
DEBUGGING LOGIC PROGRAMS USING EXECUTABLE SPECIFICATIONS

BY

YUH-JENG LEE

B.S., National Taiwan University, 1977
M.S., National Taiwan University, 1979

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Uibana-Champaign, 1988

Urbana, Illinois

Ill

DEBUGGING LOGIC PROGRAMS USING EXECUTABLE SPECIFICATIONS

Yuh-jeng Lee, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1988

This dissertation addresses the use of executable specifications in debugging logic

programs which are renowned for dieir clean syntax and well-understood semantics, and for

the feature that one can use a single language for both specification and computation. We

have formulated a computer model that encodes programming knowledge including a

classification of program bugs, heuristics that analyze and repair program errors, and

operational semantics of the language, and utilizes deductive and inductive inference

strategies to reason with programs and their specifications.

The realization of our methodology is the Constructive Interpreter which functions as

a debugger as well as a program synthesizer. It contains three major components: test case

generator, bug locator, and bug corrector. When supplied with a program and its executable

specifications, the test case generator can generate test data systematically by executing

specifications. The Constructive Interpreter then executes the program on the test data.

Should the execution fail to return an answer that agrees with the specifications, the bug

locator will automatically locate a bug that is causing the failure. The bug corrector then

analyzes the nature of the bug and utilizes correction heuristics which guide the use of the

specifications and which attempt to repair the bug. This bug fixing process might involve the

use of (1) a deductive theorem prover which will try to construct a proof and deduce

sufficient conditions to amend the program, and (2) an inductive program generator which

will synthesize the missing part of the program.

iv

ACKNOWLEDGEMENTS

I would like to express sincere thanks to my advisor, Professor Nachum Dershowitz,

for his constant encouragement and crucial guidance throughout this research. I am also

grateful to the members of my committee, Professors Ken Forbus, Sam Kamin, C. L. Liu,

and Larry Rendell for their interests in my work and valuable suggestions.

I thank Professors Mehdi Harandi and Uday Reddy for helpful comments, and

Professor Maria King of the ESL department for reading earlier drafts of this dissertation and

correcting my grammatical errors.

I thank the members of the Knowledge Based Programming Assistant Project, past

and present, and office males in 29C of DCL, Leo Bachrnair, Steve Greenbaum, Alan

Josephson, and G. Sivakumar for their support and assistance during my graduate studies in

Illinois.

I thank International Business Machines Corporation, Palo Alto Scientific Center and

National Science Foundation (grant NSF DCR 85-13417) for their support during various

stages of this work.

Last but not least, I would like to thank my wife, Kyoko, for standing by me and

providing comradeship and good times; and to my parents, to whom I dedicate this

dissertation, for their everlasting love and confidence in me.

V

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION 1
1.1. Approach 2
1.2. Specification 4
1.3. Testing, Verification, and Debugging 4
1.4. Symbolic Execution 7
1.5. Expertise 7
1.6. Program Synthesis 10
1.7. Overview of the Thesis 10

2. APPROACHES TO AUTOMATED PROGRAM DEBUGGING 12
2.1. Logical Analysis of Invariant Assertions 12
2.2. The Intelligent Program Analyzer 14
2.3. The LAURA System 16
2.4. Algorithmic Program Debugging 17
2.5. PROUST: Knowledge-Based Program Understanding 18
2.6. Talus: An Intelligent Tutoring System 19
2.7. Summary 20

3. LOGIC PROGRAMMING 22
3.1. Basics of Prolog Programming 23
3.2. Why Prolog 26
3.3. Meta-Programming 27

4. EXECUTABLE SPECIFICATIONS 29
4.1. Formal vs Informal Specification 30
4.2. Executable Specifications and Rapid Prototyping 31
4.3. Specifications in Prolog 32
4.4. Generation of Test Cases 35
4.5. Validation of Computation Results 38

5. AUTOMATED BUG LOCATION 40
5.1. Locating Incorrect Clauses 40
5.2. Locating Incomplete Procedures 44
5.3. Locating Diverging Procedures 47
5.4. A Meta-Interpreter for Automatic Bug Location 50

VI

6. HEURISTIC BUG CORRECTION 52
6.1. Fixing an Incorrect Clause 53
6.2. Fixing an Incomplete Program 56
6.3. Fixing a Looping Procedure 57
6.4. Deducing Missing Subgoals 58
6.5. Fixing Incorrect Subgoals 71

7. THE CONSTRUCTIVE INTERPRETER 73
7.1. Implementation 74
7.2. Examples 75

8. AUTOMATIC SYNTHESIS OF LOGIC PROGRAMS 86
8.1. Deductive Synthesis 86
8.2. Inductive Synthesis 87
8.3. Program Synthesis with Executable Specifications 88

9. CONCLUSION 101
9.1. Testing, Debugging, and Program Proving 101
9.2. Executable Specifications 103
9.3. Deductive vs. Inductive Reasoning 104
9.4. Comparison with Related Work 105
9.5. Issues to be Addressed in Future Research 107

REFERENCES 110

APPENDIX 114

VITA 146

V .

1

CHAPTER 1.

INTRODUCTION

Ever since the beginning of computer programming, unintentional errors, "bugs,"

have plagued all but the most trivial software projects. Therefore, a practical, preferably

automatic, debugging method or tool would be of great value. However, despite this fact,

the issue of software debugging, per se, has seldom been a topic of programmatic research.

As compared to other software development activities, such as design, testing, and

verification, there is much less research literature or formal methodology that deals with

debugging diiectly.

The goal of this dissertation research is to formalize and design a methodology for

automating the program debugging process. Utilizing formal specifications and operational

semantics, our work is aimed at exploring the possibility of building an automated program

debugger that possesses debugging knowledge and reasoning abilities.

Debugging a given program involves three steps: bug discovery, bug location, and

bug correction. We focus on the use of executable specifications to generate test cases for

bug discovery, locate bugs when test data cause a program to fail, and guide both deductive

and inductive bug correction. For programming and specification languages, we use Horn

clauses because of their clean syntax, simple semantics, and absence of distracting mn-time

control details.

In the remainder of this chapter, we will summarize the approach of this research,

2

discuss issues related to program debugging, and present an overview of the whole

dissertation.

1.1. Approach

With the target language being pure Prolog, we have formulated a computer model

diat encodes domain knowledge necessary for automating the process of debugging Prolog

programs. It includes a classification scheme of program bugs, heuristics that analyze and

repair program errors, operational semantics of the language, and intended behavior of a

program. We have also incorporated in our debugger deductive and inductive inference

strategies to reason with programs and their specifications.

The realization of our methodology is the Constructive Interpreter which functions as

a debugger as well as a program synthesizer. It contains three major components: test case

generator, bug locator, and bug corrector. When supplied with a program and its executable

specifications, the test case generator can generate test data systematically by executing

specifications. The Constructive Intel prefer then executes the program on the test data.

Should the execution fail to return an answer that agrees with the specifications, the bug

locator will automatically locate a bug that is causing the failure. The bug corrector then

analyzes the nature of the bug and utilizes correction heuristics which guide the use of the

specifications and which attempt to repair the bug. This bug fixing process might involve the

use of (1) a deductive theorem prover which will try to construct a proof and deduce

sufficient conditions to amend the program, and (2) an inductive program generator which

will synthesize the missing part of the program.

3

By applying knowledge of the semantics of a logic programming language, the

classification of bugs, and specifications of a program, the Constructive Interpreter performs

much as an active human expert does during a typical debugging session. When given a

program and its specifications, it can (1) execute a goal as a regular interpreter does, (2)

generate test cases systematically when symbolic input data are supplied, (3) verify the

results of a computation, (4) trace the execution of the program, and (5) locate and fix a bug

when a goal does not compute correctly.

The typical process of debugging — designing a test case, detecting an error in the

program, locating the error, and fixing it — can also be applied in program synthesis. As a

debugger, the Constructive Interpreter uses the given program as a starting point in its search

for a correct one. As a program synthesizer, it starts the search with an empty program.

With the application of executable specifications, an inductive search space for programs,

and a deductive mechanism for synthesis, this system could be used to allow one to specify a

program and give the skeleton of the recursive structure and let the system try to do the rest.

It should be noted that the Constructive Interpreter has the capability of executing

symbolic data. This is important, since it allows one to use generic test cases. The use of

executable specifications is also critical in that it allows the process of checking for errors, in

addition to generating test cases, to be automated. To locate bugs automatically, one needs

lower-level specifications. That is, to locate an erroneous procedure, one needs the

specification for that procedure. Finally, Prolog possesses several advantages over other

languages for the purposes of our research: it permits symbolic execution and provides a

natural mechanism for writing executable, low-level specifications.

4

1.2. Specification

A specification is a fundamental concept in engineering. It embraces the idea that

one must have a clear notion of the artifact one is going to build before one embarks on

building it. The form and context of a specification depend heavily on the nature of the

artifact being built.

In software development, the specification may be regarded as an abstraction of the

concrete problem at hand, as the starting point for the subsequent program development, and

as the criterion for judging the correctness of the final software product. It is a precise and

independent description of the expected program behavior, a description of what is desired,

rather than how it is to be achieved or implemented.

Much of research in specification and specification languages is aimed at expressing

program requirements in formal, unambiguous, and complete terms. In Chapter 4, we will

discuss issues related to software specifications and how we use executable specifications for

program debugging.

1.3. Testing, Verification, and Debugging

Within the recently emerged discipline of software engineering, there are techniques

that deal with every phase of the software life cycle (e.g., requirement, specification, design,

coding, testing, and maintenance) and overall software project management [Boehm-76].

Among these, testing is considered an empirical means of software quality assurance.

Broadly classified, there are two kinds of testing methods: static and dynamic. Static

5

testing performs analyses of programs without executing them at all. Usually, these involve

using tools, such as code inspectors, to make sure programs adhere to minimum quality

standards. Dynamic testing performs analyses of programs by actually executing them on a

selected set of input data, sometimes with the help of tools that support the following

operations: input setting, stub processing, results display, test coverage measurement, and

test planning [Miller-84].

The goal of testing is to provide empirical evidence for the correctness of a program

after the testing has been completed. Although a testing run usually only demonstrates some

functions of the software, it has been argued in [Goodenough-Gerhart-75] that through a

carefully selected data set, one can conclude that the program being tested is correct. The

idea is to choose a reliable and valid data selection criterion which defines what properties

of a program must be exercised to constitute a thorough test. One can dien design a complete

test data set which consists of test cases satisfying all the properties defined by the data

selection criterion. If every element of the test data set yields an acceptable result, then the

program is correct, since the set is supposedly representative of all the possible legal inputs.

Nevertheless, practically, it is quite likely that even programs that have been shown to work

correctly for a large set of test runs may not work correctly for a never-used combination of

data values.

Another major problem of using testing for software quality assurance is that the

testing approach fails to specify how one should proceed in the case where the program

behaves incorrectly on some test runs. Generally, the question of how to track down the

source of errors and correct it is not dealt with in testing methodology.

6

Advocates of formal verification methods have suggested that one way to eliminate

testing is to provide a correctness proof of the program. This approach is motivated by the

fact that it is physically impossible to test most programs over all possible combinations of

test data. As has been argued [Dijkstra-76], testing can only show presence of errors, not

their absence. Also, one advantage of using formal verification techniques is that they can be

applied to many phases of the software life cycle (e.g, specification, design, and coding) and

do not require generating test data.

The most common way to prove a program correct is to use invariant assertions.

Invariant assertions are statements about conditions and relations between program variables,

used as checks against the code to demonstrate program consistency; they must be supplied

for each loop. Basically, there is a set of input assertions corresponding to the data

properties, and a set of output assertions corresponding to the desired input-output relation

The task is to show (prove) that the output assertions are satisfied after executing a given

program, or that mathematically the program is consistent with its predefined assertions.

In general, nontrivial programs are very complicated and time-consuming to prove,

and any proof procedure for correctness is only partially automatable. Some programs for

which proofs have been completed and published have later been found to contain easily

detectable errors (e.g., see [Goodenough-Gerhart-75]).

Still, the major problem is similar to that of testing: What if a program cannot be

proved correct? In other words, one cannot dispense with debugging, no matter how good he

is at proving programs, since one will not be able to prove an incorrect program.

7

1.4. Symbolic Execution

With symbolic execution, instead of supplying specific constants as input values to a

program being tested, one supplies symbols. Symbolic execution systems (e.g., [Clarke-76,

King-76, Howden-77, Clarke-Richardson-81, Cohen-Swartout-Balzer-82, Howden-86])

allow input variables in a program to take on symbolic as well as numeric values. A

symbolic vaule can be an elementary symbolic value or an expression in numbers, arithmetic

operators, and other symbolic values. It represents some unknown yet fixed value. The

normal computational definitions for the program can then be expanded to accept symbolic

inputs and produce symbolic formulae as output which can be checked, manually or

automatically, to verify the correctness of the program being symbolically executed.

The main advantage of symbolic testing is that performing a single symbolic

execution is equivalent to a large, possibly infinite, number of normal test runs. By varying

the degree to which symbolic data is introduced into the symbolic execution one can, in

some cases, provide a proof of correctness.

The whole problem with symbolic execution is that there is no way to determine

which way a test is to go. Such a system, dierefore, usually resorts to asking the user, or to

backtracking over different choices. In Prolog, backtracking is automatic whenever a goal

fails.

1.5. Expertise

An expert system is a computer program that implements the skills of human experts

and aims at providing expert level solutions to problems of interest. Given the fact that

8

debugging is one of the most frequently engaged activities and that there is expertise

involved, an expert debugging system is not only feasible, but also valuable.

In the domain of program debugging, a human expert debugger's behavior can be

classified into two main categories. For a majority of bugs manifested by compiler error

messages or run-time "illness" (such as dividing by zero, or taking the square root of a

negative number), a person with a highly trained question-answer skill or with abundant

debugging experience can usually find the cause of the bug almost'' off the top of his head."

On the other hand, in a faulty program there might be subtle logical errors which are

"symptomless," and these cannot be detected with the expert's top-of-the-head skill.

Usually, this kind of error can be resolved only after careful reasoning about the performance

of the program or experiments.

Therefore, an expert debugging system should be ideally constructed in a way that

incorporates both of these kinds of capabilities: a quick symptom-diagnosis skill, and a

reasoning capability based on the understanding of the program. These two components

have been termed the shallow and the deep models of debugging, respectively [Badger,

et.al,-82\.

The shallow model implements the domain specialist's top-of-the-head-skill.

Usually, this needs judgemental heuristics acquired from the domain experts (and, therefore,

the shallow model is also called a "heuiistic model"). This knowledge is then coded in the

"if condition then action" production-rule fonn, and the inference process performs

backward or forward reasoning tlirough production rules by creating associations between

conditions/facts and actions/conclusions. Although this is a "surface knowledge approach"

9

(i.e., the system does not need to understand the problem it is solving, since its intelligence

comes from pre-coded human reasoning), and it suffers from the disadvantage of not being

likely to cover all cases exhaustively, the heuristic model of debugging does have one major

advantage: third, since the system's reasoning is straightforward (i.e., once a condition

invokes a rule, a certain action will take place), it can be fine tuned to achieve impressive

performance. An expert debugging system of this nature has been successfully implemented

in a Pascal programming environment [Harandi-83]. This system embodies heuristics that

deal with most of the compile time and certain run time errors with sufficiently explicit

symptoms.

The deep model implements the domain expert's logical and causal structure of

domain knowledge, as his understanding and reasoning abilities. For program debugging, an

ideal expert system of diis kind should be able to accept a buggy program and a

nonalgorithmic description of the program's intended behavior, perform necessary analyses,

locate bugs that cause the program to behave incorrectly, and suggest corrections — all with

little user involvement. Better yet, the system should have the ability to test its own

solutions and make further revisions on its previous suggestions until the program behaves

correctly. Unquestionably, this system has to have a large amount of knowledge that has to

do with the semantics of programming languages, types of errors, causes of errors, means of

correcting errors, and domain-dependent facts concerning the problem that the program is

supposed to solve. In addition, it has to have effective reasoning strategies that utilize the

knowledge and analyze the program's behavior.

10

1.6. Program Synthesis

A major use of software specification is to provide a very high level descriptive tool

so one can build a large system in top-down fashion. If the specification truly embodies what

one needs, then one should be able to provide that abstract specification as input to an

automatic programming system and be able to receive, as output, a low level program that

can be executed on the target machine more efficiendy. Ideally, this practice would salvage

much of the grievance in software development processes. Given the current state of

technology, however, such an automatic programming system is still not available for

general software production.

By restricting the problem domain of such a system, it is possible to apply such

technology and build systems for practical applications. The system described in [Barstow,

et.al.-&2] deals with a class of numerical software for scientific processing and has allowed

the client scientists both greater flexibility in their ability to specify program behavior and

much more rapid program development to establish the validity of that behavior.

Research in logic programming could also contribute in this area, since the

development of logic programs from specifications should be simpler than that of

conventional programs. One can then focus on the mechanisms and strategies of program

synthesis. We discuss this issue in Chapter 8.

1.7. Overview of the Thesis

Our work focuses on the investigation and implementation of an automatic debugger

that possesses deep level reasoning abilities. Chapter 2 reviews related work in this area.

11

The target and implementation language for the system developed in this dissertation is

Prolog, a logic-based language. Chapter 3 presents a brief introduction to the basics of

Prolog programming and discusses the concept of meta-programming which is the

foundation for building the inference engine of our debugging system. Chapter 4 explains

the idea of executable specification and its role in our automatic debugging enironment.

Utilizing executable specifications, an interpreter can check and monitor the results of

program execution. Chapter 5 deals with such an interpreter that can locate bugs

automatically. Bug correction requires a large amount of knowledge which must be

formalized in an automated environment. Chapter 6 analyzes bug correction heuristics in

Prolog, which include deductive and inductive code generation. Chapter 7 discusses details

of the Constructive Interpreter, a Prolog implementation of our debugging methodology, and

demonstrates its behavior through several examples With the availability of the

Constructive Interpreter and executable specifications, the logical next step is to synthesize

programs from specifications. Therefore, Chapter 8 is on automatic program synthesis.

Lastly, Chapter 9 gives the concluding remarks and directions for future research.

v.

12

CHAPTER 2.

APPROACHES TO AUTOMATED PROGRAM DEBUGGING

When a programmer debugs a program, he has to know the problem that the program

is supposed to solve, how the program is executed, how to track down errors if the program

does not behave as expected, what the likely causes of errors are, and how to fix errors if

they occur in the program. For a computer system to debug a program automatically, it is

evident that it requires (or must access to) the same knowledge. Automated debugging

systems can, therefore, be analyzed according to the following characteristics: (1) how the

intended behavior of a program is specified and supplied to the debugger; (2) how the errors

in a program are discovered; and (3) how the errors are located and corrected.

We will review some of the more noteworthy automated debuggers in the following

sections and analyze their features.

2.1. Logical Analysis of Invariant Assertions

From the viewpoint of program verification, Katz and Manna [Katz-Manna-75,

Katz-Manna-76] have demonstrated how invariant assertions can be used for automatic

diagnosis and correction of logical errors. If a program can be veiified as correct, there will

be no need to debug it. However, failure to prove correcmess of a program might be because

the program is actually incorrect, or the program is really correct but we are unable to prove

it. In either case, one won't be able to draw conclusions about how the program is meant to

behave. Therefore it is necessary to discover how the program has to be modified to meet its

13

original specifications.

Consequently, there are two different approaches for which invariants can be used to

debug a program. First, prove that the program is incorrect. That is, show that for some

legal input, either the program does not terminate, or terminates with a wrong result. Then

use the proof with the aim of helping locate and eliminate errors. This is possible because

any change in the program, when it is intended to correct errors, must change at least one of

the invariants used in the incorrectness proof. Thus, corrections can be restricted to those

which will influence invariants from a proof of incorrectness. However, sometimes the proof

is not very useful for guiding the search for corrections.

The second approach is to fix the program so that a proof of correcmess is guaranteed

to succeed, without necessarily showing that the original program is incorrect. In this case,

one needs user-supplied or machine-generated invariant assertions for each loop. Code is

then synthesized to meet invariants that suffice for a correcmess proof. A similar, but more

structured, approach can be found in [Dershowitz-83].

The purpose of this approach is that by modifying the invariant assertions to derive

the desired output assertions, one can, hopefully, fix the bugs in the original program.

However, even though the assertions reflect relationships among program variables and

could be used to guide the correction of bugs, intrinsically there are difficulties with this

method.

First, it is very difficult to give complete sets of assertions that describe the problem

entirely, because the assertions are static descriptions of a program's task. They only provide

information about what the relations between variables should be, not how the relations

14

between variables can be established. Therefore, one can easily generate programs that

satisfy the intended output assertions without performing the task in the required manner.

This problem holds for any method based on nonalgorithmic specifications.

Second, it is often the case that formulating invariant assertions to prove the

correctness of a program is more difficult than writing a correct program itself. Even with

the help of some automatic invariant generators and theorem provers, the general problem of

finding an algorithm to generate invariant assertions for any program is unsolvable, just as

showing a program to be correct is.

2.2. The Intelligent Program Analyzer

Based on the premise that a system cannot satisfactorily analyze a program unless it

can "understand" what it is examining, Ruth has constructed a prototype intelligent program

analyzer [Ruth-76] which, when accompanied by a task description and directed by the

structure of the program to be analyzed, functions like a programming expert and is able to

comprehend, verify, and, if necessary, correct a given program.

In this system, the most important thing is to lepresent an algorithm in a form that the

program analyzer can utilize. This representation, termed "program generation model"

(PGM), is expressed in terms of some universal constructs and mechanisms such as loops,

conditionals, flags, calculation of expressions, etc. In running the system, both the algorithm

supplied by the user and the given program to be analyzed are organized as lists of actions,

which are represented by the algorithm description primitives such as

15

{LOOP parameter-list ACTION-list),
{TEST predicate ACTION'S-if-true ACTION'S-if-false),
{ASSIGN var expr), and
{INTERCHANGE var 1 var2), e t c .

This is because the top-level driver for the analyzer is basically an action list matcher (ALM).

The analyzer then uses two lists of actions and runs a top-down analysis. It proceeds with

attempts to match the actions of the PGM and the given program. If an action match

succeeds, the ALM will try to match the next actions on the action lists with the parameters

given for those actions. Matching continues in this incremental fashion until there is a

"non-recoverable" difference or the action lists have been exhausted. In the former case,

the analyzer identifies an important difference between the PGM and the given program,

which might be the sign that there is a bug in the program (assuming the specification given

to the PGM is conect).

The algorithm needed for solving the problem provides a dynamic description of the

program's task. For the purpose of debuggmg this approach seems to be more useful than

deriving invariant assertions for a program. Since in this case we are giving information

about how the program must proceed instead of what it has to achieve. In other words the

debugger has knowledge of how to complete the program's goals rather than just the goals

themselves.

Although analyzing the computation process by comparing a program with its

intended algorithm specifications might sound promising, there are certain limitations on this

approach. First of all, there is the problem of translating both the algoridun and the program

into comparable forms. It is often the case Uiat an algoridun specified in semi- or non-

procedural fonn is simpler, in terms of structure complexity, than a complete program.

16

Since algorithms and programs are usually at different levels of abstraction, some

information might be lost or misrepresented in the transformation process.

Second, supplying the whole algorithm in sufficient detail for the machine to execute

might become cumbersome, especially when the problem to be solved is rather complex.

2.3. The LAURA System

In an attempt to deal with the problem of automatic checking for the equivalence of

two programs, LAURA [Adam-Laurent-80] was built with the purpose to automatically debug

student programs. This system differs from Ruth's program analyzer in that LAURA

emphasizes the source-to-graph transformation and considers debugging from the

perspective of the comparison of two calculus processes.

Basically, in LAURA, a graph is built up from a program or an algorithm description.

That is, a graph is a representation of the calculus process implied by the program or

algorithm. In a graph, the nodes represent the various operations of the calculus process

(assignments, tests, inputs, outputs) and the arcs represent the flow-graph defined on these

operations.

In a debugging session, both the intended algorithm and the program to be debugged

are first transformed into their equivalent graphs. The LAURA system then compares a

region of one graph with any region of the other. It is dierefore possible to recognize that a

certain part of one program computes the same functions as a certain part of the other, hi

other words, parts of a program can be identified. If a total identification of the given

program is possible, then it can be declared correct. Otherwise, the unidentified parts might

17

contain errors. At the end, the system is able to make several diagnoses of errors if there are

unidentified regions on the graph representing the program.

In the LAURA system, both the algorithm and the program are transformed into

graphs. This is advantageous in that the analysis can be performed independently of the

language in which the program is given. However, this system has the other drawbacks

discussed in the previous section on the intelligent program analyzer: the problem of

transformation and the need for the user to supply a complicated algorithm.

2.4. Algorithmic Program Debugging

Applying the diagnostic algorithms in a program synthesis system, Shapiro [Shapiro-

83] has designed an interactive debugging system for Prolog. The system does not require

die programmer to provide either an intended algoridim or a specification. Rather, the

system simulates the execution of the target program on a given input, and generates results

for each procedure call. The programmer is then queried for die correctness of some

intermediate results of procedure calls. Based on the answers to the queries, the system can

diagnose an error by isolatmg an erroneous procedure, and suggests a correction (for a

limited class of errors). The same approach was applied to Pascal programs in [Renner-84].

The bug locating algorithm could be very useful for debugging logical errors,

especially for predicate-oriented programming languages. However, due to the fact that it

requires the user to act as an oracle and to verity the correcmess of results from executing

procedures, this algorithm has some limitations. When a procedure contains a complex task

of computation, the user might not be able to verify an intermediate result without additional

18

help. Also, the user has to be fairly involved in answering queries generated by the system.

To improve the efficiency, Plaisted [Plaisted-84] suggests a more efficient algorithm to

diagnose an incorrect clause. It has been shown that this improvement is optimal to within a

constant factor for space, time, and number of queries to the user. Using information about

dependencies between subgoals (such information can be obtained by using a suitably

modified unification algorithm as described in |Bruynooghe-Pereira-84]), Pereira [Pereira-

86] has designed a method called rational debugging the object of which is to discover

discrepancies between a program's purported models and its actual input/output behavior, as

manifested by running the program.

2.5. PROUST: Knowledge-Based Program Understanding

PROUST [Johnson-Soloway-85], a knowledge-based program understanding system

which does online analysis and understanding of Pascal programs, is intended to be a

tutoring system to assist novice programmers in learning how to program. It has a

knowledge base of programming plans and strategies, together with common bugs associated

with them. Given a program and a nonalgorithmic description of the program requirements,

PROUST tries to find the most likely mapping between them by reconstructing the design

and implementation steps that the programmer has gone through when writing the program.

This reconstruction process is meant to recognize the plans used by the programmer. It is

also the basis to program understanding.

Program bugs are detected when there are mismatches between the reconstructed

plans and code. Some mismatches are not interpreted as bugs; they are simply recognized,

using plan transformation rules, as common implementation variants of expected code.

19

Others can be recognized as instances of specific program bugs by bug rules. Other than

these two cases, mismatches that cannot be accounted for might result in incomplete or

aborted program analysis; or they might be interpreted as bugs, might be ignored, or might

bring out warning messages.

2.6. Talus: An Intelligent Tutoring System

Talus [Murray-86] is an automatic program debugging system that both detects and

corrects bugs in smdent programs written to solve small but nontrivial tasks in pure Lisp. It

does not rely on the programmer's assistance. Debugging with Talus consists of three

stages: algorithm recognition, bug detection, and bug correction

Representations of algoridims are stored and heuristics are used to match the program

to be debugged with the algorithm most similar to it. For this purpose, all functions in the

student programs and the stored algorithms are parsed into E-frames which represent abstract

properties of recursive functions diat enumerate the elements of a recursively defined data

structure. Talus performs a best first search to choose between competing algorithms and to

map student functions to stored E-frames. The matching process include algorithm

identification, function mapping, and formal variable mappings. Bug detection is done by

constructing an inductive proof that student programs are equivalent to the stored functions.

A bug is present when the equivalence relation cannot be established. Heuristic methods are

then used to suggest alterations, by consulting the stored algorithms, to the student's

functions to remove bugs.

20

2.7. Summary

Based on the characteristics listed in the beginning of this Chapter, we now

summarize the above research on automated debugging. To specify the intended behavior of

the program to be debugged, the majority of researchers have chosen to use fairly intensive,

complete descriptions of the algorithm. They either built model programs (such as [Ruth-76,

Adam-Laurent-80, Murray-86]) or require program descriptions (such as [Johnson-

Soloway-85]). This approach seems feasible in building tutoring systems, since in this case,

one can use a single model program to debug many student programs which, supposedly, are

aimed at solving the same problem. Using invariant assertions to debug programs requires

input/output specifications written in predicate calculus [Katz-Manna-75]. The system in

[Shapiro-83] does not need a pre-stored algorithm or specification, however, the user is

required to supply information on expected program traces.

Those systems that use model algorithms (including [Ruth-76, Adam-Laurent-80,

Johnson-Soloway-85, Murray-86]), predictably, have to rely on some kind of matching

between algorithms and programs to detect and locate errors. A mismatch usually signals

die existence and points to the location of a bug. In [Katz-Manna-75, Murray-86], formal

verification techniques are used. Bugs are detected when the effort to verify the program

specification fails, and the part of the program that causes the failure usually contains the

bug. For the system in [Shapiro-83], the difference between the expected and actual

execution traces is used to locate the bug, however, the user has to supply the initial test case

that shows die program is buggy.

Correcting errors is not treated in [Ruth-76, Adam-Laurent-80, Johnson-Soloway-85].

21

All die others rely on heuristics of one kind or another. The strategy in [Murray-86] is to use

the stored functions to modify the program so that a successful verification can be obtained,

while in [Shapiro-83] a new part of the program is synthesized.

Comparing our Constructive Interpreter, we use executable input/output

specifications to define the intended behavior of a program and to generate test cases for bug

discovery. We employ the execution mechanism of a Prolog machine to locate bugs, using

specifications to validate computation results. We also have heuristics to analyze bugs and

suggest fixes, and use techniques in deductive theorem proving and inductive synthesis to

mechanize the bug correction process.

v.

22

CHAPTER 3.

LOGIC PROGRAMMING

Logic is the study that is concerned with relationships and implications between

assumptions and conclusions. It has long been used as a means for formalizing natural

language and human reasoning. Logic programming uses logic to express information and

present problems to a computer, and uses logical inferences to solve these problems. It has

become one of the most rapidly growing areas of programming language research.

Broadly defined, a logic programming language is a language that is based on a

formal logic system, with operational semantics defined by deduction in that system. Lisp

(or more precisely, pure Lisp), for example, is a logic programming language based on the

A,-calculus. Languages based on equational logic, such as EQLOG [Goguen-Meseguer-84]

and rewrite systems (e.g., [Dershowitz-84]), also fall into this category.

A narrower definition of logic programming refers to the use of first-order predicate

logic, or a subset of it, as a programming language, with emphasis on using predicates and

deduction to describe computation. Based on the resolution principle [Robinson-65] and its

successive improvements, efficient schemes for processing predicate logic have been

recently developed. The principal idea is to represent programs with the Horn clause (also

called definite clause) subset of the first-order predicate logic [Kowalski-74, Kowalski-

Emden-76]. This breakthrough set the basis for procedural interpretation to Horn clause

logic and accelerated progress in the development of logic programming languages. Prolog

[Clocksin-Mellish-84], one of the most recognized logic programming languages, is

23

nowadays a viable alternative to Lisp in symbolic processing and artificial intelligence

research.

In the following sections, we present a short introduction to pure Prolog, the target

language for the debugging system developed in this dissertation, and discuss related issues

including our rationale for choosing Prolog as a tool for our research.

3.1. Basics of Prolog Programming

The central idea of Prolog programming is that a program is a sequence of logic

statements of a restricted form — Hom clauses, and die execution of such a program is a

controlled logical deduction from the clauses forming the program.

A Horn clause is either a simple atomic assertion or an implication. Every assertion

is a simple term written as

P

whereas every implication is of the form

P <r-pvp2,',pn

where the conclusion/? is called the head of the clause, and the conditions pv • • • ,pn are the

body of the clause. The head p and the p 's are all logical atoms (predicates). Both of these

two kinds of clauses are universally quantified logical sentences.

The declarative meaning of a Prolog program can be viewed as a collection of

assertions and implications about some relations, i.e., the conjunction of the universally

quantified Horn clauses in the program. The assertion p means "p is trae" and the

implicationp <r-pv • • • ,pn means "p is hue, ifpv • • • ,pf are all true."

24

Computationally, a Prolog program consists of a number of procedure definitions.

Clauses with the same functor form a procedure, with different clauses in a procedure

represent alternative cases of that procedure. Interpretated procedurally, the clause p is read

"goal p is satisfied", and the clause of implication is read "to satisfy goal p, satisfy goals

PV #n-

Using the procedural interpretation, a set of definite clauses P can be executed as a

logic program by giving a goal, or a conjunction of goals. Ideally, the computation

progresses via nondeterministic goal reduction. For example, to compute some initial goal

(or subgoal) p, a clause

P <r~PvPv >P„

in P is chosen nondeterministically aiming at unifying p with p . The unification succeeds

if the goal and the clause head can be made identical by "filling in" suitable values for the

variables, renames, if necessary to make them distinct. If this is the case (a match), then the

original goal can be reduced to

(PVP2>' " >P„W

(p. Q denotes the result of applying the unifying substitution to each occurrence of the unified

variable in pt). The computation continues widi the aim of satisfying die reduced goal in

any order, and terminates when the current goal becomes empty. If a computation succeeds,

the final values of the variables in p are conceived of as the output of the computation.

Because of the nondeterministic nature of diis process, a given goal can lead to a number of

successful and unsuccessful computations. Variable bindings from a successful computation

can be conceived as output.

25

The operational semantics of Prolog is based on SLD-resolution (Linear resolution

with Selection function for Definite clauses, see [Apt-van Emden-82]). That is, Prolog's

execution follows a sequential simulation of the nondeterministic computation, using a

depth-first search strategy with a backtracking mechanism incorporated. In the computation

process, Prolog will try all unifiable clauses sequentially, in the order they occur in the

program text, and subgoals are solved from left to right. When it fails to find a clause whose

head can be unified with die current goal, it backtracks to the most recently executed goal,

undoes any substitutions made by the unification, and tries to resatisfy that goal with a

different solution. If none can be found, the entire computation fails.

The computation process can also be described as the traversal of a computation tree.

A computation tree T of a program P is a rooted, ordered tree Each node in the tree has the

formp{x,y), where p is a procedure (predicate) name, JC and y represent input and output

vectors over some domain. For the clause

p{x,y) :- Pl{xvyl),p2(x2,y2), ••• ,pk(xk,yk)

involved in a computation, the corresponding part in T includes the internal nodep(#,y)

and its sons pfo^yj, p2{x2,y2), • • • , and pk{xk,yk). In other words, all the p;'s are

procedures invoked from within p , in that order. The interpretation is as follows: procedure

p , on input x, calls p , on*,, and if this call returns y., then p calls p , on jr., and if this call

returns y 2 then • ••, then p calls pk on xk, and if this call returns yk, then p returns y as its

output. If a node p{x,y) has no sons, it means that the procedure p , on input x, has a legal

computation that returns y without performing any procedure calls.

Programs, for our purposes, are presumed to obey their Horn clause declarative

26

semantics, i.e., "extra-logical" features, such as cuts, clause order, and subgoal order, may

affect efficiency and termination, but not correcmess.

3.2. Why Prolog

The activities of debugging, maintaining, and extending programs are largely

dependent on reading and understanding a program as it is represented in a programming

language. Also, it has been observed that professional programmers spend more time

examining existing programs than they spend writing new programs. Therefore, the

characteristics (or design) of programming languages does have a significant bearing on

software errors.

Although it is debatable whether a general-purpose programming language is

feasible, it is obvious that a language that is designed for a wide range of applications and

users must have conflicting objectives such as ease of learning, ease of use, ease of extending

the language, ease of extending programs written in the language, resistance to programming

errors, machine independence, efficient object code, and efficient compilation, etc. [Myers-

76]. In other words, if a language attempts to satisfy all of these goals, it will no doubt be

less than ideal for each particular type of application or audience.

For the purpose of our research, we would like to design a system that can understand

programs, possesses knowledge about the programining language, and has a reasoning power

that utilizes its knowledge to analyze programs. Thus, the essential features of the language,

in our case, are readability of programs written in the language, the ability to represent

clearly and simply the program's function and logic, and well-understood declarative and

27

operational semantics. Since we are to investigate effective strategies of debugging

"difficult" errors, we want to be able to concentrate on the logic (meaning) part of the

program without worrying about the control (efficiency) problem (cf., [Kowalski-79]).

Formal logic is one of the most widely used schemes for knowledge representation,

and its deductive system is guaranteed correct to an extent diat other representation schemes

have not yet reached. Beside, derivations of new facts can be mechanized. Prolog is

renowned for its simple syntax and well-defined semantics. Pure Prolog is also lacking those

run-tune control mechanisms that usually complicate the analysis of a program's logical

properties. Other features, such as meta-programmability and executable specification, will

be discussed in detail in the following section and the next chapter.

3.3. Meta-Programming

One important feature of Prolog is that it can easily be used to build a system that

manipulates and executes other programs written in that language. As pointed out in

[Fuchi-Furukawa-86], meta-prograrnming can be characterized as the ability: (1) to handle a

program as data; (2) to handle data as programs and to evaluate them; and (3) to handle a

result (success or fail) of computation as data.

This meta-programming capability is essential when implementing a system to reason

about programs. It provides a basis for building a powerful programming environment.

Prolog is especially attractive in this aspect, since one can easily write a meta-interpreter to

execute pure Prolog programs in just three statements:

28

A Prolog Interpreter
interpret ((G1 ,G 2)) :- interpret (G1),

interpret (G 2)
interpret {Goal) :- system(Goa/),

interpret {Goal) :- clause(Goa/ JSubGoals),
interpret (SubGoals)

The first clause solves a conjunctive goal by recursively solving its components. The second

clause checks if (a noncomposite) Goal is a system (built-in) predicate (system itself is a

built-in predicate that succeeds if Goal is a call to a built-in proceduie) and, if it is, executes

the goal directly The third clause uses a built-in predicate clause both to find a clause

whose head can be unified with Goal and to reduce Goal to the list of subgoals in the body

of that clause. The interpreter then solves these subgoals recursively. As will be seen, our

debugging system, for Prolog programs, is based on the scheme of this interpreter.

29

CHAPTER 4.

EXECUTABLE SPECIFICATIONS

Since a software specification serves as a blueprint for the program to be built, it must

be clearly and unambiguously understandable by the software specifier and the implementor.

For diis reason, we argue that the specification must be constructed in a formal language

(more in next section).

A specification must be testable: it must be possible to ascertain whether an

implementation has fulfilled the requirements of the specification (i.e., whether the

implementation is consistent with the specification). For this purpose, a specification must

be complete and formal enough that it can be used to determine if a proposed

implementation satisfies the specification for arbitrarily chosen test cases. That is, given the

results of an implementation on some arbitrarily chosen set of data, it must be possible to use

the specification to validate those results. This implies that the specification can act as a

generator of possible behaviors which must be present in the proposed implementation.

On the other hand, a specification must be tolerant of incompleteness and

augmentable. This is because a specification is always a model — and abstraction — of

some real or envisioned condition. Furthermore, as it is being formulated it will exist at

many levels of detail. The analysis tools employed to aid specifiers and to test specifications

must be capable of dealing with incompleteness, and the specification must be in a form such

diat it can be easily modified (i.e., maintained).

30

Last, but not least, a specification must be localized and loosely coupled, and the

specification language must provide facilities for modular construction of specifications.

This requirement arises from the dynamic nature of specification. Although the main

purpose of a specification is to serve as the basis for design and implementation of some

system, it is not a precomposed static object, but a dynamic one which undergoes

considerable modification. Such modification could occur in three main activities: (1)

formulation, when an initial specification is being created; (2) development, when die

specification is elaborated during the iterative process of design and implementation; and (3)

maintenance, when the specification is changed to reflect a modified environment or

additional functional requirements. With so much change occurring to the specification, it is

critical that its content and stmcture be chosen to accommodate this activity. The main

requirements for such accommodations are that information within the specification must be

localized so that only a single piece (ideally) need be modified when information changes,

and that the specification is loosely structured so that pieces can be added or removed easily,

and the stmcture automatically readjusted.

4.1. Formal vs. Informal Specification

As one might expect, the formal rigor of a specification varies widely. At one end,

research in formal specification languages has become a major area in computer science (cf.,

[Spitzen,eta/.-77, Guttag-Horning-78, Liskov-Berzins-86]). A specification is fonnal if it is

written entirely in a language with an explicidy and precisely defined syntax and semantics.

At the informal end of the spectium, the specifications can be expressed in some convenient

combination of English, diagrams and a variety of mathematical notations (or whatever the

31

specifier likes).

There are many advantages for using a formal specification. Because of the

mathematical nature, a formal specification encourages rigorous descriptions when defining

problems. With the well-defined and unambiguous semantics of the specification language,

there is only one way to interpret a formal specification, thus reducing the likelihood of

misinterpretation and confusion. A formal specification can also be processed by a computer

more easily, and, therefore, certain forms of inconsistency or incompleteness in the

specification maybe detected automatically.

On the other hand, informal specifications cannot be studied mathematically. It is

easy to hide incompletely designed program behavior under vague informal descriptions.

Informal specifications appear easier to construct because they are usually incomplete and

imprecise. However, it is very difficult to have them processed mechanically. The main

problem for an incomplete specification is the inability to test correctness of an input/output

pair.

In automating the software development process, the use of formal specifications is

one of the key issues.

4.2. Executable Specifications and Rapid Prototyping

As software projects get more and more complicated, the need for rapidly available

prototypes becomes more essential. Research in executable specification languages is

gaining popularity partly due to the ever increasing interest in the rapid prototyping of

software, with the hope that such a prototype, an incomplete or partial functional model of

32

the target system, might provide more information than any formal document.

If the specification is fonnulated in a language that has operational semantics, the

specification can be regarded as a prototype, and its behavior may be scrutinized to

determine if it is in fact the behavior of the desired software product. According to

[Smoliar-82], there are four major approaches to executable specifications: lambda calculus

[McCarthy-60], functional expressions [Backus-78], data flow constructs [McGraw-80], and

algebraic representations [Goguen-Tardo-79].

Based on the desired properties for an executable specification language, however, a

logic-based language would serve the purpose as well (cf., [Clark-81, Kowalski-85,

Komorowski-Maluszynski-86]), if not better, since it is a formal language, and has simple

syntax, well-defined declarative semantics, and a well-understood deductive mechanism.

Being simple in syntax makes the specification easier to understand. Having a well-defined

declarative semantics facilitates die construction of high-level specifications, since a

specification language is to describe intended behavior (i.e., what) without prescribing a

particular algorithm (i.e., how). The deductive mechanism provides operational validation of

the specifier's intentions. Besides, logical formulae can be written incrementally and can

easily be modified and augmented. All these features facilitate the testing and validation of

the prototype.

4.3. Specifications in Prolog

First-order predicate calculus has long been used as a specification language. The

typical approach to program verification (e.g., [Hoare-69, Katz-Manna-76]) expresses

33

specifications in first-order logic, and relates them to conventional programs by defining the

semantics of programs in a "programming" logic. In contrast to this complicated situation

of the need to deal with two different languages when verifying the properties of programs,

logic programming offers an attractive alternative, namely, the ability to use logic for both

specification and computation in a natural way. In addition to the simple syntax and well-

understood semantics, this advantage is rarely met by other traditional programming

languages.

Since Horn clauses are a powerful subset of first-order logic, Prolog can often be used

for specification with the advantageous extra feature of executability: a program's

specifications can be written in Prolog itself and can be executed by the Prolog interpreter or

compiler direcdy.

For our debugging purpose, the specifications of a program describe the relationships

between program variables by giving input/output constraints. They define the

functionalities of the program without imposing the restriction on how these functionalities

are to be achieved. The specifications can be viewed as procedural abstractions (cf.,

[Liskov-Berzins-86]). A procedural abstraction performs a mapping from a set of input

values to a set of output values. Its use was motivated largely by a desire to prove that a

program has certain properties (e.g., correctness). Usually, the input/output relation is

expressed as assertions which are attached to a program, and the task is to prove that the

assertions are true whenever control reached the corresponding points in the program. Each

pair of assertions acts as a specification for the program fragment between diem. A

procedural abstraction can also be obtained by giving an operational specification which

explicidy represents an algorithm (or program) that transfers the legal input state to a legal

34

output state.

It may then be argued that the specifications are no different from programs. Indeed,

in logic programming, as [Kowalski-85] has contended, execution efficiency is the main

criterion distinguishing between programs and complete specifications. The specification

emphasizes clarity and simplicity but not efficiency, while in the implementation of

programs, efficiency is the main consideration. In other words, specifications written in

Prolog can be conceived of as nonalgorithmic, executable, and perhaps inefficient programs.

In Chapter 8, we will discuss the issue of using specifications to automatically generate

programs.

High among the desirable properties of most programs is termination. One way of

specifying how progress is being made is to provide a well-founded ordering of input

arguments for recursive procedures. A well-founded ordering > is a binary relation on

elements of a nonempty set S such that die relation is transitive, asymmetric, and irreflexive,

and such that S has no infimte descending sequences. The ordering specifies, for a particular

recursive call, which arguments should be decreasing. This is used for detecting looping.

Although more expressive languages, e.g., EQLOG [Goguen-Meseguer-84], HOPE

with unification [Darlington,£/a/-85], and RITE [Dershowitz-Josephson-86] may be more

suitable for specification, for our research, specifications written in Prolog is readily

executable by a Prolog compiler or interpreter.

35

4.4. Generation of Test Cases

As mentioned earlier, running the specifications of a program not only can test the

desired output, but can also generate useful test cases for that program, provided that axioms

for primitive predicates are supplied. The information contained in a specification regarding

the expected output behavior is indispensable for checking the correcmess of the results of

program execution, while test cases help reveal instances of incorrect output.

To generate test cases for a given goal, we first run the specifications of that goal to

obtain a pair consisting of an input along with its expected output. (In this research, we

presume that the specifications faithfully reflect the intended requirements of the program

(cf., [Gerhart-Yelowitz-76]) — debugging of specifications is an important research topic,

however, we will not get into it here.) We then use only the input value to run the goal on the

program to be debugged. If the execution fails, goes into a loop, or returns an incorrect

output value, then this test case has showed us that there is at least one bug in the program.

If one of the predicates in the specification of a program is defined in die form of a

"generator," then utilizing Prolog's built-in backtracking facility, we can generate alternate

test cases. If we use a breadth-first mechanism to generate test cases, we can generate a

complete (perhaps infinite) set of test cases for that program.

For example, suppose we have the following specification for a sorting procedure:

spec {sort {Input,Output)) :- ordered (Output),
perm (Input ,Output)

36

which says that feeding a list "Input" to the procedure sort, the list "Output" is a correct

result if it is in order and is a permutation of "Input". Suppose perm is defined in the

following way that generates all possible permutations of a list:

perm ([],[])
perm([X\Xs],Ys)

del(X,\X\Xs]JCs)
del(X,[Y\Xs),[Y\Ys])

del(X,YsZs),
perm(Xs£s)

del(XJCs,Ys)

and ordered is written as

ordered ([])
ordered ([X])

ordered([X,Y\Xs]) :

ordered ([X\Xs]) :

- HX,Y),
ordered ([Y\Xs])

- lt_all(XJCs),
ordered (Xs)

where [] denotes the empty list in Prolog, and [X \Xs] denotes the list with head X and tail

Xs. If we have available the following basic axioms for the primitive predicate It (which

means less than) as

lt(X,Y)

isjtumber (0)
is_number(X)

is_number(X),
is_number(Y),
X<Y

is_number(Y),
X is Y+l

then by executing spec (sort (Input,Output)) with uninstantiated variables we can obtain a

37

sequence of input/output pairs, as demonstrated by the following example (for the examples

used in this dissertation, user input is shown in bold face):

I ?- spec(isort(Input,Output)).

Input = []
Output = [] ;

Input = [X]
Output = [X] ;

Input = [0 , 1]
Output = [0 , 1] ;

Input = [1 , 0]
Output = [0 , 1] ;

Input = [0 , 1 , 2]
Output = [0 , 1 , 2] ;

Input = [0 , 2 , 1]
Output = [0 , 1 , 2] ;

Input = [1 , 0 , 2]
Output = [0 , 1 , 2] ;

Input = [1 , 2 , 0]
Output = [0 , 1 , 2] ;

Input = [2 , 0 , 1]
Output = [0 , 1 , 2] ;

Input = [2 , 1 , 0]
Output = [0 , 1 , 2]

yes

As can be seen, spec (sort) first generates an empty list as input, then a one-element

list, then two-element lists with all possible pennutations, then three-element lists with all

possible permutations, etc. The variable Output shows the expected result for each given

38

input, and can be used to verify the correcmess of a program (see next section). Note that the

one element list is symbolic, hence an infinitude of test cases are captured in one fell swoop.

4.5. Validation of Computation Results

When a program is to be debugged, we assume that the properties of each procedure

in the program can be described by the program's specifications. These nonalgorithmic

specifications detail the relationships between program variables as well as the well-founded

ordering under which successive input values to recursive procedures form a descending

sequence. In other words, they define all legal input/output pairs for each procedure.

Unspecified procedures are presumed correct (note that this is an example of handling

incomplete specifications).

Suppose we have a relation R that is defined by specifications S and is to be

computed by program P . If every instance of R computed by P can also be deduced from

S, then P is partially correct with respect to S, i.e.,

if P \-R thenS \-R,

where X \—Y denotes that conclusion Y can be derived or proved from assumptionX. This

actually means that the program P is consistent with the specification S, or

S \-P.

If there is a computation result of P that cannot be deduced from S, then P is incorrect with

respect to S.

On the other hand, if every instance of R defined by S can be obtained by executing

P, then P is complete with respect to S, i.e.,

39

if S \-R then P \-R.

This means that the program P derives every instance of R that is defined by the

specification S, or

P I - S.

If there is an instance ofR that is defined by S but cannot be the result of executing P, then

that instance is "uncovered" andP is incomplete.

If during a computation, P generates an infinite sequence of procedure calls, then P

is nonterminating. Otherwise, it terminates.

We test for partial correctness and completeness by checking computation results

against a program's specifications. Termination is tested for by routines that compare the

inputs with respect to a specified well-founded ordering whenever a procedure is invoked.

40

CHAPTER 5.

AUTOMATED BUG LOCATION

When a Prolog program does not compute conect results, it may be that the program

contains incorrect clauses, is incomplete in defining certain relationships between program

variables, or has an infinite procedure invocation sequence. We turn now to discuss how

each of these three types of errors can be detected and located automatically, based on the

meta-programming capability of Prolog and executable specifications. When a program is

submitted for debugging, we require that specifications of each procedure in the program be

supplied, at least for those procedures that are likely to be wrong. In actual implementation,

we can treat procedures without specifications as correct. Therefore, it is not necessary for

the user to supply specifications if he is sure about the correctness of a procedure.

5.1. Locating Incorrect Clauses

If a program is partially correct then every subprogram of it is also partially correct,

as the computation trees of a subprogram are a subset of those of die program as a whole.

On the other hand, if a program terminates but returns an output which is inconect with

respect to its specifications, then this program contains at least one incorrect procedure.

5.1.1. The algorithm

Consider the computation of procedure p (x' ,y') of program P with input x1 and

output / , with / being incorrect with respect to the specifications of p . We trace the

41

computation and check the result of each procedure call (by executing the specifications) as

soon as it is completed. Suppose

q{u'y):-rl', • • • / •„ '

is the first application (instance) of a clause to return an incorrect output v' on input u', then

die clause being applied

q(u,v):-rv • • • ,rn

of procedure q is incorrect. This is explained by the fact that, if q (u' ,v') is the first call

returning an incorrect output, all the procedure calls ri>'"/n' must have completed earlier

and returned correct results. Thus, the implication

q{u,v):-rv---,rn

is false (for the instance u', v') with respect to the specifications.

The algorithm can be summarized as the following pseudo-Prolog code:

An Algorithm for Locating An Incorrect Clause
execute (Goal, Message) :-

clause(Goal, Subgoal),
execute (Subgoal, Message I) ,
diagnose (Goal, Subgoal, Message, Message 1)

diagnose(Goal,Subgoal,ok(Goal),ok(Subgoal))',-
spec (Goal)

diagnose (Goal, Subgoal, incorrect (Goal '.-Subgoal), ok (Subgoal)) :-
not spec (Goal)

diagnose (Goal, Subgoal, Message 1, Message 1)

The clause of execute is used to compute a goal (i.e., Goal in the algorithm above). It first

finds a clause whose head can be unified with Goal, recursively solves the subgoals in the

42

clause, and checks the results of computation. If all the subgoals return correct results, dien

we check if Goal is satisfied, by running specifications on the instantiated Goal. If the result

is consistent with the specifications of Goal, then the clause is correct. The first clause of

diagnose is for this purpose. If the computed Goal is not consistent with its specification,

the second clause of diagnose will return an instance of the incorrect clause. If an error is

identified in the subgoals, then the error message will be returned to the top level, using the

third clause of diagnose.

5.1.2. An example

Consider the following insertion sort piogram, adapted (along with the other

examples used in this chapter) from [Shapiro-83], with specifications for each of its

procedures:

An Inconect Insertion Sort
isort([X\Xs],Ys) ^ isort(Xs£s),

inset t(X£s,Ys)
isort([],U)

insert (X,[Y\Ys],[Y\Zs]) :- Y>X,
insert (X,Ys£s)

inset t(X ,[Y \Ys],[X ,Y \Ys]) :- X <, Y
insert(X,[],[X))

Specifications for the Insertion Sort Program
spec (isort (X,Y)) : - ordered (Y),

perm(X,Y)
spec (insert(X,Y£)) :- ordered(Y)->

ordered (Z),
perm([X\Y]Z)

43

The specification for isort is the same as that for sort in Chapter 4 for generating test cases

(actually this definition can be used for any sorting routine). For insert, the specification

means that insert (X,Y£) holds if Z is in order and is a permutation of the list consisting of

the element X and list Y, provided that Y is in order in the first place.

We now run isort on input [1,0,2] (the user of Constructive Interpreter actually need

not supply the input list [1,0,2], since it can be generated by running the specifications of

isort, as shown in previous chapter). Here is the result:

I ? - execute(isort([l,0,2],Answer), Message).

E r r o r d e t e c t e d . Debugging . . .

The c l a u s e
insert(0,[2] , [2, 0]):-gt (2,0),insert (0, [], [0])

is false!

Answer = X
Message = incor rec t (i n s e r t (0, [2] , [2, 0]) : -

(g t (2 ,0) , i n s e r t (0, [] , [0])))

yes

We found a false instance of the first clause of insert. The error was due to an

incorrect aritlimetic test. Since the positions of the two arguments are exchanged, it forces a

smaller element to be inserted after a larger element. The result is an unsorted list that fails

on the specification check. (The variable Message is actually passed, in our debugging

system, to the bug fixing routine which will be discussed in next chapter.)

To give a clearer picture of how this diagnostic procedure works, we use the

following computation tree of isort on [1,0,2].

44

fow*<[l,0,2]t[l,2,m)
isort([Q,2],[2,0])

isort([2],[2)) *
isort([],[]) *

insert(2,[],[2]) *
insert (0,[2)\2,Q]) <=

2>0 *
insert(Q,[),[0]) *

insert (1,[2,0UU2,0])
1£2

As we mentioned earlier, the diagnostic procedure traverses the computation tree in

post-order and checks each procedure of its correcmess. With reference to the above tree,

during the diagnostic process each of the nodes marked with an asterisk has been verified by

the interpreter as conect with respect to its specifications, while the node pointed by "<=" is

the first node that contains results inconsistent with its specifications. Therefore, the

interpreter returns this node along with its two sons (equivalent to an instantiated clause) as a

counterexample.

5.2. Locating Incomplete Procedures

A program P is said to be complete if for every procedure p in P, every possible

input/output pair (x,y) implied by the specifications of p can be obtained from the

execution of p . On the other hand, P is incomplete if tliere is a procedure p in P such that

the execution of p , with input x, terminates, but fails to return the specified output y. This

reflects the fact that the procedure defined for p is insufficient for computing the relations

defined in the specifications of p . This incompleteness has been tenned "finite failure" (cf.

[Lloyd-84]) and corresponds to a computation tree which is finite but contains a node which

represents an unsuccessful branch.

v.

45

5.2.1. The algorithm

If P (finitely) fails on a procedure call p(x> ,y) with legal input x* and uninstantiated

output y (i.e., the specification of p (x' ,y) is satisfiable), then P must contain at least one

incomplete procedure. There are two possibilities: if p with input x1 invokes no other

procedures, then p is incomplete; if, on the other hand, p calls other procedures, then p or

one of the procedures invoked after p must be incomplete. Accordingly, we trace the

execution of p . If a satisfiable call to a procedure q fails, while all procedures called by q

return an answer whenever the call is satisfiable, then it is q that is deemed incomplete.

We summarize the above algorithm as follows:

An Algorithm for Locating Incomplete Procedures
execute (Goal, Message) :-

clause(Goal, Subgoals),
spec (Subgoals) ,
execute (Subgoals, Message)

execute(Goal, uncovered(Goal)) :-
spec (Goals)

In other words, the interpreter for locating an incomplete procedure can be built in a way that

it first tries to establish a computation tree from the execution of the goal and recursively

executes the new subgoals. When a satisfiable call Goal fails to find a clause that can

complete the computation, one can be sure that Goal is not covered, using the second clause

of execute.

46

5.2.2. An example

Suppose we have an incomplete program as follows:

An Incomplete Insertion Sort
isort ([X\Xs],Ys)

isort ([],[])

insert (X,[Y\YsUY\Zs])

insert (X,[Y\YsUX,Y\Ys])

isort (Xs ^Zs),
insert (X£s,Ys)

X>Y,
insert (X,Ys,Zs)
XZY

Given the same specifications as the ones for the incorrect insertion sort program, we

try isort on [2,1,0]:

| ?- execute(isort([2,l,0],Answer), Message).

E r r o r d e t e c t e d . Debugging . . .

The goal
i n s e r t (0 , [] , [0])

i s not cove red !

Answer = X
Message = u n c o v e r e d (i n s e r t (0, [] , [0]))

yes

We now have an instance of the uncovered goal and the debugger detects that the incomplete

procedure is insert, which does not have a clause to cover the base case (when inserting an

element to an empty list).

47

The incomplete computation tree of isort on [2,1,0] is:

isort ([2,1,0]^\nswer)
isortdlflMJ

isort([0]X2)

insert(0,[]X2) <=

In the pre-order traversal of the tree, insert (0,[],X2) is the first goal that cannot be unified

with any clause in the program. The computation stops at this point because of the failure of

this node.

5.3. Locating Diverging Procedures

5.3.1. The algorithm

If P is partially correct, but nonterminating, then during the computation, some

procedure p must be invoked repeatedly (though, there may be calls to other procedures in

between the calls to p), with the sequence of input values to p not decreasing in the

specified well-founded ordering > for p . In the computation tree, a diverging computation

corresponds to mfinite growth on one branch. This nonterminating computation can be

detected by tracing P and checking diat each call is smaller with respect to > than the

previous one.

This algoridun can be summarized as:

An Algorithm for Locating Diverging Procedures

48

execute (Goal, Message) :-
well -founded (Goal)
clause(Goal,Subgoal),
execute (Subgoal, Message 1),
diagnose (Goal, Subgoal, Message, Message 1)

execute (Goal, looping (Goal))

That is, before executing a goal, the interpreter first checks if the values of input variables

violate the well-founded ordering defined for that goal. This can be done by examing

previous procedure calls in the run time stack and compare values of input variables for

consecutive calls to the same procedure. If the input values do get smaller for later calls,

then the call will not result in looping and, therefore, the interpreter can just go ahead and

execute the goal as usual. On the other hand, if the well-founded ordering is violated, the

interpreter will report an error message.

5.3.2. An example

Given the following example witii its well-founded ordering specifications:

A Looping Insertion Sort
isort ([X\Xs],Ys) 7- isort(Xs,Zs),

insert (X£s,Ys)
isort([],U)

insert (X,[Y\Ys],[Y\Zs]) :- insert (X,Ys,Ws),
insert (Y,Ws£s)

insert(X,[Y\Ys],[X,Y\Ys]) :- X £Y
insert(X,[],[X])

49

Well-founded Ordering for Recursive Procedures
wfo (isort (X ,Y),isort (U ,V))

wfo (insert (X,Y £),insert (U ,V ,W))
shorter(X,U)
shorter (Y,V)

The predicate wfo specifies the well-founded ordering for sequences of input values.

For both isort and insert, the number of elements in the input list should decrease with each

recursive call. As with the case for predicates perm and ordered, shorter can be defined in

Prolog in a straightforward, inefficient way such as:

shorter(X,Y) length(XJNx),
length (Yfly),
Nx <Ny

Running isort on [1,0,2], we have

I ?- execute(isort([l,0,2],Answer), Message).

Error detected. Debugging ...

The goal "insert(2,[0] ,X)" in the clause
insert(0,[2],X):-insert(0,[],[0]),insert(2,[0],X)

is looping!

Answer = Y
Message = l o o p i n g (i n s e r t (0 , [2] ,X))

yes

As can be seen, the second argument of the goal insert (2,[0]X) has the same length as the

second argument of the head of the clause, and thus violates the relationship defined in

wfo (insert).

50

5.4. A Meta-Interpreter for Automatic Bug Location

We can combine the features of the different aspects of debugging illustrated in this

and the previous chapter into one system. This diagnostic interpreter can be summarized as:

An Automatic Meta-Interpreter for Bug Location
execute ((Goal 1, Goal2), Message) :-

execute (Goal I, MsgJJoal 1),
if Msg_Goal 1 = ok(Goal 1)

then execute (Goal 2, Message)
else Message -MsgJ3oall

execute (Goal, ok(Goal)) :-
system(Goal), Goal

execute (Goal, looping(Goa /)) :-
not dect easing (Goal)

execute (Goal, Message) :-
clause(Goal, Subgoals) ,
execute (Subgoals, Msg_Subgoal),
if Msg_Subgoal = ok(Subgoals)

then if spec (Goal)
then Message = ok(Goal)
else Message = incorrect((Goal :- Subgoals))

else Message =Msg_Subgoal

execute (Goal, uncovered(Gofl/))

The procedure execute (Goal, Message) serves two functions: goal reduction and bug

location. The first clause deals with conjunctive goals. It first executes the first conjunct. If

the result is correct, it then goes on executing the remaining conjuncts; otherwise, it just

returns the error found to the top level. The second clause is for built-in primitives: they are

executed directly by the system. The next three clauses of the procedure detect bugs of

51

nontermination, inconect clauses, and uncovered goals, respectively. The predicate

not dect easing checks if the input variables of Goal violate the well-founded ordering

defined in the specification of the procedure that covers the goal, if such is the case, we have

an instance of a looping goal. If the input cannot cause an infinite sequence of procedure

calls, the interpreter will proceed to check if the program can actually complete the

computation on the given input. It first finds a clause whose head can be unified with Goal

and then recursively executes (and debugs) the subgoals in the body of that clause. If a bug

is found in the body of a clause, it will be returned to the top level for correction. If all the

subgoals complete successfully, then all the output variables in Goal will be instantiated.

The interpreter then checks if the output value is correct with respect to the specifications of

Goal. If not, then we have found an incorrect clause. On the other hand, if there is no

clause in the piogram that covers the goal for the input data (i.e., no unifying clause or a

subgoal fails in every unifying clause), then, since Goal is satisfiable according to the

specifications, the program must be incomplete and we have an instance of an uncovered

goal.

v

52

CHAPTER 6.

HEURISTIC BUG CORRECTION

Just as knowing that a program is incorrect does not mean that one knows where the

bug is, knowing the location of a bug does not imply that one knows how to correct it.

Although Myers [Myers-79] has claimed that 95% of the debugging effort is spent on bug

location and that bug correction is a much easier task than bug location, we believe that

correcting a bug after it is identified is generally a more difficult task than locating the bug,

especially when it is to be performed by a machine. This is because bug location only

requires tracing the execution of procedures and checking the results of computation. Bug

correction, on the other hand, requires reasoning with knowledge of the domain and intended

algorithm, the semantics of the programming language and the input/output specifications.

In the automation process, it is an intricate task to formalize the complex knowledge

involved in bug correction and represent it in a form that can be utilized by the debugger.

Some automatic debugging systems (e.g., [Murray-86]) use the stored information in their

system's knowledge base for bug correction by matching (maybe partially) and replacing the

buggy program with the established code fragments or algorithms. In our case, we have only

the knowledge contained in the specifications of die individual procedures and the

operational semantics of pure Prolog. In addition, we have devised some heuristics — based

on a classification of Prolog bugs—that suggest a possible cause for the error. Deductive or

inductive corrective measures (or both) are then employed in an attempt to bring the program

in line with the given specifications.

53

6.1. Fixing an Incorrect Clause

A clause

p{x,y)'.-pv--,pn

is incorrect if there is an instance of that clause, say,

p(x',y'):-p {,••#„'

such that all thep/'s are true (i.e., their specifications hold), butpO^y) is false. (Here*'

denotes the test input value(s) to p and / is the output after the call p(x/ ,y) returns.) To fix

this incorrect clause, we first rerun the specification of p to get a correct output, say y ", for

the given input *'. How the program behaves with the goal p (xf ,y") will help guide the

debugger.

If the solved goal p(x' ,y") is covered by another clause in the program (i.e., there

exists at least one clause in the procedure that computes this goal correctly), then the

incorrect clause should not have completed and returned a wrong result. Instead, the clause

should presumably have failed for this input. We can, therefore, attempt to include extra

conditions that prevent computation for the improper input x'. To add subgoals to the

clause, we try to construct a proof that the right hand side of the clause implies the left hand

side. If the proof fails because of some missing conditions, we can add them as subgoals to

the clause (detail below). Alternatively, we can use the offending clause as a starting point

for an inductive synthesis of a correct clause (see below). In the worst case, we can always

add the subgoal fail to the clause. Although this might be too strong a fix and might result in

some other goals becoming uncovered, adding fail as a subgoal does make the clause

(vacuously) conect. We will discuss below how to deal with any uncovered goals.

54

If the solved goal p (x' ,y ") is only covered by the incorrect clause, then we proceed

to add conditions that preclude computation of the wrong answer y', with input x', as above.

A sufficient condition (viz. if x = x' then y =y") can be deduced from the variable bindings

obtained when unifying p(x',y") with the clause head p(x,y) and may be added to the

clause as subgoals. Or, an inductive approach may be taken.

If the solved goal p(x? ,y") is not covered by any clause, then the fix proceeds in

different directions, depending on wheUier p (x? ,y") can be unified with the head of the

incorrect clause. If the head does unify, but some of the subgoals fail for y", then we

presume that the incorrect clause should cover the goal p(x/ ,y) and compute y" instead of

y'. In tliis case, we can combine fixes for the uncovered goal, p (xr ,y "), and the incorrect

clause that computes the erroneous solution p (x' ,y'). We check, for p (x' ,y ") (i.e., under the

current input and correct output), which of the subgoals in the clause fail with the output

constrained to be y". After identifying any such incorrect subgoals, we try to fix them by

either applying a heuristic rule or an inductive method. We rearrange, replace, delete, or add

new variables within subgoals until the original incorrect clause computes p(x' ,y")

correctly. The induction method that we use to correct incorrect subgoals is a modification

of the refinement method in Shapiro's Model Inference System [Shapiro-83]. (A detailed

analysis of these methods follows in a later section.)

The last possibility is that p (/ ,y ") cannot be unified with the head of the incorrect

clause, nor is it covered by other clauses in the program. In this case, we assume that the

incorrect clause we have identified should cover this goal. Accordingly, the only way to

correct the bug is to first fix (i.e., weaken) the clause head so that it is unifiable with

p (x' ,y "). The methods described above can then be used to fix any incorrect subgoals.

55

We summarize the strategies for correcting an incorrect clause as the following

heuristic rules:

(1) If the solved goal is covered by a clause in the program, then deduce missing subgoals
and add them to the incorrect clause to preclude the wrong answer.

(2) If the solved goal can be unified with the head of the incorrect clause but is not covered
by any clause in the program, then fix the subgoals that fail for the correct answer and
continue debugging the clause.

(3) If the solved goal cannot be unified with the head of the incorrect clause and is not
covered by any clause in the program, then fix the clause head and continue debugging
the clause.

6.1.1. An example

Given the following insertion sort program:

An Incorrect Insertion Sort
isort ([X\Xs],Ys)

isort([],U)

insert (X,[Y\Ys],[Y\Zs1)
insert(X,[Y\Ys],[X,Y\Ys])

insert <X,Um)

isort (Xs,Zs),
insert (X^s,Ys)

insert (X ,Ys £s)
X<,Y

We now test the program on input list [0,1]:

| ? - debug(isort([0,l]>A"swer)).

E r r o r d e t e c t e d . Debugging . . .

The c l a u s e

56

i n s e r t (0 , [1] , [1 , 0]) : - i n s e r t (0 , [] , [0])
i s f a l s e !

The goa l " i n s e r t (0, [1] , [0 , 1]) " i s covered
There a r e m i s s i n g subgoals i n t h e c l a u s e :

i n s e r t (X , [Y | Z] , [Y | V]) : - i n s e r t (X , Z , V)
Re t r ac t e r r o n e o u s c l a u s e :

i n s e r t (X , [Y | Z] , [Y | V]) : - i n s e r t (X , Z , V)

Genera t ing m i s s i n g subgoals . . .
Asser t c l a u s e :

i n s e r t (X, [Y | Z] , [Y|V]) :-Y<X, i n s e r t (X,Z,V)

The debugger detected an incorrect clause in procedure insert when trying to solve the goal

isort([0,l]Answer). After some analysis, it determined that the clause

insert(X,[Y\Z],[Y\V]):- insert(XZ,V)

is false for X=0, T=l, Z=[], V=[0] (note that the debugger occasionally renames variables);

furthermore, it need not be covering the subgoal insert(0,[1],Z), since the solved subgoal

insert (0,[l],[0,l]) is in fact covered by another clause,

wtt?rf(x,rriz],[x,r|Z]) -.-X<,Y,

in the program. The debugger then tried to deduce a missing subgoal by constructing a

proof. It tried to prove that insert(X£,V) implies insert(X,[Y\Z],[Y\VJ), and concluded

that, by adding Y <X to the right-hand side of the clause, the implication holds. Therefore,

the debugger removed the incorrect clause and asserted the synthesized clause to the

program. We will detail this proof process in a later section.

6.2. Fixing an Incomplete Program

To remedy the problem of an uncovered goal, we first check if the goal can be unified

with the head of a clause. If indeed such a clause exists, then we presume that it should

57

cover this goal. Since the original clause might be useful for other goals, instead of

modifying die clause directly, we make local changes on a copy. We locate the subgoal that

causes this clause to fail and either try to fix it inductively (by rearranging, replacing,

deleting, or adding variable within die subgoal) or eliminate the offending subgoal entirely

and use deductive means to correct it, if necessary.

When there is no clause whose head unifies with the uncovered goal, we use the

specifications to synthesize a new clause. This can be done by using the uninstantiated goal

as the clause head and the specifications as the clause body, simplifying the resulting clause

as much as possible, or by an inductive method, using die specifications to guide the search.

We can also fix a clause head so that it can be unified with the uncovered goal, and then

debug the subgoals in the clause.

The above strategies for dealing with uncovered goals can be summarized as follows:

(1) If the uncovered goal can be unified with the head of a clause, then duplicate the
clause, and locate and fix its unsatisfiable subgoals.

(2) If the uncovered goal cannot be unified with the head of a clause, then use the
specifications for that goal to synthesize a new clause.

6.3. Fixing a Looping Procedure

When the input to a procedure call violates the well-founded ordering defined for that

procedure, a likely cause is that the input argument of the call is too general. For example, it

may contain an irrelevant variable that does not appear in either the clause head or other

subgoals of the same clause. Other possibilities are that some variables are missing or that

58

the order of arguments is wrong. In any of these cases, what we have is a clause that

contains a looping call caused by incorrect arguments. We try to fix the offending subgoal,

using the same inductive method as for fixing incorrect subgoals. Alternatively, we can

weaken it and employ deductive techniques to ensure that the well-founded condition is met.

It is also possible that a subgoal that would preclude the looping case is missing (and

that the goal is covered by another clause). This can be treated in the same way as an

incorrect clause.

6.4. Deducing Missing Subgoals

According to the deductive semantics of Prolog, the right hand side (the body) of a

clause should imply the left hand side (the head). That is, in proving the correcmess of a

correct clause, the implication should be found to hold. On the other hand, trying to prove

the implication for an incorrect clause must result in failure. Therefore, we can try to prove

the head of the clause, given the subgoals in the body as hypotheses, and in the process

identify and derive those sufficient conditions that will allow a proof to go through. (Unlike

some methods such as diat in [Katz-Manna-75], a correct clause would never be

"debugged"; only a clause found faulty by testing is subjected to formal verification.)

This approach is inspired by the work of [Smith-82] in which a deductive theorem

prover was used to derive a sufficient precondition such that a goal can be shown to logically

follow from the conjunction of the precondition and a hypothesis. In other words, the

precondition provides any additional conditions under which a goal can be proved from a

hypothesis. We adopted and modified this method and constructed a theorem prover for

59

Horn clauses.

6.4.1. A theorem prover for Horn clauses

The deductive proof proceeds by reducing both sides of the clause to be proved to

simpler forms, by replacing each goal (or subgoal) with its definitions or with something that

implies it, and each hypothesis with its definition or something that it implies, until a

primitive goal is obtained or the proof fails (details in a later paragraph).

The prover employs the following rules which, for the most part, are modifications of

typical rules for deductive proof (cf., [Loveland-78]). In the rules we use G (possibly with a

subscript or superscript) to represent a goal, H (possibly with a subscript) for a hypothesis,

&, V, and ~ for logical "and", "or", and "not", respectively, "H - » G " for "if// then

G ", and "Ihs =$> rhs" for "given Ihs (left hand side), it is sufficient to prove rhs (right

.ps 12" hand side)."

(1) Eliminate the hypothesis

Rule 1: H —> true =£> true.

Explanation: If the goal can be reduced to true, the implication will hold and the proof

can be regarded as successful.

(2) Eliminate the goal

Rule 2: false —» G =£> true .

Explanation: If the hypothesis can be reduced to false, the implication is vacuously

correct.

60

(3) Eliminate the goal which is a subset of the hypothesis

Rule3:H - >G =$> true,if G c f f .

Explanation: If the goal is reduced to a subset of the hypothesis, then the implication is

established.

(4) Eliminate the hypothesis which is a subset of the goal

R u l e 4 : / / - > G = > G,i(G =G-H .

Explanation: If die hypothesis is a subset of the goal, it is sufficient to prove the

subgoals that are not hypothesis.

(5) Reduce a conjunctive goal

Rule5:H -^Gt& G2 => (H -+GJ& (H —> G2) .

Explanation: To prove a conjunctive goal, one needs to prove each conjunct separately.

(6) Reduce a disjunctive goal

Rule 6: / / - > G 1 V G 2 =*> (H -*GJ Y(// -> G 2) .

Explanation: To prove a disjunctive goal, one needs to prove only one of the disjuncts.

(7) Reduce a disjunctive hypothesis

Rule7 : (/ / 1 V/ / 2) ->G => (Hv - » G) & (H2-±G).

Explanation: To prove a goal with disjunctive hypotheses, one can prove that the goal

can be proved from each disjunct.

(8) Reduce an implicative goal

R u l e S r / f - X G j - ^ G p => (H &Gl)->G2.

Explanation: To prove a goal which is an implication itself, include the precondition of

the implication as part of the hypothesis and prove the postcondition of the implication.

61

(9) Reduce an implicative hypothesis

ILvte9i(fll->H2)->G =$> (- / / j - ^ G) * (# 2 ->G) .

Explanation: To prove a goal with an implicative hypothesis, prove the goal with the

negation of the precondition of the implication, and with the postcondition of the

implication, respectively.

(10) Take contrapositive

Rule 10: ~H - » ~G => G - » / / .

Explanation: If both the hypothesis and the goal are in negation form, then one can drop

both negations and reverse the hypothesis and the goal for the proof.

(11) Take contrapositive - generalized rule

Rah lis ~Hl A H2-^~G =*> G&H2~^Hl.

Explanation: If the goal and one part of the hypothesis are in negation form, then the

proof can be established if one can show that the negation part of the hypothesis can be

derived from the negation of the goal and the non-negation part of the hypothesis

combined.

In addition to these proof rules, there are three ways of reducing a goal or subgoal.

First, we can replace the goal with its definition as described in the goal's specification. This

is substitution of equivalent terms:

H-^G =*> H - > G ' , if G=G.

It is obvious that, if one substitutes the goal with equivalent terms, the proof condition will

remain the same Second, if there is a correct program clause whose head matches the goal,

we can replace the goal with the subgoals in that clause. This is just like goal reduction in

62

normal Prolog computation. It can also be regarded as the application of implicative terms:

H ->G => H->G, if G->G.

Third, if a specific domain fact is known, it can be used to weaken a goal or replace it with

something equivalent (e.g., replacing a list with one of its permutations when the order does

not affect the truth value of the predicate). This is an effort to build into the debugger a

knowledge handling capability such that it can have some general knowledge when

reasoning about programs.

Similarly, we can also apply the following rules for hypothesis reduction. First,

substituting the hypothesis with equivalent terms:

H-+G => H->G, if H=H.

If we substitute the hypothesis with equivalent terms, the proof condition remains the same.

Second, substituting the hypodiesis with something that implies the hypothesis:

/ * - > G = > / / ' - » G , if H->H.

It is obvious that this is true.

The proof of a clause starts with the head of the clause as initial goal and the body of

the clause as initial hypothesis. It keeps applying the proof rules until one of the following

conditions is met: (1) the initial goal is reduced to true, in which case the clause is proved

correct; (2) the initial hypothesis is reduced to false, meaning that there are conflicting

subgoals in the clause, and that the clause is vacuously correct; (3) the goal is reduced to a

subset of the hypotheses, in which case the implication is also established; and (4) the

original goal is reduced to primitives and hypotheses, in which case those goals not

63

appearing as hypotheses are added as subgoals to the original clause. If the proof ends in

condition (4), then we have identified those missing subgoals that will make the clause

corcect.

The goal reduction mechanism is equipped with a logical simplifier (cf., [Waldinger-

Levitt-74]). This simplifier is invoked after each reduction step and performs tasks such as

removing nested conjunctions, duplicate goals, and tautologies (i.e., the goal true). It also

simplifies the goal structures according to the logical rules governing and, or, not, and

implication. For example, if a conjunctive goal contains the subgoal false, then the whole

goal will be reduced to false. Also, for the purpose of hypothesis reduction, we assume that

the Horn clauses possess the power of equivalent definitions (cf. [Kowalski-79]).

6.4.2. An example

We now present an example of how a deductive proof can be used to derive missing

subgoals which will make the clause correct. Suppose we have identified the following

clause as being incorrect:

insert (X,[V\Yl[V\Z]):- insert(X,YZ).

We try to prove the head insert(X,[V\Y],[V\Z]), using the body insert(X,YJZ) as a

hypothesis. In implementing this prover, we skolemize all the variables in the clause, since

otherwise Prolog will unify variables which is undesirable when constructing a proof. The

proof condition is thus;

64

(1) Current Hypothesis Current Goal

insert (x ,y ,z) insert (x ,[v |y],[v \z])

We first replace the hypothesis with the specification for insert(x,y^) (given in section

5.1.2.) and obtain

(2) Current Hypothesis Current Goal

ordered (y) —> insert (x ,[v \y],[v \z])
perm(\x\y\,z),
ordered (z)

Using the rule of reduction of implicative hypothesis, the proof can be split into two parts:

(3) Current Hypothesis Current Goal

perm([x \y],z) insert(x,[v \y],[v \z])
ordered (z)

and

(4) Current Hypothesis Current Goal

-ordered (y) insert (x,[v\y],[v\z])

65

We first try to prove condition (3). Since no other rules apply at this point, we replace the

goal with its specification:

(5) Current Hypothesis Current Goal

perm ([x \y] ,z) ordered ([v |y]) —>
ordered (z) perm ([x ,v \y] ,[v \z]),

ordered([v \z]))

Applying the rule of reduction of implicative goal, the precondition of the goal becomes part

of the hypothesis; therefore, we need to prove

(6) Current Hypothesis Current Goal

ordered([v \y]) perm([x,v \y],[v |z])
perm ([x \y],z) ordered([v \z])
ordered (z)

Now that we have a conjunctive goal, the proof is divided into two parts. The proof

condition for the first conjunct is

(7) Current Hypothesis Current Goal

ordered([v \y]) perm ([x ,v \y],[v \z])
perm([x\y],z)
ordered (z)

At this point, no reduction rule can be applied to the proof. However, there is a clause in the

66

procedure of ordered, namely,

ordered([H \T]):- lt_all(H ,T), ordered(T),

whose head can be unified with ordered([v \y]) (literally, the above clause means that the list

[H | T] is in order if the head H is smaller than every element of the tail T, and T is in

order). This part of the hypothesis can, therefore, be reduced to the two subgoals in the body

of that clause. After unifying H with v and T with y we have

(8) Cunent Hypothesis Current Goal

lt_all (v ,y) perm ([x ,v \y],[v \z])
ordered(y)
perm([x\y]j)
ordered (z)

We next utilize one of the domain facts: if list Lj is a permutation of list L2, then after

removing a common element from both lists, the remaining lists are still permutations of

each other. Since, in the current goal, list [x ,v \y] is a permutation of [v \z] and both contain

the element v, by removing v from both lists, [JC |y] is still a permutation of z. The goal can

thus be replaced by something simpler and the proof condition becomes

(9) Cunent Hypothesis Current Goal

lt_all (v ,y) perm ([x \y],z)
ordered (y)
perm([x\y},z)
ordered (z)

67

We see that the goal is now part of the hypothesis, which is one of die terminating conditions

for the proof. Therefore, we have shown that the first conjunct of die goal in step (6) can be

obtained, without the necessity of adding any preconditions. For the second conjunct, the

proof condition is

(10) Cunent Hypothesis Current Goal

ordered([v |y])
perm([x\y],z)
oidered(z)

ordered ([v\z])

We again use a clause for ordered to reduce the hypothesis, as in step (7):

(11) Current Hypothesis Current Goal

lt_all(v,y)
ordered (y)
perm([x\y]j)
ordered (z)

order ed([v\z])

The same clause can also be used to weakened the goal, since it has die same predicate and

variable structure. We therefore have

(12) Current Hypothesis

U_all(v,y)
ordered (y)
perm([x\y],z)
ordered (z)

Current Goal

lt_all(v,z)
ordered (z)

68

This conjunctive goal needs to be processed in two parts. First,

(13) Current Hypothesis Current Goal

lt_all(v,y) lt_all(v,z)
ordered (y)
perm([x\y],z)
ordered (z)

Since, from the hypothesis, we know that z is a permutation of the list [x \y], and the goal

It Jill (v ,z) only requires that v is smaller (less) than all the elements in z, regardless of the

order, we can substitute z with [x \y] without changing the truth value of lt_all (v ,z). This

substitution gives us the following condition:

(14) Current Hypothesis Current Goal

It all (v ,y) lt_all (v ,[JC \y])
ordered (y)
perm([x\y],z)
ordered (z)

We now have another program clause that we can use to reduce current goal:

lt_all (E,[H\T]):-E<H, lt_all (E ,T)

(this clause means that E is smaller than all the elements in list [H\T] if E is smaller than

the head H and is smaller than every element in tail T). Therefore (unifying E with v, H

with x, and T with y), we have yet anodier conjunctive goal to prove:

69

(15) Current Hypothesis Current Goal

lt_all(v,y)
ordered (y)
perm([x\y]j)
ordered(z)

v <x
lt_all(v,y)

The first conjunct happens to contain a primitive "< . " Since this goal cannot be derived

from the hypothesis and meets the condition for terminating the proof, we record it as a

condition that needs to be added to the original hypothesis, if we want the proof to be

successful. The second conjunct actually appears in the hypothesis and is, therefore, proven.

In consequence, the condition in step (15) is satisfied, with the realization that "v < J C "

should be added as a subgoal in the original clause.

In step (12), the second conjunct is satisfied, since it is part of the hypothesis:

(16) Current Hypothesis Current Goal

lt_all(v,y)
ordered (y)
perm([x\y],z)
ordered (z)

ordered (z)

Back to the second part of the proof from step (2), we proceed from step (4) and

replace the goal with its specification, resulting in the following condition:

70

(17) Current Hypothesis Current Goal

—ordered (y) ordered ([v \y]) —>
perm([x,v\yUv\z]),
ordered ([v|z]))

Applying the rule of reduction of implicative goal, the precondition of the goal becomes part

of the hypothesis:

(18) Current Hypothesis Current Goal

ordered([v |y]) perm([x,v |y],[v |z])
-ordered (y) ordered ([v \z])

With a conjunctive goal, we try to prove the first conjunct first. After reducing

ordered([v \y]) (same as in step (7)), we have

(19) Current Hypothesis Current Goal

lt_all (v ,y) perm ([x ,v |y],[v \z])
ordered (y)
—ordered (y)

Since there are complementary terms (ordered(y) and -ordered (y)) in the hypothesis, after

simplifying, the proof condition is now

71

(20) Current Hypothesis Current Goal

false perm ([x ,v |y],[v \z])

This is, of course, trivially satisfied. The second conjunct of the goal in step (18) can also be

satisfied in the same way.

In summary, during the whole deductive proof process, we have shown that the

original incorrect clause satisfies its property of implication, except in step (15) where we

identify a missing condition (i.e., v < x) that must be added as a subgoal (hypothesis). If we

include this subgoal in the original clause, we will have a successful proof.

6.5. Fixing Incorrect Subgoals

Once we identify an inconect subgoal, we can correct it using either a heuristic rule

or an inductive method, besides using the deductive methods oudined in the previous

sections.

We have developed heuristics that are meant to correct an incorrect subgoal quickly

when a certain pattern of subgoals is encountered. For example, one of the mles is to swap

the variables if there are only two variables in the subgoal. Other rules include moving a

simple variable to a different position, replacing simple variables with more complicated

terms, deleting seemingly redundant variables, and adding free variables that have appeared

elsewhere in the same clause. The purpose of this kind of heuristic is to attempt to fix some

commonly made, yet easily corrected, errors. These heuristics were lifted from Shapiro's

i

I

72

work.

When our heuristic rules cannot correct the errors in a subgoal, a general inductive

strategy will be employed with the hope of fixing the bugs. This is done by applying

refinement operations on terms within the subgoals. For example, we can try to unify two

free variables, or unify a compound term with variables appearing elsewhere in the same

clause.

It should be noted that all heuristic fixes will be tested immediately after the changes

are made; and if the fixes do not correct the errors, all the changes are undone.

73

CHAPTER 7.

THE CONSTRUCTIVE INTERPRETER

The functions of test case generation, bug discovery, bug location, and bug correction

can be integrated in one automated debugging environment. Our realization of this

framework is named the Constructive Interpreter The structure of this interpreter can be

described in pseudo-Prolog code as follows:

The Constructive Interpreter
interpret (Goal (Input,Output)) :-

spec (Goal (Input ,Output)),
skolemize (Input ,Skolem) ,
execute (Goal(Skolem ,Output), Message) ,
fix bug (Message)

Upon receiving a goal, the interpreter first examines the input variables. If the input is

symbolic, then by executing the specifications of the procedure, the interpreter will generate

test cases. Running the specifications on the given or generated input also checks that the

input values are satisfiable. Once the legality of the input is established or a legal test input

generated, the interpreter proceeds to execute the program on skolemized input.

(Skolemization forces the program to find one symbolic output for all inputs with the same

given stmcture.) If execution completes successfully, the interpreter returns correct output

values. In the case of symbolic input, the user can continue to generate alternate test cases

and execute the program on different inputs. If ever the execution fails, i.e., if the program

74

contains an incorrect, incomplete, or nonterrninating procedure, then the interpreter will

locate a bug and return a diagnostic message. Bug-fixing routines will then be invoked to

correct the bug that has been identified and located.

The procedure execute does goal reduction and bug location, and has been discussed

in Chapter 5. The procedure fix_bug(Message) implements the bug correction heuristics

discussed in Chapter 6.

This interpreter is constructive in the sense that it assumes an active role during the

debugging process and actually tries to complete the construction of the program being

debugged, all with very litde user involvement. As will be seen in the next Chapter, this

interpreter can also be used to synthesize Prolog programs.

7.1. Implementation

The Constructive Interpreter is written in C-Prolog and runs in a 4.3 BSD Unix

environment. It is based on the meta-interpreter introduced in Chapter 3.

The three major components are test case generator, bug locator, and bug corrector.

The test case generator executes specifications to either generate test input or verify the

satisfiability of user-supplied input. The bug locator also carries out the computation. It has

a mn-time stack that records all procedure invocations. This information and the specified

well-founded ordering are used to check against looping. The execution is simulated to

perform depth-first search and backtracking upon failure. A message stack is maintained

during execution, and an error message is recorded whenever an error occurs.

75

The bug corrector contains three main procedures, dealing with three different kind

of errors respectively. In addition to performing error analysis and suggesting fixes, they all

have access to the deductive theorem prover and inductive subgoal refiner.

7.2. Examples

In this section, we illustrate the integrated functions, including test case generation,

bug location, and correction, of the Constructive Interpreter. Our experimental

implementation is able to generate test cases that reveal errors and locate bugs for all the

sorting examples in [Shapiro-83].

The following is an annotated script of the Constructive Interpreter debugging a

quicksort program.

A Buggy Quick Sort Program
qsort([X\L]JLQ)

part([X\L],Y£l,[X\L2])
part([X\L],Y,[X\Ll]£2)

part(UX,[XU])

append([X \L 1]JL 2,[X |L3])
append (UJLJa)

* •

• •
•

•

part(LJLJL\,L2),
qsort(LliL3),
qsort(L2JL4),
append ([X |L3],L4,L0)

part(L,Yl\£2)
X <. Y,
part (L,Y ^1^2)

append (LIJL2JL3)

76

Specifications for the Quick So
spec(qsort(X,Y))

spec (part (LJEX,Y))

spec (append (X ,F ,Z))

wfo(qsort(X,Y), qsort(U,V))
wfo (part(XAfiJC), part(YPEJ))

wfo (append(X A ,B), append(Y,CJ)))

rt Program
'.- ordered(Y),

perm(X,Y)
:- rm list(XJL,Y),

gt_all(EX),
It all(E,Y)

:- length(Xfl),
front (N£X),
rm_list(XZ,Y)

\- shorter(X,U)
:- shorter (X,Y)
x- shorter (X,Y)

The specifications say that qsort(X ,Y) holds if Y is sorted and Y is a permutation of X, that

part(LEJC,Y) holds if Y is the list obtained by removing elements of X from L (in other

words, L is a permutation of X and Y combined) and E is greater than all the elements inX

and smaller then all the elements in Y, and that append (X,Y iZ) is true if Z is the

combination of lists X and Y, in their original order. The predicate wfo specifies the well-

founded ordering for sequences of input values. For all procedures qsort, part, and append

the number of elements in the input list should decrease with each recursive call. As is also

the case for the insertion sort program, the predicates perm, ordered, rmjist, gtjtll, lt_all,

and shorter can be defined as usual Prolog procedures. (These procedures should be

regarded as standard building blocks for specification, available in the debugger's library,

since they all apply across a whole gamut of specific programs. For example, lt_all would

play a role in virtually all sorting and most searching programs and rmjist in practically all

programs with destructive list manipulation.)

We now show how the Constructive Interpreter analyzes the above insertion sort

77

program. The top level command is ci; it prompts with an asterisk. User input is shown in

boldface.

Invoking the debugger, we proceed as follows:

I ?- ci.

* qsort(U,V).

Solving g o a l : q s o r t <[],X) . . .

E r r o r d e t e c t e d . Debugging . . .

The goal
qsort ([], [])

is not covered!

Since qsort(U,V) is symbolic, the debugger first generated a test case qsort([LX) and tried

to satisfy it. It discovered that qsort([],X) should have a solution qsort([],[]) according to

the specification of qsort, but cannot get it from the program we supplied. The debugger

therefore reported a bug and tried to fix it.

S y n t h e s i z i n g a c l a u s e t o cover q s o r t ([] , []) . . .
A s s e r t c l a u s e :

q so r t ([] , []) : - t r u e

L i s t i n g of q s o r t (X, Y) :
q so r t ([] , []) : - t r u e ,
q so r t ([X|Y] , Z) : -

pa r t (Y ,X ,W,Xl) , q s o r t (W , Z l) , q s o r t (XI ,VI) ,
append ([X | Z l] , V 1 , Z) .

Since no clause head in the original program unified with qsort ([],[]), the debugger used the

specification for qsort and synthesized the clause

qsort([],[]) : - ordered([])perm([],[])

78

to cover that goal. Since the body of this clause can be reduced to true, the debugger added a

unit clause to the program (by asserting it to the database). The goal qsort ([],[]) is now

satisfiable. Since we initially supplied a symbolic input, we now try for another test case;

* Try another test case? y.

Solving goal: qsort([x],X) ...

Error detected. Debugging ...

The clause
part([],x, [x], []) :- true

is false!

The debugger now generated a one element list as test input: qsort([*],X). (Note that the

input generated, [x], contains a skolem constant x.) This time, it found an incorrect clause in

the procedure part, because partitioning an empty list should result in two empty sublist, so

the result of parti ([]jcX,Y) should be part([]jc,[],[]) instead of part ([],* ,[*],[]). After

further analysis, the debugger concludes that:

The head of the clause
part([]/X, [X], []) :- true

is incorrect. Fixing ...

Cannot fix clause head!
Retract clause:

part([],X, [X], []) :- true
Synthesizing a clause to cover part([] ,x, [], [])
Assert clause:

part([],X, [],[]) :- true

Listing of part(X,Y, Zf U) :
part([],X, [],[]) :- true.
part([X|Y],Z,U,[X|W]) :- part(Y, Z,U,W) .
part([X|Y],Z,[X|V],W) :- X <= Z,

part(Y,Z,V,W) .

79

Since the unit clause in the procedure part was incorrect, and the debugger could not fix the

head, it retracted the clause. After synthesizing a clause that coverspart([]jc,[],[]), the

debugger prompts the user:

* Try a n o t h e r t e s t case? y .

Solving g o a l : q s o r t ([0 , 1] , X) . . .
Found s o l u t i o n : q s o r t ([0 , 1] , [0 , 1])

The next test case generated is qsort ([Q,1]X). This is because we have included the axiom

"0 < 1" and a call to the procedure ordered (which is part of the specification for qsort)

causes mput variables to be bound to the constants of this axiom. Unlike the previous two

test cases, the goal qsort([0,1]JC) is directly solvable by the clauses currently in the

program.

* Try a n o t h e r t e s t case? y.

Solving g o a l : q s o r t ([1 , 0] , X) . . .

Er ror d e t e c t e d . Debugging . . .

The c l a u s e
p a r t ([0] , l , [] , [0]) : - p a r t ([] , 1, [] , [])

i s f a l s e !

The next test goal qsort([l,0]X) resulted in the location of an inconect clause in the

procedure part. A trace of the procedures shows that the correct solution Xopart([0],1,X ,Y),

viz. part([0],l,[0],[]), can be obtained from the other clause of part. Thus, this incorrect

clause should have failed, but did not because of a missing subgoal. Our debugger is able to

deduce this missing subgoal:

80

There are missing subgoals in the clause:
part ([X|Y],Z,U, [X|W]) :- part (Y, Z,U,W)

Retract erroneous clause:
part ([X|Y],Z,U, [X|W]) :- part (Y, Z,U,W)

Generating missing subgoals ...

Assert clause:
part([X|Y],Z,Uf [X|W]) :- Z <= X,

part(Y,Z,U,W)
Listing of part (X, Y,Z,U) :

part ([X|Y],Z,U, [X|W]) :-Z<=X,
part(Y,Z,U,W) .

p a r t < [] ,X , [] , [] > : - t r u e .
p a r t ([X | Y] , Z , [X|V],W) : - X < = Z ,

part(Y,Z,V,W) .

This time, after correcting for the missing subgoal (by retracting an incorrect clause and

asserting a correct one), the debugger reexecuted all the test goals generated so far to make

sure the changes do not destroy anything. (Note that there is no way a correctiy synthesized

clause can cause a problem; retracting an incorrect clause, however, could conceivably cause

some goals to become uncovered.)

Checking p r e v i o u s goa l q s o r t (N,X) . . .
Found s o l u t i o n : q s o r t ([] , [])

Checking p r e v i o u s goa l q s o r t <[x],X) . . .
Found s o l u t i o n : q s o r t ([x] , [x])

Checking p r e v i o u s goa l q s o r t ([0 ,1] ,X) . . .
Found s o l u t i o n : q s o r t ([0 , 1] , [0,1])

Checking p r e v i o u s goa l q s o r t ([1 , 0] ,X) . . .

E r r o r d e t e c t e d . Debugging . . .

The c l a u s e
q s o r t ([1 , 0] , [1 , 0]) : -

p a r t ([0] , l , [0] , []) , q so r t ([0] , [0]) ,
q s o r t ([] , []) , a p p e n d ([l , 0] , [] f [1 , 0])

81

i s f a l s e !

As shown above, the debugger caught another bug when trying to resatisfy the current test

goal. Further diagnosis narrows down the bug's location:

The c l a u s e
q s o r t ([X | Y] , Z) : -

p a r t (Y , X , W , X l) , q s o r t (W,Z1),
q s o r t (XI ,VI) , a p p e n d ([X | Z l] , V I , Z)

c o n t a i n s i n c o r r e c t s u b g o a l s . F i x i n g . . .

Subgoal "append([X|Y] ,Z,U) " i n c l a u s e
q s o r t ([X|W],U) : -

p a r t (W,X,U1,V1), q s o r t (U1,Y),
q s o r t (VI, Z) , append([X | Y] ,Z,U)

i s i n c o r r e c t

Trying a l o c a l f i x . . .

R e t r a c t c l a u s e :
q s o r t ([X | Y] , Z) : -

p a r t (Y,X,W,X1), q s o r t (W, Z l) ,
q s o r t (XI,VI) , append([X |Z1] ,V1 ,Z)

Asse r t c l a u s e :
q s o r t ([X | Y] , Z) : -

p a r t (Y , X , W , X l) , q s o r t (W, Z l) ,
q s o r t (XI ,VI) , a p p e n d (Z l , [X|V1],Z)

L i s t i n g o f q s o r t (X,Y):
q s o r t ([X |Y] ,Z) : -

p a r t (Y , X , W , X l) , q s o r t (W f Z l) ,
q s o r t (XI ,VI) , a p p e n d (Z l , [X|V1],Z) .

q s o r t ([] , []) : - t r u e .

Up to this point, all the bugs in the original program have been detected and corrected. If we

now continue to debug the program, the debugger will keep on generating arbitrarily long

lists as test input without reporting an error. We would be led to believe, in this case, that the

program is correct with respect to its specifications. (Formal verification of its correcmess

82

would require greater theorem proving capabilities.)

We now present a merge sort program to demonstrate how the debugger deals with a

looping error.

A Buggy Merge Sort Program
msort(U,[])
msort (X^)

break(X,0,[]X)
break([A\X]£,[A\Y]Z)

merge(UXX)
merge(X,[]X)

merge([A\XUB\Y],[A\Z])

merge([A\Xl[B\YUB\Z])

• •

• •

• _ •

• •

lengthfXJL),
L\ is LI 12,
break(XZ IX1X2),
msort (X 1,Z1),
msort (X2£2),
merge (Z1JZ2JZ)

LI is L~l,
break(X£l,Y,Z)

A <.B,
merge(X,IB \Y]Z)
A > B,
merge([A\X],Y£)

Specifications for the Merge Sort Program
spec(msort(X,Y))

spec (break (XJN,Y,Z))

spec (merge (X ,Y ,Z))

wfo (msort (X ,Y), msort (U ,V))
wfo(break(XA3,C), break(Yfi£JF))

wfo (merge (X ,Y A), merge (U,VJB))
Wfo (merge (X,Y A), merge (U,V ft))

ordered (Y),
perm(X,Y)
append (Y^X),
length (Y^f)
rmjist (X,Z,Y),
ordered (Z)

shorter (X,U)
shorter (X,Y)
shorter (X,U)
shorter (Y,V)

83

Merge sort accepts a list, breaks it into roughly equivalent halves, recursively merge

sorts the sublists, then merges the sorted halves. Note that the predicates used in the above

specifications are the same ones used in the specifications for quick sort.

The following is the debugging script:

I ?- ci

* msort(U,V).

Solving goal: msort([],X) ...
Found solution: msort([],[])

The program has no problem solving the empty list. However, it gets into trouble quickly

with the one-element list.

* Try another test case? y.

Solving goal: msort([x],X) ...

Error detected. Debugging ...

The goal "msort ([x] ,Y) " in the clause
msort([x],X) :-

length ([x],l), 0 is 1//2,
break<[x],0,[],[x]), msort ([], []),
msort([x],Y), merge([],Y,X)

is looping!

The debugger found that the procedure call msort([x],Y) to the second clause of msort

violated the well-founded ordering defined for that recursive procedure.

Adding subgoals for well-founded ordering in clause:
msort(X,Y) :-

length(X,U), V is U//2,

84

b r e a k (X,V, Zl ,Ul) , m s o r t (Z1,W1) ,
mso r t (U1,Y2), merge (W1,Y2,Y)

L i s t i n g of msor t (X, Y) :
msor t ([] , []) : - t r u e .
msor t (X,Y) : -

s h o r t e r (Ul, X), l e n g t h (X, U) ,
V i s U / / 2 , b reak (X,V, Z1,U1) ,
mso r t (Z1,W1), msor t (U1,Y2),
merge(W1,Y2,Y)

Cont inue debugging . . .

Not being able to fix the offending subgoal direcdy, the debugger added the well-founded

condition as a subgoal to the clause and continues with the analysis.

Error detected. Debugging ...

The goal
msort ([x], [x])

is not covered!

Synthesizing a clause to cover msort ([x], [x]) ...
Assert clause:

msort ([X], [X]) :- true

Listing of msort (X, Y):
msort ([X], [X]) :- true,
msort ([],[]) :- true.
msort (X,Y) :-

shorter (Ul, X), length (X, U) ,
V is U//2, break (X,V, Z1,U1) ,
msort(Z1,W1) , msort(U1,Y2),
merge(W1,Y2,Y)

After enforcing the well-founded ordering on recursive calls, the debugger detected that the

program is incomplete, since the goal msort([x],[x]) is not covered. Therefore, it invoked

the synthesis routine and found a clause for the goal.

85

R e s t o r i n g o r i g i n a l c l a u s e . . .
L i s t i n g of msort (X,Y) :

msort ([X], [X]) : - t r u e ,
msort ([] , []) : - t r u e ,
msort (X,Y) : -

length (X,U), v i s U / / 2 ,
break (X,V, Z1,U1) , msort(Z1,W1),
msort (U1,Y2) , m e r ge (W1,Y2,Y)

Since the error was due to a missing case, the debugger restored the original, correct clause.

It turned out that the looping bug was due to the behavior of procedure break. A

one-element list to the procedure is always broken into sublists of zero- and one-element.

This one-element list is never reduced in the recursive call, and, therefore, need to be treated

as a special case. Adding a unit clause for it resolve the problem completely.

Note that, in running the debugger, the user only needs to supply top level goals (in

our examples, qsort(U,V) and msort(U,V)), and types in a yes answer for the debugger to

continue debugging with alternative test cases. Since the knowledge necessary for the

discovery, location, and correction of bugs is either built into the debugger or furnished as

program specifications, user intervention during a debugging session is reduced to a minimal

level.

86

CHAPTER 8.

AUTOMATIC SYNTHESIS OF LOGIC PROGRAMS

There are two main approaches in synthesizing logic programs: deductive and

inductive. The next two sections present the main ideas. We then show how these two

approaches can be combined to produce a more powerful system, as exemplified by the

Constructive Interpreter.

8.1. Deductive Synthesis

The deductive synthesis of logic programs can be summarized as follows:

formulating intuitively correct if-and-only-if logic definitions of the relations of interest,

together perhaps with additional facts about those relations, then using this knowledge as an

axiom set to derive the procedures by logical deduction [Hogger-81],

The derivation starts with a goal representing the desirable logic procedure and

proceeds by applying repeatedly inference rules, until the original goal becomes a set of

atomic formula. The first land of inference rules is for goal simplifications which are meant

to modified a goal to Hom clause form by deleting superfluous calls or rewriting complicated

calls as conjunctions of simpler ones. The second kind of inference rules is for goal

substitutions in which some formula in the axiom set is selected and is substituted for some

subformula of a goal. Both of these inference rules might result in bindings of terms to goal

variables.

87

The procedure derivations are essentially symbolic executions whose procedure

invocations and termination criteria are generalizations of their counterparts in normal

program executions. In logic programming, a successful computation is obtained by

deriving an empty goal, while a successful procedure derivation is obtained by deriving a

goal in Horn clause form which is generally nonempty. In the former case, derivation is

computing a solution, but in the latter case, derivation is inferring a way of solving the

problem.

8.2. Inductive Synthesis

The typical inductive synthesis of logic programs (cf., [Shapiro-83]) starts with a set

of examples (in this case, the examples are solved goals) which represent the desired

behavior of the program to be synthesized. Usually the basic stmcture of the program and

the types of input/output variables are also supplied. For each example (goal), the synthesis

system simply searches the set of possible clauses until it finds one which covers the goal in

question. The root of the search tree is the predicate of the goal with each argument set to a

simple variable and no subgoals. Its descendents are clauses produced by applying simple

refinements. If necessary, more clauses can be produced by refining the descendents.

The refinement operator to produce descendents of nodes in the search tree is based

on two types of operations: (1) instantiate a variable and (2) add a subgoal to the body of the

clause. Instantiation operations instantiate a variable either to a constant, another variable, or

a compound term. Output variables are only unified with input variables by means of the

close clause operation. This sets each of the output variables in a clause to one of the input

variables. Clauses produced by this operation are the only ones in which output values will

88

beset.

The inductive synthesis process is basically a generate (refine) and test (diagnose)

cycle. The refinement searches for a candidate clause, while the diagnosis validates a clause.

It stops when the synthesized program is able to solve all the examples successfully. When

diagnosing the correcmess of a clause, Shapiro's system often needs to consult an oracle

(usually the user) to verify some intermediate results. As will be seen, this oracle can be

adequately replaced by executable specifications.

83. Program Synthesis with Executable Specifications

The typical process of debugging — designing a test case, detecting an error in the

program, locating the error, and fixing it — can be applied in program synthesis. Equipped

with procedures for goal generation and checking, the Constructive Interpreter can be used

to synthesis programs from executable specifications. The following is an example of

generating an insertion sort program, with very little user involvement. In fact, the user only

needs to type in the initial request, and answer "yes" or "no" when the system prompts for

instruction on whether to continue generate new goals. This example starts with an empty

isort program, however, the specifications of isort mentioned in Chapter 5, that is,

Specifications for the Insertion Sort Program
spec (isort (X ,Y)) : - ordered (Y),

perm(X,Y)
spec (insert (X,YZ)) :- ordered (Y) ->

ordered (Z),
perm([X\nZ)

89

is given to the system.

I ?- ci.

* isort(U,V).
Solving goal: isort ([], X) ...
Error: missing solution isort ([],[]).

diagnosing...
Error diagnosed: isort ([],[]) is uncovered.

After starting, the system first generated a goal isort([]X) which is of course not covered,

since the initial program is empty. Therefore the system searches for a clause to cover this

goal.

Searching for a cover to isort([],[]).. .
Checking: isort(X,X):-true
Found clause: isort(X,X):-true

after searching 4 clauses.

Listing of isort(X,Y):
isort (X,X):-true.

With little effort, the system easily found a unit clause that does the job. The program

synthesized so far contains exacdy one clause:

isort(XX)'.-true.

Now that the goal isort ([]X) is solved, the system prompts for continuation.

* Continue? y.
Solving goal: isort([x],Y) ...
Found solution: isort([x],[x]).

Checking fact(s)...no error found.

* Continue? y.
Solving goal : i s o r t ([0 , 1] , X) . . .

f

!

90

Found solution: isort([0,1],[0,1]).

Checking fact(s)...no error found.

The current clause solved two successive input list [JC] and [0,1] without any problem.

However, it cannot handle the next generated input list [1,0], shown as follows:

* Continue? y.
Solving goal: isort([1, 0] ,X) ...
Error: wrong solution isort([1,0], [1,0]).

diagnosing...
Error diagnosed: isort([1,0],[1,0]):-true is false.

Listing of isort (X,Y):

Checking fact (s) . . .
Error: missing solution isort ([],[]).

diagnosing.. .
Error diagnosed: isort([],[]) is uncovered.

The system found that the clause

isort (XX):-true

is too general, since it just simply returns an output list which is exactly the same as the input

list. The debugger removed this clause. However, it soon found out that it can no longer

solved the first goal isort([],[]), since the program is empty now.

Searching for a cover to isort([],[])...
Checking: isort (X, []):-true
Found clause: isort(X,[]):-true

after searching 4 clauses.

Listing of isort (X,Y):
isort(X, []):-true.

91

After some search, the system found a clause that returns an empty list as output, regardless

of input. This clause covers the goal isort ([],[]), however, it is incorrect for any goal of

isort with a non-empty list of input.

Checking fact (s)...
Error: missing solution isort ([x], [x]).

diagnosing...
Error diagnosed: isort ([x] , [x]) is uncovered.

Searching for a cover to isort ([x], [x]) . . .

Checking: isort ([X| Y], Z) : -insert (X, Y, Z)
Found clause: isort ([X|Y], Z) : -insert (X, Y, Z)

after searching 20 clauses.

Listing of isort (X, Y) :
isort (X, []) : -true.
isort ([X | Y], Z): -insert (X, Y, Z) .

The system found a clause that could cover the goal isort([x],[x]). However, there is no

clause in the program that can cover the subgoal insert(X,Y£) in the newly found clause.

Therefore, the system continues the search:

Checking f a c t (s) . . .
E r r o r : m i s s i n g s o l u t i o n i s o r t ([x] , [x]) .

d i a g n o s i n g . . .
E r ro r d i a g n o s e d : i n s e r t (x, [] , [x]) i s u n c o v e r e d .

Sea rch ing f o r a cover t o i n s e r t (x, [] , [x]) . . .
Checking: i n s e r t (X,Y, [X|Y]) : - t r u e
Found c l a u s e : i n s e r t {X,Y, [X | Y]) : - t r u e

a f t e r s e a r c h i n g 6 c l a u s e s .

L i s t i n g of i n s e r t (X,Y,Z) :
i n s e r t (X, Y, [X | Y]) : - t r u e .

92

After adding a clause for the procedure insert, die program is still not complete.

Checking fact(s)...
Error: missing solution isort([1,0],[0,1]).

diagnosing...

Error diagnosed: insert (1, [0], [0,1]) is uncovered.

Searching for a cover to insert (1, [0], [0,1]) ...

Checking: insert(X,[Y|Z],[Y,X|Z]):-true
Found clause: insert(X,[Y|Z], [Y,X|Z]):-true

after searching 27 clauses.

Listing of insert(X,Y,Z):
insert (X, Y, [X|Y]):-true.
insert (X, [Y | Z], [Y,X|Z]):-true.

The system added yet another clause for insert, but upon rechecking, isort still returns an

incorrect result for input [1,0].

Checking fact (s)...
Error: wrong solution isort([1,0], [1,0]).

diagnosing...

Error diagnosed: insert (1, [0], [1, 0]):-true is false.

Listing of insert(X,Y,Z) :
insert (X, [Y|Z], [Y,X|Z]):-true.

This time, the first clause in procedure insert is identified as false, since according to the

specification of insert, inserting the element 1 into the list [0] should result in the output

[0,1] instead of [1,0] as computed by the erroneous clause. Removing the clause, die system

is in search of a replacement.

93

Checking fact(s)...
Error: missing solution isort ([x], [x]) .

diagnosing...
Error diagnosed: insert(x, [],[x]) is uncovered.
Searching for a cover to insert(x,[],[x])...
Checking: insert (X,Y, [X]): -true
Found clause: insert(X, Y, [X]):-true

after searching 9 clauses.

Listing of insert(X,Y,Z):
insert (X, [Y|Z], [Y,X|Z]) :-true.
insert (X, Y, [X]) : -true.

The new clause does not solve the problem, as the system still complains about ercors:

Checking fact(s) . . .
Error: missing solution isort ([0,1], [0,1]).

diagnosing...

Error diagnosed: insert(0,[1],[0,1]) is uncovered.

Searching for a cover to insert (0,[1],[0,1])...

Checking: insert (X, [Y|Z], [X|V]) :-insert (Y, Z,V)
Refuted: insert(1,[0], [1,0]) :-insert(0,[],[0])

Another new clause was found but was immediately rejected, since it does not compute the

correct result.

Checking: i n s e r t (X, [Y |Z] , [X,Y|Z]) :-X<Y
Found c l a u s e : i n s e r t (X , [Y | Z] , [X,Y|Z]):-X<Y

a f t e r s e a r c h i n g 33 c l a u s e s .

L i s t i n g o f i n s e r t (X , Y , Z) :
i n s e r t (X, [Y|Z], [Y,X|Z]) : - t r u e .
i n s e r t (X,Y, [X]) : - t r u e .
i n s e r t (X, [Y |Z] , [X,Y|Z]) : -X<Y.

94

A clause with an arithmetic test as a subgoal is now added to the program. The program is

now correct with respect to all the known facts to the system. (A fact is defined as a ground

term with a value of true OT false; it may be supplied by the user, or generated by the system

when solving goals. For example, <isort([l,0],[0,l]),true> is a fact, so is

<isort([l,0],[l,0]),false >. A correct program should succeed on a true fact, and fail on a

false fact.) The system proceeds to check if the program satisfies the goals generated so far:

Checking f a c t (s) . . . n o e r r o r found .
Checking p r e v i o u s goals . . .
The g o a l : i s o r t ([] , []) s u c c e e d e d .

E r ro r : wrong s o l u t i o n i s o r t ([x] , []) .
d i a g n o s i n g . . .

Er ror d i a g n o s e d : i s o r t ([x] , []) : - t r u e i s f a l s e .

L i s t i n g o f i s o r t (X,Y):
i s o r t ([X | Y] , Z) : - i n s e r t (X, Y, Z) .

Quickly, a false clause was found and removed. Expectedly, this creates problems.

Checking f a c t (s) . . .
E r ro r : m i s s i n g so lu t i o n i s o r t ([] , []) .

d i a g n o s i n g . . .
Er ror d i a g n o s e d : i s o r t ([] , []) i s uncovered.

Sea rch ing f o r a cover t o i s o r t ([] , []) . . .
Checking: i s o r t ([] , []) : - t r u e
Found c l a u s e : i s o r t ([] , []) : - t r u e

a f t e r s e a r c h i n g 5 c l a u s e s .

L i s t i n g o f i s o r t (X,Y):
i s o r t ([X | Y] , Z) : - i n s e r t (X, Y, Z) .
i s o r t ([] , []) : - t r u e .

The search found a clause to cover the case when the input list is empty. When trying to

recompute the goal isort ([0,1]X), another bug is found.

95

Checking f a c t (s) . . . n o e r r o r found.
Checking p r e v i o u s g o a l s . . .
The g o a l : i s o r t ([] , []) succeeded .
The g o a l : i s o r t ([x] , [x]) succeeded .

E r r o r : wrong s o l u t i o n i s o r t ([0 , 1] , [1 , 0]) .
d i a g n o s i n g . . .

E r r o r d i agnosed : i n s e r t (0 , [1] , [1 , 0]) : - t r u e i s f a l s e .

L i s t i n g of i n s e r t (X , Y , Z) :
i n s e r t (X , Y , [X]) : - t r u e .
i n s e r t (X , [Y |Z] , [X,Y|Z]) :-X<Y.

The system tracked down a false clause in procedure insert and continues the search:

Checking fact(s) . . .
Error: missing solution isort([1,0],[0,1]).

diagnosing...
Error diagnosed: insert(1,[0],[0,1]) is uncovered.
Searching for a cover to insert (1,[0], [0,1])...
Checking: insert(X, [Y|Z],[Y|V]):-insert (X,Z,V)
Refuted: insert(0, [1],[1,0]):-insert(0,[], [0])
Checking: insert(X,[Y|Z],[Y,X|Z]):-Y<X
Found clause: insert(X,[Y|Z], [Y,X|Z]) :-Y<X

after searching 46 clauses.

Listing of insert(X,Y,Z):
insert (X,Y, [X]) :-true.
insert(X,[Y|Z], [X,Y|Z]):-X<Y.
insert(X,[Y|Z],[Y,X|Z]):-Y<X.

After some extensive search, the system found a clause which complements another clause

with similar stmcture, but opposite arithmetic test in procedure insert. However, the clause

for the base case in insert is still incorrect.

Checking f a c t (s) . . . n o e r r o r found.
Checking p r e v i o u s g o a l s . . .
The g o a l : i s o r t ([] , []) succeeded .

96

The g o a l : i s o r t ([x] , [x]) s u c c e e d e d .

E r r o r : wrong s o l u t i o n i s o r t ([0 , 1] , [0]) .
d i a g n o s i n g . . .

E r r o r d i a g n o s e d : i n s e r t (0 , [1] , [0]) : - t r u e i s f a l s e .

L i s t i n g of i n s e r t (X , Y , Z) :
i n s e r t (X , [Y |Z] , [X ,Y |Z]) :-X<Y.
i n s e r t (X , [Y | Z] , [Y , X | Z]) :-Y<X.

The false clause is now to be replaced.

Checking f a c t (s) . . .
E r r o r : m i s s i n g s o l u t i o n i s o r t ([x] , [x]) .

d i a g n o s i n g . . .
E r r o r d i a g n o s e d : i n s e r t (x , [] , [x]) i s uncove red .

Sea rch ing f o r a cover t o i n s e r t (x, [] , [x]) . . .
Checking: i n s e r t (x, [] , [x]) : - t r u e
Found c l a u s e : i n s e r t (x , [] , [x]) : - t r u e

a f t e r s e a r c h i n g 11 c l a u s e s .

L i s t i n g of i n s e r t (X,Y,Z):
i n s e r t (X , [Y | Z] , [X , Y | Z]) :-X<Y.
i n s e r t (X , [Y | Z] , [Y , X | Z]) :-Y<X.
i n s e r t (X, [] , [X]) : - t r u e .

Up to this point, the program synthesized solves the generated goals successfully, as follows:

Checking fact(s)...no error found.
Checking previous goals ...
The goal: isort([],[]) succeeded.
The goal: isort ([x], [x]) succeeded.
The goal: isort([0,1],[0,1]) succeeded.
The goal: isort ([1,0],[0,1]) succeeded.

We now try the program on input lists of three elements.

97

* Cont inue? y.
So lv ing g o a l : i s o r t ([0 , 1 , 2] , X) . . .

Found s o l u t i o n : i s o r t ([0 , 1 , 2] , [0 , 1 , 2]) .
Checking f a c t (s) . . . n o e r r o r found .
Checking p r e v i o u s g o a l s . . .
The g o a l : i s o r t ([] , []) s u c c e e d e d .
The g o a l : i s o r t ([x] , [x]) s u c c e e d e d .
The g o a l : i s o r t ([0 , 1] , [0 , 1]) succeeded .
The g o a l : i s o r t ([1 , 0] , [0 , 1]) succeeded .
The g o a l : i s o r t ([0 , 1 , 2] , [0 , 1 , 2]) succeeded.

It did not encounter any problems when the input list is sorted. However, a bug in procedure

isort is revealed by the next test case.

* Continue? y.
Solving goal: isort ([0,2,1],X) ...
Error: wrong solution isort([0,2,1], [0,2,1]) .

diagnosing...

Error diagnosed:
isort([0,2,1],[0,2,1]):-insert(0,[2,1], [0,2,1])

is false.

Listing of isort(X,Y):
isort([],[]):-true.

Removing the offending clause, the system starts a new search.

Checking fact(s)...
Error: missing solution isort([x],[x]).

diagnosing...
Error diagnosed: isort ([x], [x]) is uncovered.

Searching for a cover to isort([x],[x])...

Checking: isort([X|Y],[X|U]):-isort(Y,U)
Refuted: isort([1,0],[1,0]):-isort ([0],[0])

Checking: isort ([X|Y],Z):-isort (Y, V),insert(X, V, Z)
Found clause: isort([X|Y],Z):-isort(Y,V) , insert(X,V,Z)

v.

98

a f t e r s e a r c h i n g 65 c l a u s e s .

L i s t i n g of i s o r t (X , Y) :
i s o r t ([] , []) : - t r u e .
i s o r t ([X | Y] ,Z) : - i s o r t (Y,V) , i n s e r t (X,V,Z) .

The system finally found the clause for the recursive case of isort.

Checking f a c t (s) . . . n o e r r o r f o u n d .
Checking p r e v i o u s g o a l s . . .
The g o a l : i s o r t ([] , []) s u c c e e d e d .
The g o a l : i s o r t ([x] , [x]) s u c c e e d e d .
The g o a l : i s o r t ([0 , 1] , [0 , 1]) s u c c e e d e d .
The g o a l : i s o r t ([1 , 0] , [0 , 1]) s u c c e e d e d .
The g o a l : i s o r t ([0 , 1 , 2] , [0 , 1 , 2]) succeeded.
The g o a l : i s o r t ([0 , 2 , 1] , [0 , 1 , 2]) succeeded.

We now try a new test case.

* Con t inue? y.
S o l v i n g g o a l : i s o r t ([1 , 0 , 2] ,X) . . .
Found s o l u t i o n : i s o r t ([1 , 0 , 2] , [0 , 1 , 2]) .

Since no error was found, there was no need to recheck all the facts and goals. We continue

as follows:

* Con t inue? y.
S o l v i n g g o a l : i s o r t ([1 , 2 , 0] ,X) . . .
Found s o l u t i o n : i s o r t ([1 , 2 , 0] , [0 , 1 , 2]) .

Just when everything seems all right, another bug is revealed, as follows:

* Continue? y.
Solving goal: isort ([2,0,1] ,X) ...
Error: wrong solution isort ([2, 0,1], [0,2,1]) .

diagnosing...

99

E r r o r d iagnosed : i n s e r t (2, [0 , 1] , [0 , 2 ,1]) :-0<2 i s f a l s e .

L i s t i n g of i n s e r t (X,Y,Z) :
i n s e r t (X, [Y |Z] , [X,Y|Z]) :-X<Y.
i n s e r t (X, [] , [X]) : - t r u e .

The procedure of insert is still incorrect.

C h e c k i n g f a c t (s) . . .
E r r o r : miss ing s o l u t i o n i s o r t ([1 , 0] , [0 ,1]) .

d i a g n o s i n g . . .
E r r o r d i agnosed : i n s e r t (1 , [0] , [0 , 1]) i s u n c o v e r e d .

S e a r c h i n g for a c o v e r t o i n s e r t (1 , [0] , [0 , 1]) . . .
C h e c k i n g : i n s e r t (X, [Y| Z] , [Y,X|Z]) : -Y=<X
R e f u t e d : i n s e r t (2, [0 , 1] , [0 , 2 , 1]) : -0=<2

C h e c k i n g : i n s e r t (X, [Y| Z] , [Y | V]) : - i n s e r t (X, Z,V) ,Y<X
Found c l a u s e : i n s e r t (X, [Y|Z], [Y |V]) : - i n s e r t (X, Z,V) ,Y<X

a f t e r s e a r c h i n g 53 c l a u s e s .

L i s t i n g of i n s e r t (X,Y, Z) :
i n s e r t (X, [Y | Z] , [X, Y | Z]) : -X<Y.
i n s e r t (X, [] , [X]) : - t r u e .
i n s e r t (X, [Y |Z] , [Y|V]) : - i n s e r t (X,Z,V) ,Y<X.

Finally, a clause for the recursive case of insert is found.

C h e c k i n g f a c t (s) . . . n o e r r o r found .
C h e c k i n g prev ious g o a l s . . .
The g o a l : i s o r t ([] , []) succeeded .
The g o a l : i s o r t ([x] , [x]) s u c c e e d e d .
The g o a l : i s o r t ([0 , 1] , [0 ,1]) s u c c e e d e d .
The g o a l : i s o r t ([1 , 0] , [0 ,1]) s u c c e e d e d .
The g o a l : i s o r t ([0 , 1 , 2] , [0 , 1 , 2]) succeeded .
The g o a l : i s o r t {[0, 2 , 1] , [0 , 1 , 2]) succeeded .
The g o a l : i s o r t ([1 , 0 , 2] , [0 , 1 , 2]) succeeded .
The g o a l : i s o r t ([1 , 2 , 0] , [0 , 1 , 2]) succeeded .
The g o a l : i s o r t ([2 , 0 , 1] , [0 , 1 , 2]) succeeded .

100

The last permutation of the three-element list now executes correctly on the synthesized

program.

* Continue? y.
Solving goal: i s o r t ([2,1,0] ,X) . . .
Found so lu t ion : i s o r t ([2,1, 0] , [0 ,1 ,2]) .

* C o n t i n u e? n.

* exit.

yes

We stop here with the synthesized program as follows:

A Synthesized Program of Insertion Sort
isort ([],[])

isort([X\Y]Z) :- isort(Y,V),
insert (X,V,Z)

insert(X,[Y |Z],[X,Y\Z]) :- X < Y
insert (X,[],[X))

insert (X,[Y\ZUYW)) :- insert(XZ,V),
Y <X

101

CHAPTER 9.

CONCLUSION

In this research, we have tried to utilize user-supplied program specifications, as

much as possible, for debugging purposes. We have designed a methodology which uses

executable specifications to generate test cases, to locate and fix program errors, and the

combination of these functions can also be used to synthesize programs automatically. In

this chapter, we discuss the strengths and weaknesses of our approach, compare it with

related work, and consider directions for future research.

9.1. Testing, Debugging, and Program Proving

The traditional testing approach is only concerned with designing test cases that

might show a program to be incorrect (cf. [Dijkstra-76]). Although there have been attempts

to show that thorough testing can sometimes actually guarantee the conecmess of a program

(cf. [Goodenough-Gerhart-75, Brooks-80], this has not been the case in actual software

practice. Regardless, there is a fundamental problem that is not addressed: just testing a

program and trying to detect errors will not make the program correct. One still has to fix

the errors detected. In other words, testing alone will not be sufficient for generating a

correct program, since knowing that a program is incorrect does not imply knowing the

cause, and certainly not the fix. Research in testing provides, at most, methods to disclose

the existence of bugs in a program, but does not deal directly with the problem of locating

and correcting bugs.

102

Most of the work on debugging, on the other hand, emphasizes the classification of

errors, strategies of locating errors, and methods of repairing errors. They rely on test cases

generated using some other means to show first that the program is incorrect, before their

debugging techniques can be applied. For example, to use Shapiro's system ([Shapiro-83]),

one has to know beforehand what kind of errors one is dealing with (or one can supply such

inforniation to the debugger by answering a number of queries generated by the debugger),

then invoke different routines for different kind of errors. Calling the procedure that deals

with missing clauses when the symptom is due to an inconect clause will not solve the

problem.

Recent research and technical development in program proving have led some to

hope that formal correcmess proofs of programs can replace testing and debugging as a

means for insuring that programs will perform as what they are prescribed to do. However,

as have been argued by others (cf, [DeMillo,efa/.-79, Gerhart-Yelowitz-76]) tiiis may not be

possible. Due to human fallibility in the practice of mathematics, it is better to apply as

many techniques as possible when trying to show that a program is correct, since different

methodologies often have complementary strengths and weaknesses.

Our methodology is intended to combine the functions of testing, debugging, and

proving under one uriifoim framework. We are able to test a program using sample data,

debug it if errors are detected, and finally apply proof techniques to show that the debugged

program is consistent widi its specifications. We have demonstrated that this approach is

feasible with logic programming.

103

9.2. Executable Specifications

Formal specifications can facilitate the software development process. Besides

serving as a guide in programming, they allow for formal reasoning about correcmess.

Being a special case of formal specifications, executable specifications allow for rapid

prototyping and computer-aided debugging. In other words, executable specifications can be

considered as a prototype of the system being built, and can be used to mechanically

evaluate the desired functionalities of the target system.

In our work, we have used the logic programming language, Prolog, to specify Prolog

programs. These specifications are actually high-level, nonalgorithmic programs. When

they contain a "generator" predicate and axioms for system predicates, they can be used to

automatically generate test cases by solving input-output pairs. Due to the simplicity of data

in Prolog (only list structures are available), errors are usually uncovered at an early stage in

the debugging cycle, before the test inputs get very complicated. Thus, this method provides

sufficient test data for typical debugging needs.

A major use of executable specifications in our work is for automated detection and

location of errors in programs. When a debugger, be it a human or a machine, is to debug a

program, it must know the intended behavior of the program. That is, it must know a priori

what to expect for the result of running the program. Executable specifications provide not

only such vital information about the program, but also in a form that can be processed by

the computer directly. We use executable specifications of each procedure to check

intermediate results of program execution. Any discrepancy between the actual and

expected outcome of a procedure execution can be detected as soon as it is encountered, and

104

the location where the error occurs can also be determined (at the clause level).

After an error is detected and located, specifications can be used to help fix the error.

When the error is due to an incorrect clause, a deductive proof will be constructed in an

attempt to repair the erroneous clause by adding additional subgoals to the clause or fixing an

inconect subgoal. During the proof process, the specifications are used to replace goals (or

subgoals) in the clause so the goals (or subgoals) can be reduced to simpler or primitive

forms to complete the proof. If the error is due to a missing clause, an inductive inference

routine will be invoked to synthesize a clause to solve an uncovered goal. In this case, the

specifications provide information for pruning the search tree and for guiding the search for a

correct clause.

As summarized above, the use of executable specifications in our system automates

many of the difficult tasks during the program debugging process.

9.3. Deductive vs. Inductive Reasoning

Deduction and induction are very different inference mechanisms. In this work, we

have shown that they can complement each other in the debugging process.

Logical deduction is a powerful technique in the sense that the result from deductive

inference is guaranteed correct (or consistent with die axioms). In the context of logic

prograrnmiiig, deduction can be used to execute, derive, transform, or verify programs. We

have applied this procedure to check for inconsistency between a program and its

specifications. Also, in the process of verifying a clause, deduction is used to help identify

additional subgoals that suffice to make the clause correct.

105

Inductive inference refers to the process of discovering general rales from scattered

facts. When applied in logic programming, tiiis technique is used to generate program

clauses from a set of known goals. We use induction to suggest program clauses from the

generated input-output pairs, whenever a goal is detected that should be covered by the

program, but is not (i.e., when incompleteness is identified).

Our debugging system for Prolog programs combines both deductive and inductive

routines. Deduction is used to locate enors and fix clauses; induction is employed to find

missing clauses. The system can automatically invoke either procedures as required by the

state of the program being diagnosed.

9.4. Comparison with Related Work

Like [Shapiro-83], our work is concerned with debugging logic programs. Unlike

[Shapiro-83], we use executable specification as the basis for judging whether a program

statement is correct, rather than querying the user about the correcmess of particular

instances of statements. On account of this feature, our system is able to debug a program

with minimum ongoing user intervention This approach also avoids the likelihood that a

user may not be able to provide the required information or may unintentionly give wrong

answers to queries generated. On the other hand, we must presume that the user-supplied

specifications accurately reflect the progiam requirements.

Since we are able to use specifications to generate test cases and then execute the test

data directly, the bug location routines for different kinds of errors have been integrated in

one diagnostic interpreter. We do not need to find out what kind of error is detected before

106

calling the diagnostic procedure for that specific kind of error. In other words, our

implementation can be used as a regular program interpreter, and it can be used to compute

output results just like any standard Prolog interpreter. When supplied with the

specifications of a program, however, all the computations are monitored by the system and

any results inconsistent with the specifications will invoke the debugging routines to locate

and fix the errors.

Another major difference between our system and Shapiro's is that our system

performs a detailed bug-analysis whenever an error is encounted, and different bug

conection strategies are used depending on the nature and context of error. In Shapiro's

system, whenever a clause is found incorrect, it is removed from the program and a new

clause is generated, by searching through a class of equivalent clauses that supposedly cover

die goals that have become uncovered by removal of the offending clause. However, since

our bug analysis procedure is more finely tuned than Shapiro's, it always tries to first fix the

error-laden clause as much as possible before disposing of it and synthesizing a new one.

We believe this is a more economical and efficient strategy, since most programs should be

fairly close to being correct (cf., [Budd, er.a/,-80]).

Our work is also different from the Programme!'s Apprentice (PA) project [Waters-

85] which deals with knowledge-based program synthesis. In PA, the human acts as the

"chief programmer", responsible for making all the difficult, important decisions regarding

program constraction, while the system is die assistant in charge of providing lower-level

language support. The backbone of the PA approach is a collection of programming cliches

(abstract version of programming plans) which provide domain specific algorithms to help

the programmer construct programs. The usefulness of the PA system for solving a

107

particular problem, therefore, depends on whether the cliches necessary for the program at

hand are available The number of important cliches that a versatile system requires is

usually several thousand. Our system does not rely on such huge number of cliches for

proper functioning. Instead, it uses executable specifications and general reasoning

strategies (deduction and induction) for program analysis.

9.5. Issues to be Addressed in Future Research

In our work, we have used specifications as the criterion for judging correcmess. In

other words, we are assuming the specifications themselves to be error-free. The debugging

system will obviously not perform properly, given erroneous specifications. In actual

software practice, when there is something wrong with the specifications for a program, the

process of progranuning and verification will be fallacious anyway. The debugging of

specifications is an important topic, but is beyond the scope of our research.

Another problem occurs when the program is under-specified. Since our bug location

routine needs information about each procedure to determine if a procedure is producing the

correct result, we need to supply lower-level specifications to the debugging system. As has

been argued before, an automatic debugging system must know the expected behavior of the

program or procedure being debugged. This information has to be supplied along with top-

level specifications or generated by some other means (such as querying the programmer

during a debugging session). In our implementation, whenever a procedure's specifications

is not present, our system just assumes that the procedure is correct and there is no need to

debug it.

108

In specifying the intended behavior of a program, we have used Prolog, taking

advantage of its executability. However, since Prolog only implements a limited subset of

first order predicate logic (which is a prevailing language for writing formal specifications),

its power and expressiveness as a specification language is limited. It may be more desirable

to use more expressive languages such as those mentioned in Chapter 4 or full predicate

calculus. A primary task would then be to build a mechanical system that could process such

specifications automatically and that can be integrated in an automated program

development environment. A related issue would be the verifications of specifications. I.e.,

we need a means to check the correcmess of specifications

Though our system currendy uses generator predicates to produce test data, it may be

more efficient and effective if a testing system employs specific techniques (e.g., data flow

analysis [Rapps-Weyuker-85]) such that all errors can be detected with the fewest number of

test runs. In other words, we want to make the test cases more specific to the problem being

tackled.

The bug correction process is the most difficult step for an automated debugging

system. This is because if is difficult to formalize the complex knowledge involved in

reasoning about die problem to be solved, the algorithm used, die program that has been

written, the input/output specifications, and the semantics of the program language. In our

system, we have relied on the specifications of programs and their procedures, the

operational semantics of Prolog, a deductive proof mechanism, and an inductive routine. As

discussed in Chapter 6, the deductive mechanism is equipped with proof rules, while the

inductive routine is augmented with some heuristics. The proof rules use specifications and

program clauses to reduce goals. Although these rules are in general applicable to all cases,

109

due to the limitations in the language (i.e., Prolog) in which the prover is implemented, a

certain sequential order is observed during the proof process. Therefore, one may obtain a

different result if the order of proof rules is changed. The heuristics in the inductive routine

are ad-hoc in nature. We believe our system can benefit from the addition of a knowledge

base consisting of both specific heuristics concerning program debugging and algorithmic

information concerning the solutions to particular problems.

In conclusion, in this research we have demonstrated that, in the realm of logic

programming, the tedious problem of program debugging is perhaps amenable to

automation.

110

REFERENCES

[I] A. Adam and J. P. Laurent. "LAURA, a system to debug smdent programs," Artificial
Intelligence (1980), Vol. 15, pp. 75-122.

[2] K. R. Apt and M. H. van Emden. "Contributions to the theory of logic
programming," / . of the Association for Computing Machinery (July 1982), Vol. 29,
pp. 841-862.

[3] J. Backus. "Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs," Communications ACM (1978), Vol. 21,
pp. 613-641.

[4] G. F. Badger Jr., R. H. Campbell, N. Dershowitz, M. T. Harandi, A. L. Laursen, R. S.
Michalski, D. Michie, R. Penka and M. Simmonds. "Knowledge based programming
assistant", Report DCS-F-82-894, Department of Computer Science, University of
Illinois, Urbana, IL, April 1982.

[5] D. Barstow, R. Duffey, S. Smoliar and S. Vestal. "An automatic programming
system to support an experimental science," Sixth International Conference on
Software Engineering (September 1982), pp. 360-366.

[6] B. W. Boehm. "Software Engineering," IEEE Transactions on Computers
(December 1976), Vol. C-25,pp. 1226-1241.

[7] M. Brooks. "Deteimining Correcmess by Testing", Stanford Artificial Intelligence
Laboratory, May 1980.

[8] M. Bruynooghe and L. M. Pereira. "Deduction revision through intelligent
backtracking," In: Issues in Prolog Implementation, J. Campbell, ed. Ellis Horwood
Ltd., 1984.

[9] T. Budd, R. DeMillo, R. Lipton and F. Say ward. "Theoretical and empirical studies
on using program mutation to test the functional correctness of programs,"
Proceedings of the Seventh ACM Symposium on Principles of programming
languages (January 1980).

[10] K. L. Clark. "The synthesis and verification of logic programs", Research Report
DOC 81/36, Department of Computing, Imperial College, London, England,
September 1981.

[II] L. A. Clarke. "A system to generate test data and symbolically execute programs,"
IEEE Transactions on Software Engineering (September 1976), Vol. SE-2, pp. 215-
222.

[12] L. A. Clarke and D. J. Richardson. "Symbolic evaluation methods for program
analysis," In: Program Flow Analysis: Theory and Applications, S. S. Muchnick, ed.
Prentice-Hall, Inc., Englewood Cliffs, N. J., 1981, pp. 265-300.

[13] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, New York,
1984.

V.

I l l

[14] D. Cohen, W. Swartout and R. Balzer. "Using symbolic execution to characterize
behavior," ACM Software Enginnering Notes (December 1982), Vol. 7, No. 5, pp.
25-32.

[15] J. Darlington, A. J. Field and H. Pull. "The unification of functional and logic
languages," In: Logic Programming: Relations, Functions, and Equations, D.
DeGroot and G. Lindstrom, eds. Prentice Hall, Englewood Cliffs, NJ, 1985.

[16] R. A. DeMillo, R. J. Lipton and A. J. Pedis "Social processes and proofs of
theorems and programs," Communications of the ACM (May 1979), Vol. 22, No. 5,
pp. 271-280.

[17] N. Dershowitz. The Evolution of Programs. Birkhauser, Boston, MA, 1983.
[18] N. Dershowitz. "Equations as programming language," Proceedings of the Fourth

Jerusalem Conference on Information Technology (May 1984), pp. 114-123.
[19] N. Dershowitz and N. A. Josephson. "An efficient implementation of narrowing: The

RITE way," Proceedings of the Third IEEE Symposium on Logic Programming
(September 1986).

[20] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ,
1976.

[21] K. Fuchi and K Furukawa. "The role of logic programming in the fifth generation
computer project," Third International Conference on Logic Programming (July
1986), pp. 1-24.

[22] S. L. Gerhart and L. Yelowitz. "Observations of fallibility in applications of modem
programming methodologies," IEEE Transactions on Software Engineering
(September 1976), Vol. SE-2, No. 3, pp. 195-207.

[23] J. A. Goguen and J. Meseguer. "Equality, types, modules and (why not?) generics for
logic prograrnming," Logic Programming (1984), Vol. 1, No. 2, pp. 179-210.

[24] J. A. Goguen and J. J. Tardo. "An introduction to OBJ: A language for writing and
testing formal algebraic specifications," Proceedings of the Specification of Reliable
Software Conference (April 1979), pp. 170-189.

[25] J. B. Goodenough and S. L. Gerhart. "Toward a theory of test data selection,"
Sigplan Notices (June 1975), Vol. 10, No. 6, pp. 493-510.

[26] J. V. Guttag and J. J. Homing. "The algebraic specification of abstract data types,"
Acta Informatica (1978), Vol. 10, No. 1, pp. 27-52.

[27] M. T. Harandi. "Knowledge-based program debugging: A heuristic model,"
Proceedings ofSOFTFAIR (1983), pp. 282-288.

[28] C. A. R. Hoare. "An axiomatic basis for computer prograiriming," Communications
of the ACM (October 1969), Vol. 12, No. 10, pp. 576-583.

[29] C. J. Hogger. "Derivation of logic programs," / . of the Association for Computing
Machinery (April 1981), Vol. 28, No. 2, pp. 372-392.

[30] W. E. Howden. "Symbolic testing and the DISSECT symbolic evaluation system,"

112

IEEE Transactions on Software Engineering (July 1977), Vol. SE-3, pp. 266-278.
[31] W. E. Howden. "A functional approach to program testing and analysis," IEEE

Transactions on Software Engineering (October 1986), Vol. SE-12, No. 10, pp. 997-
1005.

[32] W. L. Johnson and E. Soloway. "PROUST: Knowledge-based program
understanding," IEEE Transactions on Software Engineeting (March 1985), Vol.
SE-ll,No.3,pp.267-275.

[33] S. M. Katz and Z. Manna. "Towards automatic debugging of programs,"
Proceedings of the International Conference on Reliable Software (April 1975), pp.
143-155.

[34] S. Katz and Z. Manna. "Logical analysis of programs," Communications of the ACM
(April 1976), Vol. 19, No. 4, pp. 188-206.

[35] J. C. King. ' 'Symbolic execution and program testing," Communications of the ACM
(July 1976), Vol. 19, No. 7, pp. 385-391.

[36] H. J. Komorowski and J. Maluszynski. "Logic programming and rapid prototyping'',
TR-01-86, Harvard University, 1986.

[37] R. A. Kowalski. "Predicate logic as programming language," Proceedings of the
IFIP Congress (1974), pp. 569-574.

[38] R. A. Kowalski. "Algorithm = logic + control," Journal of the Association for
Computing Machinery (1979), No. 22, pp. 425-436.

[39] R. A. Kowalski. Logic for Problem Solving. North-Holland, Amsterdam, 1979.
[40] R. Kowalski. "The relation between logic programming and logic specification," In:

Mathematical Logic and Programming Languages, C. A. R. Hoare and Shepherdson,
eds. Prentice/Hall International, Inc., Englewood Cliffs, New Jersey, 1985.

[41] R. A. Kowalski and M. H. van Emden. "The semantics of predicate logic as a
programmmg language," / . of the Association for Computing Machinery (October
1976), Vol. 23, pp. 733-742.

[42] B. H. Liskov and V. Berzins. "An appraisal of program specifications," In: Software
Specification Techniques, Narain Gehani, ed. Addison-Wesley, 1986, pp. 3-23.

[43] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, 1984.
[44] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, New

York, 1978.
[45] J. McCarthy. "Recursive functions of symbolic expressions and their computation by

machine, Part I," Communications of the ACM (April 1960), Vol. 3, pp. 184-195.
[46] J. R. McGraw. "Data flow computing - software development," IEEE Transactions

on Computers (December 1980), Vol. C-29, pp. 1095-1103.
[47] E. F. Miller Jr. "Software testing technology: An overview," In: Handbook of

Software Engineering, C. R. Vick and C. V. Ramamoorthy, eds. Van Nostrand

113

Reinhold Company Inc., New York, 1984, pp. 359-379.
[48] W. R. Murray. "Automatic Program Debugging for Intelligent Tutoring Systems",

The University of Texas at Austin, Austin, Texas, June 1986.
[49] G. J. Myers. Software Reliability: Principles & Practices. John Wiley & Sons Inc.,

New York, 1976.
[50] G. J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., New York, 1979.
[51] L. M. Pereira. "Rational debugging in logic programming," Proceedings of the

Third International Conference on Logic Programming (July 1986), pp. 203-210.
[52] D. A. Plaisted. "An efficient bug location algorithm," Proceedings of the Second

International Logic Programming Conference (July, 1984).
[53] S. Rapps and E. J. Weyuker. "Selecting software test data using data flow

information," IEEE Transactions on Software Engineering (April 1985), Vol. SE-11,
pp. 367-375.

[54] S. A. Renner. "Diagnosis of logical errors in Pascal programs", Report UIUC-DCS-
F-84-915, University of IL, Urbana, April 1984.

[55] J. A. Robinson. "A machine-oriented logic based on the resolution principle," / . of
the Association for Computing Machinery (Jan 1965), Vol. 12, No. 1, pp. 23-41.

[56] G. Ruth. "Intelligent program analysis," Artificial Intelligence (1976), Vol. 7, pp.
65-85.

[57] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
[58] D. R. Smith. "Derived preconditions and their use in piogram synthesis,"

Proceedings of the Sixth Conference on Automated Deduction (June 1982), pp. 172-
193.

[59] S. W. Smoliar. "Approaches to executable specifications," ACM Software
Enginnering Notes (December 1982), Vol. 7, No. 5, pp. 155-159.

[60] J. M. Spitzen, K. N. Levitt and L. Robinson. "An example of hierarachical design
and proof", Report, August 1977.

[61] R. J. Waldinger and K. N. Levitt. "Reasoning about programs," Artificial
Intelligence (Fall 1974), Vol. 5, No. 3, pp. 235-316.

[62] R. C. Waters. "The progiammer's apprentice: a session with KBEmacs," IEEE
Transactions on Software Engineering (November 1985), Vol. SE-11, pp. 1296-1320.

APPENDIX

This appendix contains program listings of the Constructive Interpreter.

%%
% ci is the main predicate that invokes the Constructive Interpreter
%
ci:-

nl, read('* ', G),
(G = exit; debug(G), ci).

debug(G) :-
test_input(G),
execute(G, Message),
fix_bug(Message),
check_fix(Message),% recheck goals & prompt for cont
!.

debug(G).% for illegal input

test_input(G) :-
var_args(G),
I,
asserta(input_is_symbolic),
gen_test_case(G).% run spec if all args are vars

test_input(_)-

execute(Goal, Mesg) :-
exec(Goal, Mesg),
print_mesg(Goal, Mesg),
!.

exec((Gl,G2), Mesg):-% conjunctive goal
exec(Gl,Mesgl),
(Mesgl = true -> exec(G2, Mesg);
Mesg = Mesgl),
!.

exec(G, Mesg):-% goal satisfiable?
check_satisfiable(G),% for subgoal debugging
!,
execl(G, Mesg).

exec(G, Mesg) :-
Mesg = [unsatisfiable, G].

execl(G, Mesg):-% system predicate
sys(G),
(G -> Mesg = true; Mesg = G),

!.
execl(G, Mesg):-% unit goal

legal_call(G),% no infinite calls
G =.. [Functor I Current_Args],
push(Functor, Current_Args),% push into exec stack
exec2(G, Mesg),
pop(Functor),% pop when call is returned
!.

execl(G, Mesg):-% nonterminating call
Mesg = [looping, G].

exec2(G, Mesg):-% find unifiable clauses for G
clause(G,Sg),
exec3(G, Sg, Mesg),% check subgoals in the body
!.

exec2(G, Mesg):-% no clause can be unified with G
!,
find_uncover(G, Mesg).

find_uncover(G, [uncovered, Goal]):-% a subgoal is uncovered & recored
mesg_stack(F, [uncovered, Goal]),
!.

find_uncover(G, Mesg) :-
get_solution(G),% just to fill output
G =.. [Functor I J ,
Mesg = [uncovered, G],% if not, G is not covered
record_diagnosis(Functor, Mesg).

exec3(G, Sg, Mesg):-% execute subgoals in clause body
exec(Sg, Mesgl),% solve subgoals
G =.. [Functor I J ,
check correctness(Functor, G, Sg, Mesg, Mesgl),
!,
(need_try_alt(Mesg, Functor) ->
fail;% if current clause fails

true).

check_correctness(Functor, G, Sg, Mesg, Mesgl) :-
subtree_incorrect(Functor),% just return, since error has
!,% been recorded
Mesg = Mesgl.

check_correctness(Functor, G, Sg, Mesg, Mesgl) :-
fault_diag(G, Sg, Mesg, Mesgl),% subgoals correct?
action(Functor, Mesg).% prescribe actions

need_try_alt([wrong_goall_], _) :-
!.

need_try_alt([unsatisfiablelj, _) :-
1.

need_try_alt([uncovered, Sg], Functor) :-
Sg=..[FIA],
not F = Functor,
!.

gen_test_case(G):-% exec spec to generate test cases
cp_structure(G, T),% T to get test value
spec(T),
assert_fact(T, true),%% record a true solution
get_input(T, G),% G has only input value
assert(goal(G)),
abolish(mesg_stack, 2),% clear error message
nl, writelv(['Solving goal: \G,' . . . ']) .

get_input(T, G):-% G is T with input value only
cp_structure(T, V),
i_o_vars(V),
T =.. [Functor I Args],
V =.. [Functor I Var_info],
keep_input_value(Args, Var_info, Inputs),% also skolemize
G =.. [Functor I Inputs].

keep_input_value(Q, [], Q) :-
!.

keep_input_value([HIArgs], [inputlVar_info], [HHIInputs]) :-
var_to_const(H, HH, DC),% skolemize input vars
keep_input_value(Args, Var_info, Inputs),
!.

keep_input_value([HIArgs], [outputlVar_info], [Xllnputs]) :-
keep_input_value(Args, Var_info, Inputs),
1.

action(Functor, trae):-% goal have succeeded
rm_diagnosis(Functor).% remove all diagnostic messages

action(Functor, X):- % have found a wrong clause
record_diagnosis(Functor, X).

fault_diag(A, B, [uncovered, G], [uncovered, G]).
fault_diag(A, B, X, [looping, G]) :-

X= [looping, A, B,G].
fault_diag(A, B, X, [unsatisfiable, G]) :-

X = [unsatisfiable, A, B, G].
fault_diag(A, B, trae, true) :-

var_to_const(A, AA, DC),% skolemize output

check_spec(AA),% output correct?
!.

fault_diag(A, B, X, true) :-
!,% not spec(A)
X = [wrong_clause, A, B].

fault_diag(A, B, X, Xsg):-% subgoal incorrect
X = [wrong_goal, A, B, Xsg].

% check_satisfiable(G)
% check if a subgoal of a clause is satisfiable
% this is necessary only when the output is constrained
%
check_satisfiable(G) :-

need_to_check_satisfiability,
!,
+(+(check_spec(G))).

check_satisfiable(G).

% check_spec(A) verifies that A is as defined in spec(A)
% if there is no spec(A), checkjspec(A) will succeed
%
check_spec(A) :-

clause(spec(A), Def),

check_spec(A)

legal_call(Current_Call) :-
Current_Call =.. [Functor I Current_Args],
proc_stack(Functor, [Previous_Args I _J),% record in stack?
!,% only need check last call
Previous_Call =.. [Functor I Previous_Args],
well_founded_input(Current_Call, Previous_Call).

legal_call(_).% for first call to a procedure

well_founded_input(Current_Call, Previous_Call) :-
clause(wf(Current_Call, Previous Call), Cond),% clause exist?
!,
call(Cond).% check well_founded condition

well_founded_input(_, _).% for not specified procs

push(Functor, Args):-% not first call to Functor
proc_stack(Functor, Arg_List),
retract(proc_stack(Functor, _)),
asserta(proc_stack(Functor, [Args I Arg_List])).

push(Functor, Args):-% first call to a procedure
asserta(proc_stack(Functor, [Args])).

pop(Functor) :-
proc_stack(Functor,[H IT]),
retract(proc_stack(Functor, _)),
(T = [] -> trae; asserta(proc_stack(Functor, T))),
!.

have_found_error(Functor) :-
mesg_stack(Functor, _).

subtree_incorrect(Functor) :-
message_in_stack(F, [Msgl_]),
(F = Functor; Msg == wrong_goal).

message_in_stack(F, [MsgU) :-
mesg_stack(F, X),
!,
(F = stack_bottom -> fail; X = IMsglJ).

record_diagnosis(Functor, X) :-
asserta(mesg_stack(Functor, X)).

rm_diagnosis(Functor) :-
empty_mesg_stack.

get_solution(G) :-
solutions(G,S),
member(G,S),
!.

get_solution(G) :-
spec(G),
!.

get_solution(G).% every thing else goes

check_fix(Message) :-
(input_is_symbolic ->
(Message = true ->
trae;% no error, do nothing
nl, check_goal),% check goals generated so far
nl, ask_for('* Try another test case', Cont),
(Cont=trae ->
fad;% back to gen_test_case(G)
retract(input_is_symbolic));
true),
!.

check_goal ;-
need_to_recheck_goals,

119

empty_mesg_stack,
check_goal_loop,
I.

check_goal.

check_goal_loop :-
goal(P),
nl, writelv(['Checking previous goal', P, ' . . . ']),
recur_check(P),% recursively check and fix bugs
(need_to_recheck_goals ->
check_goal;% more retracting done
fail).

need_to_recheck_goals :-
mesg_stack(X, _),
!,
X = need_to_recheck_goals.

recur_check(P):-% recursively check and fix bugs
empty_mesg_stack,
asserta(mesg_stack(stack_bottom,stack_bottom)),% mark recursive stack
execute(P, Mesg),
fix_bug(Mesg),
!.

empty_mesg_stack :-
retract(mesg_stack(X,_)),
(X = stack_bottom -> true; fail),
!.

empty_mesg_stack:-!.

abolish_clause((Head:-Body)):-% no unification when retracting
cp_structure(Head, H),
clause(H, B),
var_to_const((H:-B), (HH:-BB), What),
var_to_const((Head:-Body), (HHH:-BBB), So),
(HH = HHH, BB == BBB -> retract((H:-B)); fail).

goal_solved(P) :-
(solve(P) ->
(spec(P)->
nl, writelv(['The goal: \P, ' succeeded.']);
nl, false_solution(P), I, fail
);
nl, missing_solution(P), 1, fail
)•

% print error message from bug location routines
print_mesg(true, trae) :-

!.
print_mesg(G, true) :-

pr_success(G).
print_mesg(G, M):-% this M is used for bug correction later

nl, nl, write(' Error detected. Debugging ...'), nl,
print_message(M).

get_mesg(X) :-
retract(mesg_stack(_, X)).

get_mesg(no_message).% this clause used by correction routine

pr_error_mesg(M) :-
print_message(M),
retractall(proc_stack(_, _)).

print_message([wrong_clause, Head, Body]) :-
pr_wrong_clause(Head, Body).

print_message([uncovered, A]) :-
pr_uncovered(A).

print_message([looping, Head, Body, G]) :-
pr_looping(Head, Body, G).

print_message([unsatisfiable, Head, Body, G]) :-
pr_unsatisfiable(Head, Body, G).

print_message([wrong_goal, Head, Body, Xb]):-% mesg from correction routine
pr_wrong_clause(Head, Body).

pr_wrong_goal(Head, Body, Xb) :-
nl,
writelines(['The goal "\Xb,"' in the clause', nl,
' ', (Head:- Body), nl,'is wrong!']), nl.

pr_wrong_clause(Head, Body) :-
id,
writelines(['The clause', nl , ' ', (Head :- Body), nl,
'is false!']),nl.

pr_uncovered(A) :-
nl,
writelines(['The goal', nl, ' ', A, nl,
'is not covered!']), nl.

pr_looping(Head, Body, G) :-
nl,
writelines(['The goal *",G,'" in the clause', nl,
' ', (Head:- Body), nl, 'is looping!']), nl.

pr_unsatisfiable(Head, Body, G) :-
nl,
writelines(['The goal "',G,'" in the clause', nl,
' ', (Head:- Body), nl, 'is unsatisfiable!']), nl.

pr_success(A) :-
nl, write('Found solution:'), writelv([A]), nl.

%%
% following are procedures for fixing bugs
%
fix_bug(true):-!.% program is correct

% fix_bug([uncovered, Goal]) :-
% IF some clause can unify the goal
% THEN IF the clause is useful for other goals
% THEN make a copy of the clause and
% find an unsatisfiable subgoal and fix it
% % ie. generate a new, but similar clause
% ELSE instantiate the clause
% and find the failing subgoal and fix it
% ELSE B? no clause can unify the goal
% THEN use spec to synthesis a clause
% and simplify it as much as possible

fix_bug([uncovered, Goal]) :-
get_mesg(M),% check if some clauses were tried but failed
verify_mesg(M, Goal),% if so, they will be recorded
!.

verify_mesg(no_message, Goal):-% trae if no head unifies Goal
id, writelv(['Synthesizing a clause to cover ', Goal,'...']),
synthesize(Goal).

verify_mesg([uncovered, G], Goal):-% a subgoal is not covered
nl, writelv(['Synthesizing a clause to cover ', G,'...']),
synthesize(G).

verify_mesg([unsatisfiable, G, Sg, Xsg], Goal) :-
nl, writelv(['Synthesizing a clause to cover', Goal,'...']),
synthesize(Goal).

% verifyjmesg([wiong_goal, G, Sg, Xsg], Goal)
% the info of wrong_goal is kept during "execute" process
% i.e., each clause that might cover goal but one of the subgoal failed
% is recorded, along with the failing instance
% if no such clause, "nojmessage" will show up
%
verify_rnesg([wrong_goal, G, Sg, Xsg], Goal):-

spec(G),% (G :- Sg) could cover Goal
fix_wrong_subgoal(G, Sg, Xsg),
!.

fix_wrong_subgoal(G, Sg, Xsg) :-
get_clause(G, Sg, Head, Body),% (Head :- Body) is the clause
get_sg_pos(Xsg, Sg, Pos),% locate Xsg's position
assert_clause((Head:- Body)),% change a copy of this clause
induct_sg(Head, Body, Pos, G, Sg),% induction on sg
!.

% get_sg_pos(Xsg, Sg, Pos) retoms the postion of Xsg within Sg
%
get_sg_pos(Xsg, (Xsg,Sgs), 1).
get_sg_pos(Xsg, Xsg, 1).
get_sg_pos(Xsg,(_,Sgs), N) :-

get_sgjpos(Xsg, Sgs, M),
N i s M + 1 .

% fix_bug([incorrect_clause, (Goal:-Body)]) :-
% run "spec(Goal)" with input values that have caused the error
% IF goal is covered by other clause
% THEN generate a missing subgoal
% ELSE IF the solved goal can be unified with head of incorrect clause
% THEN fix the subgoals that are unsatisfiable
% ELSE fix clause head
%
fix_bug([wrong_clause, G, Sg]) :-

get_clause(G, Sg, Head, Body),% find the incorrect clause
get_input(G, Goal),% grab the input value
get_solution(Goal),% get the correct output
fix_wrong_clause(Goal, Head, Body),
!.

fix_wrong_clause(Goal, Head, Body):-% Goal covered by other clause
is_covered(Goal),
nl, writelv(['The goal"', Goal,'" is covered']),
nl, write('There are missing subgoals in the clause:'),
nl, writelv([' ', (Head:- Body)]),
nl, writel('Retract erroneous clause:'),
nl, writelv([' ', (Head:- Body)]), nl,
retract_clause((Head:- Body)),
nl, write('Generating missing subgoals ...'),
ach(Body, Head, New_clause),% Head:- Body + something
assert_clause(New_clause),
asserta(mesg_stack(need_to_recheck_goals,need_to_recheck_goals)),
% for use in main pgm

nl, writelines(['Assert clause:', nl,' \New_clause]),
plisting(Head),
!.

fix_wrong_clause(Goal, Head, Body):-% Goal can unify Head
can_unify(Goal, Head),
nl, writel('The clause '),
nl, writelv([' ' , (Head:-Body)]),
nl, write('contains incorrect subgoals. Debugging ...'), nl,
assert_clause(has_wrong_subgoal((Head:-Body))),
fix_subgoal(Goal, Head, Body),% Don't know which Sg is wrong yet
retract(has_wrong_subgoal((Head:-Body))),
!.

fix_wrong_clause(Goal, Head, Body):-% Goal is not covered by other clause
% nor can be unified with Head
nl, writel('The head of the clause '),
nl, writelv([' ', (Head:-Body)]),
nl,write('isincorrect. Fixing...'),
assert_clause(has_wrong_head((Head:-Body))),% for fix_subgoal
% don't want to instantiate vars
fix_head(Goal, Head, Body).

fix_head(Goal, Head, Body):-% need to fix Head
modify(Head, New_Head),
can_unify(Goal, New_Head),% don't unify vars
% found a new clause head
fix_subgoal(Goal, NewJHead, Body),% then fix subgoal
nl,write('Found a new head. Continue to debug subgoals ...'),
retract(has_wrong_head((Head:-Body))),
!.

fix_head(Goal, Head, Body):-
% could not find a new clause head that would unify Goal
retract(has_wrong_head((Head:-Body))),
nl, write('Cannot fix clause head!'),
nl, writelv(['Retract clause: ', (Head:-Body)]),
asserta(bad_clause((Head:- Body))),
abolish_clause((Head :- Body)),% get rid of this clause
nl,writelv(['Synthesizing a clause to cover ',Goal,'...']),
synthesize_clause(Goal, Head, Body),
asserta(mesg_stack(need_to_recheck_goals,need_to_recheck_goals)),
% for use in main pgm
true.% don't want cut here - want to use mis, if fails

synthesize_clause(Goal, Head, Body) :-
synthesize(Goal).

% fix_subgoal(Goal, Head, Body)
% fix Body so that Goal is covered by (Head:- Body)

file:///New_clause

%
fix_subgoal(Goal, Goal, Body):-% all subgoals are conect already

call(Body),
!,
nl, writefAH subgoals succeeded. Clause considered correct now!').

fix_subgoal(Goal, Head, true):-% unit clause
% obviously need to add subgoal
nl, write('The unit clause:'),
nl, writev([' ', (Head:- true)]),
nl, write('is missing some restraint conditions'), nl,
nl, writelv(['Retract erroneous clause: ', (Head:- true)]), nl,
retract_clause((Head:- trae)),
asserta(mesg_stack(need_to_recheck_goals,need_to_recheck_goals)),
% for use in main pgm
nl, write('Adding subgoals to the clause ...'),
ach_unit(Goal, Head, New_clause),% Head:- something new
assertz(New_clause),
nl, writelv(['Assert clause: ', New_clause]),
plisting(Head),
!.

fix_subgoal(Goal, Goal, Sg):-% unify Goal & Head, instantiate vars
locate_wrong_sg(Sg, Pos),% catch wrong (unsatisfiable now) sg
has_wrong_subgoal((Head:- Body)),% retrieve clause
% this is done through assert, so clause won't be instantiated
induct_sg(Head, Body, Pos, Goal, Sg),% induction on sg
!.

locate_wrong_sg(Body, Pos):-% locate the position of wrong sg
check_sg(Body, Pos, 1).% start with #1

check_sg((Sgl, Sg2), Pos, N) :-
spec(Sgl),% satisfiable?
!,
Nl i sN+1 ,
check_sg(Sg2, Pos, Nl).% if yes, continue

check_sg(Sg, Pos, Pos).% not satisfiable, return position

% fix_bug([looping, G, Sg, Xsg])
% correct Xsg by induction
% IF does not work
% THEN add a subgoal to ensure well-founded ordering of Xsg
% & continue debugging
%
fix_bug([looping, G, Sg, Xsg]):-% add a wf subgoal

get_clause(G, Sg, Head, Body),% (Head:- Body) is the clause
get_sg_pos(Xsg, Sg, Pos),% locate Xsg's position
get_sg_pos(Actual_sg, Body, Pos),% get actual subgoal
clause(wf(Actual_sg, Head), Wf_cond),% get wf condition

125

nl, write('Adding subgoals for well-founded ordering in clause:'),
nl, writelv([' ', (Head :- Body)]), nl,
retract_clause((Head:- Body)),
asserta(mesg_stack(need_to_recheck_goals,need_to_recheck_goals)),
% for use in main pgm
assertz((Head :- (Wf_cond, Body))),
plisting(Head),
abolish(mesg_stack,2),% clear message stack
abolish(proc_stack,2),% clear runtime stack
asserta(need_to_check_satisfiability),% output maybe constrained
nl, write('Continue debugging...'),
recur_check(G),
abolish_clause((Head:- (Wf_cond,Body))),% change back to original
assertz((Head:- Body)),% clause
nl, write('Restoring original clause...'),
plisting(Head),
retract(need_to_check_satisfiability),
!.

fix_bug([looping, G, Sg, Xsg]) :-% Xsg loops in (G:- Sg)
fix_wrong_subgoal(G, Sg, Xsg),% try fixing Xsg first

% insert_sg(Sg, Body, Pos, New_body)
% insert the subgoal Sg in position Pos-1 to ensure well-founded ordering
% i.e. put the well-founded condition in front of the subgoal that is
% causing looping
%
insert_sg(Sg, Body, 1, (Sg, Body)).%
insert_sg(Sg, (Bl, B2), Pos, (Bl, New_body)) :-

Posl is Pos-1,
insert_sg(Sg, B2, Posl, New_body).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%7o%%7o%%%%%%%%
% following are procedures for deduction
%
% achieve(Hypothesis, Goal, Clause)
%
ach_unit(Goal, Head, C) :- % add subgoals to unit clause

var_to_const((Goal, Head), (HH,GG), Z),
achie(HH, GG, PP),
removejiypo,
cleanup(PP, PPP),
ungrounding(P, PPP, Z),% const ~> var
clean_addition,
!,
check_dedu(Head, P),
C = (Head:-P).

ach(H, G, C) :-
var_to_const((H,G), (HH,GG), Z),% var ~> const
!,
achie(HH, GG, PP),
remove_hypo,
cleanup(PP, PPP),
ungrounding(P, PPP, Z),% const --> var
clean_addition,
check_dedu(G, P),
(H = true->C = (G:-P);
C = (G:-P,H)).

achie(H, G, P):-% this is here just to record
!,
add_hypo(H),% hypotheses collected so far
achieve(H, G, P),
nn_hypo(H).

achieve(false, _, trae) :-!.% if hypothesis simplifies to {}
achieve(_, trae, trae):-!.% goal is true
achieve(H, G, true) .-% goal is part of the hypothesis

part_of_hypo(G),% hypo has been asserted
!.

achieve(H, G, G):-% goal is a primitive
sys(G),% make sure G is not in H
!.

achieve(H, G, P):-% H is part of G
extra_goals(H, G, P),% remaining goals = precond.
!.
% "extra_goals" fails if H cannot be completely removed from G

achieve(H, G, P) :-
simplify(H,HH)->
(simplify(G, GG) ->
achie(HH, GG, P);% both H & G can be simplified
achie(HH, G, P));% H can be simplified
(simplify(G, GG) ->
acliie(H, GG, P)),% G can be simplified
% fad if neither H nor G can be simplified
!.

achieve(H, (G1,G2), (Q, R)):-% conjuntive goal
!,
achie(H, Gl, Q),
achie(H, G2, R).

achieve(not(H), not(G), P):-% ~H -> ~G <=> G -> H
!,
achie(G, H, P).

achieve(H, (Gl -> G2), P):-% H -> (Gl -> G2) <=> (H, Gl) -> G2

127

!,
achie((Gl, H), G2, P).

achieve((Hl -> H2), G, (Q,R)):-% (H1->H2) -> G <=> (~H1->G) & (H2->G)
!,
achie((Hl,H2),G,Q),
acliie(not(Hl), G,R).

acliieve(H, not(G), P):-% ~U & V -> ~G <=> G & V -> U
!,
goal_mernber(not(U), H),
rm_goals(not(U),H,V),
achie((G,V), U, P).

achieve(H, G, P) :-
reduce(H, U),
!,
achie(U, G, P).

achieve(H, G, P) :-
reduce(G, V),
!,
add_hypo_fact(V),
achie(H, V, P).

achieve(true, G, G):-!.% hypothesis is T

% reduce current goal to a list of subgoals
%
reduce((Xl, X2), Y) .-

!,
(reduce(Xl,Yl)->
(reduce(X2, Y2) ->
cleanup((Yl,Y2),Y);
cleanup((Yl,X2),Y));
(reduce(X2, Y2) ->
cleanup((Xl,Y2),Y);
fad)).

reduce(X, _):-% simplest already for primitives
sys(X),
!,
fad.

reduce(X, Y):-% use spec of goal if available
clause(spec(X), Y).

reduce(X, Y):-% use existing knowledge
use_fact(X, Y),
!,
(X == Y -> fail;% remain die same?
trae).

reduce(X, Y):-% otherwise use a clause
clause(X, Y).

use_fact(X, Y):-

clause(fact(X), Z),
good_fact(Z, Y).

good_fact((P -> Q), Y):-% conditional clause?
!,% try next fact clause
(P -> Y = Q).% if condition is not true

good_fact(Y, Y).% that's it!

% remove goals (always present) from a list of goals
%
extra_goals((A,B), Y, Z) :-

extra_goals(A, Y, X),
extra_goals(B, X, Z).

extra_goals(X,(Y,U),U) :-
X = Y.

extra_goals(X,(Y,U),(Y,V)) :-
extra_goals(X,U,V).

extra_goals(X,Y,true) :-
X==Y.

% clean up the garbage
%
cleanup(Q, P):-%% these three subgoals always succeed

rm_parens(Q, R),
rm_duplicate(R, S),
rm_trae(S, P).

fact(permut([X,YIYs], [YIZs])):- permut([XIYs], Zs).
fact(permut([XIY], Z)):- permut([XIY], Z).
fact(permut(X, Z)):- pemmt(X, Z).
fact(lt_all(Y,Zs)):-

hypo(pennut([XIYs], Zs)) -> lt_all(Y, [XlYs]).
fact(lt_aU(Y,Zs)):-

hypo_fact(rm_list(rYIXs],[YIZs],[UIUs])) -> lt_all(Y, [UlUs]).
fact(rmJist(X,[YIYs],[YIZs])) :-

not member(Y, X) -> rm_list(X, Ys, Zs).
fact(rm_list([XIXs],[XIYs],Zs)) :-

rm_list(Xs, Ys, Zs).

% add a hypothesis to database, if not recorded yet
%
add_hypo((Xl,X2)):-

addJrypo(Xl),
add_hypo(X2).

add_hypo((Xl, X2)):-% for backtracking purpose
de_add_hypo(Xl),% should have the same effect as
de_add_hypo(X2),% the 2nd clause of add hypo(X)
!,

129

fail.
de_add_hypo(X) :-

retract(hypo(X)).

add_hypo(X):-% first try
asserta(hypo(X)).

add_hypo(X);-% when backtracking, undo previous assert
retract(hypo(X)),
I,
fail.

% remove a hypothesis (actually mark it as removed) from database
%
nn_hypo((Xl, X2)) :-

rrnhypo(Xl),
rm_hypo(X2).

rm_hypo((Xl, X2)):-% for backtracking purpose
de_rm_hypo(Xl),% should have the same effect as
de rm_hypo(X2),% the 2nd clause of nn_hypo(X)
!,
faU.

de_nn_liypo(X) :-
retract(remo ved(X)),
asserta(hypo(X)).

rm_hypo(X) :-
asserta(removed(X)),% mark as removed
retract(hypo(X)).

rm_hypo(X):-% undo previous retract when backtracking
retract(removed(X)),
asserta(hypo(X)),% put hypo back to the database
!,
fail.

% check if a goal has been asserted as a hypothesis
%
part_of_hypo((Gl, G2)) :-

hypo(Gl),
part_of_hypo(G2).

part_of_hypo(G) :-
hypo(G).

% remove all the hypotheses that have been asserted
%
removejiypo :-

abolish(hypo,l),
abolish(removed, 1).

% check that if G has [] as its arument
%
has_nil(G) :-

G=..[FIA],
member(l], A).

% clean all the asserted clause during proof
%
clean_addition :-

abolish(hypo,l),
abolish(hypo_fact, 1).

% add a hypothetical fact, from goal reduction, to database
% this is here so the information in front part of a conjunctive goal
% can be used in latter conjuncts
%
add_hypo_fact((Xl, X2)) :-

add_hypo_fact(Xl),
add_hypo_fact(X2).

add_hypo_fact((Xl, X2)):-% for backtracking purpose
de_add_hypo_fact(Xl),% should have the same effect as
de_add_hypo fact(X2),% the 2nd clause of add_hypo_fact(X)
I,
fad.

de_add_hypo_fact(X) :-
retract(hypo_fact(X)).

add_hypo_fact(X):-% first try
asserta(hypo_fact(X)).

add_hypo_fact(X):-% when backtracking, undo previous assert
retract(hypo_fact(X)),
!,
fail.

% check if the deduced subgoals is part of the spec
% if so, reject it
%
check_dedu(G, P) :-

called 1(G, Subgoals),% legal subgoals declared for MIS
collect_functors(P, P_funcs),
collect_functors_list(Subgoals, Legal_sg),
goal_member(P_funcs, Legal_sg),
!.

check dedu(G,P):-
fad.

collect_functors((P,Q), (PP,QQ)):-

collect_functors(P, PP),
collect_functors(Q, QQ).

collect functorsCP, PP) :-
P=..[PPIJ.

collect_functorsJist([P IQ], (PP,QQ)) :-
collect Junctors_list(P, PP),
collect_functors_list(Q, QQ).

collect_functors list(P, PP) :-
P=..[PPIJ.

% a logical simplifier
simplify(X, Y) :-

rm_parens(X, XI),
rm_duplicate(Xl, X2),
simp_and(X2, X3),
simp_or(X3, X4),
simp_imp(X4, X5),
rm_true(X5, X6),
!,
(X = X6->
fail;
Y = X6).

rm_parens(Q,Q) :-
not Q =.. [FI A],!.%%% unit goal fails G=..[FIA]

mu>arens(((Ql,Q2),Q3), Q) :-
rm_parens(Ql, Q4),
rm_parens(Q2, Q5),
rm_parens(Q3, Q6),
rm_parens((Q4,(Q5,Q6)), Q),!.

rm_parens((Ql,Q2),(Q3,Q4)) :-
rm_parens(Ql, Q3),
rm_parens(Q2, Q4),!.

rm_parens(Q,Q).

rm_duplicate((X,Y), Z):-% rm dup goals from a conjunctive goal
rm_dup(X, Y, Z),!.% use first goal as base

rm_duplicate(X, X).% unit goal just return itself

rm_dup(X,(Yl,Y2),Z):-
goal_member(Yl, X) ->% first of rest already in?
rm_dup(X, Y2, Z);% yes. check rest
(rm_parens((X,Yl), XY1),% no.
rm_dup(XYl, Y2, Z)).% add goal to base

rm_dup(X, Y, Z):-% remaining goal is a unit goal
goal_member(Y, X) ->% accounted for already?

Z = X;% yes. return current list
rm_parens((X,Y), Z).% no. return everything

simp_and(X, false):-% (... & false & ...) -> false
goal_member(false, X),
!.

simp_and(X, false):-% (... & p & ... & ~p...) -> false
x_and_not_x(X),
!.

simp_and(X, X).

% check if p and ~p are both in the argument list
%
x_and_not_x((Xl, X2)):-% (p, . . . , ~p,...)

goal_member(not(Xl), X2).
x_and_not_x((not(Xl), X2)):-% (~p,... ,p,...)

goal_rnember(Xl, X2).
x_and_not_x((Xl, X2)):-% check tail

x_and_not_x(X2).

simp_or(X, true):-% (... I true I...) -> true
goal_member(true, X),
!.

simp_or(X, true):-% (... I p I... I ~p ...) -> true
x_and_not_x(X),
!.

simp_pr(X, X).

simp_hnp(X, X).

rm_true((Q, TRUE), R) :-
is_true(TRUE),
rm_trae(Q, R),!.

rm_true((TRUE,Q), R) :-
is_true(TRUE),
rm_true(Q,R),!.

rm_true((Ql,Q2),R):-
nn_true(Q2, Q3),
(is_true(Q3) ->
R = Q1;
R = (Q1,Q3)).

rm_true(Q, Q).

is_trae(true).
is trae(X) :-

X=. .[_,Y,Y].

nn_arrow((Gl -> G2), (Gl, G2)) :-
!.

rm_arrow(G, G).

% SIMULATED UNIFICATION:
% X is the original goal, Y is the same goal with vars replaced by consts
% Z is a list whose elements are pairs consisting the subsitution
%
% It has to be done in the followiong way in Prolog, since real unification
% causes all variables to be instantiated, and there is no way to
% un-instantiate

var_to_const(X, Y, Z) :-
asserta(want_var),% a global flag

var_or_atomic_list(X,U),% put all the vars of X into U
retract(want_var),
dummy_list(U, D),% create dummy list same length as U
asserta(unifying),% a global flag

match_var_const(D, U,
['x' ,y, 'z ' , 'u ' , 'v' , 'w', 'xl ' , 'yl ' , 'zl ' , 'ul ' , 'vl ' , 'wl' ,
'X2','y2','z2','u2','v2','w2','x3','y3','z3','u3','v3,,'w3',
'x4','y4','z4','u4','v4','w4'],

Z),
retract(unifying),
grounding(X, Y, Z),
!.

% create a dummy list with the same length of the variable list
% to help identify unbound vars
%
dummy_list(U, D) :-

length(U,N),
fill_dummy(N, D).

fill_dummy(0, []):-!.
fill_dummy(N, [unbound I D]) :-

Nl isN-1,
fill_dummy(Nl,D).

% match_var_const(D, X, Y, Z)
% match the vars in X with the constants in Y, and keep the associations in Z
% D tells if a var has been bound or not
%
match_var_const([unbound I Dl], [XIXI], [YI Yl], [ZI Zl]) :-

!,
Z = [X,Y],
(unifying -> mark_all_x(X, XI, Dl, D2);
% all X's in XI also get bound to Y

un_grounding -> mark_all_x(Y, Yl, Dl, D2)),
% trying to replace atomic w/ var

match_var_const(D2, XI, Yl, Zl).
rnatch_yar_const([boundlDl], L'Xl], L'Yl], Z):- % first element is bound

!,
match_var_const(Dl, XI, Yl, Z).

match_var_const(_,_,_,[]).

% mark_all_x(X, Y, Dl, D2)
% checks if there is any X in Y, and if yes, mark those X's in Dl as bound
% and return D2 as the result
%
mark_aU_x(_,n, [],[]):-!•
mark_all_x(X, [YI Yl], [bound I Dl], [bound ID2]) :-

mark_all_x(X, Yl, Dl, D2).
mark_all_x(X, [YI Yl], [unbound I Dl], [DID2J) :-

(X = Y->
D = bound;
D = unbound),
mark_all_x(X, Yl, Dl, D2).

% L is all occurances of distinct variables in term T
%
var_or_atomic_list(X, L) :-

var_or_atomic_list(X, L, []),!.

var_or_atomic_list(X, [XI L], L) :-
(want_var -> var(X);
want_atomic -> atomic(X), not sys(X), X=[]) , ! .

var_or atomic_list(T, LO, L) :-
T=..[FIA],
!,
var_or_atomic_listl(A, LO, L).

var_or_atomic_listl([], L, L).
var_or_atomic_listl([X], L, L) :-

want_atomic -> var(X),!.
var_or_atomicJistl((T I A], LO, L) :-

var_or_atomic_list(T, LO, LI),
!,
var_or_atomic_listl(A, LI, L).

% grounding(X, Y, Z)
% subsitute vars in X with consts (as specified in Z), and return the
% grounded goal as Y
%
grounding(X, X, Q):-!.% all ground tenn already

grounding((Xl,X2), (Y1,Y2),Z) :-
grounding(Xl,Yl,Z),
grounding(X2, Y2, Z).

grounding(X, Y, Z) :-
X=..[FIA],
replace_vars(A, B, Z),
Y = . [FI B].

% replace vars in list A with subsitution Z, return result as B
%
replace_vars(A, B, Z) :-

var(A),
!,
find_const(A, B, Z).

replace_vars([Al IA2], [Bl I B2],Z) :-
var(Al),
!,
find_const(Al,Bl,Z),
replace_vars(A2, B2, Z).

replace_vars([Al IA2], [Bl IB2], Z):-% Al is a complex term
!,
Al =.. [Func I ArgAl],
replace_vars(ArgAl, ArgBl, Z),
Bl= . . [Func I ArgBl],
replace_vars(A2, B2, Z).

replace_vars(Q, [], _).% this has to be the last line

% linear search to find the const that is supposed to be unified with the var
%
find_const(A, B, [[V, B] IZ]) :-

A = V,
!.

find_const(A, B, [_ IZ2]) :-
find_const(A,B,Z2).

% ungrounding(X, Y, Z)
% subsitute consts in Y with vars (as specified in Z), and return the
% goal with free variables as X
%
ungrounding(X, X, []):- \.% all ground term
ungrounding((Xl,X2), (Y1.Y2), Z) :-

ungrounding(Xl, Yl, Z),
ungrounding(X2, Y2, Z).

ungrounding((Xl->X2), (Y1->Y2),Z) :-
ungrounding(Xl, Yl, Z),
ungrounding(X2, Y2, Z).

ungrounding(X, Y, Z):-

Y=..[FIB],
replace_consts(A, B, Z),
X=..[FIA].

% replace consts in list [A1IA2] with subsimtion Z, return result as [B1IB2]
%
replace_consts([], Q, _).% this has to be here since atom([]) is true
replace_consts(A, B, Z) :-

atomic(B),
!,
find_var(A, B, Z).

replace_consts([[] IA2], [Q IB2], Z) :-
!,
replace_consts(A2, B2, Z).

replace_consts([Al IA2], [Bl IB2], Z) :-
atomic(Bl),
I,
find_var(Al,Bl,Z),
replace_consts(A2, B2, Z).

replace_consts([Al IA2], [Bl IB2], Z):-% Al itself is a list
!,
replace_consts(Al, B l , Z),
replace_consts(A2, B2, Z).

% linear search to find the var that was unified with the const earlier
%
find_var(A,B,[[A,C]IZ]):-

B = = C ,
!.

find_var(A,B,[ZHZ2]):-
find_var(A,B,Z2).

% P is (G:-Gs) with all consts changed into vars
%
uninstantiate(G, Gs, P) :-

asserta(want_atomic),% signal to collect all atomic's
var_or_atomic_list((G,Gs), A),
retract(want_atomic),
dummy_list(A, D),
asserta(un_grounding),
match_var_const(D,

[X, Y, Z, U, V, W, XI, Yl, Zl, Ul, VI, Wl,
X2, Y2, Z2, U2, V2, W2, X3, Y3, Z3, U3, V3, W3,
X4,Y4,Z4,U4,V4,W4],

A,B),
retract(un_grounding),
ungrounding((GG,GGs), (G,Gs), B),

P = (GG:-GGs).

%%
% following are procedures for subgoal induction
%
% induct_sg(Head, Body, N, Goal, Sg)
% use induction to correct a goal (or subgoal)
% (Head:- Body) is the actual clause, but its Nth subgoal is wrong.
% (Goal:- Sg) is an instance of (Head :- Body)

induct_sg(Head, Body, N, Goal, Sg):-% induction on Nth sg
get_subgoal(Body, N, Actual_sg),% get incorrect subgoal
nl, writelines(['Subgoal"', Actual_sg,'" in clause ',
nl , ' ', (Head:-Body), nl, 'is wrong']),
nl, nl, write('Trying a local fix ...'), nl,
nl, writelv(['Retract clause:', (Head:-Body)]), nl,
retract_clause((Head:-Body)),
asserta(mesg_stack(need_to_recheck_goals,need_to_recheck_goals)),
% for use in main pgm
modify(Actual_sg, New_sg),
test_sat(Head, Body, N, New_sg, Goal).

modify(Actual_sg, New_sg):-
heuristics(Actual_sg, New_sg).% use a rale

modify(Actual_sg, New_sg):-
search_for_goal(Acmal_sg, New_sg).% refine the goal

% modifying a subgoal by a heuristic rule, if applicable
%
heuristics(01d, New) :-

01d=.. [FIArgs],
alter(Args, New_Args),
New =.. [FI New_Args].

aIter([rXILl],L2IL], [LI,[XIL2]IL]).
alter([X,Y], [Y,X]).
alter([XIY], Y).

% get subgoal(Body, N, Sg) returns the Nth subgoal as Sg
%
get_subgoal((Sgl,Sg2), 1, Sgl):-!.
get_subgoal(Sg, 1, Sg):-!.
get_subgoal((Sgl,Sg2), N, Wsg) :-

Nl isN-1,
get_subgoal(Sg2,Nl,Wsg),!.

% test if the newly inducted subgoal is satisfiable
%

test_sat(Head, Body, N, New_sg, Goal) :-
replace_sg(Body, N, New_sg, New_body),
assert_clause((Head:-New_body)),
+(+(check_new_clause(Goal, Head, New_body))),
nl, writelv(['Assert clause:', (Head:-New_body)]),
plisting(Head),
true.

% replace the Nth subgoal
%
replace_sg((Sl,S2), 1, New_sg, (New_sg,S2)):-!.
replace_sg(Sl, l,New_sg,New_sg):-!.
replace_sg((Sl,S2), N, New_sg, (Sl,New)) :-

NlisN-1,
replace_sg(S2, Nl , New_sg, New), i.

check_new_clause(Goal, Goal, New_body):-% unify Goal with Head
call(New_body), !.

% search_for_goal(01d, New)
% search for a goal New which is a refinement of the goal Old
%
searchJfor_goal(01d, New) :-

New = Old,
atom_vartype(New, Vi, Vo),
goal_refine((New,(Vi,Vo)), (New,(Vvi,Vvo))).

% this is a modification of Shapiro's refinement procedure
% instead of refining a clause, goal_refine focuses on a goal
%
goal_refine((01d,(Vi,Vo)),(01d,(Vi,D))):-

Vo=[],
unisubset(Vo.Vi),

true.

goal_refine((01d,(Vi,Vo)),(01d,(Vi2,Vo))):-
% instantiate head, inputs.
dmember(Var,Vi,Vil),
teim_to_vars(Var,NewVars),
append(Vil,NewVars,Vi2).

goal_refine((01d,(Vi,Vo)),(01d,(Vi,Vo2))):-
% instantiate head, outputs.
dmember(Var,Vo,Vol),
term_to_vars(Var,NewVars),
append(Vol ,NewVars,Vo2).

goal_refine((01d,(Vi,Vo)),(01d,(Vi2,Vo))):-
% instantiate head, inputs, output.
dmember(Var,Vi,Vil),
term_to_vars(Var,NewVars),
append(Vil ,NewVars,Vi2),
dmember(Varo,Vo,Vol),
term_to_vars(Varo,NewVars),
append(Vo 1 .New Vars ,Vo2).

goal_refine((01d,(Vi,Vo)),(01d,(Vil ,Vo))) :-
% unify two input vars
dmember(Var 1 ,Vi,Vil),
member(Var2,Vil),
Varl @< Var2, % not to create duplicates
Varl=Var2.

%%
% following are procedures for clause synthesis
%
% synthesize(G) will generate a clause that covers G
% it first tries to use spec to generate a unit clause (i.e., G:- true),
% if not successful, it then uses Shapiro's search_for_cover procedure
% to search among other plausible clauses
% if cannot find a covering clause, then simply use the spec of G
%
synthesize(G) :-

var_to_const(G, Gground, Z),% get a ground term
synthesis(Gground, SGground),% generate subgoals from spec
ungrounding(Subgoals, SGground, Z),% uninstantiate consts
check_clause(G, Subgoals, Clause),%
nl, writelv(['Assert clause: ', Clause]), nl,
asserta(Clause),% include in the program
plisting(G).

synthesis(G, G) :-
sys(G),
!.

synthesis((Gl,G2), Gs) :-
synthesis(Gl,Pl),
synthesis(G2, P2),
cleanup((Pl,P2),Gs),
!.

synthesis(G, Gs) :-
clause(spec(G), Gs),
!.

synthesis(G, Gs) :-
clause(G, Gs),

140

!.

% check if the clause G:-Gs can be executed, simplified, etc.
% if Gs cannot be reduced to trae, try Shapiro's search_for_cover
% return the purified clause
%
check_clause(G, Subgoals, Clause) :-

interpret(Subgoals, Msg),
Msg = trae,% Subgoals can be reduced to true
base_case(G),%% check for base case
!,
uninstantiate(G, trae, Clause).% just return unit clause

check_clause(G, Subgoals, Clause) :-
asserta(current_goal(G)),
search_for_cover(G, Clause),% use Shapiro's procedure
retract(current_goal(G)).

check_clause(G, Subgoals, Clause):-% return spec clause
rm_arrow(Subgoals, Gss),
uninstantiate(G, Gss, Clause).

base_case(G) :-
has_nil(G);
has_one_ele_list(G).

has_one_ele_list(G) :-
G=..[FIA],
one_ele_list_arg(A).

one_ele_list_arg([X]).
one_ele_list_arg([[X] ITJ) :-

one_ele_list_arg(T).

%%
% utility routines

append(D, X, X).
append([AIX], Y, [AIZ]) :-

append(X,Y,Z).

member(X, \X I J) .
member(X, [_ IL]) :-

member(X, L).

retractall(X) :-
retract(X), fail.

retractall(X) :-
retract((X:-Y)),fail.

retractall(_).

shorter(X, Y) :-
length(X, Lx),
length(Y, Ly),
Lx < Ly.

% generate permutation
%
permut(D,[|).
peimut([X I Xs], Ys) :-

del(X,Ys,Zs),
permut(Xs, Zs).

del(X,[XlXs],Xs).
del(X, [YI Xs], [YI Ys]) :-

del(X,Xs,Ys).

% E is smaller than every element in the list
lt_all(E, 0).
lt_all(E, [HI Tj") :-

lteq(E,H),%E=<H,
lt_all(E, T).

% check if a list is sorted
%
sorted([]).
sorted([X]).
sorted([Hl I [H21T]]) :-

lt(Hl,H2),
sorted([H2IT]).

sorted([HIT]):-
lt_all(H, T),
sorted(T).

lt(X,Y):-
is_number(X),
is_number(Y),
X<Y.

lt(X,Y):-
X@<Y.

% check if the args of a structure are all variables
%
var_args(A) :-

A =.. [Functor I Args],
isvarlist(Args).

% check if a list contains all variables

%
isvarlist([H ITJ) :-

var(H),
(T = [] -> trae; isvarlist(T)).

% check if the arguments of a goal contains variables
%
has_var(G) :-

G =.. [Functor I Args],
has_vars(Args).

% check if a list contains variables
%
has_vars([H I TJ) :-

var(H).
has_vars([H IT]) :-

T == [] -> has_vars(T).

% check if the arguments of a goal contams nonvariables
%
hasjnonvar(G) :-

G =.. [Functor I Args],
has_nonvars(Args).

% check if a list contains nonvariables
%
hasjnonvars(H) :-

var(H),
!,
fad.

has_nonvars([H I TJ) :-
atomic(H),
!.

has_nonvars([H I TJ) :-
var(H),
!,
has_nonvars(T).

has_nonvars([H I TJ) :-
islist(H),
!,
(has_nonvars(H); has_nonvars(T)).

% remove an element from a list
%
remove(A, [A IT], T) : - ! .
remove(A,[HIT],[HIU]):-

remove(A, T, U).

% remove variables from a list
%
remove_vars([], []).
remove_vars([H I TJ, S) :-

var(H),
remove_vars(T, S).

remove_vars([H IT], [HIS]) :-
not var(H),
remove_vars(T, S).

% remove a par-list from a list
%
rm_list(Q,Y,Y).
rm_list([HIT],Y,Z):-

remove(H, Y, YY),
rm_list(T, YY, Z).

% make a copy of an existing structure with the same functor,
% but new variable as the arguments
%
cp_stracture((01,02), (N1,N2)) :-

cp_structure(01, Nl),
cr_structure(02, N2).

cp_stracture(01d, New) :-
functor(01d,F,N),
functor(New,F,N),
!.

% check if a goal is part of the other goal
% this was called "is_part_of'
%
goal_member((G, GG), (H, HH)) :-

G == H, GG == HH.
goal_member((G, GG), (H, HH)) :-

goal_member(G, (H, HH)),
goal_member(GG, (H, HH)).

goal_member(G, (H, HH)):-% same as the 1st hypothesis?
!,
(G = H ->% strictly equal
trae;
goal_member(G, HH)).

goal_member(G, H):-% unit hypothesis
G==H.

% check if two terms are unifyable
%
can_unify((XIJ12), (Y1,Y2)):-

can_uniry(Xl,Yl),
can_unify(X2,Y2).

can_unify(X, Y) :-
+(+(can unify_var(X,Y))).

can_unify_var((Al,A2),(Bl,B2)) :-
can_unify_var(Al, B l) ,
can_unify_var(A2, B2).

can_unify_var(A, B) :-
A=..[FIArgA],
B=..[FIArgB],
unifyable(ArgA, ArgB).

unifyable([], []).
unifyable(H, R) :-

var(H),
H = R.

unifyable(H, R) :-
var(R),
R = H.

unifyable([H IT], fR IS]) :-
unifyable(H, R),
unifyable(T, S).

unifyable([H IT], [RIS]) :-
can_unify_var(H, R),% for complicated terms
unifyable(T, S).

% check that a goal is covered by a clause in the program
%
is_covered(G):-% is G covered by a clause?

get_input(G, Goal_inp),% grab the input value
clause(Goal_inp, Body),
can_unify_var(G, Goal_inp),% instantiate vars in clause
call(Body),
!.

% find (Head:-Body) of which (A:-B) is an instance
%
get_clause(A, B, Head, Body) .-

cp_structure(A, Head),
clause(Head, Body),
can_unify(A, Head),
can_unify(B, Body).

% assert a clause into program
% when backtracking, remove this clause
%
assert_clause(X):-% first try

145

asserta(X).
assert_clause(X) :-% when backtracking, undo previous assert

retract(X),
I,
fail.% want this predicate to fail when backtracking

% mark a clause as retracted
% when backtracking, assert the clause into the program
%
retract_clause(X) :-

asserta(removed(X)),% mark as removed
assert(bad_clause(X)),
retract(X).

retract_clause(X) :-% undo previous retract when backtracking
retract(removed(X)),
asserta(X),% put clause back to the database
retract(bad_clause(X)),
!,
fad.

V

146

VTTA

Yuh-jeng Lee was bom in Taipei, Taiwan, Republic of China in 1955. He received

two degrees from the National Taiwan University in Taipei: the B.S. degree in 1977 with

major in Experimental/Cognitive Psychology and the M.S. degree in 1979 with major in

Social/Personality Psychology and minor in Quantitative Psychology. In the fall of 1979, he

entered the psychology graduate program of the University of Illinois at Urbana-Champaign

with primary interests in computer simulation of human behaviors. He subsequently

transfened to the Ph.D. program of the Department of Computer Science in 1983 where he

worked as a research assistant with the Knowledge Based Programming Assistant Group and

the Automated Deduction Group until 1987.

In the fall of 1987, he joined the faculty at the Naval Postgraduate School where he is

currendy an Assistant Professor of Computer Science. His current interests are in the areas

of Artificial Intelligence and Software Engineering. He is a member of the Association for

Computing Machinery (special interest groups: Artificial Intelligence, Software Engineering,

and Programming Languages), IEEE Computer Society, and American Association for

Artificial Intelligence.

