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Abstract

We show how acoustic prosodic features, such as pitch and gaps, can
be used computationally for detecting symptoms of schizophrenia from a
single spoken response. We compare the individual contributions of acoustic
and previously-employed text modalities to the algorithmic determination
whether the speaker has schizophrenia. Our classification results clearly
show that we can extract relevant acoustic features better than those textual
ones. We find that, when combined with those acoustic features, textual
features improve classification only slightly.

1 Introduction
Schizophrenia is an acute mental disorder characterized by delusions, hallucina-
tions, and thought disorders. Thought disorders are disturbances in the normal
way of thinking, typically presented as various language impairments, such as
disorganized speech, which are related to abnormal semantic associations between
words (Aloia et al., 1998). These include the following: (1) poverty of speech;
(2) pressure of speech, fast, loud and hard-to-follow responses; (3) “word salad”,
random-word selection at times; (4) derailment, shifting from one topic to another
during a conversation; and (5) tangentiality, furnishing an irrelevant response,
never reaching the answer to the posed question. Andreasen (1979) provides
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some statistics for symptoms of thought disorder, with the most common being
derailment, loss of goal, poverty of content, and tangentiality.

Diagnosing thought disorders is performed by clinicians and mental-health
professionals, typically by means of a conversation. This is an arduous and sub-
jective process. Mental-health professionals are on constant lookout for objective
computational assessment tools that can help identify whether a person is showing
signs of thought disorders.

There have been several prior attempts at developing computational tools for an-
alyzing language with the goal of detecting symptoms of mental-health disorders;
we describe some of those works in the following section. Generally speaking,
speech and text are the two modalities of human language that can be processed
and analyzed algorithmically for the diagnosis of mental-health disorders. For
this purpose, processing speech is typically done for the purpose of modeling the
prosody by extracting features related to intonation, stress and rhythm. One of the
most prominent prosodic symptoms is flattened intonation, or aprosody, which is
interpreted as inability of a person to properly convey emotions through speech.
This is a negative symptom of schizophrenia. Another negative symptom that is
associated with speech is alogia, or poverty of speech, presented as very minimal
speech. Metaphorically, it has been claimed (Cherry, 1964; Spoerri, 1966) that
patients with schizophrenia sometimes sound like a person talking on the phone,
referring to the low-quality aspect of the voice, sometimes occasionally to as a
“creaky” voice. Cohen et al. (2013) associate acoustic-based analysis of speech,
generally speaking, with clinically-rated negative symptoms, while associations
with positive symptoms have been found to be inconsistent.

Prosody, which encompasses aspects of language beyond the scope of grammar
and vocabulary choice, can reflect subtle elements such as emotions and pragmatic
nuances. Conversely, the transcription is essential for capturing the linguistic and
semantic characteristics inherent in conversations. It’s important to note, however,
that non-emotional aspects of prosody also exist and play a significant role in
communication.

We study the salience of acoustic and textual features for the classification task
of automatically detecting whether a given utterance was generated by someone
who has been diagnosed with schizophrenia or by a control subject. To do that,
we measure the contribution of each set of features once when used individually
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for classification, and again when both modalities are combined together.
Our dataset comprises transcribed interviews, collected from native Hebrew-

speaking inpatients, officially diagnosed with schizophrenia at a mental health
center in Israel, and from a demographically balanced control group. The prosodic
features that we consider are based on pitch, which we extract using an audio
processor. The textual features are extracted from the transcriptions of the audio
files and are designed to capture symptoms such as derailment and incoherence,
following a previous work (Bar et al., 2019) that has shown the efficacy of such
features when used in a similar classification task.

Prosodic features have been computationally examined previously and were
shown to be effective for the task of detecting schizophrenia—for example by
Kliper, Vaizman, et al. (2010) and Kliper, Portuguese, et al. (2015) for English
speech. For Chinese, Huang et al. (2022) combined acoustic features with textual
features for assessing the severity of thought disorders in examined schizophrenia
patients. However, none of these works compare the individual contributions to
classification of each of the modalities when used in combination.

Our contribution is twofold: (1)We show how acoustic prosodic features can be
used for detecting symptoms of schizophrenia from only a single spoken response
(given in Hebrew); and (2) we measure the individual contribution of both speech
and text modalities to the task of detecting whether the person who generated a
given utterance has schizophrenia. Our classification results clearly show that the
acoustic prosodic features capturemore information than do the textual ones. When
combined with those acoustic features, textual features improve classification very
slightly.

2 Related Work
The extensive literature about language characteristics and schizophrenia is exam-
ined in (Covington et al., 2005). The authors distinguish between two types of lan-
guage impairment among patients with schizophrenia: thought disorder—defined
as disturbances in the normal way of thinking, and schizophasia—comprising var-
ious dysphasia-like impairments such as clanging, neologism, and unintelligible
speech. They also assert that patients with thought disorders produce and perceive
sounds in an abnormal way, manifesting as flat intonation or unusual voice quality.
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Hoekert et al. (2007) conducted a meta-analysis of seventeen studies between
1980 and 2007. They found that prosodic expression of emotions is significantly
impaired with schizophrenia. Martínez-Sánchez et al. (2015) compared the speech
of 45 medicated schizophrenia patients and 35 healthy controls, all native Spanish
speakers from Spain. The results revealed that patients paused more, talked more
slowly, and showed less variability in speech and fewer variations in syllable timing.
Alpert et al. (2000) examined whether “flat affect”, defined as emotionless speech,
which is one of the symptoms of schizophrenia, indicates an emotional deficiency
or whether this is only a communication issue. They did not find evidence for
impairment in any other aspect of emotion expression besides prosody.

There is a large body of work that studies the efficacy of computational ap-
proaches for diagnosis of mental-health disorders. We continue by listing some
related work that use computational tools to process acoustic speech signals for
diagnosis of mental-health disorders, followed by works that use natural-language
processing (NLP) tools for analyzing transcriptions for the same purpose.

In a systematic review (Low et al., 2020) that analyzes 127 studies, the authors
conclude that speech processing technologies could aid mental-health assessment;
however, they mention several caveats that need to be addressed, especially the
need for comprehensive transdiagnostic and longitudinal studies. Given the diverse
types of datasets, feature extraction procedures, computational methodologies, and
evaluation criteria, they provide guidelines for both data acquisition and building
machine-learning models for diagnosis of mental-health disorders.

Kliper, Portuguese, et al. (2015) trained a support vector machine (SVM)
classifier that gained about 76% accuracy in a binary classification task of iden-
tifying people with schizophrenia versus controls, using acoustic features. The
study population comprised 62 English-speaking participants, divided into three
groups: patients with schizophrenia, patients with clinical depression, and healthy
controls. In a three-way classification task over the three groups, their classifier
achieved about 69% accuracy. Every participant was interviewed and recorded by
a mental-health professional. Each recording was divided into segments of two
minutes each, which were subsequently analyzed independently. Each recording
was represented by nine acoustic features based on pitch and power, which were
automatically extracted using tools similar to those that we use in this work.

Dickey et al. (2012) study prosodic abnormalities in patients with schizoid
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personality disorder (SPD). Their experimental results showed that SPD patients
speak more slowly, with more frequent pauses, and exhibited less pitch variability
than control participants.

A new algorithm to detect schizophrenia was proposed by He et al. (2021)
based on a classifier that uses three new acoustic prosodic features. On a dataset
comprised of 28 schizophrenia patients and 28 healthy controls, they measured
classification accuracy between 89.3% and 94.6%.

Agurto et al. (2020) predict psychosis in youth using various acoustic prosodic
features, such as pitch-related and Mel-frequency cepstral coefficients (MFCC).
They analyzed the recorded speech of 34 young patients who were diagnosed to
be at high risk of developing clinical psychosis. Among other things that they
showed, they trained a classifier that can predict the development of psychosis
with 90% accuracy, outperforming classification using clinical variables only.

Lucarini, Grice, et al. (2020) offer a review of research papers focusing on
the less-explored topic of non-emotional prosody. They introduce a linguistic
model designed to classify prosodic functions along a continuum ranging from
“linguistic,” pertaining to the structural aspects of language, to “paralinguistic,”
which relates to the expression of emotions.

Lucarini, Cangemi, et al. (2022) conducted an analysis of conversations be-
tween patients with schizophrenia and interviewers, aiming to detect associations
between symptoms of schizophrenia and conversation dynamics. The approach
centered on a relatively straightforward representation of a conversation, primarily
encoding pauses and participant involvement. Their findings indicate a significant
association between the dynamics of these conversations and negative symptoms
of schizophrenia.

There has been an increasing number of works that computationally pro-
cess speech transcriptions for detecting symptoms of schizophrenia. Specifically,
measuring derailment and tangentiality has been addressed several times. For
example, Elvevåg et al. (2007) analyzed transcribed interviews of inpatients with
schizophrenia by calculating the semantic similarity between the response given
the participants and the question that was asked by the interviewer. For simili-
tude they used cosine similarity over the latent semantic analysis (LSA) vectors
(Deerwester et al., 1990) calculated for each word, and summed across a sequence
of words. Similarly, Bedi et al. (2015) use cosine similarity between pairs of
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consecutive sentences, each represented by the element-wise average vector of the
individual words’ LSA vectors, to measure coherence. Using this score they auto-
matically predicted transition to psychosis with perfect accuracy. Iter et al. (2018)
showed that removing some functional words from the transcriptions improves the
efficiency of using cosine similarity over LSA vectors for measuring derailment
and incoherence.

This direction was developed further by Bar et al. (2019), who used fastText
vectors (Bojanowski et al., 2016) to measure derailment in a study group that
included 24 schizophrenia patients and 27 healthy controls, all native Hebrew
speakers. Furthermore, they developed a new metric for measuring some aspects
of incoherence, which compares the adjectives and adverbs that are used by patients
to describe some nouns and verbs, respectively, with the ones used by the control
group. As a final step, they used derailment and incoherence scores as features
for training a classifier to separate the two study subgroups. In another work
(Ziv et al., 2022) on the same study group, the authors used part-of-speech tags,
lemma-to-token ratio, and some other morphological features, to perform a two-
way classification for patients and controls. They report almost 90% accuracy.

We study a similar group of Hebrew-speaking male schizophrenia patients and
healthy controls. Therefore, we use some of the same textual features suggested
in that prior work to measure their respective contributions when combined with
acoustic features.

Corona-Hernández et al. (2023) analyzed speech transcriptions of Dutch-
speaking schizophrenia patients and controls, focusing on how connectives serve
as informative and explainable variables. That study aimed to determine the
reliability of using connectives to assess disorganized speech in patients with
schizophrenia.

Finally, Corcoran et al. (2020) present a survey of various studies that employ
similar techniques for measuring symptoms of psychosis and schizophrenia, by
automatically analyzing speech transcriptions.
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3 Methodology

3.1 Participants and Data Collection
We interviewed 48 men, aged 18–60, divided into control and patient groups, all
speaking Hebrew as their first language. The patient group includes 23 inpatients
from the Be’er Ya’akov–Ness Ziona Mental Health Center in Israel who were ad-
mitted following a diagnosis of schizophrenia. Diagnoses were made by a hospital
psychiatrist according to the DSM5 criteria (American Psychiatric Association,
2013) and a full psychiatric interview. Each participant was rewarded with ap-
proximately US$8. The control group includes 25 men, mainly recruited via an
advertisement that we placed on social media. The demographic characteristics of
the two groups are given in Table 1. Exclusion criteria for all participants were as
follows: (1) participants whose mother tongue is not Hebrew; (2) having a history
of dependence on drugs or alcohol over the past year; (3) having a past or present
neurological illness; and (4) using fewer than 500 words in total in their tran-
scribed interview. Additionally, the control group had to score below the threshold
for subclinical diagnosis of depression and post-traumatic stress disorder (PTSD).
Most of the control participants scored below the threshold for anxiety. Most of
the patients scored above the threshold for borderline or mild psychosis symptoms
on a standard measure. (Our patient group is composed of inpatients who are
being treated with medications; therefore, higher scores were not expected.) See
Section 3.2 for more details about the assessment measures used in this study.

The patients were interviewed in a quiet room at the department where they are
hospitalized by one of our professional teammembers, and the control participants
were interviewed in a similar room outside the hospital. Each interview lasted
approximately 60 minutes. The interviews were recorded and later manually
transcribed by a native Hebrew speaking student from our lab. All participants
were assured of anonymity, and told that they are free to end the interview at any
time.

After signing a written consent, each participant was asked to describe 14 black
and white images picked from the Thematic Appreciation Test (TAT) collection.
We used the TAT images identified with the following serial numbers: 1, 2, 3BM,
4, 5, 6BM, 7GF, 8BM, 9BM, 12M, 13MF, 13B, 14, and 3GF. These include a
mixture of men and women, children, and adults. The images were presented one
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Table 1: Demographic characteristics by group. *?<.05; **?<.005.
Control Patients Statistics

Subjects (N) 25 23
Age mean (SD) 33.15 (9.98) 25.46 (6.39) C = 3.24**
Years of education mean (SD) 11.96 (0.20) 11.21 (1.12) C = 3.41**
Place of residence (frequencies) j2(3, 49) = 8.29*
Southern Israel 1 7
Central Israel 21 16
Northern Israel 2 0
Jerusalem 1 0

Marital status (frequencies) j2(1, 47) = 0.08,
Single 4 3 ? = .77
Married 21 20

PANSS positive subscale 9.21 ± 3.70
PANSS negative subscale 8.26 ± 3.36
PANSS total subscale 17.47 ± 5.52

by one. Each picture stands by itself, was presented alone, and bears no relation
to the other pictures. Participants were asked to tell a brief story about each image
based on four open questions:

(i) What led up to the event shown in the picture?
(ii) What is happening in the picture at this moment?
(iii) What are the characters thinking and feeling?
(iv) What is the outcome of the story?

The interviewer remained silent during the respondent’s narration and offered no
prompts or additional questions.

After describing the images, the participant was also asked to answer four
open-ended questions, one by one:

(1) Please tell me as much as you can about your bar mitzvah.1
(2) What do you like to do, mostly?
(3) What are the things that annoy you the most?
(4) What would you like to do in the future?

1The Jewish confirmation ceremony for boys upon reaching the age of 13.
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As before, the interviewer remained silent during the respondent’s narration and
offered no prompts or questions.

Once all 18 components (14 image descriptions and 4 open questions) were
answered, each participant was requested to fill in a demographic questionnaire
as well as some additional questionnaires for assessing mental-health symptoms,
which we describe in the following subsection.

NB. This research was approved by the Helsinki Ethical Review Board (IRB) of
the Be’er Ya’akov–Ness Ziona Mental Health Center.

3.2 Symptom Assessment Measures
3.2.1 Control group

The control participants were assessed for symptoms of depression, PTSD, and
anxiety.

Depression. Symptoms of depression were assessed using Beck’s Depression
Inventory-II (BDI-II) (Beck et al., 1996). The BDI-II is a 21-item inventory rated
on a 4-point Likert-type scale (0 = “not at all” to 3 = “extremely”), with summary
scores ranging between 0 and 63. Beck et al. (1996) suggest a preliminary cutoff
value of 14 as an indicator for mild depression, as well as a threshold of 19 as
an indicator for moderate depression. BDI-II has been found to demonstrate high
reliability (Gallagher et al., 1982). We used a Hebrew version (Hasenson-Atzmon
et al., 2016).

PTSD. Symptoms of PTSDwere assessed using the PTSD checklist of the DSM-
5 (PCL-5) (Weathers et al., 2013). The questionnaire contains twenty items that
can be divided into four subscales, corresponding to the clusters B–E in DSM-5:
intrusion (five items), avoidance (two items), negative alterations in cognition and
mood (seven items), and alterations in arousal and reactivity (six items). The
items are rated on a 5-point Likert-type scale (0 = “not at all” to 4 = “extremely”).
The total score ranges between 0 and 80, provided along with a preliminary cutoff
score of 38 as an indicator for PTSD. PCL-5 has been found to demonstrate
high reliability (Blevins et al., 2015). We used a Hebrew translation of PCL-5
(Bensimon et al., 2013).
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Anxiety. Symptoms of anxiety were assessed through the State Trait Anxiety
Inventory (STAI) (Spielberger et al., 1970). The STAI questionnaire consists of
two sets of twenty self-reporting measures. The STAI measure of state anxiety
(S-anxiety) assesses how respondents feel “right now, at this moment” (e.g., “I
feel at ease”; “I feel upset”), and the STAI measure of trait anxiety (T-anxiety)
targets how respondents “generally feel” (e.g., “I am a steady person”; “I lack self-
confidence”). For each item, respondents are asked to rate themselves on a 4-point
Likert scale, ranging from 1 = “not at all” to 4 = “very much so” for S-anxiety, and
from 1 = “almost never” to 4 = “almost always” for T-anxiety. Total scores range
from 20 to 80, with a preliminary cutoff score of 40 recommended as indicating
clinically significant symptoms for the T-anxiety scale (Knight et al., 1983). STAI
has been found to have high reliability (Barnes et al., 2002). We used a Hebrew
translation (Saka and Gati, 2007).

3.2.2 Patients

Psychosis symptoms were assessed by the 6-item Positive AndNegative Syndrome
Scale (PANSS-6) (Østergaard et al., 2016). The original 30-item PANSS (PANSS-
30) is the most widely used rating scale in schizophrenia, but it is relatively long
for use in clinical settings. The items in PANSS-6 are rated on a 7-point scale (0
= “not at all” to 6 = “extremely”). The total score ranges from 0 to 36, with a
score of 14 representing the threshold for mild schizophrenia, and a score between
10 and 14 defined as borderline disease or as remission. PANSS-30 has been
found to demonstrate high reliability (Lin et al., 2018), while Østergaard et al.
(2016) reported a high correlation between PANSS-6 and PANSS-30 (Spearman
correlation coefficient = 0.86). We used the Hebrew version of PANSS-6 produced
by Katz et al. (2012). The range of positive and negative symptoms are presented
in the last three rows of Table 1.

3.3 Data Analysis
We analyse the data using two modalities, audio and text. All the interviews were
recordedwith a voice recorder, whichwas placed on the table next to the participant.
The responses of the participants for each of the 18 interview components were
recorded separately, and stored as individual files in Waveform Audio File Format

10



(WAV). Each response was manually transcribed. We extracted prosodic acoustic
features from the audio signal, as well as textual features from the corresponding
transcriptions.

3.3.1 Prosodic Acoustic Features

We processed each WAV file with PRAAT (Boersma, 2011), a computer software
package for speech analysis, in order to extract pitch and intensity per 10ms
frame. We use the PRAAT “Sound: To Pitch” method, assigned with its standard
values, to detect frames with fundamental-frequency (F0) above 75Hz. Typically,
males’ pitch ranges between 75Hz and 180Hz and females’ from 80 to 250Hz.
Furthermore, we noticed that some external noises occur in high frequencies.
Therefore, we distinguish between speech and non-speech frames by automatically
annotating as speech those frames with a detected F0 value above 75Hz and
below 250 Hz. Overall, we processed 18,187,506 10ms frames, corresponding to
approximately 50 hours of recordings, out of which 8,377,628 frames had an F0
above 75Hz. Only 322,189 (approximately 4% of 8M frames) were above the
250Hz threshold, resulting in 8,055,439 frames that we treated as carrying human
speech. We acknowledge that errors may have occurred during the pitch-extraction
process; we did not employ any correction utilities for the extraction. Additionally,
we are aware that the voiceless sounds characteristic of Hebrew could potentially
lead to some frames being misclassified as non-speech.

Each WAV file, corresponding to a response to a single image/question, is
now represented by a sequence of speech frames, each represented by a pair of
pitch and intensity values. We extract nine feature types from each response; to
avoid overfitting, we filter out responses representing less than 10 seconds worth
of speech. Therefore, we work with a dataset containing 449 responses given
by controls and 409 responses given by patients. Following previous work on
computational prosodic analysis (Kliper, Portuguese, et al., 2015), we extracted
the following set of features:

Mean Utterance Duration (MUD). Every segment of at least 500ms of con-
tinuous speech is defined as an utterance. MUD is the mean duration (in ms) of
all the utterances in a given response. The threshold of 500ms corresponds to
50 consecutive frames with a pitch value indicative of speech. Considering our
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criteria for identifying speech within a frame, there is a potential for omission
of speech signals that could have been analyzed. However, given our focus—in
this study—on comparing textual and acoustic features, we chose to concentrate
on speech segments with a high likelihood of containing substantive content for
meaningful extraction of both feature types.

Mean Gap Duration (MGD). A gap is defined as a maximal time interval
containing no speech. MGD is the mean length (in ms) of all gaps in a given
response.

Mean Spoken Ratio (MSR). The sum of the durations of all utterances in a
response divided by the total response duration.

Mean SpokenRatio Samples (MSRS). The number of frames that are classified
as speech divided by the total number of frames in the response.

Mean Pitch (MP). The mean pitch (in Hz) of all frames recognized as speech
in a given response.

Pitch Range (PR). The maximum pitch of all frames recognized as speech,
minus their minimum value, and divided by MP for normalization.

StandardDeviation of Pitch in a Single Response (PS). The standard deviation
of pitch (in Hz) of all frames recognized as speech in a given response.

Frame Pitch Correlation (FPC). The Pearson correlation between a sequence
of pitches of speech frames and a sequence of pitches of their consecutive frames,
in a given response. FPC, the way it is applied on pitch, measures the level at
which the speaker sustains constant pitch. FPC is the equivalent to mean waveform
correlation (MWC), suggested in (Kliper, Portuguese, et al., 2015).
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Jitter (J). The local deviation from stationarity of pitch. Formally, let ' be the
number of speech frames, and let ?(E) be the pitch of the Eth frame. We define J
as follows:

J B
1

' −  

'− −1
2 −1∑

E= −1
2

?(E) − 1
 

∑ −1
2

:=− −1
2
?(E + :)∑ −1

2
:=− −1

2
?(E + :)

 is a locality parameter; it was set to 5 in all our experiments. Jitter quantifies
the variability of a given measurement within a specific local context, determined
by the locality parameter  . In other words, it assesses the stability of the time
period within an environment spanning five consecutive frames.

We did not extract features that are based on intensity since we noticed some
differences in the background noise between the recordings of the control partici-
pants and the patients, probably due to differences in room settings and recording
equipment.

We verified that all the features are distributed normally, as expected, and per-
formed C-tests to measure the difference in feature expression between patients and
controls. The results are summarized in Table 2. As can be seen, all the features as-
sociated with speech rate (MUD,MGD,MSR,MSRS) are distributed significantly
differently among patients and controls. MGD exhibits relatively high levels of
variability as indicated by the relatively large standard deviation. Consistent with
other research (Kliper, Portuguese, et al., 2015), our findings indicate that controls
generally exhibit more fluent speech, characterized by significantly shorter pauses.
These results should be qualified by a reminder that we consider only utterances
that comprise at least 50 consecutive pitch frames marked as speech. Therefore, an
MSR value of 0.124 (12%) for the patients does not necessarily mean that the pa-
tients speak for only 12% of the response time on average. It primarily means that
only 12% of the signal is treated as substantive speech. Consequently, there is no
intention to use the findings in Table 2 to draw direct conclusions about the speech
patterns of participants. We primarily use these values as features for classifica-
tion, as explained below. Conversely, analysis reveals that the mean pitch (MP) and
pitch standard deviation (PS) of a given response are relatively comparable across
the two groups. Nevertheless, more nuanced metrics derived from pitch values,
such as jitter (J), frame pitch correlation (FPC), and pitch range (PR), demonstrate
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Table 2: Mean (SD) values of all prosodic features. *? < .05; ***? < .001.
Feature Control mean (SD) Patient mean (SD) C-test ?

MUD 0.798 (0.101) 0.629 (0.162) 4.143 < 0.001***
MGD 0.240 (0.066) 0.954 (0.990) −3.602 < 0.001***
MSR 0.289 (0.118) 0.124 (0.087) 5.496 < 0.001***
MSRS 0.563 (0.100) 0.311 (0.138) 7.254 < 0.001***
MP 129.202 (22.113) 125.422 (21.274) 0.602 0.550
PR 1.148 (0.153) 0.906 (0.196) 4.809 < 0.001***
PS 21.579 (5.517) 19.411 (7.370) 1.160 0.252
FPC 0.581 (0.096) 0.483 (0.147) 2.750 0.009*
J 0.008 (0.002) 0.007 (0.002) 2.066 0.044*

a more pronounced distinction between the groups. Upon examination of the jitter
calculation methodology, it becomes apparent that the differences in pitch across
consecutive frames may significantly contribute to the differentiation between the
two groups. The explanation is the fact that jitter is calculated locally over five
consecutive frames as defined by the locality parameter. The standard deviation of
PS (5.517 and 7.370 for control and patients, respectively) indicates that there are
some responses with high pitch variability, which in turn facilitates greater jitter
variability. We ascribe the same explanation to the pronounced difference in FPC
between the two groups, resulting in a more significant difference between them.
The FPC values (0.581 and 0.483 for controls and patients, respectively) suggest
that control participants exhibit a more consistent prosody while responding to
questions compared to patients.

We also experimented with a different method of calculating pitch range,
dividing by the minimum pitch value instead of the mean value. The average
and standard deviation for the control participants and patients using this alternate
calculation were 1.814 (0.226) and 1.367 (0.383), respectively. This also resulted
in a significant difference [C = −4.96 (? < 0.001***)] between the two groups.
However, the distribution of this new pitch range variation did not differ markedly
from the original.
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3.3.2 Textual Features

We extract the same textual features that have been used by Bar et al. (2019) on
a similar dataset. Essentially, they designed two types of features for capturing
specific symptoms of thought disorder.

Derailment. The first type is designed to capture derailment, which is a symptom
of thought disorder when the speaker digresses from the main topic. Technically
speaking, we represent words using static embeddings provided by fastText
(Grave et al., 2018) for Hebrew. For each response, we retrieve the fastText
vector E8 for every word '8, 8 = 0..=, in the response. Then, for each word, we
calculate a score defined as the average pairwise cosine similarity between this
word and the : following words, with : a variable parameter. The score of a
response is the average of all the individual cosine-similarity scores. To filter out
functional words that do not contribute to the topical mutation assessment, we
follow (Bar et al., 2019) by pre-processing each response with a Hebrew part-of-
speech tagger (Adler, 2007) and keep only content words, which we take to be
nouns, verbs, adjectives, and adverbs.

We calculate derailments for : = 1..6, thereby extracting six derailment fea-
tures per response.

Incoherence. One of the most informative features reported in (Bar et al., 2019)
was designed to capture some aspects of discourse related to incoherence. Specif-
ically, this feature examines the way patients use adjectives to describe specific
nouns. The goal is to measure the difference between adjectives used by patients
and the ones used by controls when describing the same nouns. Technically speak-
ing, we process each response with YAP (More and Tsarfaty, 2016), a dependency
parser for Modern Hebrew, to find all noun-adjective pairs (indicated by the amod
relation). To measure the difference between adjectives that are used by patients
and controls, we compare them to the adjectives that are commonly used to de-
scribe the same nouns. To do that, following the above-mentioned work, we use
an external corpus of health-related documents and forums, all written in Hebrew,
containing nearly 680K words.2 We process each document in exactly the same

2We use the same sources as in (Bar et al., 2019).
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Table 3: Mean (SD) values of the textual features.
Feature Control mean (SD) Patient mean (SD) C-test ?

Derailment 1 0.247 (0.011) 0.239 (0.017) 1.797 0.080
Derailment 2 0.237 (0.015) 0.236 (0.013) 0.102 0.918
Derailment 3 0.233 (0.015) 0.231 (0.017) 0.297 0.768
Derailment 4 0.229 (0.015) 0.226 (0.021) 0.522 0.605
Derailment 5 0.227 (0.016) 0.226 (0.016) 0.331 0.742
Derailment 6 0.225 (0.016) 0.225 (0.016) 0.006 0.995
Incoherence 0.520 (0.062) 0.502 (0.070) 0.931 0.357

way to find all noun-adjective pairs. Given a list of noun-adjective pairs from one
response, we calculate the similarity score between every adjective that describes
a specific noun and the set of adjectives describing exactly the same noun across
the entire external corpus. Hebrew enjoys a rich morphology; therefore, we work
on the lemma (base-form) level. The lemmata are provided by YAP. We take the
fastText vectors of the adjectives that were extracted from the external corpus
and average them, element wise, into a single vector by assigning weights to each
individual vector. The weights are the inverse-document-frequency (idf) score of
each adjective, to account more heavily for adjectives that describe the noun more
uniquely. Then, we take the cosine similarity between each adjective from the
response and the aggregated vector of the adjectives from the external corpus. For
each response, we take the average of the individual adjective cosine-similarity
scores as the overall response incoherence score.

As before, we verified that all our features are distributed normally and per-
formed C-tests to measure the difference in feature expression between patients and
controls. The results are summarized in Table 3. In contrast with the outcomes in
(Bar et al., 2019), we see no evidence for different distributions of each individual
textual feature between the two groups. The datasets, patients and controls, differ
for the two experiments. In (Bar et al., 2019), the controls were told to talk for at
least two minutes, which potentially impacted the outcome.
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Table 4: Classification results.
Feature Set Classifier Accuracy (SD) Precision (SD) Recall (SD) F1 (SD)
Acoustic Random Forest 86.8 (4.2) 82.6 (5.3) 85.0 (5.4) 82.2 (4.7)
Acoustic XGBoost 91.4 (0.7) 97.0 (0.4) 86.0 (2.7) 88.9 (1.4)
Acoustic Linear SVM 88.1 (3.0) 91.1 (2.9) 83.0 (4.5) 84.8 (3.5)
Textual Random Forest 65.0 (4.7) 66.5 (5.6) 45.9 (4.2) 51.4 (4.6)
Textual XGBoost 63.1 (4.8) 64.3 (5.7) 60.6 (4.8) 59.5 (5.4)
Textual Linear SVM 73.4 (2.7) 74.0 (5.0) 65.3 (4.9) 66.3 (3.6)
Combined Random Forest 90.7 (2.0) 94.5 (1.6) 89.6 (2.8) 90.0 (1.8)
Combined XGBoost 88.5 (1.0) 92.9 (3.5) 82.6 (3.4) 84.9 (2.5)
Combined Linear SVM 88.4 (2.0) 87.9 (4.6) 82.0 (3.7) 83.4 (3.8)

3.4 Classification
We train a two-way machine-learning classifier to distinguish between responses
that were generated by patients and controls. Each response is used as a classi-
fication instance, assigned either a “patient” or “control” label depending on the
group to which the subject who generated the response belongs. Overall we have
449 responses generated by controls and 409 responses by patients. We ran three
sets of experiments: (1) using only the acoustic features (Acoustic); (2) using only
the textual features (Textual); and, (3) using both feature sets (Combined). Conse-
quently, each response is represented by a nine-dimensional vector in the first set of
experiments, a seven-dimensional vector in the second set, and a 16-dimensional
vector in the third set of experiments.

For classification, we used three traditional machine-learning algorithms: XG-
Boost (Chen and Guestrin, 2016), Random Forest (Liaw, Wiener, et al., 2002),
and Linear SVM (Cortes and Vapnik, 1995).

4 Results
We measured the classification results using accuracy and the F1 score of the
patient label. For each classifier, we ran five evaluations, each time taking a five-
fold cross-validation approach. Every evaluation had a different random seed,
which was kept similar across all classifiers. The five results were calculated as
the average over the five evaluation runs. The results, divided into the three feature
sets, are presented in Table 4.
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Figure 1: Ablation study: F1 (H-axis) scores of the Combined XGBoost classifier
by removing one feature from the data at a time, as indicated by the G-axis. The
red line at 84.9 indicates the F1 value for XGBoost with all features included.
The F1 scores the average of five executions, each using a different seed. Der. =
Derailment; Inco. = Incoherence.

Overall, the XGBoost algorithm achieves the best classification accuracy when
utilizing solely the acoustic features. On the other hand, Random Forest achieves
the best F1 score using all features. When using only the textual features, all
the classifiers perform poorly. Furthermore, combining the textual features with
the acoustic ones did not usually result in significant performance improvement,
suggesting that the contribution of our textual features to the classification perfor-
mance on the dataset is limited and redundant when the acoustic features are used
for detecting symptoms of schizophrenia. The lesser success with textual features
may be due in part to the inherent difficulty of accurately measuring semantic
features like derailment and incoherence computationally.

Our best accuracy for the two-way classification task is around 90%, which is
higher than the best accuracy of about 76% reported by Kliper, Portuguese, et al.
(2015) using a similar set of acoustic features for the same two-way classification
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task with an English-speaking population.
Looking at the demographic characteristics of the participants in Table 1,

we notice that the patients and controls significantly differ in age and years of
education. Therefore, we performed a complementary analysis to support the
current findings in which seven sets of multiple regressions have been carried
out as reported in Table 5. These represent the seven prosodic features which
demonstrated a significant (at least ? < .05) different distribution among patients
and controls. As shown in Table 3, none of the textual features has been shown to
be different among the two groups.

As can be seen from Table 5, years of education consistently did not associate
with any of the prosodic features. The age characteristic was associated signifi-
cantly (? = .047) only once with MGD. However, the group (patients/control) was
the only predictor that was associated consistently, substantially, and significantly
with all the prosodic features.

We acknowledge potential variability in patient interactions during the in-
terviews, as recently demonstrated in a study by (Cangemi et al., 2023), which
analyzed both speech and non-speech segments of patients with schizophrenia.
Additionally, while the average PANSS-total score in our study is 17.34, above the
threshold of 14, the considerable standard deviation of 6.29 indicates the presence
of borderline cases and possibly some patients in remission. Specifically, among
our sample of 23 patients, two have PANSS scores below 10, and three have scores
between 10 and 14, suggesting that five patients could be considered in remission.
Our current study primarily examines the influence of two feature sets—acoustic
and textual—on classification outcomes, as detailed in Table 4. Although patient
interactions may vary, we believe that analyzing these feature sets within the same
group of patients is a valid approach. Furthermore, in an additional analysis, we
observed a significant association, beyond mere chance, between these feature sets
and the PANSS-total score. The analysis involved clustering the 23 patients into 2,
3, and 8 clusters, performed independently. We conducted the experiments twice,
representing patients once with textual features and once with acoustic features.
The :-means algorithm was employed for clustering, and the mutual information
(MI) metric was used to assess the relationship between the cluster assignment
for each patient and their PANSS-total score. Given that the centroids in the :-
means algorithm are randomly initialized, we ran each analysis 50 times to ensure
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Table 6: Mutual information—mean and (standard deviation)—between the vari-
able assigning a cluster for each patient (using :-means) and the PANSS-total
score.

Feature set 2 3 8
Textual 0.40 (0.02) 0.78 (0.09) 1.56 (0.06)
Acoustic 0.36 (0.00) 0.65 (0.10) 1.53 (0.07)

reliability. This approach allowed us to report the averageMI and its standard devi-
ation. The MI scores, detailed in Table 6, indicate that knowing a patient’s cluster
assignment enhances the predictability of their PANSS-total score. These results
imply that the selected features vary in alignment with PANSS scores, reinforcing
our primary conclusion that both acoustic and textual features are correlated with
symptoms of schizophrenia.

We performed an ablation study to measure the effect of each feature individ-
ually. The results are summarized in Figure 1. As can be seen, MSRS and MGD
are the most effective features; both are related to the pace of speech. It is notewor-
thy that removing certain features, primarily acoustic ones, slightly improves the
performance of the classifier. The most significant one is MSR, which is related
to the total duration of speech with respect to the overall response duration. Our
hypothesis is that this is mainly a result of overlap in our feature descriptions, as
MSR, MGD, and MSRS are slight variations of the same idea to some extent.

To measure the correlation between all the individual features, we calculate
Pearson d for all feature pairs and summarize them in a heat map, as shown in
Figure 2. Unsurprisingly, we see a strong correlation between all the textual derail-
ment features, which makes them somewhat redundant for classification. Among
the acoustic features, we see a stronger correlation between the standard deviation
of the pitch (SP) and the frame pitch correlation (FPC). Generally speaking, both
represent the dynamics of the pitch in speech frames. Similarly, and unsurpris-
ingly, the mean spoken ratio (MSR) is strongly correlated with mean spoken ratio
samples (MSRS); both represent the ratio between the time in which actual speak-
ing is taking place and the overall time of the response. Naturally, gap duration
(MGD) has a negative correlation with all the features that measure speaking du-
ration. However, we do not find any significant correlation between the acoustic
features and the textual ones. And, as seen in Table 4, the textual features did not
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Figure 2: Pearson d between all individual features, shown as a heat map.

contribute added information for classification not already covered by the acoustic
prosodic features.

5 Conclusion
We have extracted features from two modalities of Hebrew speech produced by
schizophrenia patients during interviews and compared it with those of controls.
Specifically, we extracted acoustic, prosodic features from the audio signal, as well
as textual features of transcriptions of the interview that measure derailment and
incoherence. Our main goal was to measure the contribution of each modality to
classification performance, when used in combination. Generally speaking, we
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find that a traditional classification algorithm can nicely separate between the two
groups, schizophrenia patients and healthy controls, with best accuracy of about
90%, which is better than the results that have been previously reported. The results
also show that the textual features do not add much to classification performance
when they are combinedwith the acoustic features that measure aspects of prosody.

Data Availability Statement. We have included a dataset as supplementary
material, which details the values of all features for each participant, categorized
by question.
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