of J, for each i € J and ¢ € [k],

1 1
<
ajayCnl/kk2 = 2.401n2 - nt/k16k2°

D (X! |nr=m H x{) <

where the last inequality follows from the definition of C' (eq. (5.1)). The claim now follows
from Lemma 14, taking p = 1/n'/* € (0,1/3) and o = 1/(4k) € (0,1/2). O

5.3.4 Adding Up the Intersection Probabilities of the Good Coordinates

Fix a good transcript, m € G. Our ultimate goal is to show the following:

Lemma 21. For all m € G,
Pr(—& | M =m)>1-eY*=Q(1).

Since all good transcripts m € G output “non-intersecting”, and Pr (M € G) is fairly high,
this means the protocol’s error is large.

Conditioned on M = m where m € G, the bits Xil7 e ,Xf at any good coordinate ¢ €
J(m) are close to their prior distribution (Lemma 20). Moreover, since we are working with
a communication protocol, the bits Xil, cee sz remain independent conditioned on M = m.
Therefore the probability of an intersection, X; = 1, is close to its prior of 1/n. Since there
are |J(m)| = ©(n) good coordinates, the expected intersection size in J(m) is ©(1). If the
coordinates in J(m) were still independent of one another, we could now conclude that there is a
constant probability of getting an intersection in J(m), but unfortunately, conditioned on M =
m, these coordinates are not independent — they are only “close” to independent (by definition
of the set of good coordinates). Thus, to prove that there is a constant probability of having an
intersection in J(m), we “collect” the coordinates one-by-one, handle the dependencies between
them, and show that the probability of an intersection roughly “adds up” over the coordinates.

Let & «; be the event that there is no intersection at any coordinate inside .J(m) that is
smaller than ¢. The key lemma that allows us to “collect” the intersection probabilities is the

following:

Lemma 22. For each m € G and i € J(m), if Pr(& | M = m) > 0.6, then it holds that

Pr(X;=1|M=m,&_) > %

Lemma 22 asserts that for any good transcript m and coordinate i € J(m), conditioned on
M = m and on having no intersection in the coordinates of .J below i (the event & ;), the
probability of having an intersection in coordinate i is at least 1/(2n). To prove the lemma,
we iterate over the players £ € [k], and prove that even conditioned on X~ = T (as well as
M =m, & ;), we still have good probability that Xf = 1. All together, this implies that with
good probability, X; = 1. Before proving Lemma 22 formally, we state two lemmas that will
be used in the proof.

Since we start out with a product distribution, any dependencies between X f and Xfe must

arise from conditioning on M = m, & ;. However, conditioning on the transcript of a protocol
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does not create any dependencies between the players’ inputs, so it is really the event & ; that
is “problematic”. Thus, a key step in the proof is to show that conditioning on & .; does not
create strong dependencies. We start by showing that the event & ., does not give a lot of

information about the 7-th coordinate:

Lemma 23. For every coordinate i € [n| and player { € [k] we have that:

I(Xf;lgq)’d Mzm).

M =m, X =T) <1 (X{; X5,

Proof. By the data processing inequality,

(X5 16y,

M=m X = T) < (Xf . X5 xt
<7 <1

M=m, X" = T) (Property 2)

:I<Xf;X§<i‘M:m>,

Where the last equality follows from Claim 1, by taking X = X!, X' = X4, V' = X;Z,

)

Y =y):= (X =1). O

We then use Lemma 23 to show that conditioning on some (or all) of the input in coordinate 4
does not reduce the probability of the event & -; by much. Specifically, if £y has high probability
given M = m (and therefore so does & -;, which is implied by &p), then & _; retains high

probability even after conditioning on some bits in coordinate ¢ being 1:

Lemma 24. If Pr (& | M =m) > 0.6, then for each m € G, i € J(m) and ¢ € [k]

Pr (5@,@ M =m, X~ = I) > 0.5.

Before proving Lemma 24, let us show how it is used to prove Lemma 22.

Proof of Lemma 22. As we said above, we would like to show that for all i € J, ¢ € [k],

N (1=4)?
Pr (Xf =1 ‘ M=m,& ;X' = 1) > (711/4:) (5.11)

as this will easily imply Lemma 22.
First, since conditioning on the transcript of a protocol does not create dependence between

the inputs, we have
Pr<Xf:1‘M:m,Xi<£:T> :Pr(szl‘M:m),

and by Lemma 20,

1-L 1+2%
0 _ _ 1k 1k
Pr (Xi —1 ) M = m) c (nl/knl/k> . (5.12)
In particular, then,
— 1
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Next, we carefully introduce the conditioning on & ;, using Lemma 15 to bound the effect.
By choice of J, we know that there is not much dependence between the coordinates J.; and
coordinate i given M = m, and since & -; is an event that depends only on the coordinates in

J<;, we have

(Ot | M= =) 1 (0 0 3= ) —
1 . .
= ayayCnt/kk2 (definition of J (19))
Pr(X{=1| M =m) - (1/(16+*))
<P ( | M = X<€) . i .
<Pr(& < m, X; —

(by (5.13), Lemma 24, and the definitions of a.y, apr, C' (5.1))

Therefore, taking o = 1/(4k), Lemma 15 yields
Pr(Xf: 1‘M:m,Xi<f:T,€@7<i) > (1—a)~Pr(Xf:1’M:m>

2
> (1— 41k> # (by (5.12))

To complete the proof, it remains only to observe that

k _1)2 k
Pr(Xizl\M:m,S@Ki):HPr<Xf:1’M:m,XfE:l,E@Ki)Z<(11/4:)) > 1
n
(=1

In the last step, we used the fact that (1 —1/(4k))?* > 1/2 holds for all k > 1/4 by Fact 2. [
Finally, let us prove Lemma 24, and conclude the proof of the lower bound.

Proof of Lemma 24. Recall that by assumption it holds that Pr (5 | M = m) > 0.6. The event
&p < is implied by &, so in particular, Pr (5@7@» ’ M = m) > (0.6. In order to prove the lemma,
we need to show that conditioning on ng = 1 does not reduce the probability of Ep <i by
much; this is delicate, because X~ =T is a highly unlikely event.

We introduce the conditioning on Xff = 1 step-by-step, each time conditioning on one
additional bit being 1: for each ¢ € [¢], let

pr = Pr (5@,@ | M =m, Xft) .

We will show that the difference |p; — p;—1| is small for each ¢ € [¢], and conclude that |py —po| is
small; that is, Pr (5@7@- ‘ M =m, Xid) is close to Pr (5@’@- ‘ M = m), which we know is high.
To that end, fix ¢t € [¢], let us study the effect of adding conditioning on X! = 1. The

dependence between the events & ; and X! =1 is small, because

I <15@,<i ) Xf

M=m X" = T) <HX5_ X{ | M =m) (by Lemma 23)
1

= asanCnliE >4

In the last step, we used the fact that ¢ € J, so there is not much dependence between it and
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the preceding bits in J given M = m.

While X! = 1 is an unlikely event, it is not too unlikely: The players’ inputs are independent
given M = m (by Lemma 17), hence also are the i-th coordinates of the players’ inputs (by
Corollary 1). Together with Lemma 20 we have that:

1-1/(4k) _ 1

t_ _ <t T\ t_ _
Pr(X{=1|M=mX"=1)=Pr(X;=1|M=m) > i Z g (5:15)
We therefore have, by definition of p;, p;—1 and Property 1:
| (150,@. XU M =m, X :I) >Pr(X!=1|M=1,X=T)-D(p | p1)
1
ey D (pe || pt—1) - (by (5.15))

Together with (5.14), we obtain

1 1

D _ <2 1/k. < .
(Pe [l pe-1) < 2n ayanCnt/* k2 = 501n 2k2

(by definition of C' (5.1))

Finally, by Pinsker,

=il < 2D Gl < 22 L L
Pro Pl =\ WP = A\ T 0 m 2k T 10k

We have now shown that

12
11
_ 14 _ — _
Pr (8g.<i | M = m, X7*) P (€ | M =m)| = |~ pol < t§1; [P —pea| <k = 15
Thus,
<t _ T 1 1
Pr (Ep,ei | M =m X7 =T) > Pr (&< | M =m) = 1 > 0.6 = 15 = 05. O

We now conclude the lower bound, by first proving Lemma 21, i.e. showing that each good
transcript leads to error with high probability, and then that the protocol as a whole errs with
probability at least €.

Proof of Lemma 21. First, note that if Pr(&y| M = m) < 0.6, then the lemma holds trivially
(as 0.6 < 1/e'/4). Therefore it only remains to consider the case where Pr (& | M = m) > 0.6.

Recall that we defined & ; to be the event that there is no intersection at any coordinate

)

= HPr (Xi #1| M =m,& ;)
jedJ

of J up to (but excluding) i. Therefore,

Pr ﬂXf} =0|M=m —Pr(/\(Xi#l)
Le(k]

1€

1\l
< (1 - 271) . (Lemma 22)

38



Since |J| > (1 — ay)n,

1 ‘JI 1 (1—OéJ)n
<1 - > < <1 — > < e (man)/2 _ —1/4
2n - 2n - )

where the second inequality holds due to Fact 1. O
Corollary 5. The protocol errs with probability at least €;.

Proof. Consider some specificm € G. Since m is a good transcript, it outputs “non-intersecting”.
By Lemma 21, given M = m, there is good probability that the inputs do intersect; whenever
this occurs, the protocol errs.

More formally, we can write

Pr (M errs) > Z Pr (M errs | M = m)Pr (M =m)

meG
> Z Pr (=& | M = m)Pr(M =m)
meG
> Z (1 - e_l/4> -Pr(M =m) (Lemma 21)
meG
1
— (1 1/4 —_eV/4) . =
= <1 e )Pr (M eqG)> (1 e ) e (Lemma 18)

We see that the protocol errs with probability at least (1 — e~1/4)/(8e) > 1/(800¢) = €. O

5.4 Proofs of the Technical Lemmas

Lemma 25 (“Technical Lemma 25”7, page 23, in [BO17]). Letp € (0,1/3), o € (—1,1/2), then:

1 2
> . .
D((1+a)p\|p)_4ln2 pa

Lemma 26 (“Technical Lemma 26”, page 23, in [BO17]). Let p € (0,1/2), o > 1/2 such that
(1+a)p <1, then:

D((1+aplp) > 1o p(1 +a)

Lemma (Restating Lemma 14). Let u ~ Ber(p), p € (0,1/3), a € (0,1/2) and Let i’ ~ Ber(p')
such that D (i || p) < g5 - po?, then:
p/
—e(l-—a,1+a).
p

Proof. Assume towards showing a contradiction that:

/

E&(l—a,l—}-a),

3

and divide to cases:

39



Case 1.

Since p > 0, this implies that p’ = 0. Then:

0 1[1) =0 (/|| 9) =D O ) = 1-tog (1) = ~tog(1 = p) = =22 > 1)

In2 In2
2
>ﬂ’
40In2
contradiction.
Case 2.
p/
— € (0,1 —a).
p
Denote:
p/
o =1-=€(a,l),
b

Le.:

Since we have that —a/ € (-1, —a) C (—1,1/2):

D (v [|n) =D (¥ |[p) =D (1 -a)p||p)

1
> T2 - pa? (by Lemma 25)
1 2 /
. >
> 1o po (o > )
> 1 2
402 P
contradiction.
Case 3.
p/
—>14+a.
p
Denote:
p/
/8 =—-1 > «,
b
which implies that:
p'=(1+B)p.
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If 5 < 1/2, then:

D(v[|n) =D |[p) =D((1+B)pllp)

1 2
> .
~ 4In2 P
> 1 2
A2 P¢
> ! 2
A0m2 P

contradiction. Otherwise 8 > 1/2, hence:

D (i ||n) =D |[p) =D(1+B)pllp)

p(1+5)

10

2
S 1.5p - 0.5%p
- 10 401n2
2

> ﬂ,

40In2

>

contradiction.

(by Lemma 25)

(8> a)

(by Lemma 26)

(a < 1/2)

O]

Lemma (Restating Lemma 15). Let A ~ Ber(p) , p € (0,1/3), a € (0,1/2), B an RV with

b € support(B), such that:

pa?
40In2’

I(A; B)<Pr(B=b)
and denote: A|p—y ~ Ber(p'). Then:

/!
p—e(l—a,l—i—a).
p

Proof. By Lemma 14, it is enough to show that:

D (p Hp') < pa?/401n2.

Observe that by Property 1 and by the non-negativity of KL-divergence, it follows that:

D(A|l Alp=p) < I(A; B),

1
Pr(B = b)

which completes the proof.

d

Lemma (Restating Lemma 16). Let A, B, C be RVs, such that A is independent of C, then:

I(A; B) +1(A;C | B)=1(A; B | C),

and in particular:

1. (conditioning does not decrease information):
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I(A; B)

IN

I(A;B| C).

2. (reversal Lemma)

I(A;C | B) <1I(A; B | C).

Proof. Using the chain rule:

I(A; B,C) = 1(A; B) + (A; C | B), (5.16)

I(A;B,C) = 1(A;C) +1(A;B | C) = (A; B | C). (5.17)

Hence:
I(A;B)+1(A;C | B)=1(A;B| C).

From the non-negativity of information, it follows that:
I(A; B) <1(A; B | C),

and
I(A;C | B) < I(A;B | C),

which proves both desired properties. ]

Claim (Restating Claim 1). Let X, X', Y, Y’ be RVs, such that the pair (X, X") is independent
of the pair (Y,Y’), and let y € support(Y'). Then:

(X Y'X'|Y =y)=1(X; X' |Y =y)=1(X; X).
Proof. Let’s prove each equality separately:

Lemma 27.
I(X;Y’X’\Y:y):I(X;X’\Y:y).

Proof. By the chain rule:
(X5 Y'X|Y =y) =I(X; X'|Y =y) +I(X; Y| Y =y, X),

so it suffices to show that:
(X ; Y’ | Y:y,X') =0.

Since information is non-negative, it suffices to show that:

(X:Y'|Y,X')=0.
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But this is true, as by property 4 of mutual information:
(X; Y'Y, X)<I(XX";YY')=0. O

Lemma 28.
(X; X'|Y =y)=1(X; X').

Proof. Note that by the definition of mutual information:
(X X') == H(X) - H(X | X),

and:
(X; X'|Y=y)=HX|Y=y)-HX|Y =y, X'),

So it suffices to show that:
H(X) = H(X | Y =), (5.18)

and
HX|X"=HX|Y =y, X'). (5.19)

Now note that by monotonicity of mutual information (property 3):
(X;Y)<I(XX'; YY) =0,
hence X and Y are independent, and particularly for all x € support(X) we have that:
PriX=x)=Pr(X=z|Y =y),

and hence X|y—, and X are identically distributed, and in particular have the same Shannon

entropy, i.e.:
H(X)=H(X|Y =y),

proving eq. (5.18). Now, note that by the monotonicity of mutual information (property 3):
(X';Y)<I(XX'; YY) =0,

hence for all Z € support (X') we have that:

Pr(X'=2|Y=y)=Pr(X'=3). (5.20)
Now note that:
(XY | X)<I(XX';Y) (property 4 of mutual information)
<IXX'; YY) (property 3 of mutual information)
=0. (by assumption)

Since mutual information is non-negative, this implies that for all € support (X'), we have
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that:
(X;Y | X' '=3)=0.

and hence X|x/—zy—, and X|x/—; are identically distributed, and in particular for all Z €
support (X'), we have that:

H(X|X'=2,Y =y) = HX|X' = 7). (5.21)
Now this implies that:

H(X|X',Y =y) = E[H(X|X",Y =)

= Y  Pr(X'=2|Y=y)HX|X' =3Y =y)

Z€support(X')

= Y Pr(X'=3)HX|X' =Y =y) (eq. (5.20))
Ze€support(X')
= ) Pr(X'=3)HX|X =1 (eq. (5.21))
Ze€support(X')
o ’
= E[H(X|X")]
= H(X|X"),
proving (5.19). O
O

Lemma (Restating Lemma 17). Let M denote the transcript of a deterministic protocol II over
the inputs X',..., X* and let £ € [k]. Then:

(X5X ) M) <I(X5X75.

Proof. Instead of re-proving the claim for 2-players, consider the following: Look at a deter-
ministic 2-player protocol IT', obtained from II by re-labeling the vertices owned by player ¢ as
owned by Alice, and the other vertices as owned by Bob. Now denote: X’ := X!, Y’ := X
and observe that II' is a deterministic 2-player protocol over X’,Y’. Denote this protocol’s
transcript by M’, and observe that: M’ = M. Then, Since IT' is a deterministic 2-player
protocol over X', Y":

(XY | M) <I(X";Y).

Substituting the assigned values, we get the desired result. O
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Chapter 6
Limitations of Prior Work

In this chapter, we will discuss certain limitations of the related prior work. These limitations

have motivated our development of new techniques, as described in the previous chapters.

6.1 Limitations of the Lower Bound of Babai, Frankl and Simon

Babai, Frankl and Simon showed in [BFS86] a lower bound of ©(y/n) bits on the communication
complexity of the 2-players Disjointness problem for some specific product distribution. We will
give a high level overview of their proof, and then explain why certain simple attempts to
extend their proof technique to 3 players fail. Note that it is possible that some more elborate
modifications to their proof will yield the desired lower bound for 3 players (or more), but we
were not able to find such a proof, hence our information-theoretic lower bound, which uses
an entirely different technique. Note that it is reasonable to start with 3 players, which is the

simplest scenario to analyze (besides the 2 players scenario).

6.1.1 Overview of the Lower Bound of BFS

Babai, Frankl and Simon ([BFS86]) use the following hard distribution for their lower bound:
the inputs of Alice and Bob are sets of size /n, chosen uniformly and independently from a

universe of n elements. Formally, we denote:

o- ()

and let pux and py be the marginal distributions of Alice’s and Bob’s inputs (respectively). We
then define
px = py = Unif(U).

We will denote by X ~ ux,Y ~ uy the random variables corresponding to Alice’s and Bob’s
inputs (respectively). The input distribution is given by p = px X py. For convenience, we
sometimes abuse notation by letting p(X) or p(Y) denote the marginal probability of a set
X CUorY CU (respectively).

The lower bound of [BFS86] uses the corruption technique: to derive the y/n lower bound,

[BFS86] shows that there exists some positive constant ¢ > 0, such that for every combinatorial
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rectangle X xY C U? with

Pr (XNY#0|XeX,YeY)<e, (6.1)
(X, Y)~p
either X or Y must be “small”: formally, either (X) or (Y") must be upper-bounded by 2-¢V™.
A rectangle satisfying (6.1) is often called an “almost monochromatic 1-rectangle” (e-AMI1R).
The proof continues by fixing a combinatorial rectangle X x Y such that (6.1) holds, and
such that either p(X) or u(Y) is at least 27°V™ (where ¢ is determined later). Without loss of
generality, we assume that pu(X) > 2-°V",
Next, the proof shows that since X is “large”, it can be “represented” by a small collection
X' C U, which covers a constant fraction of the n elements in the universe, and such that the
typical y € Y only intersects few of the sets in X’. This essentially completes the proof, since
it implies that the average y € Y must be disjoint from a large portion of the elements in the

universe, and therefore there cannot be too many such y € Y. More formally, [BFS86] shows:

Lemma. There exists a collection X' C X such that:
1. |1 X' =06(y/n).
2. ‘UxeX'x‘ > G

3. It holds that:
Pr (XNY #0|XeX,YeEY)<2e
(X,Y)~p
This, together with an averaging argument, implies that most y € Y also intersect only a
small fraction of 2z € X'; that is, there exists a collection Y' C Y of cardinality at least |Y]/2,
such that for every y € Y/ we have that:

Pr (XNy#0|XeX')<de
Xropx
Observe that lower-bounding the size of the collection Y’ also lower bounds the size of Y, and

indeed we can see that each y € Y’ is determined by:

1. The sets z € X’ which y intersects (at most 4e - | X’| of those).

2. The choice of 3’s \/n elements from those elements that are not “forbidden”, that is, those

elements that are not in any set z € X’ which is disjoint from y.

We see that for every y € Y, there are at least n/6 — 4e - | X'| - /n “forbidden” elements for v,
hence there are at most 5n/6 + 4e - | X’| - y/n possible elements, which, for small enough e, is at
most 8n/9. It follows that [Y”| is upper-bounded by ( 4|€)|<);‘,‘) (8%9) < |U] -27¢V™ (for suitably
chosen constants € and c).

6.1.2 Limitations on Generalizing the BFS Lower Bound

Let us now try to generalize the BFS lower bound proof to 3 players. We will present three
attempts and show where they fail, indicating — to some extent — the limitations of the combi-

natorial proof used by BFS.
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For 3 players, our goal is to show a lower bound of 2 (n2/ 3), matching the lower bound we
proved using information-theoretic techniques in Theorem 3.

Let us start by re-defining the hard product distribution to work for 3 players. In the 2-
player case, Alice and Bob each got a set of size /n. It is easy to see that in the 3-player
case, the size of each player’s inputs must be Q(nQ/ 3): if one player, say Alice, has a set of size

0 (ﬁ:i), then she can transmit her set to Bob. Bob can then intersect his set with Alice’s set,

and transmit the resulting set to Charlie, who can now determine if the sets intersect or not.

The overall communication complexity will be o(n?/3). Let us therefore re-define:

o~ (2

and let ux = py = pz = Unif(U) be the marginal distributions of the players’ inputs. We
denote by X ~ ux,Y ~ uy,Z ~ uz the random variables indicating the inputs of Alice, Bob
and Charlie (respectively).

Let us now try to follow the footsteps of the BF'S proof: we start by fixing a combinatorial
rectangle X x Y x Z C U3, such that

Pr (XNYNZ#0|XeXYeY,ZecZ) <e (6.2)
(X,Y,Z)~p

Recall that the BFS lower bound proof has two steps:

(1) Assuming that X is large, we “represent” X by a small collection X’ C X of sets that

together cover ©(n) elements and roughly preserve the intersection probability with Y;

(2) “Represent” Y by a collection Y’ C Y that includes a large fraction of the elements in Y,

and contains only sets that each intersect only a small fraction of the sets in X”.

The BFS proof then shows that that |Y’| cannot be too large, which also implies that |Y] is not
too large.

We consider three attempts to generalize the BFS proof.

Attempt I: Applying step (1) to X and step (2) to Y x Z. Let us assume that we have

a collection X’ C X which is “small”, covers ©(n) elements, and satisfies for every x € X'

Pr xNYNZ#0|YeY, ZeZ)<2e
(Y, Z)~py xpz

The BFS proof shows that there exists such a set whenever u(X) is sufficiently large; in our
case, let us simply assume that it exists (we are interested in showing that the proof cannot go
through even in this case).

In Step (2), the BFS proof uses an averaging argument to deduce the existence of a collection
Y’ C Y which includes most of the elements in Y, while having roughly the same probability of
intersection with an element of X’ as the overall set Y. The proof is then completed by showing
that this upper-bounds the cardinality of Y’ (and hence of Y).
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In the 3-player case, following the same reasoning, we can deduce the existence of a collection
S’ CY x Z with cardinality at least half of that of Y x Z, such that for every (y,z) € S,

Pr (XNynz#0|X e X') <de (6.3)
X~px
note that S’ is not necessarily a combinatorial rectangle.

To complete the proof, we would need to show that the cardinality of S is upper-bounded
by }UQ‘ L 9= ) (for some constant ¢’). This would yield an upper bound of 2-0(n*%) on
w(X xY x Z), as desired. Unfortunately, even under the assumptions above, the size of S is
not bounded by 2-20*%); there exists a large collection S C Y x Z, of cardinality at least
|U| 2- 2*@(”1/3), such that for any non-empty X’ C X, and for every (y,z) € S, we have

Pr (Xnynz#0|XeX')=0.
Xr~px
In other words, even though (6.3) is satisfied, the size of S’ exceeds our desired bound.

The collection S is defined by taking all disjoint pairs y,z € U, i.e.:
S :={(y,2) €U2}yﬂz:®}.
A simple combinatorial calculation shows that

Pr  (YNZ=0)>2°0""
(Y.Z)~py Xpuz

Attempt II: applying step (1) to X xY, then step (2) to Z. We now consider a different
strategy: “representing” X x Y by a small collection S C X XY of sets that “cover” most of the
universe and roughly preserve the intersection probability, and then arguing that the remaining
dimension of the rectangle, Z, must be small.

Fix a combinatorial rectangle X x Y x Z C U?, with intersection probability at most € inside
it. Assume that pu(X xY) > 2-cn*’* otherwise the rectangle is small and we need not consider
it. We would like to find a “representation of X x Y”, a collection of pairs S C X x Y with the

following properties:

o |5] < nl/3.

e The intersection probability in S x Z is at most 2¢ (the exact constant 2 is of course not

important here, but for simplicity we use the same constant as BFS).

e S “covers” O(n) elements of the universe. Here, the correct interpretation of “covers”

that would allow the proof to go through is the following: define

c$)= U @ny).

(z,y)eS

Then we would like to have |C(S)| > an, where a € (0, 1] is a sufficiently large constant.

If we can find such a set, we could apply step (2) to find a collection Z' C Z of size |Z'| >
|Z]/2, such that for each z € Z’, the intersection probability inside S x {z} is at most 4e. A
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simple counting argument, similar to the one used in the 2-player proof, would then show that
|Z] <2|7'| < 2-0n?/%). |U| and complete the proof. Unfortunately, we will see that attempting
to prove that such a collection S exists is likely to fail. First, observe that the properties of S
imply that most pairs (z,y) in S should have a large intersection, i.e. |z Ny| = ©(n?*3) for most
(z,y) in S. This would be critical later on in understanding why this proof attempt fails, as we
will show that it is unreasonable to expect that the intersection size of the typical (x,y) would
be much larger than n'/3.

Secondly, recall that the BFS argument for showing a small collection X’ that “represents”
X starts by applying Markov’s inequality to deduce that some large collection X" C X exists of
cardinality at least | X|/2 and such that for any x € X", the combinatorial rectangle {x} x Y has
intersection probability at most 2e. This step is necessary, as we would like to claim that since
X" is large, there must exist a small sub—collection X’ C X" that covers a constant fraction of
the elements in the world, and such that X’ x Y has intersection probability at most 2¢. Hence
for the BFS proof it was necessary to apply the Markov argument to obtain the intermediate
collection X", as otherwise there would be no guarantee that the intersection probability of
X' xY is small.

Attempting to apply the same Markov argument in the 3-player scenario, we obtain a
collection of pairs S C X x Y containing most of the pairs in X x Y, and such that for
any pair (x,y) € S’, the combinatorial rectangle {z} x {y} x Z has intersection probability at
most 2¢. Unfortunately, S’ itself does not have to be a combinatorial rectangle, and in fact, all
we can assume about S’ is the assumptions about its cardinality and intersection probability
mentioned above.

At this point, we can see why this proof attempt fails; S C S’ is required to satisfy that for
most elements (z,y) € S the intersection of z and y has cardinality at least Q(n?/3), but there
exists a large collections S’ such that every pair (z,y) € S’ has intersection size roughly n'/3.
To see this, recall that the intersection size of a random set of fixed size, with another fixed
set follows the hypergeometric distribution. The Chernoff-like tail bounds for this distribution
imply that with high probability, two random sets of size n?/3 will have intersection size at

/3 Consequently, if we define S’ to be the collection of pairs of intersection size at

most 2n
most n?/3, then S’ has large cardinality (in fact, u(S’) = (1)), but one cannot extract the
desirable sub-collection S from S’, as S is required to have mostly elements of intersection size

n?3 > onl/3,

Attempt III: applying step (1) to X and to Y, then step (2) to Z. We now consider a
different strategy: instead of using the collection X’ to “represent” the collection X, and then
arguing about Y x Z, let us consider what happens if we use a small collection X’ to “represent”
X and a small collection Y’ to “represent” Y, and then argue about Z. One may hope that if
there is a large set of elements in the universe covered by both X’ and Y’, then we can employ
an argument similar to the one that BFS used for 2 players. Unfortunately, we will see that
this type of argument fails for some combinatorial rectangles.

For 3 players, we start with a combinatorial rectangle X x Y x Z C U3 with intersection

probability at most e. If u(X) > 2-7*”* for some suitable constant ¢ > 0, then, following the

49



proof of BFS, we assume again that there exists a collection X’ C X, of cardinality @(nl/ 3,
which covers ©(n) elements in the universe, and moreover, the combinatorial rectangle X’ x
Y x Z has intersection probability at most 2¢ inside it. If p(Y) > 2-cn*"* as well, then a
similar argument would show that there exists a similar collection Y’ C Y that also covers
©(n) elements in the universe, and such that the intersection probability in the combinatorial
rectangle X’ x Y’ x Z is at most 4e. Markov’s inequality then implies that there exists a
collection Z' C Z of cardinality at least |Z]/2, such that for every z € Z', the combinatorial
rectangle X’ x Y/ x {z} has intersection probability at most 8¢. Observe that this implies that
for every set z € Z’, there are at most 8¢|X’| - |Y’| pairs (z,y) € X' x Y’, such that z intersects
x Ny. We would like to use this property to bound the size of |Z’|, and hence also of |Z|.

As in the 2-player argument, we can describe each z € Z’ by

e The collection of pairs S C X’ x Y’ that z is “allowed” to intersect — there are at most
8¢| X'| - Y| of these;

e The choice of z’s n?/3 elements from those elements that are not “forbidden”, that is,

those elements that are not in any z Ny for (z,y) € S.

Note that, once again, S is not necessarily a combinatorial rectangle.

As in the 2 players argument, for a collection of pairs S C X’ x Y of cardinality 8¢|X’|- Y|,
we denote by U(S) the set of allowed elements for a set guarunteed not to intersect any set
s = x Ny such that (z,y) € (X’ xY’)\ S. Observe that any set z € Z’ may be described by the

collection of pairs S C X’ x Y it is allowed to intersect, and the choice of |z| = n?/? elements
of the universe U(S). It follows that:
( v gS)I )
Wz < 3 TiU/T (6.4)

SCX'xY’

s.t. S| =8¢| X' |-|Y"|

Naively, one could hope to show that, as in the 2 players proof, there exists some constant
0 < a < 1 such that for every such S, |U(S)| < an. Then, a simple counting argument (similar
to the one used for 2 players) would imply that the right-hand-side expression in (6.4) is at most

2_@(”2/3), hence completing the proof for 3 players. Unfortunately, there exists collections X’

and Y’ that cover all n elements in the universe, and such that a fraction of at least 9-6(n'/?)
of the S’s satisfy that (‘ng} ‘) = |U|. Hence for these collections X', Y, the right-hand-side
expression in (6.4) is at least 2-6(n'?) 5, 2_6("2/3), and hence this argument cannot imply the
desired lower bound.

Let us now describe the collections X’ and Y”: let X’ be any collection of n!/3 pairwise-
disjoint sets in U, and set Y/ = X’. Observe that both X’ and Y’ cover all the n elements in
the universe. Now consider the collection of pairs G = {(z,z) | x € X'}. Observe that since the
sets in X’ are pairwise-disjoint, for every pair (z,y) € (X’ x Y’')\ G it holds that z Ny = 0. Tt
follows that for every collection S C X’ x Y’ that contains G, the set of possible elements U(.S)
contains all the n elements of the universe, and hence (‘Zé%ﬂ) = |U].

It remains to show that the fraction of collections S C X’ x Y’ of cardinality 8¢/ X'| - |Y”|

that contain G is large. Observe that the cardinality of X’ and Y’ is n'/3. The total number
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of sub-collections of cardinality 8¢|/X’|-|Y| is (82253) Since |G| = |X’|, the number of such

collections S that also contain G is (82223__”263) Hence the fraction of collections S that also

contain G is:

( n2/3_pl/3 ) (86%2/3)

8en2/3_pl/3 o nl/3 nl/3 o 7@(n1/3)
7 =5 > (4e) =2 .
(85n2/3) (n1/3)

6.2 Limitations of the Upper Bound of Babai, Frankl and Simon

In addition to their celebrated lower bound, Babai, Frankl and Simon showed in [BFS86] an
upper bound of O(y/nlogn) bits on the communication complexity of the 2-players Disjointness
problem for any product distribution.

Unfortunately, it seems like the protocol used in [BFS86] cannot be easily adapted to more
than 2 players, which motivated our upper bound algorithms described in chapters 3 and 4. We
will give a high level overview of the protocol used in [BFS86], and then explain its limitations

when trying to adapt it to 3 or more players.

6.2.1 Overview of the Upper Bound of BFS

The protocol described in [BFS86] works in iterations, where Alice and Bob both maintain a
current “universe” U C [n], where initially U = [n], and each iteration decreases the size of
the universe U by (at least) y/n elements, until Alice’s input restricted to U (i.e. X NU) has
cardinality at most y/n, where Alice can simply send it to Bob (using at most nlogn bits of
communication).

At each iteration, Alice first tells Bob whether her restricted input X N U is at most y/n
(in which case she also sends her restricted input to Bob who can determine if an intersection
occured), or whether it is at least v/n. In the latter case, Bob first checks whether the probability
that a random set intersects his input Y N U is at least ¢, where the set is sampled randomly
from Alice’s distribution, conditioned on the current universe U and the fact that the set has
cardinality at least y/n. If this intersection probability is less than €, then Bob delares “X and
Y are intersecting”. Otherwise, Bob publicly samples (an infinite number) of such random sets
independently, and sends Alice the index of the first set that is disjoint from Y N U. Alice and
Bob then remove all the elements of this random set from U, and continue to the next iteration.

Now observe that after at most y/n iterations the protocol must terminate, and that at each
iteration where Alice’s input is still large, Alice uses 1 bit of communication, and Bob uses on
expectation at most O(log(1/e€)) bits to communicate the index of the disjoint random set to
Alice. Assuming that Bob never declared “intersecting”, then at some point Alice’s input will
be at most y/n bits, and then Alice uses another O(y/nlogn) bits to transmit her set to Bob.

6.2.2 Limitations on Generalizing the BFS upper bound

When considering an adaptation of the [BFS86] protocol to 3 players: Alice, Bob and Charlie,
we can naturally consider two variants: one where Bob and Charlie try to jointly select a random
set from Alice’s distribution, and one where Charlie selects a pair of random sets: one from

Alice’s distribution, and one from Bob’s distribution. In both cases, all 3 players maintain a
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universe U and try to decrease the cardinality of one of the input sets to be at most n?/? when
restricted to U.

Attempt I: Bob and Charlie jointly select a random set from Alice’s distribution.
In this variant, in the beginning of each iteration, Alice tells Bob and Charlie whether her
restricted input X N U has cardinality at most n2/3 (in which case she sends it to Bob, who
itersects it with his set and sends the result to Charlie). If Alice’s restricted set has cardinality

2/3_then Bob and Charlie would like to jointly sample a random set drawn from Alice’s

at least n
input conditioned on U and set cardinality, who is disjoint from the intersection of Bob and
Charlie’s inputs: Y NZNU.

Unfortunately, it seems unlikely that Bob and Charlie can find such a random set without
first finding the exact intersection Y N Z N U, which is a harder task than to tell whether their
sets intersect or not, and generally no better upper bound than n bits of communication is

known for this task.

Attempt II: Charlie selects a random pair of sets from Alice and Bob’s distribution.
In this variant, in the beginning of each iteration, Alice and Bob tell Charlie whether their
respective inputs have cardinality at most n%/3 when restricted to U. As in the previous variant,
if this condition holds for Alice and/or Bob, they send their small set to Charlie who can use it
to deterministically detect an intersection using an additional n?/3 log(n) bits of communication.

If Both the input of Alice and Bob are small, then Charlie would like to publicly sample (an
infinite sequence of) pairs of random sets: one from Alice’s input distribution, and one from
Bob’s input distribution, conditioned on U and set cardinalities being at least n2/3. Note that in
this case, Charlie can indeed correctly sample such a pair, and if the typical pair is disjoint from
Charlie’s input Z N U, then such a pair could be identified with a small index. Unfortunately,
in this case we have no guarantee on the size of the intersection of the pair of random sets (it
is possible that the intersection of the random sets is empty), hence we have no guarantee that

the protocol will terminate after O(n?/3) iterations (or at all, for that matter).
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Chapter 7
Conclusions and Open Problems

In this thesis we prove a bound of 5) (nl_l/ kot k:) on the communication complexity of the
k-player Set Disjointness problem under product distributions, for the number-in-hand shared
blackboard and coordinator communication models. In order to prove this bound, we introduce
new techniques for both the upper and lower bounds, and explain why it seems hard to extend
techniques used in previous work to the scenario discussed in this thesis.

We conclude this thesis with a list of open problems:

Problem 1. Can the information-theoretic lower bound technique used in this thesis be extended

to show a lower bound for Set Disjointness in the NOF communication model?

Note that while our protocol for k > logn requires 1 simultaneous round (in the average
case), our protocol for k < logn requires O(loglogn/logk) simultaneous rounds, which we do

not know to be tight.
Problem 2. Can the number of rounds for k < logn be improved to O(1)?

[BGK15] showed a smooth interpolation between the communication complexity bound for

product distributions and the bound for general distributions, for 2 players.

Problem 3. Is it possible to show a similar interpolation for k-player Disjointness in the
coordinator model? I.e. show smooth interpolation between the 5) (nl_l/k + k:) bound for product

distributions, and the ©(kn) bound for general distributions?
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