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Abstract

In the multiparty number-in-hand set disjointness problem, we have k players, with private

inputs X1, . . . , Xk ⊆ [n]. The players’ goal is to check whether
⋂k
`=1X` = ∅. It is known that

in the shared blackboard model of communication, set disjointness requires Ω(n log k + k) bits

of communication, and in the coordinator model, it requires Ω(kn) bits. However, these two

lower bounds require that the players’ inputs can be highly correlated.

We study the communication complexity of multiparty set disjointness under product dis-

tributions, and ask whether the problem becomes significantly easier, as it is known to become

in the two-party case. Our main result is a nearly-tight bound of Θ̃(n1−1/k + k) for both the

shared blackboard model and the coordinator model. This shows that in the shared blackboard

model, as the number of players grows, having independent inputs helps less and less; but in

the coordinator model, when k is very large, having independent inputs makes the problem

much easier. Both our upper and our lower bounds use new ideas, as the original techniques

developed for the two-party case do not scale to more than two players.
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Chapter 1

Introduction

The set disjointness problem is a central problem in communication complexity, and lower

bounds on the communication complexity of set disjointness have wide-ranging applications

in circuit complexity, streaming algorithms, data structures, distributed computing, and other

areas (the many variants of the problem and its applications have inspired several surveys,

e.g., [CP10, She14]). Moreover, the search for lower bounds for set disjointness in various

settings and models has led to the development of powerful combinatorial and information-

theoretic techniques, which are now ubiquitous in communication complexity.

In its simplest form, the set disjointness problem asks two players, Alice and Bob, to de-

termine whether their inputs sets, X,Y ⊆ {1, . . . , n} (resp.) intersect. The celebrated lower

bound of [SK87, Raz90] shows that Ω(n) bits must be exchanged between the players, even us-

ing randomness and allowing for a constant error probability. However, before the linear lower

bound was proven, [BFS86] showed that under product distributions – that is, if we require

that the players’ inputs be independent of one another – the communication complexity of dis-

jointness is only Θ̃(
√
n) bits (with constant distributional error over the input distribution). In

other words, set disjointness is significantly easier under product distributions than it is under

arbitrary input distributions.

In recent years, the study of set disjointness has been extended to the multiparty setting,

where we have k players with inputs X1, . . . , Xk ⊆ [n], and our goal is to determine whether⋂
`∈[k]X

k = ∅. Here and throughout the thesis, we study the number-in-hand model, where

each input Xi is known only to player i (rather than the number-on-forehead model, where

each input Xi is known to all the players except player i). A promise version of disjointness

has important applications in streaming (see, e.g., [AMS99, BJKS02, Gro09]), and connections

and applications in distributed computing and auction theory have led to the development of

further lower bounds [WZ13, BCK+14, BEO+13, BO15, BO17]. In particular, it is known

that in the shared blackboard model, where the players communicate by writing messages on a

“shared blackboard” that all players can see, the communication cost of k-party set disjointness

is Θ(n log k + k) [BO15]. On the other hand, in the coordinator model, where players can

only interact by sending and receiving messages to a special party called the coordinator, the

communication cost rises to Θ(kn) [BEO+13]. These lower bounds imply communication lower

bounds in the message-passing model, where a large number of servers compute on an input

that is partitioned between them (see [WZ12, WZ13, CSWZ16, ABB+19, HRVZ20] and many
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others for examples of upper and lower bounds in this setting).

Our results. In this thesis we study multiparty set disjointness under product distributions,

and ask whether and by how much restricting to product distributions makes the problem easier.

Recall that for unrestricted set disjointness, the shared blackboard model and the coordinator

model display a gap of Θ̃(k) (in the shared blackboard the complexity is Θ(n log k+k), but in the

coordinator it is Θ(kn)). Curiously, we show that under product distributions, as the number

of players increases, disjointness converges to the same cost in both models: the communication

complexity is Θ̃(n1−1/k+k) for both. This means that in the shared blackboard, the more players

we have, “the less useful” it is to restrict to product distributions – the problem becomes harder

and harder as k increases, until for k = Ω(log n) players it becomes as hard as it is for arbitrary

distributions, up to polylogarithmic factors. On the other hand, in the coordinator model,

the more players we have, the more useful it is to restrict to product distributions (assuming

k = Ω(log n)): since the unrestricted cost is Θ(kn) [BEO+13], the gap between the restricted

and the unrestricted costs grows with the number of players.

The formal statement of our results is as follows. Let Disjµ,εn,k denote the task of solving k-

player disjointness over n elements, with distributional error at most ε over the input distribution

µ.

Theorem 1. For any constant ε ∈ (0, 1), any n, k ∈ N, and any product distribution µ over

{0, 1}n×k,

1. If k < log n, then the expected communication complexity of Disjµ,εn,k is

• O(k + n1−1/k log ndlog logn/ log ke) in the shared blackboard model, and

• O(kn1−1/k log ndlog log n/ log ke) in the coordinator model.

2. If k ≥ log n, then in both the shared blackboard and coordinator models, the expected

communication cost of Disjµ,εn,k is O(k + n log2 n).

Our lower bound is proven for the shared blackboard model, but it also applies to the

coordinator model, which the shared blackboard can simulate at no additional cost:

Theorem 2. For a sufficiently small constant error ε ∈ (0, 1), there exists a product distribution

µ such that the expected communication cost of Disjµ,εn,k is

1. Ω(k + n1− 1
k /k2), if k ≤ log n/6; and

2. Ω(k + n/ log2 n), if k > log n/6.

Applications. Beyond its intrinsic interest, our lower bound of Ω̃(n1−1/k) implies lower

bounds for the communication cost of various statistical and graph problems, when the in-

put is partitioned between k servers, and each server’s input is independent of the others’. Set

disjointness reduces to many such problems, so lower bounds carry over. For example, using the
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reduction from [WZ13],1 we get a communication lower bound of Ω̃(n1−1/k) on graph connec-

tivity with k servers, even in a graph where the presence or absence of each edge is independent

of all the other edges (but the edges are not identically distributed). The ultimate conclusion

is that this problem, and others like it, do not become trivial when the servers’ inputs are

independent.

Our techniques. Interestingly, it turns out that neither the upper bound nor the lower bound

technique of [BFS86] readily generalize to k > 2 players.2 Therefore, we came up with a new

upper bound based on different ideas than [BFS86], and whereas [BFS86] used a combinatorial

lower bound argument (the corruption bound), our lower bound is information theoretic. In

Chapter 6, we sketch the upper and lower bounds of [BFS86], and explain why they break down

when there are more than two players.

Our lower bound also does not use the typical direct sum argument [CSWY01] that is

often used in information-theoretic disjointness lower bounds (e.g., in [BJKS02, Gro09, Jay09,

BEO+13, BO15, BGK15, BO17]). We believe that our approach may have applications in other

settings that are not amenable to the standard direct sum, such as proving information-theoretic

lower bounds for the number-on-forehead model.

Next, we sketch the usual approach to information-theoretic disjointness lower bounds, and

why it does not quite work for our setting.

Information-theoretic lower bounds for disjointness. Information-theoretic lower bounds

in communication complexity measure the amount of information that a communication pro-

tocol must reveal about the inputs of the players. Since this information is always bounded by

the length of the protocol’s transcript, a lower bound on the information cost of a function im-

plies a communication lower bound as well. Working with information can be more convenient

because of properties such as the chain rule – essentially, information is additive, and allows us

to formalize statements such as “the information revealed about X,Y together is the sum of

the information about X and the information about Y ”.

Many information-theoretic lower bounds for disjointness work only for protocols with small

worst-case error : even though the lower bound works with a hard input distribution, we require

the protocol to solve every input with low error, including inputs that are not in the support

of the hard distribution. This approach is unsuitable for us, because we are interested in

distributional error: we are given a product input distribution µ, and the protocol only needs to

have low error probability over the average input drawn from µ. The textbook [RY20] gives a

distributional version of the two-party lower bound, which forms the basis of our lower bound.

It is convenient to view the inputs X,Y to the players as the characteristic vectors of their

sets. The lower bound of [RY20] works with the following input distribution µ:3

1In [WZ13] the reduction is from a different problem, which [WZ13] defined and analyzed, as [WZ13] preceded
the disjointness lower bound of [BEO+13]. However, the reductions of [WZ13] are easily modified to work with
disjointness instead.

2Nor do the techniques of [BGK15], which interpolated between the Θ(n) unrestricted cost and the Θ(
√
n)

cost for product distributions, by showing that when the players’ inputs have mutual information k between
them, the communication complexity is Θ(

√
n(k + 1)). The upper bound in [BGK15] is a clever modification

of [BFS86], and the lower bound is an adaptation of Razborov’s lower bound [Raz90].
3As does Razborov’s original lower bound [Raz90], using different constants.
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• We choose a random coordinate i ∈ [n], and sample (Xi, Yi) ∼uniform {0, 1}2.

• For each remaining coordinate j 6= i, we sample (Xj , Yj) ∼uniform {(0, 0), (1, 0), (0, 1)}.

Note that under µ we have Disj(X,Y ) = ¬ (Xi ∧ Yi), because no coordinate other than i can

be in the intersection. The proof then shows that any protocol that sends o(n) bits can typically

only reveal o(n)/n = o(1) bits about Xi, Yi, and that o(1) bits do not suffice to discover whether

Xi ∧ Yi = 1. Therefore, any protocol with communication o(n) must have high error.4

The distribution µ given above is not a product distribution. When we work with a product

distribution, we can no longer have the answer to disjointness depend only on a single coordinate

which we as external observers know, but the protocol does not (this implies dependence between

the inputs). Instead, a hard product distribution for disjointness is one where the answer

is “spread out” over all the coordinates: let µ′ be the distribution where all the input bits

X1, . . . , Xn, Y1, . . . , Yn are iid Bernoulli variables with probability 1/
√
n of being 1.5 Now, each

i ∈ [n] has probability 1/n of being in the intersection, independent of the other coordinates.

Together, we get a constant probability that there is an intersection.

The main source of technical difficulty in our lower bound is that under µ′, it is not enough

to argue that the protocol cannot reveal much information about a typical single coordinate

i ∈ [n]. A single coordinate has probability only 1/n of being in the intersection! Instead,

we must argue that even after observing the transcript of the protocol, there is a large set of

coordinates that we have learned very little about, and which remain nearly independent of

one another. We then carefully “add up” the tiny uncertainty that the protocol has about

each individual coordinate, and prove that all together the protocol cannot distinguish the case

where the input is disjoint from the case where it is intersecting.

Organization. The remainder of the thesis is organized as follows. In Chapter 2 we introduce

our notation and review some basic notions from information theory that are used in our

lower bound proof. Next, we give our protocol for product distributions in Chapters 3 and

4. Next, in Chapter 5, we prove our Ω̃(n1−1/k) lower bound for disjointness under a product

distribution. Finally, in Chapter 6, we discuss in detail the limitations of the upper and lower

bound techniques that were introduced in [BFS86], which motivated the development of our

new upper bound and lower bound techniques.

4This is a highly informal description of the lower bound, and it glosses over many crucial details. We refer
the interested reader to the excellent presentation in [RY20].

5This is very nearly the distribution used in [BFS86], except that there the inputs were two uniformly
distributed sets of size

√
n. For our purposes it is nicer to avoid the dependencies between coordinates.
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Chapter 2

Preliminaries

The shared blackboard model. We have k players with private inputs X1, . . . , Xk who

wish to cooperate in order to compute some function f(X1, . . . , Xk) of their inputs. At each

point in time, one (and only one) player is allowed to write a message on the shared blackboard,

visible to all players. The identity of the player whose turn it is to speak, is a deterministic

function of everything written on the shared blackboard so far. At the end of the execution, the

last player writes the value of f(X1, . . . , Xk) on the shared blackboard. A transcript of a certain

execution is everything that was written on the shared blackboard during that execution.

The coordinator model. In this model, the players communicate over private channels.

There is an extra player without any input – the coordinator, and the players may only com-

municate with the coordinator. At the end of the protocol, the coordinator computes the value

f(X1, . . . , Xk) and sends it to the first player. The transcript of an execution of a protocol, is

everything transmitted by the players and coordinator during the execution.

In both shared blackboard and coordinator models, the players (and coordinator) are allowed

to use public random bits.

Notation. We use boldface to denote random variables. We will denote by Xk
i the i-th

coordinate of player k. Consider a set of random variables {X`
i }i∈[n],`∈[k]. Throughout this

thesis, we will use the following notations:

X` := X`
1, . . . ,X

`
n

X−` := X1, . . . ,X`−1,X`+1, . . . ,Xk

X<` := X1, . . . ,X`−1

Xi := X1
i , . . . ,X

k
i

Let J ⊆ [n], i ∈ [n]. Then:

X`
J := {X`

j}j∈J
J<i := {j ∈ J | j < i}

X`
J<i := {X`

j}j∈J<i
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Sometimes for a ∈ {0, 1}, we will denote by X`
J<i

= a the event:{
X`
J<i = a

}
:=

∧
j∈J<i

(
X`
j = a

)
,

and similarly, denote by Xi = a the event:

{Xi = a} :=
∧
`∈[k]

(
X`
i = a

)
.

For some random variables A ∼ µ and B, and b in the support of B, we denote by A|B=b

a random variable distributed according to the distribution µ|B=b. Finally, we sometimes use

D (p || p′) as short-hand notation for the KL divergence between two Bernoulli random variables

with probabilities p, p′ (resp.) of being 1.

Problem statement. In this thesis, we study the Disjointness problem, defined as follows:

for X1, . . . , Xk ∈ {0, 1}n:

Disjn,k(X
1, . . . , Xk) :=

n∧
i=1

k∨
`=1

¬X`
i

Background on information theory. Our lower bound is based on information theory, we

therefore require the following notions:

Definition 1 (Entropy and conditional entropy). Let X ∼ µ be a random variable with support

χ. Then the entropy of X is:

H(X) :=
∑
x∈χ

Pr(X = x) log
1

Pr(X = x)
.

For two jointly distributed random variables X and Y ∼ µY the conditional entropy of X given

Y is:

H(X | Y ) := E
y∼µY

[H(X | Y = y)].

Definition 2 (KL-divergence). For two distributions µ,µ′ supported over a set χ, the KL

divergence of µ from µ′ is:

D
(
µ
∣∣∣∣ µ′) :=

∑
x∈χ

µ(x) log
µ(x)

µ′(x)
.

Definition 3 (Mutual information and conditional mutual information). Let A and B be

random variables. The mutual information between A and B is:

I(A ; B) := H(A)−H(A | B).

For an event E, we sometimes denote:

I(A ; B | E) := I(A|E ; B|E).
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For random variables A,B,C, the conditional mutual information between A and B given C

is:

I(A ; B | C) := H(A | C)−H(A | B,C).

We require the following properties of mutual information, and technical Lemmas:

Property 1. Let A, B be RVs, then:

I (A ; B) = E
B

[D (A|B ||A)] .

Property 2 (Data processing inequality). Let A, B be RVs, and let f be a function defined

over the support of A, then we have that:

I (f (A) ; B) ≤ I (A ; B) .

Property 3 (Monotonicity of mutual information). Let A, B, B′, C be RVs, then:

I (A ; B |C) ≤ I
(
A ; B,B′ ∣∣C) ,

Property 4 (Public V.S. private information). Let A, B, B′, C be RVs, then:

I
(
A ; B

∣∣B′,C
)
≤ I
(
A ; B,B′ ∣∣C) .

The following is a convenient criterion for testing independence of RVs:

Lemma 1. Let R1, . . . ,Rn be RVs. ∀i ∈ [n] denote:

R−i := R1, . . . ,Ri−1,Ri+1, . . . ,Rn,

Then:

R1, . . . ,Rn are independent ⇐⇒ ∀i ∈ [n] : I (Ri ; R−i) = 0.

Proof. “ =⇒ ”: Assume that R1, . . . ,Rn are independent. By definition, ∀r1, . . . , rn such that

∀j ∈ [n], rj ∈ support(Rj), we have that:

Pr

(
n∧
i=1

Ri = ri

)
=

n∏
i=1

Pr (Ri = ri) . (2.1)

Now let i ∈ [n]. We will prove that ∀r1, . . . , rn such that ∀j ∈ [n], rj ∈ support(Rj), denote by

{R−i = r−i} the event:

{R−i = r−i} :=

 ∧
j∈[n]\{i}

Rj = rj

 ,

Then we have that:

Pr (Ri = ri ∧R−i = r−i) = Pr (Ri = ri) · Pr (R−i = r−i) . (2.2)

before proving (2.2), note that it implies the claim, as by the properties of KL-divergence, it
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will imply that:

D (RiR−i ||Ri ×R−i) = 0,

Hence we will get that:

I (Ri ; R−i) = D (RiR−i ||Ri ×R−i)

= 0,

As required. Let us now proceed to prove (2.2). Observe that by (2.1), it is enough to show

that:

Pr (R−i = r−i) =
∏

j∈[n]\{i}

Pr (Rj = rj) .

Now observe that:

Pr (R−i = r−i) =
∑

ri∈support(Ri)

Pr (Ri = ri ∧R−i = r−i) (law of total probability)

=
∑

ri∈support(Ri)

Pr (Ri = ri)
∏

j∈[n]\{i}

Pr (Rj = rj)

 (by (2.1))

=

 ∏
j∈[n]\{i}

Pr (Rj = rj)

 ∑
ri∈support(Ri)

Pr (Ri = ri)


=

∏
j∈[n]\{i}

Pr (Rj = rj) ,

Which proves (2.2), as required.

“⇐= ” Now assume that ∀i ∈ [n] : I (Ri ; R−i) = 0. ∀i ∈ [n], denote:

R<i := R1, . . . ,Ri−1.

Observe that ∀i ∈ [n]:

I (Ri ; R<i) ≤ I (Ri ; R−i) (by the monotonicity of mutual information [3])

= 0, (by assumption)

Hence:

D (RiR<i ||Ri ×R<i) = I (Ri ; R<i)

= 0.

By the properties of KL divergence, this implies that ∀r1, . . . , ri such that ∀j ∈ [i], rj ∈
support(Rj), we have that:

Pr

Ri = ri ∧

 ∧
j∈[i−1]

Rj = rj

 = Pr (Ri = ri) · Pr

 ∧
j∈[i−1]

Rj = rj

 .
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By an easy induction on i ∈ [n], this implies that ∀r1, . . . , rn such that ∀j ∈ [n], rj ∈
support(Rj), we have that:

Pr

(
n∧
i=1

Ri = ri

)
=

n∏
i=1

Pr (Ri = ri) ,

Which implies that R1, . . . ,Rn are independent, as required.

Corollary 1. Let X1, . . . ,Xk be independent RVs such that ∀` ∈ [k]:

X` := X`
1, . . . ,X

`
n,

For RVs X`
1, . . . ,X

`
n, and let I1, . . . , Ik ⊆ [n], then X1

I1
, . . . ,Xk

Ik
are independent RVs.

Proof. Observe that ∀` ∈ [k]:

I
(
X`
I`

; X1
I1 , . . . ,X

`−1
I`−1

,X`+1
I`+1

, . . . ,Xk
Ik

)
≤ I
(
X` ; X1, . . . ,X`−1,X`+1, . . . ,Xk

)
(by the monotonicity of mutual information [3])

= I
(
X` ; X−`

)
= 0, (by Lemma [1])

Hence by Lemma [1]: X1
I1
, . . . ,Xk

Ik
are independent RVs.
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Chapter 3

Upper Bound for Small k

In this chapter we present a protocol for the case where k < log n. We begin by showing how to

handle input distributions that have a constant (or “small enough”) expected intersection size,

and then give a general protocol that can handle any product distribution.

3.1 Useful Lemmas

We begin by stating a few technical lemmas that will be useful later.

Lemma 2 (Hölder’s inequality). Let p, q > 0 be such that 1
p + 1

q = 1, n ∈ N, and a1, . . . , an,

b1 . . . , bn ∈ R≥0. Then:
n∑
i=1

aibi ≤

(
n∑
i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

,

And in particular:
n∑
i=1

a
1
p

i ≤

(
n∑
i=1

ai

) 1
p

n
1− 1

p .

3.2 Handling Distributions with a Small Expected Intersection

Overview. Recall that we are trying to show a protocol for Disjn,k with communication

complexity Õ(k + n1−1/k) in the shared blackboard model, and Õ(kn1−1/k) in the coordinator

model. In this section we will show such a protocol for the simple case where the expected

intersection size of the product distribution is O(1) (note that in general it may be as large as

n). Beyond just solving disjointness, the protocol computes the pointwise-AND of the inputs,

and produces a witness, in the form of a string W ∈ ([k] ∪ {>})n, such that

• If
∧k
`=1 X

`
i = 0, then Wi is the index of a player ` ∈ [k] such that X`

i = 0 (if there is more

than one such player, one is chosen according to a deterministic rule described in the next

section).

• If
∧k
`=1 X

`
i = 1, then Wi = >.

We will refer to this protocol as our base protocol.

12



The base protocol is based on the following observation: if the expected intersection size is

small, then for most elements i ∈ [n], there is at least one player that is “not too likely” to have

i in its input. This is because if all players are likely to have i in their input, then i is likely

to be in the intersection, but we assumed that the expected intersection size is small. The base

protocol partitions the elements [n] into sets I1, . . . , Ik, such that in total, for all players ` ∈ [k],

the expected sizes of X` ∩ I` sum up to O(n1−1/k). This partition is fixed in advance (before

the inputs are seen).

We now describe the base protocol in the shared blackboard model; the protocol for the

coordinator model is similar and defined formally in the next section. When the protocol

begins, each player ` announces X` ∩ I`, and any element in I` \X` (that is, any element of I`

that is missing from player `’s input) is immediately ruled out, as we know that it cannot be in

the intersection. For the remaining elements,

T :=
⋃
`∈[k]

X` ∩ I`,

we go over the players in order; each player ` announces T \X`; we then remove these elements

from T , setting T ← T ∩X`. After going through all the players, if T 6= ∅, we announce that

the inputs are not disjoint, and otherwise we announce that they are disjoint.

Details of the protocol. Fix n, k ∈ N, and let X1, . . . ,Xk ⊆ {0, 1}n be independent RVs

representing the players’ inputs. For i ∈ [n], we let Zi be an indicator for an intersection in

coordinate i:

Zi =
k∧
`=1

X`
i .

Also, let S denote the expected intersection size:

S := E

[
n∑
i=1

Zi

]
= E

[∣∣∣∣∣
k⋂
`=1

X`

∣∣∣∣∣
]
.

We prove that there exists a partition of the elements to the players, such that in expectation,

the players’ actual inputs do not contain most of the elements assigned to them. This allows us

to quickly rule out many elements, and focus on a small set of remaining candidates that might

still be in the intersection.

Lemma 3. There exists a partition I1, . . . , Ik of [n] such that

E

[
k∑
`=1

∣∣∣X` ∩ I`
∣∣∣ ] ≤ n∑

i=1

E [Zi]
1/k ≤ S1/kn1−1/k.

Proof. For each i ∈ [n], by Corollary 1 we have that X1
i , . . . ,X

k
i are independent, hence we

have:

E [Zi] = E

[
k∧
`=1

X`
i

]
=

k∏
`=1

E
[
X`
i

]
.

13



Thus, there exists some ` ∈ [k] such that

E
[
X`
i

]
≤ E [Zi]

1/k .

We use this to construct the partition: define, for each ` ∈ [k],

I0 := ∅,

I` :=
{
i ∈ [n]

∣∣∣ E [X`
i

]
≤ E [Zi]

1/k
}
\ I`−1.

Now we have:

E

[
k∑
`=1

∣∣∣X` ∩ I`
∣∣∣ ] = E

 k∑
`=1

∑
i∈I`

X`
i

 =
k∑
`=1

∑
i∈I`

E
[
X`
i

]
≤

k∑
`=1

∑
i∈I`

E [Zi]
1/k

=

n∑
i=1

E[Zi]
1/k (I1, . . . , Ik is a partition)

≤

(
n∑
i=1

E[Zi]

)1/k( n∑
i=1

1

)1−1/k

(Hölder’s inequality (2))

= S1/kn1−1/k.

We are now ready to describe the base protocol. As we mentioned above, in addition

to solving set disjointness, the protocol produces a witness, a string W ∈ ([k] ∪ {>})n that

indicates for each coordinate that is not in the intersection the index of some player that has 0

in this coordinate. The witness is a deterministic function of the transcript of the protocol.

In the shared blackboard model, the protocol proceeds as follows.

(1) Each player ` ∈ [k] announces X` ∩ I`. Let

T 0 :=
⋃
`∈[k]

X` ∩ I`

be the set written on the board. Following this step, only elements in T 0 remain candidates

for being in the intersection.

(2) We go over the players in order, ` = 1, . . . , k: player ` announces T `−1 \X`, and all players

update T ` := T `−1 ∩X`.

(3) We announce that the intersection is empty iff T k = ∅.

The witness W is defined as follows: for each i ∈ [n],

• If i 6∈ T 0, then we set Wi to the index ` such that i ∈ I`.

• If i ∈ T 0, then since T k ⊆ T k−1 ⊆ . . . ⊆ T 0, there are two cases:

– If i ∈ T k then we set Wi = >,

– If i /∈ T k then there is exactly one index ` ∈ [k] such that i ∈ T `−1 \ T `, and we set

Wi to this index.

14



In the coordinator model, the protocol proceeds as follows.

(1) Each player ` ∈ [k] sends X` ∩ I` to the coordinator.

(2) The coordinator sends

T :=
⋃
`∈[k]

X` ∩ I`

to all players. Following this step, only elements in T remain candidates for being in the

intersection.

(3) Each player ` ∈ [k] sends X` ∩ T to the coordinator.

(4) The coordinator sends the witness W = {Wi}i∈T to all players. The witness is defined as

follows: for each i ∈ [n], denote by ` the index such that i ∈ I`. Then:

• If i 6∈ T , then we set Wi = `.

• If i ∈ T , then there are two cases:

– If for all `′ ∈ [k] \ {`}, we have that i ∈X`′ then we set Wi = >,

– If exists `′ ∈ [k] \ {`} such that i /∈ X`′ then we set Wi to be the minimal such

index `′.

(5) We announce that there is an intersection iff W contains a >.

Lemma 4. The base protocol always solves disjointness correctly and produces a proper witness.

Its expected bit complexity is O
(
k +

(∑n
i=1 E [Zi]

1/k
)

log n
)

= O(k + S1/kn1−1/k log n) in the

shared blackboard model, and O
((∑n

i=1 E [Zi]
1/k
)
k(log n+ log k)

)
= O(S1/kn1−1/kk(log n +

log k)) in the coordinator model.

Proof. We prove the claim for the shared blackboard; the analysis in the coordinator model is

similar.

Correctness. Observe that the protocol outputs “intersecting” iff some coordinate of W is

>. Thus, it is sufficient to prove that the witness W is a proper witness, that is, Wi is the index

of some player ` with X`
i = 0 if there is such a player, and > otherwise; this implies that indeed

the sets are intersecting iff some coordinate of W is >. The fact that the witness is proper is

evident from the protocol: for each coordinate i, if i 6∈ T 0 and i ∈ I`, then we have i 6∈ X`, so

setting Wi = ` is proper. Otherwise, if i ∈ T `−1 \ T `, then i 6∈ X`, because T ` = T `−1 ∩X`.

And finally, if i ∈ T k, then we have i ∈X` for all ` ∈ [k], and accordingly we set Wi = >.

Bit complexity. In the first step of the protocol, the set written on the board is
⋃
`∈[k] X

`∩I`,

which has expected size O
(∑n

i=1 E [Zi]
1/k
)

= O(S1/kn1−1/k) by Lemma 3. Therefore, the

expected number of bits on the board in this step is O
(
k +

(∑n
i=1 E [Zi]

1/k
)

log n
)

= O(k +

S1/kn1−1/k log n). In the second step, each coordinate in T 0 is written at most once, so the

expected cost is again O
(
k +

(∑n
i=1 E [Zi]

1/k
)

log n
)

= O(k + S1/kn1−1/k log n).

Note that in both protocols (i.e. for the shared blackboard and coordinator models), each

player talks at most twice (including the coordinator).
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3.3 The General Protocol

3.3.1 High-Level Plan: Exploiting Correlations

The base protocol handles distributions where the expected intersection size is constant; now

suppose we have an input distribution where the intersection is large. If the probability that

the inputs intersect is close to 1, we can simply guess that the inputs do intersect (and risk

erring, but only with small probability). Thus, assume that Pr
[⋂

`∈[k] X
` 6= ∅

]
≤ 1− ε for some

ε ∈ (0, 1). Together, the fact that the expected intersection size is large, while the probability of

an intersection is bounded away from 1, imply that the indicators Z1, . . . ,Zn of an intersection

in the individual coordinates must be correlated. We would like to exploit this correlation to

reduce the general case to the base case (where we have a constant-sized intersection).

The reduction takes a recursive form: in each step, we find a maximal set I ⊆ [n] of

“negatively-correlated” coordinates (not in the usual sense of negative correlation, but rather

in a sense we define below). We would näıvely like to have the following properties:

Property 5. The expected intersection size inside I, E
[∑

i∈I Zi

]
, is constant.

Intuitively, this property holds because the coordinates in I are negatively correlated with

one another, so if one of them is in the intersection, the others tend not to be. Therefore, we

can use the base protocol to check whether there is an intersection inside I, and if there is, we

halt.

Property 6. The remaining coordinates, [n]\I, are “positively correlated” with the coordinates

in I (otherwise we would add them to I).

This means that conditioned on the event that there is no intersection in I, the expected

intersection size in [n] \ I is much smaller than the prior. We recur on the set [n] \ I.

As it turns out, the above plan yields a protocol with ≈ log n iterations, each with an

expected communication cost of O(k + n1−1/k log n). We would like to reduce the number

of iterations to ≈ log logn/ log k (without increasing the expected communication cost per

iteration), as the resulting protocol will have both better round complexity as well as better

overall communication cost. For this purpose, we weaken our first requirement to:

Property 7. The set I satisfies that
∑n

i=1 E [Zi]
1/k = O

(
n1−1/k

)
.

Note that by Hölder’s inequality this property is indeed weaker than property 5, hence in-

tuitively it should hold for the same reasons. Moreover, observe that by Lemma 4, using prop-

erty 7, we have that the expected communication cost per iteration is still O(k + n1−1/k log n),

as with property 5. Weakning property 5 will allow us to add more indices to the set I (at each

iteration), so the protocol will require less iterations to complete; in the next sections will show

formally that log log n/ log k iterations are enough.

Our protocol works only for product distributions; in order to recur on the set [n] \ I, we

must ensure that the players’ inputs remain independent conditioned on what they have seen so

far. For the shared blackboard, this is easy – all players see the full transcript of the protocol on

the board, and it is well-known that conditioning on the transcript of a protocol does not create
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dependence between the inputs. In the coordinator model, however, the players do not see the

entire transcript – only the coordinator does; each player sees only the messages the coordinator

sent it, and these messages can create dependencies. To break any such dependencies, the

coordinator sends to all players the witness W that it computed from their messages, and we

prove that conditioned on the witness, the (remaining) players’ inputs remain independent.

We note that while the base protocol is described in Section 3.2 as operating on the universe

[n], this is merely for the sake of convenience. In the sequel, when we call the base protocol,

we let I ⊆ [n] be the set of coordinates on which we want to solve disjointness using the base

protocol.

3.3.2 Negatively-Correlated Coordinates

Recall that a pair of real-valued random variables A,B are said to be negatively correlated if

Cov(A,B) = E [A ·B]− E [A]E [B] ≤ 0.

This definition is easily extended to a larger number of random variables, R1, . . . ,Rm, by

requiring that

E

[
m∏
i=1

Ri

]
≤

m∏
i=1

E [Ri] .

We will generalize this notion further, by using a weighted version of the last inequality. For

the sake of concreteness, we restrict attention to Bernoulli random variables, but the definition

is easily stated for real-valued variables as well.

Definition 4 (ϕ-negatively-correlated indicators). Let ϕ : [0, 1] → [0, 1] be a function. The

Bernoulli random variables B1, . . . ,Bm are said to be ϕ-negatively correlated if:

E

[
m∏
i=1

(1−Bi)

]
≤

m∏
i=1

(1− ϕ (E [Bi])) .

Note that in the special case where m = 2 and ϕ is the identity function, the new definition

coincides with the standard definition of negative correlation for two variables 1−B1, 1−B2.

The reason we take the complements (1−Bi) instead of the indicators themselves (Bi) is that

we are actually interested in the event of not having an intersection in a given coordinate, and

the indicator for this event is 1−Zi (for coordinate i).1

The following two properties of ϕ-negatively-correlated indicators are key to our protocol.

First, we can relate the expectations of these variables to the probability that none of them

take the value 1, as follows:

Lemma 5. If B1, . . . ,Bm are ϕ-negatively-correlated, then

Pr

(
m∧
i=1

(Bi = 0)

)
≤ e
−

m∑
i=1

ϕ(E[Bi])
.

1For two random variables B1,B2, we have that Cov(B1,B2) = Cov(1 − B1, 1 − B2) hence B1,B2 are
negatively correlated iff 1−B1, 1−B2 are negatively correlated

17



Proof. We can write

Pr

(
m∧
i=1

(Bi = 0)

)
= Pr

(
m∏
i=1

(1−Bi) = 1

)
= E

[
m∏
i=1

(1−Bi)

]
.

Since B1, . . . ,Bm are ϕ-negatively-correlated, and using the fact that 1−x ≤ e−x for all x ≥ 0,

we have

E

[
m∏
i=1

(1−Bi)

]
≤

m∏
i=1

(1− ϕ (E [Bi])) ≤
m∏
i=1

e−ϕ(E[Bi]) = e
−

m∑
i=1

ϕ(E[Bi])
.

This proves the claim.

The next property asserts that if we have a maximal subset I of ϕ-negatively-correlated

indicators out of some larger set of indicators, then conditioned on all indicators in I taking the

value zero, we can bound the expected sum of the remaining indicators:

Lemma 6. Let B1, . . . ,Bm be Bernoulli random variables, and let I ⊆ [m] be a maximal subset

such that {Bi}i∈I are ϕ-negatively-correlated. Let J := [m] \ I. If Pr
(
BI = 0

)
> 0, then

E

∑
j∈J

Bi

∣∣∣∣∣∣BI = 0

 ≤∑
j∈J

ϕ(E [Bj ]).

Proof. By linearity of expectation, it suffices to show that for each j ∈ J ,

E
[
BiBI = 0

]
≤ ϕ(E [Bj ]).

To that end, let j ∈ J . Since I ⊆ [m] is maximal and j 6∈ I, the indicators {Bi}i∈I ∪ {Bj} are

not ϕ-negatively-correlated, so

E

[
(1−Bj) ·

∏
i∈I

(1−Bi)

]
> (1− ϕ(E [Bj ])) ·

∏
i∈I

(1− ϕ(E [Bi])) . (3.1)

For the left-hand side, we can write

E

[
(1−Bj) ·

∏
i∈I

(1−Bi)

]
= Pr

[
(Bj = 0) ∧

∏
i∈I

(1−Bi) = 1

]

= Pr
(
Bj = 0

∣∣BI = 0
)

Pr

(∏
i∈I

(1−Bi) = 1

)

= Pr
(
Bj = 0

∣∣BI = 0
)
E

[∏
i∈I

(1−Bi)

]
≤ Pr

(
Bj = 0

∣∣BI = 0
)∏
i∈I

(1− ϕ(E[Bi])) ,

where the last step used the fact that {Bi}i∈I are ϕ-negatively-correlated. Together with (3.1),
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we obtain

(1− ϕ(E [Bj ])) ·
∏
i∈I

(1− ϕ(E [Bi])) > Pr
(
Bj = 0

∣∣BI = 0
)
·
∏
i∈I

(1− ϕ(E[Bi])) . (3.2)

Since ϕ’s range is [0, 1], the term
∏
i∈I (1− ϕ(E [Bi])) is non-negative, and in fact it must be

positive (otherwise (3.2) cannot hold). Dividing both sides of (3.2) by this term yields

1− ϕ(E [Bj ]) > Pr
(
Bj = 0

∣∣BI = 0
)

= 1− E
[
Bi

∣∣BI = 0
]
,

and the claim follows.

3.3.3 Partitioning the Coordinates

Let us define a concrete ϕ : [0, 1] → [0, 1] and a partition [n] = I ·∪ J of the coordinates, as

follows:

ϕ(x) :=
x1/k

n1−1/k
, (3.3)

and let I ⊆ [n] be a maximal set of indices such that {Zi}i∈I is ϕ-negatively-correlated. As

above, let J := [n] \ I.

Based on the properties established above for ϕ-negatively-correlated indicators, we obtain

the following properties of the partition [n] = I ·∪ J .

Lemma 7. For all ε ∈ (0, 1), if Pr
(⋂k

`=1 X
`
I = ∅

)
> ε, then

∑
i∈I

E[Zi]
1/k ≤ ln

(
1

ε

)
n1−1/k.

Proof. By Lemma 5 and our definition of ϕ,

e−
∑
i∈I E[Zi]

1/k/n1−1/k
= e−

∑
i∈I ϕ(E[Zi]) ≥ Pr

(
k⋂
`=1

X`
I = ∅

)
> ε.

Taking the natural logarithm and re-arranging yields the claim.

Lemma 8. Conditioned on having no intersection in I, the expected intersection size in J is

bounded by

E

∑
j∈J

Zj

∣∣∣∣∣∣ZI = 0

 ≤ (E[ n∑
i=1

Zi

])1/k

.
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Proof. Using Lemma 6, we obtain

E

∑
j∈J

Zj

∣∣∣∣∣∣ZI = 0

 ≤∑
j∈J

ϕ(E [Zj ]) ≤
n∑
i=1

E [Zj ]
1/k

n1−1/k

≤ 1

n1−1/k

(
n∑
i=1

E [Zi]

)1/k( n∑
i=1

1

)1−1/k

(by Hölder’s inequality)

=
1

n1−1/k

(
E

[
n∑
i=1

Zi

])1/k

n1−1/k =

(
E

[
n∑
i=1

Zi

])1/k

.

3.3.4 Preserving Independence

Let I = {i1, . . . , im} ⊆ [n] be the set of coordinates on which we call the base protocol, let

I1, . . . , Ik ⊆ I be the partition computed by the base protocol, and let WI ∈ ([k] ∪ {>})m be

the witness returned (as defined in Section 3.2). Finally, let J = [n] \ I be the set on which we

will recur if we do not find an intersection inside I.

We prove that conditioned on the witness WI , the players’ (remaining) inputs remain inde-

pendent:

Lemma 9. For each concrete witness w ∈ support(WI), the random variables X1
J , . . . ,X

`
J are

independent conditioned on the event WI = w.

Proof. For this proof it is convenient to use the language of mutual information. To prove that

the inputs are independent, by Lemma 1 it suffices to show that for each ` ∈ [k] we have

I
(
X`
J ; X−`J

∣∣∣WI = w
)

= 0.

Now observe that the for every w ∈ ([k] ∪ {>})m, the event {WI = w} is equivalent to some

partial assignment to the random variables X`
I and X−`I . Let us denote by Y `

I ,Y −`I the random

variables of X`
I ,X

−`
I that get assigned under the event {WI = w}, and denote by a, b their

respective assignments, i.e. under these notations, the event {WI = w} is equivalent to the

event
{
Y `
I = a ∧ Y −`I = b

}
. Hence it suffices to show that:

I
(
X`
J ; X−`J

∣∣∣ Y `
I = a ∧ Y −`I = b

)
= 0.

In fact, since mutual information is non-negative, it suffices to show that:

I
(
X`
J ; X−`J

∣∣∣ Y `
I ,Y

−`
I

)
= 0,

but observe that this holds, since:

I
(
X`
J ; X−`J

∣∣∣ Y `
I ,Y

−`
I

)
≤ I
(
X`
J ,Y

`
I ; X−`J ,Y −`I

)
(property 4)

≤ I
(
X` ; X−`

)
(property 3)

= 0 (Lemma 1+assumption)
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3.3.5 The Protocol

We are now ready to describe our full protocol. Throughout the protocol, all players keep track

of the following:

• The set U ⊆ [n] of coordinates that have not been ruled out as being in the intersection;

initially, U = [n].

• A witness W ∈ ([k] ∪ {>})[n]\U for the coordinates we have already handled. For conve-

nience, we represent the witness as the concatenation of the individual witnesses returned

by calls to the base protocol. The witness is initially empty.

Our protocol will execute in several iterations, calling the base protocol once at each itera-

tion, and may stop at the end of an iteration under certain conditions. Assuming the protocol

reaches the r-th iteration, we will denote by Wr the witness returned by the base protocol at

that iteration, and otherwise we have that Wr equals the empty string. We further denote by

W≤r the concatenation of the witnesses W1, . . . ,Wr.

Notation 1. Let W = W1 ◦ · · · ◦Wr be a concatenation of r witnesses, we define |W | := r, and

µ|W to be to be the distribution of players’ inputs after seeing the witness W , i.e. conditioned

on the event W≤r = W .

The protocol executes as follows:

1. Repeat for N :=

⌈
log log n

log k

⌉
iterations:

(1a) The players compute (without communication):

i. For each remaining coordinate i ∈ U , the value

ϕi := ϕ

(
E
µ|W

[Zi]

)
.

ii. A maximal subset I ⊆ U such that {Zi}i∈I are ϕ-negatively-correlated. (If there

is more than one such subset, the players choose one using some predetermined

mechanism, e.g., they choose the lexicographically-smallest one.) Let J := U \I.

(1b) If Prµ|W

(
k⋂
`=1

X`
I = ∅

)
≤ ε, the players output “intersecting” and halt the protocol.

(1c) Otherwise, the players run the base protocol on X1
I , . . . , X

k
I .

(1d) The players examine the witness w returned by the base protocol: if it indicates

that there is an intersection, they announce “intersecting” and halt. Otherwise, the

players update the universe and the distributions as follows: they set U ← J , and

W ←W ◦ w (where ◦ stands for concatenation).

2. Finally, the players run the base protocol on X1
U , . . . , X

k
U and output its answer.
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3.3.6 Analysis

Next, we analyze the expected communication cost and the error of the protocol. In the sequel,

we typically use the subscript r ∈ [N ] to indicate values associated with iteration r in Step 1 of

the protocol. For convenience, we sometimes refer to step 2 as iteration N + 1.

Expected communication cost. We analyze the cost of the protocol in the shared black-

board model; the analysis for the coordinator model is similar.

For each r = 1, . . . , N , let Cr denote the number of bits sent during the r-th iteration in

Step 1 of the protocol, or 0 if we do not reach the r-th iteration, and let CN+1 be the number

of bits sent in Step 2 of the protocol, or 0 if we do not reach Step 2.

Note that at each iteration r ∈ [N ], the base protocol determintes if there is an intersection

for some set of coordinates, We will denote this set of coordinates as Ir ⊆ [n] (or the empty set

if we do not reach the r-th iteration). Similarly, we define Ur ⊆ [n] to be the set of coordinates

that have not been ruled out as being in the intersection in the beginning of the r-th iteration.

For simplicity, we define Jr := Ur \ Ir.
We define R to be the number of iterations completed in Step 1 of the protocol before

halting, or N + 1 if the protocol reached Step 2. Finally, it will also be convenient sometimes

to use the notation W<r to denote W≤r−1.

Note that since our protocol is deterministic, for all r ∈ [N ] we have that the witness W≤r

is a deterministic function of the inputs (and the input distribution). We can also “read off”

the global variables Ur, Ir,Wr from W≤r, and determine exactly when the protocol halted.

We will use the following notation:

Notation 2. for each r = 1, . . . , N+1, LetWr be the set of witnesses w<r of length |w<r| = r−1

that imply that the protocol reached the r-th iteration, and such that

Pr
µ|w<r

(
k⋂
`=1

X`
Ir = ∅

)
> ε.

We begin by bounding the expected communication cost of the individual iterations in

Step 1:

Lemma 10. In the shared blackboard model, for each r = 1, . . . , N we have

E
µ

[Cr] = O
(
k + n1−1/k log n

)
.

Proof. The only communication in a given iteration results from calling the base protocol on the

sets X1
Ir
, . . . ,Xk

Ir
, and this only occurs if we reach iteration r and do not halt in Step 1b (where,

if the intersection probability is too high, we halt and guess that the inputs are intersecting).

Thus, we need only consider the witnesses in Wr. For each such w<r ∈ Wr, Lemma 7 asserts

that ∑
i∈Ir

E
µ|w<r

[Zi]
1/k ≤ ln

(
1

ε

)
n1−1/k.
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Plugging this bound into Lemma 4, we obtain

E
µ|w<r

[Cr] = O
(
k + n1−1/k log n

)
.

Since this holds point-wise for any witness w<r ∈ Wr, and since Cr = 0 whenever W<r /∈ Wr,

all together we have

E
µ

[Cr] = E
µ

[Cr | Wr] Pr
µ

(Wr) + 0 · Pr
µ

(¬Wr) = O
(
k + n1−1/k log n

)
.

Next, we show that in each iteration of Step 1, if we do not halt, then the expected in-

tersection size decreases by the k-th root compared to the previous iteration, until it becomes

constant. Let

Sr :=

∣∣∣∣∣∣
⋂
`∈[k]

XUr

∣∣∣∣∣∣ =
∑
i∈Ur

Zj

denote the intersection size at the beginning of the r-th iterations of Step 1, or 0 if the protocol

has already halted prior to iteration r.

Lemma 11. For each 1 ≤ r ≤ N

E
µ

[Sr+1] ≤ E
µ

[Sr]
1/k .

Proof. Let us consider again the set of witnessesWr of length r−1 that imply that the protocol

reaches Step 1c in the r-th iteration, and invokes the base protocol. First, observe that Lemma 8

implies that for every w<r ∈ Wr:

E
µ|w<r

[
Sr+1

∣∣ZIr = 0
]
≤ E

µ|w<r
[Sr]

1/k .

Let us obtain a similar equation without the conditioning on the event ZIr = 0 ; observe that

for every w<r ∈ Wr, if ZIr 6= 0 then the protocol halts before the r + 1-th iteration, hence by

definition Sr+1 ≡ 0. Hence for every w<r ∈ Wr:

E
µ|w<r

[Sr+1] = Pr
µ|w<r

(
ZIr = 0

)
E

µ|w<r

[
Sr+1

∣∣ZIr = 0
]

+ Pr
µ|w<r

(
ZIr 6= 0

)
· 0

≤ E
µ|w<r

[
Sr+1

∣∣ZIr = 0
]

≤ E
µ|w<r

[Sr]
1/k .

Since this holds point-wise for any witness w<r ∈ Wr, and since Sr+1 ≡ 0 whenever W<r /∈ Wr,
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all together we have:

E
µ

[Sr+1] =
∑

w<r∈support(W<r)

Pr
µ

(W<r = w<r) E
µ|w<r

[Sr+1]

=
∑

w<r∈Wr

Pr
µ

(W<r = w<r) E
µ|w<r

[Sr+1]

≤
∑

w<r∈Wr

Pr
µ

(W<r = w<r) E
µ|w<r

[Sr]
1/k

≤
∑

w<r∈support(W<r)

Pr
µ

(W<r = w<r) E
µ|w<r

[Sr]
1/k

≤ E
µ

[Sr]
1/k . (Jensen’s inequality)

Which completes the proof.

Corollary 2. We have Eµ [SN+1] ≤ 2.

Proof. Applying Lemma 11 N times, we get that

E
µ

[SN+1] ≤
(
E
µ

[S1]

)1/kN

.

Since Eµ [S1] ≤ n and kN = kdlog logn/ log ke ≥ klogk logn = log n, we get that

(
E
µ

[S1]

)1/kN

≤ n1/ logn = 2,

which completes the proof.

Corollary 3. We have Eµ [CN+1] = O(k + n1−1/k log n).

Proof. Whenever R ≤ N , we do not reach Step 2 of the protocol, and both CN+1 ≡ 0 and

SN+1 ≡ 0 by definition, hence we have that:

E
µ

[CN+1] = Pr (R = N + 1)E
µ

[CN+1 |R = N + 1] ,

and similarly we have that:

E
µ

[SN+1] = Pr (R = N + 1)E
µ

[SN+1 |R = N + 1] .

When R = N + 1, we do call the base protocol, and by Lemma 4 the expected communication

cost is:

E
µ

[CN+1 |R = N + 1] = O(k + E
µ

[SN+1 |R = N + 1]1/k n1−1/k log n).
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All together we have:

E
µ

[CN+1] = Pr (R = N + 1)E
µ

[CN+1 |R = N + 1]

= Pr (R = N + 1)O(k + E
µ

[SN+1 |R = N + 1]1/k n1−1/k log n)

= O(k + E
µ

[SN+1]1/k n1−1/k log n)

= O(k + n1−1/k log n),

Where the last equality follows from Corollary 2.

Putting everything together, we see that the expected communication cost of the protocol

is given by

E
µ

[
N∑
r=1

Cr + CN+1

]
≤ (N + 1)O(k + n1−1/k log n)

= O(k + dlog log n/ log ken1−1/k log n).

Error probability. For every r ∈ [N ], let W<ε,r denote the set of witnesses w<r of length

|w<r| = r − 1 that imply that the protocol reached the r-th iteration and we have that:

Pr
µ|w<r

(
k⋂
`=1

X`
Ir = ∅

)
≤ ε.

Recall that if W<r ∈ W<ε,r, then the protocol will halt in Step 1b of the r-th iteration, and

declare that the player’s inputs are intersecting.

Observe that the protocol may only err if in some iteration r, we have that W<r ∈ W<ε,r

but the players’ inputs are disjoint. In addition, observe that the events {W<1 ∈ W<ε,1} , . . . ,
{W<N ∈ W<ε,N} are disjoint events, as the event W<r ∈ W<ε,r implies that the protocol halts

in the r-th iteration. All together this implies that:

Pr
µ

( the protocol errs ) = Pr
µ

(
∃r ∈ [N ].W<r ∈ W<ε,r ∧

k⋂
`=1

X` = ∅

)

=
∑
r∈[R]

Pr
µ

(
W<r ∈ W<ε,r ∧

k⋂
`=1

X` = ∅

)
(disjoint events)

=
∑
r∈[R]

∑
w<r∈W<ε,r

Pr
µ

(W<r = w<r) Pr
µ|w<r

(
k⋂
`=1

X` = ∅

)

≤
∑
r∈[R]

∑
w<r∈W<ε,r

Pr
µ

(W<r = w<r) Pr
µ|w<r

(
k⋂
`=1

X`
Ir = ∅

)

≤
∑
r∈[R]

∑
w<r∈W<ε,r

Pr
µ

(W<r = w<r) · ε (by the definition of W<ε,r)

= ε ·
∑
r∈[R]

Pr
µ

(W<r ∈ W<ε,r) ≤ ε (disjoint events)
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Chapter 4

Upper Bound for Large k

When k = Ω(log n), it is no longer worthwhile to use our protocol from Chapter 3, as n1−1/k =

Θ(n) in this case. Instead we give a much simpler protocol that exploits the fact that when

working with a product distribution, any coordinate that has Ω(log n) expected zeroes (across

all players) also has negligible probability of being in the intersection.

The following lemma is a simple special case of Chernoff, which we prove for the sake of

completeness:

Lemma 12. Fix α ∈ (0, a), and let A = A1, . . . ,Am, where A1, . . . ,Am are independent

Bernoulli random variables satisfying

E

[
m∑
i

Ai

]
> ln(1/α). (4.1)

Then

Pr
(
A = 0

)
< α.

Proof. We can write

Pr
(
A = 0

)
=

m∏
i=1

(1− Pr (Ai = 1)) ≤ e−
∑m
i=1 Pr(Ai=1)

= e−
∑m
i=1 E[Ai] < e− ln(1/α) = α.

Corollary 4. Let i ∈ [n] be a coordinate such that E
[∣∣{` ∈ [k] : X`

i = 0
}∣∣] > ln(n/ε). Then

Pr
(
i ∈
⋂
`∈[k] X

`
)
< ε/n.

Proof. Follows from the lemma, by taking A = (1−X1
i , . . . , 1−Xk

i ). Observe that the random

variables 1−X1
i , . . . , 1−Xk

i are indeed independent, since for every ` ∈ [k], we have that:

I
(

1−X`
i ; 1−X1

i , . . . , 1−X`−1
i , 1−X`+1

i , . . . , 1−Xk
i

)
≤ I
(
X`
i ; X−`i

)
(property 2)

= 0 (Lemma 1)

Hence by Lemma 1, the RVs 1−X1
i , . . . , 1−Xk

i are independent.
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The protocol. Corollary 4 implies a simple deterministic simultaneous protocol: “ignore”

any coordinate where the number of expected zeroes exceeds n/ε, and send all the zeroes in the

remaining coordinates. Let I ⊆ [n] be the set of coordinates i such that Pr
(
i ∈
⋂
t∈[k] X

t
)
≥

ε/n. Each player ` ∈ [k] executes the following:

1. Let S` =
{
i ∈ I

∣∣X`
i = 0

}
.

2. Announce S`, by writing it on the board (for the shared blackboard model) or sending it

to the coordinator (in the coordinator model).

3. Announce “intersecting” iff
⋂
t∈[k] St 6= ∅. (This is evaluated by each player in the shared

blackboard model, or by the coordinator in the coordinator model.)

Lemma 13. The protocol errs with probability at most ε and communicates O (k + n log(n/ε) log n)

bits in expectation.

Proof. By Corollary 4, for each coordinate i ∈ I we have E
[∣∣{` ∈ [k] : X`

i = 0
}∣∣] ≤ ln(n/ε).

Thus, the expected number of zeroes in X1
I , . . . ,X

`
I is bounded by |I|·ln(n/ε) = O (n (log n+ log(1/ε))).

Hence the expected communication complexity of the protocol isO (k + n (log n+ log(1/ε)) log n).

As for the error, observe that the protocol errs iff there is an intersection outside I. However,

I consists only of coordinates i ∈ [n] such that Pr
(
i ∈
⋂
`∈[k] X

`
)
< ε/n. By union bound,

Pr

∃i /∈ I : i ∈
⋂
`∈[k]

X`

 ≤∑
i/∈I

Pr

i ∈ ⋂
`∈[k]

X`

 < n · (ε/n) = ε.
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Chapter 5

Lower Bound

In this chapter we prove our lower bound of Ω(n1−1/k/k2) for Disjointness under product dis-

tributions, assuming that k = O(log n). For k = ω(log n), this trivially implies a lower bound

of Ω(n/ log2 n): simply take O(log n) players whose inputs are drawn from µ, and pad up to k

by adding k −O(log n) more players with a fixed input of [n].

The lower bound is information theoretic. We begin by introducing the notation that will

be used throughout the proof, reviewing the relevant definitions, and stating some technical

lemmas.

5.1 Preliminaries

5.1.1 Useful Inequalities

The following technical facts will be used in the proof.

Fact 1. For each m ∈ R+ we have
(
1− 1

m

)m ≤ 1/e.

Fact 2 (Bernoulli’s Inequality). For each t ≥ 1 and x ∈ [0, 1],

(1− x)t ≥ 1− xt.

5.1.2 Information Theory

We state several technical lemmas that will be used to bound the effect of conditioning on various

random variables and events in the proof, as well as to move between mutual information, KL

divergence, and probabilities of Bernoulli random variables.

Lemma 14. Let p ∈ (0, 1/3), p′ ∈ (0, 1) and α ∈ (0, 1/2). If D (p || p′) ≤ pα2/40 ln 2, then

1− α ≤ p′/p ≤ 1 + α.

Lemma 15. Fix α ∈ (0, 1/2). Let A ∼ B(p), where p ∈ (0, 1/3), and let B be a random

variable and b ∈ support(B). Finally, let p′ ∈ (0, 1) such that A|B=b ∼ B(p′). If

I (A ; B) ≤ Pr (B = b) · pα2

40 ln 2
,
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then
p′

p
∈ (1− α, 1 + α) .

Lemma 16. Let A,B,C be random variables such that A is independent of C. Then

I(A;B) + I(A;C | B) = I(A;B | C),

and in particular:

1. (Conditioning on an independent variable does not decrease information):

I(A;B) ≤ I(A;B | C),

2. (Reversal lemma):

I(A;C | B) ≤ I(A;B | C).

Claim 1 (Removing obstructions). Let X,X′,Y ,Y ′ be RVs, such that the pair (X,X′) is

independent of the pair (Y ,Y ′), and let y ∈ support(Y ). Then:

I
(
X ; Y ′X′ ∣∣ Y = y

)
= I
(
X ; X′ ∣∣ Y = y

)
= I
(
X ; X′) .

5.1.3 Properties of Communication Protocols

Lemma 17 (Protocols do not create dependencies between their inputs). Let M denote the

transcript of a deterministic protocol Π over the inputs X1, . . . ,Xk, and let ` ∈ [k]. Then

I(X`;X−` |M) ≤ I(X`;X−`).

5.2 Setup: Constants and Distributions

Let:

ε1 :=
1

800e

αM :=
1

8e

αJ := 1/2.

Let C > 0 be a constant that satisfies all the following requirements:

1

αJαMC
≤ 1

2560 ln 2
≤ 1

1280 ln 2
<

1

100 ln 2
. (5.1)

Note that it is enough to take:

C :=
2560 ln 2

αJαM
. (5.2)
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The number of players and the input size. Let N ∈ N be such that for every n > N ,(
1− 1

n

)n
≥ 1

2e
. (5.3)

We consider only input sizes n > N . As for the number of players k, we require

2 ≤ k ≤ log n

log 6
.

Note this implies that:
1

n1/k
≤ 1

6
. (5.4)

The input distribution. Fix n > N . The input distribution for our lower bound is given by

µ = µkn := µX1 × . . .× µXk ,

where

µX1 = . . . = µXk = Ber

(
1

n1/k

)n
.

That is, all the input bits are iid Bernoulli random variables with probability 1/n1/k of being 1.

Let X1, . . . ,Xk be the players’ respective inputs. Let E∅ denote the event that
⋂
`∈[k] X

` =

∅.

Property 8. Under µ we have Pr (E∅) ≥ 1/(2e).

Proof. Since the players’ inputs are independent, and the coordinates of each input are also

independent,

Pr

⋂
`∈[k]

X` = ∅

 =

n∏
i=1

1− Pr

∧
`∈[k]

X`
i = 1

 =

(
1−

(
1

n1/k

)k)n
=

(
1− 1

n

)n
≥ 1

2e
,

where the last inequality holds by our choice of n > N .

5.3 Proof of the Lower Bound

The formal statement of our lower bound is as follows:

Theorem 3. Every deterministic protocol Π for Disjn,k in the shared blackboard model with

transcript length at most n1− 1
k /(Ck2) errs with probability at least ε1 on the the input distribution

µ.

In order to prove the theorem, fix a deterministic protocol Π for Disjn,k with transcript

length at most n1− 1
k /(Ck2). We will show that Π’s error must be at least ε1. We assume that

Π’s error is at most 1/(8e), as otherwise Π’s error trivially exceeds ε1 < 1/(8e). Let the random

variable M = Π
(
X1, . . . ,Xk

)
denote the transcript of Π on inputs X1, . . . ,Xk ∈ {0, 1}n.
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5.3.1 High Level Overview of the Proof

We will show that if the protocol’s transcript is short, then the protocol errs with some constant

probability, implying that protocols that ensure low (enough) error require long transcripts.

We will start by defining a set of “good” transcripts G. Observe that under our input

distribution µ, a low-error protocol must output “non-intersecting” with constant probability,

because µ has constant probability that the inputs will not intersect. Moreover, if the protocol’s

transcript is short, we expect it to give little information about the typical coordinate X`
i and

its relation to other coordinates. We therefore define G to be the set of transcripts satisfying

these two requirements, and note that the protocol’s transcript is in G with constant probability.

We will show that every transcript in G has a constant error probability, which will complete

the proof.

Next, given a transcript m ∈ G, we continue by defining a good set of coordinates J(m). By

definition of G, the transcript m does not tell us much about most coordinates i ∈ [n], so we let

J(m) be a set of Ω(n) coordinates that m does not convey much information about, and which

remain “nearly independent” given m.

Next, for all and indices i ∈ J(m), we denote by E∅,<i the event that an intersection did not

occur at any index of J(m) lower than i. We continue by showing that for all players ` ∈ [k],

we have that:

Pr
(
X`
i = 1

∣∣∣M = m, E∅,<i,X<`
i = 1

)
≈ Pr

(
X`
i = 1

)
, (5.5)

as proving (5.5) will imply that every i ∈ J(m) has intersection probability roughly 1/n, hence

bounding away from 1 the probability that the inputs are indeed disjoint, implying that the

transcript errs with constant probability.

Now, observe that as a first step towards proving (5.5), by the definition of G we have that

for all transcripts m ∈ G, indices i ∈ J(m), and players ` ∈ [k]:

Pr
(
X`
i = 1

∣∣∣M = m
)
≈ Pr

(
X`
i = 1

)
.

Secondly, since the random variables X`
i and X<`

i are independent (even conditioned on M =

m), we have that:

Pr
(
X`
i = 1

∣∣∣M = m,X<`
i = 1

)
= Pr

(
X`
i = 1

∣∣∣M = m
)
,

So it suffices to show that:

Pr
(
X`
i = 1

∣∣∣M = m,X<`
i = 1, E∅,<i

)
≈ Pr

(
X`
i = 1

∣∣∣M = m,X<`
i = 1

)
. (5.6)

In order to show that (5.6) holds, we first show that for all coordinates i ∈ [n] and players l ∈ [k]

we have that:

I
(
X`
i ; 1E∅,<i

∣∣∣M = m,X<`
i = 1

)
≤ I
(
X`
i ; X`

J<i

∣∣∣M = m
)
. (5.7)

Note that (5.7), together with the definition of J(m) tells us that the value of X`
i does not give

a lot of information about whether the event E∅,<i occurred or not (and vice versa), even con-
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ditioned on the event {M = m,X<`
i = 1}.1 Intuitively this should imply (5.6), but technically,

since mutual information is in fact an average over events, we still need to show that the event

E∅,<i|M=m,X<`
i =1 is likely (say, occurs with constant probability).

In order to show that the event E∅,<i|M=m,X<`
i =1 is likely, first observe that the event

E∅,<i|M=m must be likely, as it upper bounds the probability that the inputs are disjoint (and

hence that the transcript answers correctly). So it is only left to verify that the supplementary

condition X<`
i = 1 does not reduce the probability of E∅,<i too much. We now consider a

sequence of events: {X<2
i = 1}, {X<3

i = 1}, . . . , {X<`
i = 1}, and aim to show that for all

1 < `′ < `:

δSD

(
1E∅,<i |M=m,X<`′

i =1
,1E∅,<i |M=m,X<`′+1

i =1

)
= O

(
1

k

)
(5.8)

(for a suitably small constant), as this together with the triangle inequality will imply that:

Pr
(
E∅,<i

∣∣∣M = m,X<`
i = 1

)
= Ω(1).

Finally, we show that eq. (5.8) holds by appealing to (5.7) again, and applying Pinsker’s in-

equality.2

5.3.2 Good Transcripts

Denote by G ⊆ support(M) the set of transcripts m that satisfy all the following requirements:

1. The output of the protocol upon producing transcript m is “non-intersecting”.

2. The amount of information that the transcript conveys about the input, and similarly the

amount of dependencies it creates between the coordinates of any individual input, is “not

much higher than average”:

n∑
i=1

∑
`∈[k]

(
D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)
+ I(X`

i ; X`
<i |M = m)

)
≤ 1

αM
· n

1− 1
k

Ck2
. (5.9)

To show that there is a constant probability of getting a good transcript, we show that

there is constant probability that the first condition holds, and a very high probability that the

second condition holds. For convenience, let us denote by Gi the set of transcripts that satisfy

requirement i ∈ {1, 2}.

Claim 2. We have that:

Pr (M ∈ G1) ≥ 1/(4e).

Proof. Recall that by assumption, it holds that:

Pr (M errs) ≤ 1

8e
.

1This roughly follows from the fact that E∅,<i is a function of XJ<i , which by the definition of J does not
give a lot of information about X`

i .
2In order to move from mutual information to KL-divergence (which is needed for Pinsker’s inequality), we

use the fact that the event {X`′+1
i = 1} is not “too unlikely”.
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Now, for the probability that M ∈ G1, that is, that the transcript announces “non-intersecting”,

we have

Pr (M ∈ G1) ≥ Pr (E∅ ∧M does not err) ≥ Pr (E∅)− Pr (M errs) ≥ 1

2e
− 1

8e
>

1

4e
.

Claim 3. We have Pr (M ∈ G2) ≥ 1− αM .

Proof. First note that

I
(
X1, . . . ,Xk ; M

)
≤ H (M) ≤ |M | ≤ n1− 1

k

Ck2
. (5.10)

On the other hand,

I
(
X1, . . . ,Xk ; M

)
=
∑
`∈[k]

I
(
X` ; M

∣∣∣X<`
)

≥
∑
`∈[k]

I
(
X` ; M

)
(X`,X<` independent + Lemma 16)

=
∑
`∈[k]

n∑
i=1

I
(
X`
i ; M

∣∣∣X`
<i

)
.

By the chain rule, for each ` ∈ [k] and i ∈ [n],

I
(
X`
i ; M

∣∣∣X`
<i

)
= I
(
X`
i ; M

)
+ I
(
X`
i ; X`

<i

∣∣∣M)
(Lemma 16)

= E
M

[
D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)]
+ E

M

[
I
(
X`
i ; X`

<i

∣∣∣M = m
)]

Together with (5.10), we have

n1− 1
k

Ck2
≥
∑
`∈[k]

n∑
i=1

E
M

[
D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)]
+ E

M

[
I
(
X`
i ; X`

<i

∣∣∣M = m
)]

= E
M

∑
`∈[k]

n∑
i=1

D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)
+ I
(
X`
i ; X`

<i

∣∣∣M = m
)

(linearity of expectation)

= E
M

 n∑
i=1

∑
`∈[k]

D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)
+ I
(
X`
i ; X`

<i

∣∣∣M = m
) .

Finally, since mutual information and KL-divergence are non-negative, Markov’s inequality

yields:

Pr
M

 n∑
i=1

∑
`∈[k]

D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)
+ I
(
X`
i ; X`

<i

∣∣∣M = m
)
≥ 1

αM
· n

1− 1
k

Ck2

 ≤ αM .
All together, we see that there is decent probability of getting a good transcript:

Lemma 18. We have Pr(M ∈ G) ≥ 1/(8e).
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Proof. We have shown that Pr (M ∈ G1) ≥ 1/(4e) and Pr (M /∈ G2) ≤ αM = 1/(8e). It follows

that

Pr(M ∈ G) = Pr(M ∈ G1 ∧M ∈ G2) ≥ Pr(M ∈ G1)− Pr(M /∈ G2) ≥ 1/(8e).

5.3.3 Good Subset of Indices and Its Properties

We show that for any good transcript m, there is a large subset J = J(m) ⊆ [n] of indices that

m “does not give a lot of information about”, and which are nearly-independent of one another

given m.

Lemma 19. For each m ∈ G, there exists a set J = J(m) ⊆ [n] of size |J | ≥ (1− αJ)n, such

that for all i ∈ J , ` ∈ [k]:

1. D
(
X`
i |M=m

∣∣∣∣X`
i

)
≤ 1/(αJαMCn

1/kk2), and

2. I
(
X`
i ; X`

J<i

∣∣∣M = m
)
≤ 1/(αJαMCn

1/kk2).

Proof. Denote by J ⊆ [n] the set of indices that satisfy:

∑
`∈[k]

(
D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)
+ I(X`

i ; X`
<i |M = m)

)
≤ 1

αJ
· 1

αM
· 1

Cn1/kk2
.

By the definition ofG (5.3.2) and Markov’s inequality, |J | ≥ (1−αJ)n. Since mutual information

and KL divergence are non-negative, we have, for each i ∈ J and ` ∈ [k],

1. D
(
X`
i |M=m

∣∣∣∣X`
i

)
≤ 1/(αJαMCn

1/kk2), and

2. I
(
X`
i ; X`

<i

∣∣M = m
)
≤ 1/(αJαMCn

1/kk2).

Finally, observe that by the monotonicity of mutual information (property 3):

I
(
X`
i ; X`

J<i

∣∣∣M = m
)
≤ I
(
X`
i ; X`

<i

∣∣∣M = m
)
,

and this completes the proof.

We use J as short-hand notation for J(m), when m is clear from the context. We also refer

to the indices i ∈ J as “good indices” (or “good coordinates”), but we note that this is slight

abuse of the definition, because it is the set J that is good (not the individual indices in it).

One key property of the coordinates in J is that since M does not give much information

about the indices in J(M), their posterior probabilities given M are close to the prior:

Lemma 20. For each m ∈ G, i ∈ J(m) and ` ∈ [k],

Pr
(
X`
i = 1

∣∣∣M = m
)
∈

(
1− 1

4k

n1/k
,

1 + 1
4k

n1/k

)
.
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Proof. By definition of J , for each i ∈ J and ` ∈ [k],

D
(
X`
i |M=m

∣∣∣∣∣∣X`
i

)
≤ 1

αJαMCn1/kk2
≤ 1

2 · 40 ln 2 · n1/k16k2
,

where the last inequality follows from the definition of C (eq. (5.1)). The claim now follows

from Lemma 14, taking p = 1/n1/k ∈ (0, 1/3) and α = 1/(4k) ∈ (0, 1/2).

5.3.4 Adding Up the Intersection Probabilities of the Good Coordinates

Fix a good transcript, m ∈ G. Our ultimate goal is to show the following:

Lemma 21. For all m ∈ G,

Pr (¬E∅ |M = m) ≥ 1− e−1/4 = Ω(1).

Since all good transcripts m ∈ G output “non-intersecting”, and Pr (M ∈ G) is fairly high,

this means the protocol’s error is large.

Conditioned on M = m where m ∈ G, the bits X1
i , . . . ,X

k
i at any good coordinate i ∈

J(m) are close to their prior distribution (Lemma 20). Moreover, since we are working with

a communication protocol, the bits X1
i , . . . ,X

k
i remain independent conditioned on M = m.

Therefore the probability of an intersection, Xi = 1, is close to its prior of 1/n. Since there

are |J(m)| = Θ(n) good coordinates, the expected intersection size in J(m) is Θ(1). If the

coordinates in J(m) were still independent of one another, we could now conclude that there is a

constant probability of getting an intersection in J(m), but unfortunately, conditioned on M =

m, these coordinates are not independent – they are only “close” to independent (by definition

of the set of good coordinates). Thus, to prove that there is a constant probability of having an

intersection in J(m), we “collect” the coordinates one-by-one, handle the dependencies between

them, and show that the probability of an intersection roughly “adds up” over the coordinates.

Let E∅,<i be the event that there is no intersection at any coordinate inside J(m) that is

smaller than i. The key lemma that allows us to “collect” the intersection probabilities is the

following:

Lemma 22. For each m ∈ G and i ∈ J(m), if Pr (E∅ |M = m) > 0.6, then it holds that

Pr
(
Xi = 1

∣∣M = m, E∅,<i
)
≥ 1

2n
.

Lemma 22 asserts that for any good transcript m and coordinate i ∈ J(m), conditioned on

M = m and on having no intersection in the coordinates of J below i (the event E∅,<i), the

probability of having an intersection in coordinate i is at least 1/(2n). To prove the lemma,

we iterate over the players ` ∈ [k], and prove that even conditioned on X<`
i = 1 (as well as

M = m, E∅,<i), we still have good probability that X`
i = 1. All together, this implies that with

good probability, Xi = 1. Before proving Lemma 22 formally, we state two lemmas that will

be used in the proof.

Since we start out with a product distribution, any dependencies between X`
i and X<`

i must

arise from conditioning on M = m, E∅,<i. However, conditioning on the transcript of a protocol
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does not create any dependencies between the players’ inputs, so it is really the event E∅,<i that

is “problematic”. Thus, a key step in the proof is to show that conditioning on E∅,<i does not

create strong dependencies. We start by showing that the event E∅,<i does not give a lot of

information about the i-th coordinate:

Lemma 23. For every coordinate i ∈ [n] and player ` ∈ [k] we have that:

I
(
X`
i ; 1E∅,<i

∣∣∣M = m,X<`
i = 1

)
≤ I
(
X`
i ; X`

J<i

∣∣∣M = m
)
.

Proof. By the data processing inequality,

I
(
X`
i ; 1E∅,<i

∣∣∣M = m,X<`
i = 1

)
≤ I
(
X`
i ; X`

J<iX
−`
J<i

∣∣∣M = m,X<`
i = 1

)
(Property 2)

= I
(
X`
i ; X`

J<i

∣∣∣M = m
)
,

Where the last equality follows from Claim 1, by taking X := X`
i , X

′ := X`
J , Y ′ := X−`J ,

(Y = y) := (X<`
i = 1).

We then use Lemma 23 to show that conditioning on some (or all) of the input in coordinate i

does not reduce the probability of the event E∅,<i by much. Specifically, if E∅ has high probability

given M = m (and therefore so does E∅,<i, which is implied by E∅), then E∅,<i retains high

probability even after conditioning on some bits in coordinate i being 1:

Lemma 24. If Pr (E∅ |M = m) > 0.6, then for each m ∈ G, i ∈ J(m) and ` ∈ [k]

Pr
(
E∅,<i

∣∣∣M = m,X<`
i = 1

)
> 0.5.

Before proving Lemma 24, let us show how it is used to prove Lemma 22.

Proof of Lemma 22. As we said above, we would like to show that for all i ∈ J , ` ∈ [k],

Pr
(
X`
i = 1

∣∣∣M = m, E∅,<i,X<`
i = 1

)
≥
(
1− 1

4k

)2
n1/k

, (5.11)

as this will easily imply Lemma 22.

First, since conditioning on the transcript of a protocol does not create dependence between

the inputs, we have

Pr
(
X`
i = 1

∣∣∣M = m,X<`
i = 1

)
= Pr

(
X`
i = 1

∣∣∣M = m
)
,

and by Lemma 20,

Pr
(
X`
i = 1

∣∣∣M = m
)
∈

(
1− 1

4k

n1/k
,
1 + 1

4k

n1/k

)
. (5.12)

In particular, then,

Pr
(
X`
i = 1

∣∣∣M = m,X<`
i = 1

)
≥ 1

2n1/k
. (5.13)
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Next, we carefully introduce the conditioning on E∅,<i, using Lemma 15 to bound the effect.

By choice of J , we know that there is not much dependence between the coordinates J<i and

coordinate i given M = m, and since E∅,<i is an event that depends only on the coordinates in

J<i, we have

I
(
X`
i ; 1E∅,<i

∣∣∣M = m,X<`
i = 1

)
≤ I
(
X`
i ; X`

J<i

∣∣∣M = m
)

(Lemma 23)

≤ 1

αJαMCn1/kk2
(definition of J (19))

≤ Pr
(
E∅,<i

∣∣∣M = m,X<`
i

)
·

Pr
(
X`
i = 1

∣∣M = m
)
· (1/(16k2))

40 ln 2
.

(by (5.13), Lemma 24, and the definitions of αJ , αM , C (5.1))

Therefore, taking α = 1/(4k), Lemma 15 yields

Pr
(
X`
i = 1

∣∣∣M = m,X<`
i = 1, E∅,<i

)
≥ (1− α) · Pr

(
X`
i = 1

∣∣∣M = m
)

≥
(

1− 1

4k

)2

· 1

n1/k
. (by (5.12))

To complete the proof, it remains only to observe that

Pr
(
Xi = 1

∣∣M = m, E∅,<i
)

=

k∏
`=1

Pr
(
X`
i = 1

∣∣∣M = m,X<`
i = 1, E∅,<i

)
≥

((
1− 1

4k

)2
n1/k

)k
≥ 1

2n
.

In the last step, we used the fact that (1− 1/(4k))2k ≥ 1/2 holds for all k ≥ 1/4 by Fact 2.

Finally, let us prove Lemma 24, and conclude the proof of the lower bound.

Proof of Lemma 24. Recall that by assumption it holds that Pr (E∅ |M = m) > 0.6. The event

E∅,<i is implied by E∅, so in particular, Pr
(
E∅,<i

∣∣M = m
)
> 0.6. In order to prove the lemma,

we need to show that conditioning on X<`
i = 1 does not reduce the probability of E∅,<i by

much; this is delicate, because X<`
i = 1 is a highly unlikely event.

We introduce the conditioning on X<`
i = 1 step-by-step, each time conditioning on one

additional bit being 1: for each t ∈ [`], let

pt = Pr
(
E∅,<i

∣∣M = m,X<t
i

)
.

We will show that the difference |pt−pt−1| is small for each t ∈ [`], and conclude that |p`−p0| is
small; that is, Pr

(
E∅,<i

∣∣M = m,X<`
i

)
is close to Pr

(
E∅,<i

∣∣M = m
)
, which we know is high.

To that end, fix t ∈ [`], let us study the effect of adding conditioning on Xt
i = 1. The

dependence between the events E∅,<i and Xt
i = 1 is small, because

I
(
1E∅,<i ; Xt

i

∣∣∣M = m,X<t
i = 1

)
≤ I
(
Xt
J<i ; Xt

i

∣∣M = m
)

(by Lemma 23)

≤ 1

αJαMCn1/kk2
. (5.14)

In the last step, we used the fact that i ∈ J , so there is not much dependence between it and
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the preceding bits in J given M = m.

While Xt
i = 1 is an unlikely event, it is not too unlikely: The players’ inputs are independent

given M = m (by Lemma 17), hence also are the i-th coordinates of the players’ inputs (by

Corollary 1). Together with Lemma 20 we have that:

Pr
(
Xt
i = 1

∣∣M = m,X<t
i = 1

)
= Pr

(
Xt
i = 1

∣∣M = m
)
≥ 1− 1/(4k)

n1/k
≥ 1

2n1/k
. (5.15)

We therefore have, by definition of pt, pt−1 and Property 1:

I
(
1E∅,<i ; Xt

i

∣∣∣M = m,X<t
i = 1

)
≥ Pr

(
Xt
i = 1

∣∣M = 1,X<t
i = 1

)
· D (pt || pt−1)

≥ 1

2n1/k
· D (pt || pt−1) . (by (5.15))

Together with (5.14), we obtain

D (pt || pt−1) ≤ 2n1/k · 1

αJαMCn1/kk2
≤ 1

50 ln 2k2
. (by definition of C (5.1))

Finally, by Pinsker,

|pt − pt−1| ≤
√

ln 2

2
D (pt || pt−1) ≤

√
ln 2

2
· 1

50 ln 2k2
=

1

10k
.

We have now shown that

∣∣∣Pr
(
E∅,<i

∣∣∣M = m,X<`
i

)
− Pr

(
E∅,<i

∣∣M = m
)∣∣∣ = |p` − p0| ≤

∑̀
t=1

|pt − pt−1| ≤ k ·
1

10k
=

1

10
.

Thus,

Pr
(
E∅,<i

∣∣∣M = m,X<`
i = 1

)
≥ Pr

(
E∅,<i

∣∣M = m
)
− 1

10
> 0.6− 1

10
= 0.5.

We now conclude the lower bound, by first proving Lemma 21, i.e. showing that each good

transcript leads to error with high probability, and then that the protocol as a whole errs with

probability at least ε1.

Proof of Lemma 21. First, note that if Pr (E∅ |M = m) ≤ 0.6, then the lemma holds trivially

(as 0.6 < 1/e1/4). Therefore it only remains to consider the case where Pr (E∅ |M = m) > 0.6.

Recall that we defined E∅,<i to be the event that there is no intersection at any coordinate

of J up to (but excluding) i. Therefore,

Pr

⋂
`∈[k]

X`
J

 = ∅

∣∣∣∣∣∣M = m

 = Pr

(∧
i∈J

(
Xi 6= 1

) ∣∣∣∣∣M = m

)

=
∏
j∈J

Pr
(
Xi 6= 1

∣∣M = m, E∅,<i
)

≤
(

1− 1

2n

)|J |
. (Lemma 22)
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Since |J | ≥ (1− αJ)n,(
1− 1

2n

)|J |
≤
(

1− 1

2n

)(1−αJ )n

≤ e−(1−αJ )/2 = e−1/4,

where the second inequality holds due to Fact 1.

Corollary 5. The protocol errs with probability at least ε1.

Proof. Consider some specificm ∈ G. Sincem is a good transcript, it outputs “non-intersecting”.

By Lemma 21, given M = m, there is good probability that the inputs do intersect; whenever

this occurs, the protocol errs.

More formally, we can write

Pr (M errs) ≥
∑
m∈G

Pr (M errs |M = m) Pr (M = m)

≥
∑
m∈G

Pr (¬E∅ |M = m) Pr (M = m)

≥
∑
m∈G

(
1− e−1/4

)
· Pr (M = m) (Lemma 21)

=
(

1− e−1/4
)

Pr (M ∈ G) ≥
(

1− e−1/4
)
· 1

8e
. (Lemma 18)

We see that the protocol errs with probability at least (1− e−1/4)/(8e) > 1/(800e) = ε1.

5.4 Proofs of the Technical Lemmas

Lemma 25 (“Technical Lemma 25”, page 23, in [BO17]). Let p ∈ (0, 1/3), α ∈ (−1, 1/2), then:

D ((1 + α)p || p) ≥ 1

4 ln 2
· pα2.

Lemma 26 (“Technical Lemma 26”, page 23, in [BO17]). Let p ∈ (0, 1/2), α ≥ 1/2 such that

(1 + α)p ≤ 1, then:

D ((1 + α)p || p) ≥ 1

10
· p(1 + α).

Lemma (Restating Lemma 14). Let µ ∼ Ber(p), p ∈ (0, 1/3), α ∈ (0, 1/2) and Let µ′ ∼ Ber(p′)
such that D (µ′ || µ) ≤ 1

40 ln 2 · pα
2, then:

p′

p
∈ (1− α, 1 + α).

Proof. Assume towards showing a contradiction that:

p′

p
6∈ (1− α, 1 + α),

and divide to cases:
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Case 1.
p′

p
= 0.

Since p > 0, this implies that p′ = 0. Then:

D
(
µ′
∣∣∣∣ µ) = D

(
p′
∣∣∣∣ p) = D (0 || p) = 1 · log

(
1

1− p

)
= − log(1− p) = − ln(1− p)

ln 2
≥ p

ln 2

>
pα2

40 ln 2
,

contradiction.

Case 2.
p′

p
∈ (0, 1− α).

Denote:

α′ := 1− p′

p
∈ (α, 1),

I.e.:

p′ = (1− α′)p.

Since we have that −α′ ∈ (−1,−α) ⊆ (−1, 1/2):

D
(
µ′
∣∣∣∣ µ) = D

(
p′
∣∣∣∣ p) = D

(
(1− α′)p

∣∣∣∣ p)
≥ 1

4 ln 2
· pα′2 (by Lemma 25)

>
1

4 ln 2
· pα2 (α′ > α)

>
1

40 ln 2
· pα2,

contradiction.

Case 3.
p′

p
> 1 + α.

Denote:

β :=
p′

p
− 1 > α,

which implies that:

p′ = (1 + β)p.
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If β < 1/2, then:

D
(
µ′
∣∣∣∣ µ) = D

(
p′
∣∣∣∣ p) = D ((1 + β)p || p)

≥ 1

4 ln 2
· pβ2 (by Lemma 25)

>
1

4 ln 2
· pα2 (β > α)

>
1

40 ln 2
· pα2,

contradiction. Otherwise β ≥ 1/2, hence:

D
(
µ′
∣∣∣∣ µ) = D

(
p′
∣∣∣∣ p) = D ((1 + β)p || p)

≥ p(1 + β)

10
(by Lemma 26)

≥ 1.5p

10
>

0.52p

40 ln 2

>
pα2

40 ln 2
, (α < 1/2)

contradiction.

Lemma (Restating Lemma 15). Let A ∼ Ber(p) , p ∈ (0, 1/3), α ∈ (0, 1/2), B an RV with

b ∈ support(B), such that:

I (A ; B) ≤ Pr (B = b) · pα2

40 ln 2
,

and denote: A|B=b ∼ Ber(p′). Then:

p′′

p
∈ (1− α, 1 + α) .

Proof. By Lemma 14, it is enough to show that:

D
(
p
∣∣∣∣ p′) ≤ pα2/40 ln 2.

Observe that by Property 1 and by the non-negativity of KL-divergence, it follows that:

D (A ||A|B=b) ≤
1

Pr(B = b)
I (A ; B) ,

which completes the proof.

Lemma (Restating Lemma 16). Let A, B, C be RVs, such that A is independent of C, then:

I(A;B) + I(A;C | B) = I(A;B | C),

and in particular:

1. (conditioning does not decrease information):
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I(A;B) ≤ I(A;B | C).

2. (reversal Lemma)

I(A;C | B) ≤ I(A;B | C).

Proof. Using the chain rule:

I(A;B,C) = I(A;B) + I(A;C | B), (5.16)

I(A;B,C) = I(A;C) + I(A;B | C) = I(A;B | C). (5.17)

Hence:

I(A;B) + I(A;C | B) = I(A;B | C).

From the non-negativity of information, it follows that:

I(A;B) ≤ I(A;B | C),

and

I(A;C | B) ≤ I(A;B | C),

which proves both desired properties.

Claim (Restating Claim 1). Let X,X′,Y ,Y ′ be RVs, such that the pair (X,X′) is independent

of the pair (Y ,Y ′), and let y ∈ support(Y ). Then:

I
(
X ; Y ′X′ ∣∣ Y = y

)
= I
(
X ; X′ ∣∣ Y = y

)
= I
(
X ; X′) .

Proof. Let’s prove each equality separately:

Lemma 27.

I(X ; Y ′X′ | Y = y) = I(X ; X′ | Y = y).

Proof. By the chain rule:

I(X ; Y ′X′ | Y = y) = I(X ; X′ | Y = y) + I(X ; Y ′ | Y = y,X′),

so it suffices to show that:

I(X ; Y ′ | Y = y,X′) = 0.

Since information is non-negative, it suffices to show that:

I(X ; Y ′ | Y ,X′) = 0.
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But this is true, as by property 4 of mutual information:

I(X ; Y ′ | Y ,X′) ≤ I(XX′ ; Y Y ′) = 0.

Lemma 28.

I(X ; X′ | Y = y) = I(X ; X′).

Proof. Note that by the definition of mutual information:

I(X ; X′) := H(X)−H(X |X′),

and:

I(X ; X′ | Y = y) = H(X | Y = y)−H(X | Y = y,X′),

So it suffices to show that:

H(X) = H(X | Y = y), (5.18)

and

H(X |X′) = H(X | Y = y,X′). (5.19)

Now note that by monotonicity of mutual information (property 3):

I(X ; Y ) ≤ I(XX′ ; Y Y ′) = 0,

hence X and Y are independent, and particularly for all x ∈ support(X) we have that:

Pr (X = x) = Pr (X = x | Y = y) ,

and hence X|Y =y and X are identically distributed, and in particular have the same Shannon

entropy, i.e.:

H(X) = H(X | Y = y),

proving eq. (5.18). Now, note that by the monotonicity of mutual information (property 3):

I(X′ ; Y ) ≤ I(XX′ ; Y Y ′) = 0,

hence for all x̃ ∈ support (X ′) we have that:

Pr
(
X′ = x̃

∣∣ Y = y
)

= Pr
(
X′ = x̃

)
. (5.20)

Now note that:

I(X ; Y |X′) ≤ I(XX′ ; Y ) (property 4 of mutual information)

≤ I(XX′ ; Y Y ′) (property 3 of mutual information)

= 0. (by assumption)

Since mutual information is non-negative, this implies that for all x̃ ∈ support (X ′), we have
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that:

I(X ; Y |X′ = x̃) = 0.

and hence X|X′=x̃,Y =y and X|X′=x̃ are identically distributed, and in particular for all x̃ ∈
support (X ′), we have that:

H(X|X′ = x̃,Y = y) = H(X|X′ = x̃). (5.21)

Now this implies that:

H(X|X′,Y = y) := E
X′

[H(X|X′,Y = y)]

=
∑

x̃∈support(X′)

Pr
(
X′ = x̃

∣∣ Y = y
)
H(X|X′ = x̃,Y = y)

=
∑

x̃∈support(X′)

Pr
(
X′ = x̃

)
H(X|X′ = x̃,Y = y) (eq. (5.20))

=
∑

x̃∈support(X′)

Pr
(
X′ = x̃

)
H(X|X′ = x̃) (eq. (5.21))

= E
X′

[H(X|X′)]

=: H(X|X′),

proving (5.19).

Lemma (Restating Lemma 17). Let M denote the transcript of a deterministic protocol Π over

the inputs X1, . . . ,Xk, and let ` ∈ [k]. Then:

I(X`;X−` |M) ≤ I(X`;X−`).

Proof. Instead of re-proving the claim for 2-players, consider the following: Look at a deter-

ministic 2-player protocol Π′, obtained from Π by re-labeling the vertices owned by player ` as

owned by Alice, and the other vertices as owned by Bob. Now denote: X′ := X`, Y ′ := X−`

and observe that Π′ is a deterministic 2-player protocol over X′,Y ′. Denote this protocol’s

transcript by M ′, and observe that: M ′ = M . Then, Since Π′ is a deterministic 2-player

protocol over X′,Y ′:

I(X′;Y ′ |M ′) ≤ I(X′;Y ′).

Substituting the assigned values, we get the desired result.
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Chapter 6

Limitations of Prior Work

In this chapter, we will discuss certain limitations of the related prior work. These limitations

have motivated our development of new techniques, as described in the previous chapters.

6.1 Limitations of the Lower Bound of Babai, Frankl and Simon

Babai, Frankl and Simon showed in [BFS86] a lower bound of Ω(
√
n) bits on the communication

complexity of the 2-players Disjointness problem for some specific product distribution. We will

give a high level overview of their proof, and then explain why certain simple attempts to

extend their proof technique to 3 players fail. Note that it is possible that some more elborate

modifications to their proof will yield the desired lower bound for 3 players (or more), but we

were not able to find such a proof, hence our information-theoretic lower bound, which uses

an entirely different technique. Note that it is reasonable to start with 3 players, which is the

simplest scenario to analyze (besides the 2 players scenario).

6.1.1 Overview of the Lower Bound of BFS

Babai, Frankl and Simon ([BFS86]) use the following hard distribution for their lower bound:

the inputs of Alice and Bob are sets of size
√
n, chosen uniformly and independently from a

universe of n elements. Formally, we denote:

U :=

(
[n]√
n

)
,

and let µX and µY be the marginal distributions of Alice’s and Bob’s inputs (respectively). We

then define

µX = µY := Unif(U).

We will denote by X ∼ µX ,Y ∼ µY the random variables corresponding to Alice’s and Bob’s

inputs (respectively). The input distribution is given by µ = µX × µY . For convenience, we

sometimes abuse notation by letting µ(X) or µ(Y ) denote the marginal probability of a set

X ⊆ U or Y ⊆ U (respectively).

The lower bound of [BFS86] uses the corruption technique: to derive the
√
n lower bound,

[BFS86] shows that there exists some positive constant c > 0, such that for every combinatorial
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rectangle X × Y ⊆ U2 with

Pr
(X,Y )∼µ

(X ∩ Y 6= ∅ |X ∈ X,Y ∈ Y ) ≤ ε, (6.1)

either X or Y must be “small”: formally, either µ(X) or µ(Y ) must be upper-bounded by 2−c
√
n.

A rectangle satisfying (6.1) is often called an “almost monochromatic 1-rectangle” (ε-AM1R).

The proof continues by fixing a combinatorial rectangle X × Y such that (6.1) holds, and

such that either µ(X) or µ(Y ) is at least 2−c
√
n (where c is determined later). Without loss of

generality, we assume that µ(X) ≥ 2−c
√
n.

Next, the proof shows that since X is “large”, it can be “represented” by a small collection

X ′ ⊆ U , which covers a constant fraction of the n elements in the universe, and such that the

typical y ∈ Y only intersects few of the sets in X ′. This essentially completes the proof, since

it implies that the average y ∈ Y must be disjoint from a large portion of the elements in the

universe, and therefore there cannot be too many such y ∈ Y . More formally, [BFS86] shows:

Lemma. There exists a collection X ′ ⊆ X such that:

1. |X ′| = Θ(
√
n).

2.
∣∣⋃

x∈X′ x
∣∣ ≥ n

6 .

3. It holds that:

Pr
(X,Y )∼µ

(
X ∩ Y 6= ∅

∣∣X ∈ X ′,Y ∈ Y ) ≤ 2ε.

This, together with an averaging argument, implies that most y ∈ Y also intersect only a

small fraction of x ∈ X ′; that is, there exists a collection Y ′ ⊆ Y of cardinality at least |Y |/2,

such that for every y ∈ Y ′ we have that:

Pr
X∼µX

(
X ∩ y 6= ∅

∣∣X ∈ X ′) ≤ 4ε.

Observe that lower-bounding the size of the collection Y ′ also lower bounds the size of Y , and

indeed we can see that each y ∈ Y ′ is determined by:

1. The sets x ∈ X ′ which y intersects (at most 4ε · |X ′| of those).

2. The choice of y’s
√
n elements from those elements that are not “forbidden”, that is, those

elements that are not in any set x ∈ X ′ which is disjoint from y.

We see that for every y ∈ Y ′, there are at least n/6− 4ε · |X ′| ·
√
n “forbidden” elements for y,

hence there are at most 5n/6 + 4ε · |X ′| ·
√
n possible elements, which, for small enough ε, is at

most 8n/9. It follows that |Y ′| is upper-bounded by
( |X′|

4ε|X′|
)(8n/9√

n

)
< |U | · 2−c

√
n (for suitably

chosen constants ε and c).

6.1.2 Limitations on Generalizing the BFS Lower Bound

Let us now try to generalize the BFS lower bound proof to 3 players. We will present three

attempts and show where they fail, indicating – to some extent – the limitations of the combi-

natorial proof used by BFS.
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For 3 players, our goal is to show a lower bound of Ω
(
n2/3

)
, matching the lower bound we

proved using information-theoretic techniques in Theorem 3.

Let us start by re-defining the hard product distribution to work for 3 players. In the 2-

player case, Alice and Bob each got a set of size
√
n. It is easy to see that in the 3-player

case, the size of each player’s inputs must be Ω̃(n2/3): if one player, say Alice, has a set of size

o
(
n2/3

logn

)
, then she can transmit her set to Bob. Bob can then intersect his set with Alice’s set,

and transmit the resulting set to Charlie, who can now determine if the sets intersect or not.

The overall communication complexity will be o(n2/3). Let us therefore re-define:

U :=

(
[n]

n2/3

)
,

and let µX = µY = µZ = Unif(U) be the marginal distributions of the players’ inputs. We

denote by X ∼ µX ,Y ∼ µY ,Z ∼ µZ the random variables indicating the inputs of Alice, Bob

and Charlie (respectively).

Let us now try to follow the footsteps of the BFS proof: we start by fixing a combinatorial

rectangle X × Y × Z ⊆ U3, such that

Pr
(X,Y ,Z)∼µ

(X ∩ Y ∩Z 6= ∅ |X ∈ X,Y ∈ Y,Z ∈ Z) ≤ ε. (6.2)

Recall that the BFS lower bound proof has two steps:

(1) Assuming that X is large, we “represent” X by a small collection X ′ ⊆ X of sets that

together cover Θ(n) elements and roughly preserve the intersection probability with Y ;

(2) “Represent” Y by a collection Y ′ ⊆ Y that includes a large fraction of the elements in Y ,

and contains only sets that each intersect only a small fraction of the sets in X ′.

The BFS proof then shows that that |Y ′| cannot be too large, which also implies that |Y | is not

too large.

We consider three attempts to generalize the BFS proof.

Attempt I: Applying step (1) to X and step (2) to Y ×Z. Let us assume that we have

a collection X ′ ⊆ X which is “small”, covers Θ(n) elements, and satisfies for every x ∈ X ′:

Pr
(Y ,Z)∼µY ×µZ

(x ∩ Y ∩Z 6= ∅ | Y ∈ Y,Z ∈ Z) ≤ 2ε.

The BFS proof shows that there exists such a set whenever µ(X) is sufficiently large; in our

case, let us simply assume that it exists (we are interested in showing that the proof cannot go

through even in this case).

In Step (2), the BFS proof uses an averaging argument to deduce the existence of a collection

Y ′ ⊆ Y which includes most of the elements in Y , while having roughly the same probability of

intersection with an element of X ′ as the overall set Y . The proof is then completed by showing

that this upper-bounds the cardinality of Y ′ (and hence of Y ).
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In the 3-player case, following the same reasoning, we can deduce the existence of a collection

S′ ⊆ Y × Z with cardinality at least half of that of Y × Z, such that for every (y, z) ∈ S,

Pr
X∼µX

(
X ∩ y ∩ z 6= ∅

∣∣X ∈ X ′) ≤ 4ε. (6.3)

note that S′ is not necessarily a combinatorial rectangle.

To complete the proof, we would need to show that the cardinality of S is upper-bounded

by
∣∣U2
∣∣ · 2−Ω(n2/3) (for some constant c′). This would yield an upper bound of 2−Ω(n2/3) on

µ(X × Y × Z), as desired. Unfortunately, even under the assumptions above, the size of S is

not bounded by 2−Ω(n2/3): there exists a large collection S ⊆ Y × Z, of cardinality at least

|U | 2 · 2−Θ(n1/3), such that for any non-empty X ′ ⊆ X, and for every (y, z) ∈ S, we have

Pr
X∼µX

(
X ∩ y ∩ z 6= ∅

∣∣X ∈ X ′) = 0.

In other words, even though (6.3) is satisfied, the size of S′ exceeds our desired bound.

The collection S is defined by taking all disjoint pairs y, z ∈ U , i.e.:

S :=
{

(y, z) ∈ U2
∣∣ y ∩ z = ∅

}
.

A simple combinatorial calculation shows that

Pr
(Y ,Z)∼µY ×µZ

(Y ∩Z = ∅) ≥ 2−Θ(n1/3).

Attempt II: applying step (1) to X×Y , then step (2) to Z. We now consider a different

strategy: “representing” X×Y by a small collection S ⊆ X×Y of sets that “cover” most of the

universe and roughly preserve the intersection probability, and then arguing that the remaining

dimension of the rectangle, Z, must be small.

Fix a combinatorial rectangle X×Y ×Z ⊆ U3, with intersection probability at most ε inside

it. Assume that µ(X × Y ) ≥ 2−cn
2/3

, otherwise the rectangle is small and we need not consider

it. We would like to find a “representation of X ×Y ”, a collection of pairs S ⊆ X ×Y with the

following properties:

• |S| ≤ n1/3.

• The intersection probability in S × Z is at most 2ε (the exact constant 2 is of course not

important here, but for simplicity we use the same constant as BFS).

• S “covers” Θ(n) elements of the universe. Here, the correct interpretation of “covers”

that would allow the proof to go through is the following: define

C(S) =
⋃

(x,y)∈S

(x ∩ y) .

Then we would like to have |C(S)| ≥ αn, where α ∈ (0, 1] is a sufficiently large constant.

If we can find such a set, we could apply step (2) to find a collection Z ′ ⊆ Z of size |Z ′| ≥
|Z|/2, such that for each z ∈ Z ′, the intersection probability inside S × {z} is at most 4ε. A
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simple counting argument, similar to the one used in the 2-player proof, would then show that

|Z| ≤ 2|Z ′| ≤ 2−Ω(n2/3) · |U | and complete the proof. Unfortunately, we will see that attempting

to prove that such a collection S exists is likely to fail. First, observe that the properties of S

imply that most pairs (x, y) in S should have a large intersection, i.e. |x∩y| = Θ(n2/3) for most

(x, y) in S. This would be critical later on in understanding why this proof attempt fails, as we

will show that it is unreasonable to expect that the intersection size of the typical (x, y) would

be much larger than n1/3.

Secondly, recall that the BFS argument for showing a small collection X ′ that “represents”

X starts by applying Markov’s inequality to deduce that some large collection X ′′ ⊆ X exists of

cardinality at least |X|/2 and such that for any x ∈ X ′′, the combinatorial rectangle {x}×Y has

intersection probability at most 2ε. This step is necessary, as we would like to claim that since

X ′′ is large, there must exist a small sub–collection X ′ ⊆ X ′′ that covers a constant fraction of

the elements in the world, and such that X ′×Y has intersection probability at most 2ε. Hence

for the BFS proof it was necessary to apply the Markov argument to obtain the intermediate

collection X ′′, as otherwise there would be no guarantee that the intersection probability of

X ′ × Y is small.

Attempting to apply the same Markov argument in the 3-player scenario, we obtain a

collection of pairs S′ ⊆ X × Y containing most of the pairs in X × Y , and such that for

any pair (x, y) ∈ S′, the combinatorial rectangle {x} × {y} × Z has intersection probability at

most 2ε. Unfortunately, S′ itself does not have to be a combinatorial rectangle, and in fact, all

we can assume about S′ is the assumptions about its cardinality and intersection probability

mentioned above.

At this point, we can see why this proof attempt fails; S ⊆ S′ is required to satisfy that for

most elements (x, y) ∈ S the intersection of x and y has cardinality at least Ω(n2/3), but there

exists a large collections S′ such that every pair (x, y) ∈ S′ has intersection size roughly n1/3.

To see this, recall that the intersection size of a random set of fixed size, with another fixed

set follows the hypergeometric distribution. The Chernoff-like tail bounds for this distribution

imply that with high probability, two random sets of size n2/3 will have intersection size at

most 2n1/3. Consequently, if we define S′ to be the collection of pairs of intersection size at

most n2/3, then S′ has large cardinality (in fact, µ(S′) = Ω(1)), but one cannot extract the

desirable sub-collection S from S′, as S is required to have mostly elements of intersection size

n2/3 � 2n1/3.

Attempt III: applying step (1) to X and to Y , then step (2) to Z. We now consider a

different strategy: instead of using the collection X ′ to “represent” the collection X, and then

arguing about Y ×Z, let us consider what happens if we use a small collection X ′ to “represent”

X and a small collection Y ′ to “represent” Y , and then argue about Z. One may hope that if

there is a large set of elements in the universe covered by both X ′ and Y ′, then we can employ

an argument similar to the one that BFS used for 2 players. Unfortunately, we will see that

this type of argument fails for some combinatorial rectangles.

For 3 players, we start with a combinatorial rectangle X × Y × Z ⊆ U3 with intersection

probability at most ε. If µ(X) ≥ 2−cn
2/3

for some suitable constant c > 0, then, following the
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proof of BFS, we assume again that there exists a collection X ′ ⊆ X, of cardinality Θ(n1/3),

which covers Θ(n) elements in the universe, and moreover, the combinatorial rectangle X ′ ×
Y × Z has intersection probability at most 2ε inside it. If µ(Y ) ≥ 2−cn

2/3
as well, then a

similar argument would show that there exists a similar collection Y ′ ⊆ Y that also covers

Θ(n) elements in the universe, and such that the intersection probability in the combinatorial

rectangle X ′ × Y ′ × Z is at most 4ε. Markov’s inequality then implies that there exists a

collection Z ′ ⊆ Z of cardinality at least |Z|/2, such that for every z ∈ Z ′, the combinatorial

rectangle X ′ × Y ′ × {z} has intersection probability at most 8ε. Observe that this implies that

for every set z ∈ Z ′, there are at most 8ε|X ′| · |Y ′| pairs (x, y) ∈ X ′ × Y ′, such that z intersects

x ∩ y. We would like to use this property to bound the size of |Z ′|, and hence also of |Z|.
As in the 2-player argument, we can describe each z ∈ Z ′ by

• The collection of pairs S ⊆ X ′ × Y ′ that z is “allowed” to intersect – there are at most

8ε|X ′| · |Y ′| of these;

• The choice of z’s n2/3 elements from those elements that are not “forbidden”, that is,

those elements that are not in any x ∩ y for (x, y) 6∈ S.

Note that, once again, S is not necessarily a combinatorial rectangle.

As in the 2 players argument, for a collection of pairs S ⊂ X ′×Y ′ of cardinality 8ε|X ′| · |Y ′|,
we denote by U(S) the set of allowed elements for a set guarunteed not to intersect any set

s = x∩ y such that (x, y) ∈ (X ′×Y ′) \S. Observe that any set z ∈ Z ′ may be described by the

collection of pairs S ⊆ X ′ × Y ′ it is allowed to intersect, and the choice of |z| = n2/3 elements

of the universe U(S). It follows that:

µ(Z ′) ≤
∑

S⊆X′×Y ′
s.t. |S|=8ε|X′|·|Y ′|

( |U(S)|
n2/3

)
|U |

. (6.4)

Näıvely, one could hope to show that, as in the 2 players proof, there exists some constant

0 < α < 1 such that for every such S, |U(S)| ≤ αn. Then, a simple counting argument (similar

to the one used for 2 players) would imply that the right-hand-side expression in (6.4) is at most

2−Θ(n2/3), hence completing the proof for 3 players. Unfortunately, there exists collections X ′

and Y ′ that cover all n elements in the universe, and such that a fraction of at least 2−Θ(n1/3)

of the S’s satisfy that
( |U(S)|
n2/3

)
= |U | . Hence for these collections X ′, Y ′, the right-hand-side

expression in (6.4) is at least 2−Θ(n1/3) � 2−Θ(n2/3), and hence this argument cannot imply the

desired lower bound.

Let us now describe the collections X ′ and Y ′: let X ′ be any collection of n1/3 pairwise-

disjoint sets in U , and set Y ′ = X ′. Observe that both X ′ and Y ′ cover all the n elements in

the universe. Now consider the collection of pairs G = {(x, x) | x ∈ X ′}. Observe that since the

sets in X ′ are pairwise-disjoint, for every pair (x, y) ∈ (X ′ × Y ′) \G it holds that x ∩ y = ∅. It

follows that for every collection S ⊆ X ′×Y ′ that contains G, the set of possible elements U(S)

contains all the n elements of the universe, and hence
( |U(S)|
n2/3

)
= |U | .

It remains to show that the fraction of collections S ⊆ X ′ × Y ′ of cardinality 8ε|X ′| · |Y ′|
that contain G is large. Observe that the cardinality of X ′ and Y ′ is n1/3. The total number
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of sub-collections of cardinality 8ε|X ′| · |Y ′| is
(
n2/3

8εn2/3

)
. Since |G| = |X ′|, the number of such

collections S that also contain G is
( n2/3−n1/3

8εn2/3−n1/3

)
. Hence the fraction of collections S that also

contain G is: ( n2/3−n1/3

8εn2/3−n1/3

)(
n2/3

8εn2/3

) =

(
8εn2/3

n1/3

)(
n2/3

n1/3

) ≥ (4ε)n
1/3

= 2−Θ(n1/3).

6.2 Limitations of the Upper Bound of Babai, Frankl and Simon

In addition to their celebrated lower bound, Babai, Frankl and Simon showed in [BFS86] an

upper bound of O(
√
n log n) bits on the communication complexity of the 2-players Disjointness

problem for any product distribution.

Unfortunately, it seems like the protocol used in [BFS86] cannot be easily adapted to more

than 2 players, which motivated our upper bound algorithms described in chapters 3 and 4. We

will give a high level overview of the protocol used in [BFS86], and then explain its limitations

when trying to adapt it to 3 or more players.

6.2.1 Overview of the Upper Bound of BFS

The protocol described in [BFS86] works in iterations, where Alice and Bob both maintain a

current “universe” U ⊆ [n], where initially U = [n], and each iteration decreases the size of

the universe U by (at least)
√
n elements, until Alice’s input restricted to U (i.e. X ∩ U) has

cardinality at most
√
n, where Alice can simply send it to Bob (using at most n log n bits of

communication).

At each iteration, Alice first tells Bob whether her restricted input X ∩ U is at most
√
n

(in which case she also sends her restricted input to Bob who can determine if an intersection

occured), or whether it is at least
√
n. In the latter case, Bob first checks whether the probability

that a random set intersects his input Y ∩ U is at least ε, where the set is sampled randomly

from Alice’s distribution, conditioned on the current universe U and the fact that the set has

cardinality at least
√
n. If this intersection probability is less than ε, then Bob delares “X and

Y are intersecting”. Otherwise, Bob publicly samples (an infinite number) of such random sets

independently, and sends Alice the index of the first set that is disjoint from Y ∩ U . Alice and

Bob then remove all the elements of this random set from U, and continue to the next iteration.

Now observe that after at most
√
n iterations the protocol must terminate, and that at each

iteration where Alice’s input is still large, Alice uses 1 bit of communication, and Bob uses on

expectation at most O(log(1/ε)) bits to communicate the index of the disjoint random set to

Alice. Assuming that Bob never declared “intersecting”, then at some point Alice’s input will

be at most
√
n bits, and then Alice uses another O(

√
n log n) bits to transmit her set to Bob.

6.2.2 Limitations on Generalizing the BFS upper bound

When considering an adaptation of the [BFS86] protocol to 3 players: Alice, Bob and Charlie,

we can naturally consider two variants: one where Bob and Charlie try to jointly select a random

set from Alice’s distribution, and one where Charlie selects a pair of random sets: one from

Alice’s distribution, and one from Bob’s distribution. In both cases, all 3 players maintain a
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universe U and try to decrease the cardinality of one of the input sets to be at most n2/3 when

restricted to U .

Attempt I: Bob and Charlie jointly select a random set from Alice’s distribution.

In this variant, in the beginning of each iteration, Alice tells Bob and Charlie whether her

restricted input X ∩ U has cardinality at most n2/3 (in which case she sends it to Bob, who

itersects it with his set and sends the result to Charlie). If Alice’s restricted set has cardinality

at least n2/3, then Bob and Charlie would like to jointly sample a random set drawn from Alice’s

input conditioned on U and set cardinality, who is disjoint from the intersection of Bob and

Charlie’s inputs: Y ∩ Z ∩ U .

Unfortunately, it seems unlikely that Bob and Charlie can find such a random set without

first finding the exact intersection Y ∩ Z ∩ U , which is a harder task than to tell whether their

sets intersect or not, and generally no better upper bound than n bits of communication is

known for this task.

Attempt II: Charlie selects a random pair of sets from Alice and Bob’s distribution.

In this variant, in the beginning of each iteration, Alice and Bob tell Charlie whether their

respective inputs have cardinality at most n2/3 when restricted to U . As in the previous variant,

if this condition holds for Alice and/or Bob, they send their small set to Charlie who can use it

to deterministically detect an intersection using an additional n2/3 log(n) bits of communication.

If Both the input of Alice and Bob are small, then Charlie would like to publicly sample (an

infinite sequence of) pairs of random sets: one from Alice’s input distribution, and one from

Bob’s input distribution, conditioned on U and set cardinalities being at least n2/3. Note that in

this case, Charlie can indeed correctly sample such a pair, and if the typical pair is disjoint from

Charlie’s input Z ∩ U , then such a pair could be identified with a small index. Unfortunately,

in this case we have no guarantee on the size of the intersection of the pair of random sets (it

is possible that the intersection of the random sets is empty), hence we have no guarantee that

the protocol will terminate after O(n2/3) iterations (or at all, for that matter).
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Chapter 7

Conclusions and Open Problems

In this thesis we prove a bound of Θ̃
(
n1−1/k + k

)
on the communication complexity of the

k-player Set Disjointness problem under product distributions, for the number-in-hand shared

blackboard and coordinator communication models. In order to prove this bound, we introduce

new techniques for both the upper and lower bounds, and explain why it seems hard to extend

techniques used in previous work to the scenario discussed in this thesis.

We conclude this thesis with a list of open problems:

Problem 1. Can the information-theoretic lower bound technique used in this thesis be extended

to show a lower bound for Set Disjointness in the NOF communication model?

Note that while our protocol for k ≥ log n requires 1 simultaneous round (in the average

case), our protocol for k < log n requires O(log log n/ log k) simultaneous rounds, which we do

not know to be tight.

Problem 2. Can the number of rounds for k < log n be improved to O(1)?

[BGK15] showed a smooth interpolation between the communication complexity bound for

product distributions and the bound for general distributions, for 2 players.

Problem 3. Is it possible to show a similar interpolation for k-player Disjointness in the

coordinator model? I.e. show smooth interpolation between the Θ̃
(
n1−1/k + k

)
bound for product

distributions, and the Θ(kn) bound for general distributions?
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 תקציר 

שחקנים עם קלטים פרטיים   𝑘  ישנם  המשתתפים, -ביד מרובת-עם מספרבבעיית זרות הקבוצות  

𝑋1, … , 𝑋𝑘 ⊆ [𝑛] .  מטרתם של השחקנים היא לבדוק האם⋂ 𝑋ℓ
𝑘
ℓ=1  = ידוע כי במודל התקשורת   .∅

Ω(𝑛בעיית זרות הקבוצות דורשת  ה"לוח המשותף" ,  log 𝑘 + 𝑘) ובמודל  סיביות של תקשורת ,

עם זאת, שני חסמים תחתונים אלה דורשים שקלטי    סיביות. Ω(𝑘𝑛)הבעיה דורשת   ," מתאם"ה

 כלו להיות מתואמים מאוד. והשחקנים י

המשתתפים של בעיית הזרות של קבוצות תחת  -סיבוכיות התקשורת רבתאת בעבודה זו אנו חוקרים 

הבעיה הופכת להיות קלה משמעותית, כפי שידוע שמתקיים  , ושואלים האם התפלגות מכפלה

 של  התוצאה המרכזית שלנו היא חסם כמעט הדוק  במקרה של שני שחקנים.

 Θ̃ (𝑛1−
1

𝑘  + 𝑘) .תוצאה זו מראה כי במודל הלוח   עבור מודל הלוח המשותף ועבור מודל המתאם

תי תלויים עוזרת פחות  כך העובדה שלשחקנים יש קלטים בלככל שמספר השחקנים גדל, המשותף, 

העובדה שלשחקנים יש קלטים בלתי תלויים הופכת   הוא גדול, 𝑘כאשר   ות, אך במודל המתאם, ופח

גם החסם העליון שלנו וגם החסם התחתון משתמשים ברעיונות   את הבעיה לקלה משמעותית. 

לא ניתנות להרחבה   , כיוון שהשיטות המקוריות שפותחו עבור המקרה של שני שחקנים חדשים 

   פשוטה ליותר משני שחקנים.
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