
The Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

On Generic Computational Models

Thesis submitted for the degree of Doctor of Philosophy

by

Evgenia Falkovich

This work was carried out under the supervision of

Professor Nachum Dershowitz

Submitted to the Senate of Tel Aviv University

October 2014

c© 2014

Copyright by Evgenia Falkovich

All Rights Reserved

Acknowledgements

I wish to thank my supervisor, Professor Nachum Dershowitz, a lot. First of all for

his incredible ability to ask unexpected questions, which might seem irrelevant at first

glance, but deep, fundamental and “discovering the whole new world” on the second

one. Also, without his endless kindness and patience this thesis would never have seen

the light of day.

I wish to thank also Yuri Gurevich, Neil Immerman, Gilles Dowek and David Harel

for the useful talks that we had, for their good ideas and for their support and trust in

the importance of my research.

Last but not least, thanks go to my family: to my parents for their support and

development of my curiosity ever since I was a kid; to my husband for unconditional

belief in me, even at my breakdown points; and to my cat, who spent hours on my

knees reading books and papers with me, and yelling at me to get back to work, any

time that my break was too long.

Abstract

The mechanization of computation has challenged humans for centuries. The aba-

cus is believed to have been invented by the Babylonians in the 24th century b.c.e.

Archimedes used the mechanical principle of balance to calculate mathematical prob-

lems, such as the number of grains of sand in the universe, in the 3rd century b.c.e.

The Antikythera mechanism, which is believed to be one of the first mechanical analog

computers, was constructed in the 1st century b.c.e. and has been reconstructed in

recent times. It included displays of the phases of the moon, eclipse predictions, and

the positions of the visible planets.

In the early 1900s, David Hilbert posed, among other problems, his famous Entschei-

dungsproblem. This was a research challenge for finding a procedure that for any given

logical expression can decide its validity or satisfiability by finitely many operations.

On his way to a solution to this problem, Alan Turing in his revolutionary paper, pre-

sented a formal computational model, called today “Turing machines”. Over the next

few decades, many brilliant minds, like Kolmogorov, Schönhage, Cook, and Reckhow

suggested alternative models for effective computation.

But since then, the notion of what constitutes computation has evolved (and keeps

evolving) rapidly. Today, computation comes in many flavors: the classical discrete,

sequential version; analog or hybrid setups; and the more recent parallel and concurrent

varieties. Moreover, virtually any natural process may be viewed as an evolving system

of hybrid (mixed discrete and analog) computation. Modern evolving systems—be they

physical, biological, or computational—are typically viewable on many distinct levels

of abstraction.

Our overarching goal in this study is to analyze the fundamental aspects of these

different computational paradigms, unite them under a common formalism, and under-

stand their implications for questions of effectivity and complexity. In particular, we

study parallel, concurrent, and hybrid computational mechanisms.

It has been convincingly argued by Gurevich (presaged by Post) that logical struc-

tures are the right way to view evolving algorithmic states, just as they are ideal for

capturing the salient features of static entities. Based on that insight and a formal-

ization of what it means for an algorithm to be governed by a finite text, Gurevich

provided the most general and generic definition of what constitutes a classical se-

quential algorithm. His model captures the algorithmic behavior on whatever level of

abstraction is natural for the particular algorithm. In this work, we develop his ideas

further. We provide a similar-style definition for generic parallel algorithms and prove

that the evolution of any system that satisfies our axiomatization is indeed mechanical.

We extend the definition of effectiveness, given by Boker and Dershowitz, to cover

effectiveness relative to oracles (as suggested by Turing). We also use their original

definition of effectiveness to provide a general notion of complexity of effective algo-

rithms. With that in hand, we prove two results: any effective classical algorithm may

be simulated by a random-access machine with only constant factor time overhead, and

that effective parallel algorithms can be simulated by a parallel random-access machine

with only polylog overhead in time and number of processors. The latter also leads

to the conclusion that Turing poly-space is equivalent to parallel poly-time, given that

algorithms may not have more than an exponential number of agents.

In the same groundbreaking paper, Turing defined a universal machine, which may

simulate any other computation. In this work we suggest a similar notion of universality

over arbitrary domains. We also address the issue of “honesty” of representations.

Another issue of honesty that we address is in the representation of effective domains.

Since effectiveness presupposes order; effective domains may “hide” some unexpected

information. Also, ordered domains are not always natural; for example, a graph

does not naturally have any order on its nodes. As a way to overcome this, Gurevich

suggested the definition of general “fair” unordered domains. We, in turn, define an

alternative computational model, the dynamic cellular automaton, and prove that those

automata simulate unordered domains. Thus, this model may be used for fair unordered

computations.

Contents

1 Introduction 1

1.1 Algorithmic Computation . 1

1.2 Mechanical Computation . 2

1.3 Analog Computation . 3

1.4 Natural Computation . 4

1.5 Effective Computation . 5

1.6 Parallel Computation . 6

1.7 Universal Computation . 7

1.8 Complexity of Computation . 7

1.9 Outline of this Thesis . 9

2 What is a Sequential Algorithm? 12

2.1 Background . 12

2.2 Sequential Algorithms . 15

2.2.1 Sequential Time . 16

2.2.2 Abstract State . 17

2.2.3 Effective Transitions . 18

2.2.4 Equivalent Algorithms . 20

2.3 Abstract State Machines . 20

2.3.1 Programs . 20

2.3.2 Semantics . 21

2.4 The Representation Theorem . 22

3 What is an Effective Algorithm? 24

3.1 Introduction . 24

3.2 Effective States . 27

vii

3.3 Oracular States . 31

3.4 Effective Algorithms . 32

3.5 Relatively Effective Algorithms . 33

4 Universality 35

4.1 Introduction . 35

4.2 Encodings . 36

4.3 Representations . 37

4.4 Universality . 38

4.5 Pairing . 39

5 Generic Evolving Systems 43

5.1 Introduction . 43

5.2 Formalization . 44

5.2.1 Entities . 44

5.2.2 Interaction . 45

5.2.3 Evolution . 46

5.2.4 Systems . 51

5.2.5 Discussions . 55

6 What is a Parallel Algorithm? 57

6.1 Informal View . 57

6.2 Parallel Algorithms . 58

6.2.1 Global States . 58

6.2.2 Algorithms . 60

6.2.3 Childhood . 62

6.2.4 Parallel Algorithms . 62

6.3 Parallel Programs . 63

6.4 Representation Theorem . 64

7 Extended Computational Thesis 68

7.1 Introduction . 68

7.2 Measuring Complexity . 72

7.3 Machine Models . 74

7.3.1 Random Access Machines . 74

7.3.2 PRAMs are Parallel Algorithms 75

7.3.3 Extended Storage Modification Machines 76

7.3.4 Parallel Random Access Machines (PRAMs) 78

7.4 RAM Simulation of Basic Algorithms 80

7.5 Effective Parallel Algorithms . 86

7.6 PRAM Simulation of Basic Parallel Algorithms 87

7.7 Discussion . 93

8 Generic Cellular Automata 95

8.1 Introduction . 95

8.2 Background . 96

8.2.1 Cellular Automata . 96

8.3 Simulating Algorithms with Cellular Automata 98

8.3.1 Bounded Dynamics . 99

8.3.2 The Simulation . 100

9 Continuous Time 110

9.1 Introduction . 110

9.2 Dynamical Transition Systems . 112

9.2.1 Signals . 112

9.2.2 Transition Systems . 112

9.3 Abstract Dynamical Systems . 113

9.3.1 Abstract States . 113

9.3.2 Updates of States . 115

9.4 Algorithmic Dynamic Systems . 115

9.4.1 Algorithmicity . 115

9.4.2 Flows and Jumps . 117

9.4.3 Analgorithms . 117

9.4.4 Properties . 117

9.4.5 Further Considerations . 118

9.5 Programs . 118

9.5.1 Definition . 118

9.5.2 Semantics . 119

9.5.3 Examples . 119

10 Conclusions and Future Work 122

Bibliography 124

List of Tables

2.1 Update sets for sorting program. 22

xi

List of Figures

7.1 SMM: Emulating assignment. 77

7.2 Extended SSM: Application of ‘Remember‘ operand 77

7.3 Extended SSM: Application of ‘Lookup‘ operand. 78

7.4 An example of tangle representation . 85

8.1 Examples of transition rules. 97

9.1 A GPAC for sine and cosine. 120

xii

List of Algorithms

1 An abstract-state-machine program for sorting. 13

2 An abstract-state-machine program for bisection search. 13

3 The parallel RAM simulates one step of a basic parallel ASM Program . 91

xiii

Chapter 1

Introduction

The notion of what constitutes computation has evolved rapidly in recent decades.

Today, computation comes in many flavors: the classical discrete, sequential version;

analog or hybrid setups; and the more recent parallel and concurrent varieties. Our

overarching goal in this study is to analyze the fundamental aspects of these different

computational paradigms and to understand their implications for questions of effectiv-

ity and complexity. This foundational line of investigation has the potential to impact

the design of specification, prototyping, and programming languages and tools for these

classes of computation.

1.1 Algorithmic Computation

Donald Knuth writes [78]:

Algorithms are concepts which have existence apart from any programming

language. . . . Algorithms were present long before Turing et al. formulated

them, just as the concept of the number “two” was in existence long before

the writers of first grade textbooks and other mathematical logicians gave

it a certain precise definition.

Indeed, algorithms existed long before Turing invented his machines. Though we

lack detailed information about the mathematics developed by ancient Egyptians be-

ginning some 5000 years before the present, we do know that they used a decimal

representation for natural numbers and that they had a linear algorithm for multipli-

cation based on the ability to multiply and divide by two along with addition. Much

1

2 CHAPTER 1. INTRODUCTION

more is known about the mathematics developed by ancient Babylonians some 4000

years ago. As may be seen from clay tablets found in the 19th century, they used a sex-

agesimal (base 60) numeral system. In [77], Knuth describes some of their algorithms.

They did not have algebraic notations, but they described formulas as step-by-step lists

of rules for evaluation. This might be considered as a form of ancient programming.

Those computations are linear. As Knuth states, there is only one slight intimation of

the use of conditions in computation. That is in the division algorithm, were compu-

tation proceeds differently if the reciprocal of the divisor does not appear in the table.

He suggests that modern mathematics is deeply rooted in such ancient knowledge.

Conditionals are, however, found widely in the mathematics of the ancient Greeks,

known from about the third century b.c.e. A prime example is the well-known Eu-

clidian algorithm for greatest common divisor. Euclidian geometry uses algorithms

in terms of ruler and compass operations, which are perfect examples of non-effective

algorithms, at a time when the notion of algorithm was not yet well-defined.1

In [62], Gurevich suggested a very general axiomatization of sequential computation,

which corresponds to the classical notion of algorithm. This formalization works over

arbitrary domains. Gurevich proved that any transition system satisfying these axioms

can be described syntactically as an abstract state machine (ASM), a generic model of

computation, over the same signature. Roughly speaking, this machine has two main

operations: it can compare the values of terms—to verify the current state, and it can

process assignments—to update the current state.

1.2 Mechanical Computation

Many mechanical devices have been devised for specific computational purposes, rang-

ing from the abacus to Gottfried Wilhelm von Leibniz’s Step Reckoner for multiplica-

tion to various arithmetical calculators of the twentieth century, such as the wonderful

Curta [111].

Perhaps the most remarkable ancient device is the recently re-constructed An-

tikythera mechanism, which included displays of the phases of the moon, eclipse pre-

dictions, and the positions of the visible planets [110].

The first suggestion of a universal computing device appears to be Charles Bab-

1Al-Khwarizmi’s Algoritmi de numero Indorum was published in the 9th century.

1.3. ANALOG COMPUTATION 3

bage’s Analytical Engine, about which Ada Augusta Lovelace presciently made the

following remarks [83]:

[The Engine is for] developing and tabulating any function whatever. . . .

The engine [is] the material expression of any indefinite function of any

degree of generality and complexity.

Many persons who are not conversant with mathematical studies imag-

ine that because the business of the engine is to give its results in numerical

notation, the nature of its processes must consequently be arithmetical and

numerical rather than algebraical and analytical. This is an error. The

engine can arrange and combine its numerical quantities exactly as if they

were letters or any other general symbols; and in fact it might bring out its

results in algebraical notation were provisions made accordingly.

One more recent design: In 1982, Fredkin and Toffoli [48] described a mechanical

model built of ideal billiard balls and polygonal obstacles and proved that it can,

conceptually at least, simulate any polynomial-space reversible Turing machine.

1.3 Analog Computation

Noted physicist, Freeman Dyson, writes in Edge (March 13, 2001):

The two ways of processing information are analog and digital. An LP

record gives us music in analog form, a CD gives us music in digital form.

A slide-rule does multiplication and division in analog form, an electronic

calculator or computer does them in digital form.

Dyson’s examples illustrate two dimensions of what is called analog. A slide-rule is

analog, since computations work with lengths of intervals that are in analogy with

the real values of interest. Thus, it computes approximations involving continuous

quantities, but the steps in a computation are discrete and sequential. This aspect of

analog computation is called continuous space, since it operates over an uncountable

domain. A compact disc records and produces discrete values, but it is continuously

spinning and so its operations occur at moments of continuous time. A vinyl record,

on the other hand, not only operates in real, continuous time, but produces real-

valued displacements at each moment of time, in such a way that the motions of the

4 CHAPTER 1. INTRODUCTION

needle are analogous to sound waves. And, of course, an ordinary calculator is purely

digital. Hybrid systems, such as robots, combine aspects of both the digital and analog

computing paradigms.

Probably the best known “universal” continuous-time machine is Vannevar Bush’s

landmark 1931 Differential Analyzer [22]. Preceding that, there were special purpose

analog devices, including Blaise Pascal’s 1642 Pascaline and Johann Martin Hermann’s

1814 Planimeter. In 1941, Shannon [101] proposed the General Purpose Analog Com-

puter (GPAC) as a theoretical model of the differential analyzer and asserted that it

generates precisely the class of differentially algebraic functions [88]. A more robust

class of GPACs has been defined recently by Graça and Costa [59]. Bournez [20] has

shown that, by considering a notion of computation inspired by recursive analysis [58],

the GPAC-computable functions are precisely the computable functions over reals. In

particular, the Gamma function is computable in this sense, but not in Shannon’s

original model [96]. Rubel [97] proposed an extension of Shannon’s original GPAC,

called the Extended Analog Computer, with additional operations to solve boundary

value problems or to take certain infinite limits, and this extension has been imple-

mented [84]. For surveys of analog computing, see [19, 81].

Continuous-space and continuous-time computing are both gaining in importance,

especially in this modern world of complex embedded systems. Various models of

these schemes have been proposed. For example, the Blum-Shub-Smale model [11] is

a sequential programming language working in continuous space and allowing equality

tests between real values. Real-time programming (e.g. [104]) is a relatively mild form

of continuous-time programming, in which it is necessary to take into account the

time required for each operation.2 Continuous-time computational models also include

neural networks [60], and systems that can be built using electronic analog devices.

1.4 Natural Computation

Evolving systems—be they physical, biological, or computational—are typically view-

able on many distinct levels of abstraction. Let us imagine some closed ecosystem as

an example. An ecologist views species, populations, and their interactions; population

growth and shrinkage may be modeled, say, by predator-prey and other resource equa-

2We are using the term “real-time programming” for “time aware” programming, in general, not
for “permanently ready” compilers.

1.5. EFFECTIVE COMPUTATION 5

tions. A biologist takes a different viewpoint, based on the individual organisms; she

may develop a kinetic model for swarming behavior, for instance. On a lower level still,

a biochemist sees interacting cell systems; he might use a diffusion-reaction equation to

describe the development of the colorings on an animal’s coat. The chemist looks at

reactions on the molecular level; the physicist sees atoms and their constituents. The

common denominator of all these views is one of a complex of objects that evolve over

time and that interact with each other and with their environment according to a set

of rules. As Galileo observed in Il Saggiatore, the “manual” of the universe is written

in mathematical language. It is this generic notion of a system of interacting objects

that we seek to capture in this research.

1.5 Effective Computation

In 1900, David Hilbert posed, among other problems, the research challenge of how

to effectively determine whether any given polynomial with rational coefficients has

rational roots [70]. Later, he and Wilhelm Ackermann underscored the importance of

the decision problem for validity of formulæ in (first-order predicate) logic, which they

called the Entscheidungsproblem [71, pp. 73–74].

Hilbert was seeking an effective procedure that could solve every instance of the

validity question, positively or negatively: “We assume that we have the capacity to

name things by signs, that we can recognize them again. With these signs we can then

carry out operations that are analogous to those of arithmetic and that obey analogous

laws” (quoted in [107]). This stressed the following question: “What is an effective

algorithm?”.

In 1936, Alonzo Church suggested that the recursive functions, or the computa-

tionally equivalent lambda-definable numeric functions, capture the intended concept

of “effectively calculable” procedure [26, p. 356]. Alan Turing [113] suggested that all

computable functions may be computed by a formal computational machines, that he

suggested, and that we call today “Turing machines”, a model that has gained almost

universal acceptance as synonymous with effective computation. To quote Turing in

1948 [115]:

Logical Computing Machines [i.e. what are today called “Turing machines”]

can do anything that could be described as “rule of thumb” or “purely me-

6 CHAPTER 1. INTRODUCTION

chanical”. This is sufficiently well established that it is now agreed amongst

logicians that “calculable by means of an LCM” is the correct rendering of

such phrases.

Turing machines provide a computational model for strings and recursive functions

for the natural numbers. But computability is a more general notion than recursiveness

or Turing computability. Boker and Dershowitz [14] proposed a principled way to

compare the computational power of different models of computation. This led to an

ASM-style axiomatization of effective algorithms [15, 41]. The main difference of this

class is that the domain of each machine is constructible from its signature. Unlike

Turing’s analysis [113], and subsequent generalizations [52, 79, 80, 105, 106, 108, 109],

those axioms of effective computation are, at the same time, both formal and generic.

They are formal in that they may be cast as precise mathematical statements; they

are generic in that they apply to computations with arbitrary states and arbitrary

programmable transitions.

Beyond that, Turing extended the notion of computability to devices provided with

oracles that “magically” provide answers to questions for which there may be no ef-

fective means of providing answers. We extend the definition given by Boker and

Dershowitz to encompass effectiveness relative to oracles (Chapter 3).

1.6 Parallel Computation

In 1978, Fortune and Wyllie endowed random-access machines with multiple processors

working simultaneously governed by a common clock [47]. We call this model today

the parallel random–access machine (PRAM). This model has gained much attention

and different parallel models have been developed. In 1979 [68], Hemmerling described

a model with several finite-state automata working on one common tape. In 1984 [120],

Wiedermann generalized this idea to parallel Turing machine.

Another effort was made to generalize a notion of parallel computation. Gold-

schlager in [56] described a model with almost identical processors that all start simul-

taneously at the start of computation and communicate via shared memory. Galil and

Paul [51] described a model of computation that has “similar” processors that start up

at runtime and communicate via direct processor-to-processor links. From an intuitive

point of view, parallel computation consists of a collection of processors that all execute

1.7. UNIVERSAL COMPUTATION 7

the same algorithm and in some way có’operate to exchange results.

All the above models work over classical domains: strings or natural numbers.

In [8], Blass and Gurevich [6, 8] successfully characterized parallel algorithms within

the abstract-state-machine framework. Their approach, being formal and generic, is

not easy to restrict to the effective case, due to a strong usage of multisets. So we

propose an alternative characterization of parallel algorithms, also within the abstract-

state-machine framework. Our model is simpler than that of Blass and Gurevich for the

cases we consider, but is restricted to shared memory có’operation only and also restricts

the number of child processes. On the other hand, in our model, algorithms need not

deal at all with process identifiers and the number of processes at the initial step is

unrestricted and may be of any cardinality. We provide an alternative programming

language, slightly different from what Blass and Gurevich suggested, and prove that

evolution of any computational system that satisfies our axioms may be described by

a finite rule in our language (Chapter 6).

1.7 Universal Computation

In the same groundbreaking paper [113] in which he invented the Turing machine and

settled the Entscheidungsproblem, Turing suggested a notion of universal machine—

one machine that can do any computation. Again, the notion of universal machine was

considered over two classical domains: Davis [31] and Rogers [94] have proposed gen-

eral definitions of universality for Turing machines and for partial recursive functions,

respectively. We extend the notion of universality to arbitrary sets of functions over ar-

bitrary domains, while addressing oft-ignored questions of “honesty” of representations

of domains (Chapter 4).

1.8 Complexity of Computation

The inefficiency of Turing machines led to the development of more efficient models.

In 1971, Hartmanis [67] and Cook and Reckhow [29] developed the random-access reg-

ister machine (RAM) model for the purpose of measuring computational complexity

of computer algorithms. This theoretical model is close in spirit to the design of mod-

ern, von Neumann architecture, computers and serves as a more realistic measure of

(asymptotic) time and space resource usage than do Turing’s machines. Indeed, the

8 CHAPTER 1. INTRODUCTION

RAM model has become the standard machine model for the analysis of concrete al-

gorithms. It remains conceivable, however, that there exists some sort of model that

is more sophisticated than RAMs, one that allows for even more time-wise efficient

algorithms, yet ought still be considered “reasonable”. We prove that this is not the

case (Chapter 7).

Any effective model by its nature works over an ordered domain. Being a non-trivial

relation, order may hide some non-trivial and even non-computable information. And

an algorithm may take advantage on that order. So our next challenge is to prove

the following statement: any function computable over an unordered domain can be

computed by a RAM with only a small time overhead. To do so, we will use algorithms

over an unordered domain, as defined in [9].

A further challenge is to exploit the computational power of effective non-classical

models like parallel and distributed machines. As explained by Parberry [85]: The

Extended Church-Turing Thesis states . . . that time on all “reasonable” machine models

is related by a polynomial. To establish this version for parallel machines, we use

our formalization of parallel algorithms, but restrict it to a class of effective parallel

algorithm. We investigate if those algorithms are equivalent to classical parallel models,

like the PRAM.

1.9. OUTLINE OF THIS THESIS 9

1.9 Outline of this Thesis

The remainder of this dissertation is organized as follows.

Chapter 2 What is a Sequential Algorithm?

Evolving algebras, invented by Yuri Gurevich [61], constitute a most general model of

computation, one that can operate on any desired level of abstraction of data structures

and native operations. All (ordinary) models of computation are instances of this one

generic paradigm. Later, Gurevich [62] axiomatized sequential algorithms and proved

that the evolution of the states of any such algorithm may be captured by abstract-

state-machine (ASM) programs, proving that evolution may be described in a purely

mechanical way. In this chapter, we give an overview of the foundational considerations

underlying this model, on top of which our work proceeds (based on the exposition

in [5, 16, 41]).

Chapter 3 What is an Effective Algorithm?

In [13, 16], Boker and Dershowitz presented a constructor-based axiomatization of

effectiveness, which is both formal and generic, based on Gurevich’s axiomatization of

algorithms, in general. We will adopt that formalization in this work. In this chapter,

we generalize that notion with a generic definition of effectiveness relative to oracle

operations. This work was published in [37].

Chapter 4 Universality.

Alan Turing, in his groundbreaking 1936 paper on the undecidability of the Halting

Problem and the Entscheidungsproblem [113], also invented the notion of a universal

machine. There are two domains that are standard in discussions of computability: (1)

finite strings over finite alphabets—for which the Turing-computable partial functions

are the effective ones, and (2) the natural numbers—for which the effective functions

are identified with the partial recursive ones. We generalize the notion of universal-

ity to arbitrary sets of functions over arbitrary domains, while addressing oft-ignored

questions of “honesty” of representations of domains. This work was described in [38].

Chapter 5 Generic Evolving Systems.

In [34], Dershowitz presented a scheme of generic evolving systems. Those systems

are composed of coöperating cells. Each cell has some local data and may evolve in its

10 CHAPTER 1. INTRODUCTION

own way. Systems can have shared memory, which is accessible by all cells. In addition,

cells may communicate via message passing. Some cells are connected by channels and

may use those connections to send each other messages. In this section, we present an

extended version of this model (a publication is being prepared).

Chapter 6 What is a Parallel Algorithm?

In this chapter, we represent parallel algorithms as a special case of generic evolving

systems, where at each tick of a common clock every cell executes exactly one step of

a common sequential algorithm and may also create a bounded number of child cells.

We prove, similar to [62], that evolution of such a system may be captured by a finite

program, which we call a parallel ASM program. This work was published in [40].

Chapter 7 Extended Computational Thesis.

In Chapter 2, we describe a notion of classical generic algorithm and restrict it to

the effective class in Chapter 3. In the first part of this chapter, we define a generic

notion of complexity for classical effective algorithms and prove that any such algorithm

can be simulated by a RAM with only a constant factor overhead in time. A somewhat

weaker result was published in [36], a journal version of the improved result has been

submitted to [35]

In Chapter 6, we provide a notion of a generic parallel algorithm and its restriction

to a class of effective ones. In the second part of this chapter, we define an appropri-

ate notion of complexity for parallel effective algorithms. We prove that any parallel

effective algorithm with P (n) cells and time complexity T (n) may be simulated by an

arithmetic parallel-RAM (PRAM) with time overhead polylog T (n) polylog P (n). We

then deduce that any parallel effective algorithm with no more than an exponential

number of cells may be simulated by a PRAM with only polynomial-time cost. From

that we conclude that polynomial parallel time is equivalent to polynomial Turing

space, as been conjectured (these results will be sent to a journal).

Chapter 8 Cellular Automata.

In this chapter, we present a special case of generic evolving systems, called dynamic

cellular automata. In this model, each cell is in one of a predefined finite set of states—

which we call colored cells. At each step, one active cell makes a bounded number

of changes in its closed neighborhood. We show that this model captures classical

1.9. OUTLINE OF THIS THESIS 11

unordered algorithms. This work was published in [39].

Chapter 9 Continuous Time.

We believe that continuous-time processes can be formalized within a framework

of evolving logical structures. The significance of our efforts lies in the building of

foundations for the design of specification and programming languages and tools for

analog and hybrid computing, paradigms that are crucial in today’s world. Capturing

the notion of algorithm and computation for analog systems is also a first step towards

a better understanding of computability theory for continuous-time systems.

In this chapter, we adapt and extend ideas from work on ASMs to the analog case,

that is to say, from notions of algorithms for digital models to analogous notions for

analog systems. We provide a partial axiomatization for generic analog models. This

work was published in [21].

Chapter 10 Conclusions and Future Work.

We conclude with a brief summary of the contributions of this research and some

ideas for future work.

Chapter 2

What is a Sequential Algorithm?

2.1 Background

Abstract state machines (ASMs), invented by Yuri Gurevich [61], constitute a most

general model of computation, one that can operate on any desired level of abstraction

of data structures and native operations. All ordinary models of computation are

instances of this one generic paradigm. Here, we give an overview of the foundational

considerations underlying the model (borrowed from [33]1).2

Programs (of the sequential, non-interactive variety) in this formalism are built

from three components:

• There are generalized assignments f(s1, . . . , sn) := t, where f is any function

symbol (in the vocabulary of the program) and the si and t are arbitrary terms

(in that vocabulary).

• Statements may be prefaced by a conditional test, if C then do else do ,

where C is a propositional combination of equalities between terms.

• Program statements may be composed in parallel, following the keyword do,

short for do in parallel.

An ASM program describes a single transition step; its statements are executed

repeatedly, as a unit, until no assignments have their conditions enabled. (Additional

constructs beyond these are needed for interaction and large-scale parallelism, which

are not addressed in this chapter).

1With permission.
2For a video lecture of Gurevich’s on this subject, see http://www.youtube.com/v/7XfA5EhH7Bc.

12

http://www.youtube.com/v/7XfA5EhH7Bc

2.1. BACKGROUND 13

Algorithm 1 An abstract-state-machine program for sorting.

if j = n then if i+ 1 6= n then do

{
i := i+ 1

j := i+ 2

else do

if F (i) > F (j) then do

{
F (i) := F (j)

F (j) := F (i)

j := j + 1

Algorithm 2 An abstract-state-machine program for bisection search.

if |b− a| > ε then do

{
if sgn f((a+ b)/2) = sgn f(a) then a := (a+ b)/2

if sgn f((a+ b)/2) = sgn f(b) then b := (a+ b)/2

As a simple example, consider the program shown as Algorithm 1, describing a

version of selection sort, where F (0), . . . , F (n− 1) contain values to be sorted, F being

a unary function symbol.

Initially, n ≥ 1 is the quantity of values to be sorted, i is set to 0, and j to 1. The

brackets indicate statements that are executed in parallel. The program proceeds by

repeatedly modifying the values of i and j, as well as of locations in F , referring to

terms F (i) and F (j). When all conditions fail, that is, when j = n and i+ 1 = n, the

values in F have been sorted vis-à-vis the black-box relation “>”. The program halts,

as there is nothing left to do. (Declarations and initializations for program constants

and variables are not shown.)

This sorting program is not partial to any particular representation of the natural

numbers 1, 2, etc., which are being used to index F . Whether an implementation

uses natural language, or decimal numbers, or binary strings is immaterial, as long as

addition behaves as expected (and equality and disequality, too). Furthermore, the

program will work regardless of the domain from which the values of F are drawn (be

they integers, reals, strings, or what not), so long as means are provided for evaluating

the inequality (>) relation.

Another simple ASM program is shown in Algorithm 2. This is a standard bisection

search for the root of a function, as described in [57, Algorithm #4]. The point is that

this abstract formulation is, as the author of [57] wrote, “applicable to any continuous

function” over the reals—including ones that cannot be programmed.

What is remarkable about ASMs is that this very simple model of computation

suffices to precisely capture the behavior of the whole class of ordinary algorithms

14 CHAPTER 2. WHAT IS A SEQUENTIAL ALGORITHM?

over any domain. The reason is that, by virtue of the abstract state machine (ASM)

representation theorem of [62] (Theorem 2 below), any algorithm that satisfies three

very natural “Sequential Postulates” can be step-by-step, state-for-state emulated by

an ASM. Those postulates, articulated in Section 2.2, formalize the following intuitions:

(I) an algorithm is a state-transition system; (II) given the algorithm, state information

determines future transitions and can be captured by a logical structure; and (III) state

transitions are governed by the values of a finite and input-independent set of terms.

The significance of the Sequential Postulates lies in their comprehensiveness. They

formalize which features exactly characterize a classical algorithm in its most abstract

and generic manifestation. Programs of all models of effective, sequential computation

satisfy the postulates, as do idealized algorithms for computing with real numbers (e.g.

Algorithm 2), or for geometric constructions with compass and straightedge (see [91]

for examples of the latter).

Abstract state machines are a computational model that is not wedded to any par-

ticular data representation, in the way, say, that Turing machines manipulate strings

using a small set of tape operations. The Representation Theorem, restated in Sec-

tion 2.3, establishes that ASMs can express and precisely emulate any and all algorithms

satisfying the premises captured by the postulates. For any such algorithm, there is an

ASM program that describes precisely the same state-transition function, state after

state, as does the algorithm. In this sense, ASMs subsume all other computational

models.

It may be informative to note the similarity between the form of an ASM, namely,

a single repeated loop of a set of generalized assignments nested within conditionals

with the “folk theorem” to the effect that any flowchart program can be converted

to a single loop composed of conditionals, sequencing, and assignments, with the aid

of some auxiliary variables (see [66]). Parallel composition gives ASMs the ability to

perform multiple actions sans extra variables, and to capture all that transpires in a

single step of any algorithm.

This versatility of ASMs is what makes them so ideal for both specification and

prototyping. Indeed, ASMs have been used to model all manner of programming ap-

plications, systems, and languages, each on the precise intended level of abstraction.

See [17] and the ASM website (http://www.eecs.umich.edu/gasm) for numerous ex-

emplars. ASMs provide a complete means of describing algorithms, whether or not

http://www.eecs.umich.edu/gasm

2.2. SEQUENTIAL ALGORITHMS 15

they can be implemented effectively. On account of their abstractness, one can ex-

press generic algorithms, like our bisection search for arbitrary continuous real-valued

functions, or like Gaussian elimination, even when the field over which it is applied is

left unspecified. AsmL [63], an executable specification language based on the ASM

framework, has been used in industry, in particular for the behavioral specification of

interfaces (see, for example, [3]).

Church’s Thesis asserts that the recursive functions are the only numeric functions

that can be effectively computed. Similarly, Turing’s Thesis stakes the claim that any

function on strings that can be mechanically computed can be computed, in particular,

by a Turing machine. More generally, one additional natural hypothesis regarding the

describability of initial states of algorithms, as explained in Chapter 3, characterizes

the effectiveness of any model of computation, operating over any (countable) data

domain (Theorem 32).

On account of the ability of ASMs to precisely capture single steps of any algorithm,

one can infer absolute bounds on the complexity of algorithms under arbitrary effective

models of computation, as will be seen (Theorem 32) at the end of Section 7.4.

2.2 Sequential Algorithms

The Sequential Postulates of [62] regarding algorithmic behavior are based on the fol-

lowing key observations:

• A state should contain all the relevant information, apart from the algorithm

itself, needed to determine the next steps. For example, the “instantaneous de-

scription” of a Turing machine computation is just what is needed to pick up a

machine’s computation from where it has been left off; see [113]. Similarly, the

“continuation” of a Lisp program contains all the state information needed to re-

sume its computation. First-order structures suffice to model all salient features

of states. Compare [87, pp. 420–429].

• The values of programming variables, in and of themselves, are meaningless to

an algorithm, which is implementation independent. Rather, it is relationships

between values that matter to the algorithm. It follows that an algorithm should

work equally well in isomorphic worlds. Compare [52, p. 128]. An algorithm

16 CHAPTER 2. WHAT IS A SEQUENTIAL ALGORITHM?

can—indeed, can only—determine relations between values stored in a state via

terms in its vocabulary and equalities (and disequalities) between their values.

• Algorithms are expressed by means of finite texts, making reference to only finitely

many terms and relations among them. See, for example, [76, p. 493].

The three postulates given below (from [62], modified slightly as in [5, 7]) assert that

a classical algorithm is a state-transition system operating over first-order structures in

a way that is invariant under isomorphisms. An algorithm is a prescription for updating

states, that is, for changing some of the interpretations given to symbols by states. The

essential idea is that there is a fixed finite set of terms that refer (possibly indirectly)

to locations within a state and which suffice to determine how the state changes during

any transition.

2.2.1 Sequential Time

To begin with, algorithms are deterministic state-transition systems.

Postulate I (Sequential Time). An algorithm determines the following:

• A nonempty set3 S of states and a nonempty subset S0 ⊆ S of initial states.

• A partial next-state transition function τ : S ⇀ S.

Terminal states S‡ ⊆ S are those states X for which no transition τ(X) is defined.

Having the transition depend only on the state means that states must store all the

information needed to determine subsequent behavior. Prior history is unavailable to

the algorithm unless stored in the current state.

State-transitions are deterministic. Classical algorithms in fact never leave room

for choices, nor do they involve any sort of interaction with the environment to de-

termine the next step. To incorporate nondeterministic choice, probabilistic choice, or

interaction with the environment, we will need to modify the above notion of transition.

This postulate is meant to exclude formalisms, such as [55, 89], in which the result

of a computation—or the continuation of a computation—may depend on (the limit of)

an infinite sequence of preceding (finite or infinitesimal) steps. Likewise, processes in

which states evolve continuously (as in analog processes, like the position of a bouncing

ball), rather than discretely, are eschewed (see Chapter 9).

3Or class; the distinction is irrelevant for our purposes.

2.2. SEQUENTIAL ALGORITHMS 17

Though it may appear at first glance that a recursive function does not fit under

the rubric of a state-transition system, in fact the definition of a traditional recursive

function comes together with a computation rule for evaluating it. As Rogers [95, p. 7]

writes, “We obtain the computation uniquely by working from the inside out and from

left to right”.

2.2.2 Abstract State

Algorithm states are comprehensive: they incorporate all the relevant data (including

any “program counter”) that, when coupled with the program, completely determine

the future of a computation. States may be regarded as structures with (finitely many)

functions, relations, and constants. To simplify matters, relations will be treated as

truth-valued functions and constants as nullary functions. So, each state consists of a

domain (base set, universe, carrier) and interpretations for its symbols. All relevant

information about a state is given explicitly in the state by means of its interpretation

of the symbols appearing in the vocabulary of the structure. The specific details of the

implementation of the data types used by the algorithm cannot matter. In this sense

states are “abstract”. This crucial consideration leads to the second postulate.

Postulate II (Abstract State). The states S of an algorithm are (first-order) structures

over a finite vocabulary F , such that the following hold:

• If X is a state of the algorithm, then any structure Y that is isomorphic to X is

also a state, and Y is initial or terminal if X is initial or terminal, respectively.

• Transitions preserve the domain; that is, Domτ(X) = DomX for every non-

terminal state X.

• Transitions respect isomorphisms, so, if ζ : X ∼= Y is an isomorphism of non-

terminal states X,Y , then also ζ : τ(X) ∼= τ(Y).

State structures are endowed with Boolean truth values and standard Boolean op-

erations, and vocabularies include symbols for these. As a structure, a state interprets

each of the function symbols in its vocabulary. For every k-ary symbol f in the vocab-

ulary of a state X and values a1, . . . , ak in its domain, some domain value b is assigned

to the location f(a1, . . . , ak), for which we write f(ā) 7→ b. In this way, X assigns a

value [[t]]X in DomX to (ground) terms t.

18 CHAPTER 2. WHAT IS A SEQUENTIAL ALGORITHM?

Vocabularies are finite, since an algorithm must be describable in finite terms, so

can only refer explicitly to finitely many operations. Hence, an algorithm can not, for

instance, involve all of Knuth’s arrow operations, ↑, ↑↑, ↑↑↑, etc. Instead one could

employ a ternary operation λx, y, z. x ↑z y.

This postulate is justified by the vast experience of mathematicians and scientists

who have faithfully and transparently presented every kind of static mathematical or

scientific reality as a logical structure.

In restricting structures to be “first-order”, we are limiting the syntax to be first-

order. This precludes states with infinitary operations, like the supremum of infinitely

many objects, which would not make sense from an algorithmic point of view. This

does not, however, limit the semantics of algorithms to first-order notions. The domain

of states may have sequences, or sets, or other higher-order objects, in which case, the

state would also need to provide operations for dealing with those objects.

Closure under isomorphism ensures that the algorithm can operate on the chosen

level of abstraction. The states’ internal representation of data is invisible and immate-

rial to the program. This means that the behavior of an algorithm, in contradistinction

with its “implementation” as a C program—cannot, for example, depend on the mem-

ory address of some variable. If an algorithm does depend on such matters, then its

full description must also include specifics of memory allocation.

It is possible to liberalize this postulate somewhat to allow the domain to grow or

shrink, or for the vocabulary to be infinite or extensible, but such “enhancements” do

not materially change the notion of algorithm. An extension to structures with partial

operations is given in [5]; see Section 2.4.

2.2.3 Effective Transitions

The actions taken by a transition are describable in terms of updates of the form

f(ā) 7→ b, meaning that b is the new interpretation to be given by the next state

to the function symbol f for values ā. To program such an update, one can use an

assignment f(s̄) := t such that [[s̄]]X = ā and [[t]]X = b. We view a state X as a

collection of the graphs of its operations, each point of which is a location-value pair

also denoted f(ā) 7→ b. Thus, we can define the update set ∆(X) as the changed

points, τ(X) \X. When X is a terminal state and τ(X) is undefined, we indicate that

by setting ∆(X) = ⊥.

2.2. SEQUENTIAL ALGORITHMS 19

The point is that ∆ encapsulates the state-transition relation τ of an algorithm

by providing all the information necessary to update the interpretation given by the

current state. But to produce ∆(X) for a particular state X, the algorithm needs to

evaluate some terms with the help of the information stored in X. The next postulate

will ensure that ∆ has a finite representation and its updates can be determined and

performed by means of only a finite amount of work. Simply stated, there is a fixed,

finite set of ground terms that determines the stepwise behavior of an algorithm.

Postulate III (Effective Transitions).4 For every algorithm, there is a finite set T

of (ground) critical terms over the state vocabulary, such that states that agree on the

values of the terms in T also share the same update sets. That is, ∆(X) = ∆(Y), for

any two states X,Y such that [[t]]X = [[t]]Y for all t ∈ T . In particular, if one of X and

Y is terminal, so is the other.

The intuition is that an algorithm must base its actions on the values contained at

locations in the current state. Unless all states undergo the same updates uncondition-

ally, an algorithm must explore one or more values at some accessible locations in the

current state before determining how to proceed. The only means that an algorithm

has with which to reference locations is via terms, since the values themselves are ab-

stract entities. If every referenced location has the same value in two states, then the

behavior of the algorithm must be the same for both of those states.

This postulate—with its fixed, finite set of critical terms—precludes programs of

infinite size (like an infinite table lookup) or which are input-dependent.

A careful analysis of the notion of algorithm in [62] and an examination of the intent

of the founders of the field of computability in [41] demonstrate that the Sequential

Postulates are in fact true of all ordinary, sequential algorithms, the (only) kind en-

visioned by the pioneers of the field. In other words, all classical algorithms satisfy

Postulates I, II, and III. In this sense, the traditional notion of algorithm is precisely

captured by these axioms.

Definition 1 (Classical Algorithm). An object satisfying Postulates I, II, and III shall

be called a classical algorithm.

4Or Bounded Exploration.

20 CHAPTER 2. WHAT IS A SEQUENTIAL ALGORITHM?

2.2.4 Equivalent Algorithms

It makes sense to say that two algorithms have the same behavior, or are behaviorally

equivalent, if they operate over the same states and have the same transition function.

Two algorithms are syntactically equivalent if their states are the same up to re-

naming of symbols (α-conversion) in their vocabularies, and if transitions are the same

after renaming.

For a wide-ranging discussion of algorithm equivalence, see [4].

2.3 Abstract State Machines

Abstract state machines (ASMs) are an all-powerful description language for the clas-

sical algorithms we have been characterizing.

2.3.1 Programs

The semantics of the ASM statements, assignment, parallel composition, and condi-

tionals, are as expected, and are formalized below. The program, as such, defines a

single step, which is repeated forever or until there is no next state.

For convenience, we show only a simple form of ASMs. Bear in mind, however, that

much richer languages for ASMs are given in [61] and are used in practice [64].

Programs are expressed in terms of some vocabulary. By convention, ASM programs

always include symbols for the Boolean values (true and false), undef for a default,

“undefined” value, standard Boolean operations (¬, ∧, ∨), and equality (=, 6=). The

vocabulary of the sorting program, for instance, contains F = {1, 2,+, >, F, n, i, j} in

addition to the standard symbols. Suppose that its states have integers and the three

standard values for their domain. The nullary symbols 0 and n are fixed programming

constants and serve as bounds of F . The nullary symbols i and j are programming

“variables” and are used as array indices. All its states interpret the symbols 1, 2,+, >,

as well as the standard symbols, as usual. Unlike i, j, and F , these are static; their

interpretation will never be changed by the program. Initial states have n ≥ 0, i = 0,

j = 1, some integer values for F (0), . . . , F (n− 1), plus undef for all other points of F .

This program always terminates successfully, with j = n = i + 1 and with the first n

elements of F in nondecreasing order.

There are no hidden variables in ASMs. If some steps of an algorithm are intended

2.3. ABSTRACT STATE MACHINES 21

to be executed in sequence, say, then the ASM will need to keep explicit track of where

in the sequence it is up to.

2.3.2 Semantics

Unlike algorithms, which are observed to either change the value of a location in the

current state, or not, an ASM might “update” a location in a trivial way, giving it the

same value it already has. Also, an ASM might designate two conflicting updates for the

same location, what is called a clash, in which case the standard ASM semantics are to

cause the run to fail (just as real-world programs might abort). An alternative semantics

is to imagine a nondeterministic choice between the competing values. (Both were

considered in [61].) Here, we prefer to ignore both nondeterminism and implicit failure,

and tacitly presume that an ASM never involves clashes, albeit this is an undecidable

property.

To take the various possibilities into account, a proposed update set ∆+
P (X) (cf. [7])

for an ASM P may be defined in the following manner:

∆+
f(s1,...,sn):=t

(X) = {f([[s1]]X , . . . , [[sn]]X) 7→ [[t]]X}

∆+
do {P1···Pn}

(X) = ∆+
P1

(X) ∪ · · · ∪∆+
Pn

(X)

∆+
if C then P else Q

(X) =

∆+
P (X) if X |= C

∆+
Q(X) otherwise

∆+
if C then P

(X) =

∆+
P (X) if X |= C

∅ otherwise .

Here X |= C means, of course, that Boolean condition C holds true in X. When the

condition C of a conditional statement does not evaluate to true, the statement does

not contribute any updates.

When ∆+(X) = ∅ for ASM P , its execution halts with success, in terminal state

X. (Since no confusion will arise, we are dropping the subscript P .) Otherwise, the

updates are applied to X to yield the next state by replacing the values of all locations

in X that are referred to in ∆+(X). So, if the latter contains only trivial updates, P

will loop forever.

For terminal states X, the update set ∆(X) is ⊥, to signify that there is no next

22 CHAPTER 2. WHAT IS A SEQUENTIAL ALGORITHM?

States X such that Update set ∆(X)

0 [[j]] = [[n]] = [[i]] + 1 ⊥

1 [[j]] = [[n]] 6= [[i]] + 1 i 7→ [[i]] + 1, j 7→ [[i]] + 2

2 [[j]] 6= [[n]] , [[F (i)]] > [[F (j)]] F ([[i]]) 7→ [[F (j)]] , F ([[j]]) 7→ [[F (i)]] , j 7→ [[j]] + 1

3 [[j]] 6= [[n]] , [[F (i)]] 6> [[F (j)]] j 7→ [[j]] + 1

Table 2.1: Update sets for sorting program.

state. For non-terminal X, ∆(X) is the set of non-trivial updates in ∆+(X). The

update sets for the sorting program (Algorithm 1) are shown in Table 2.1, with the

subscript in [[·]]X omitted. For example, if state X is such that n = 2, i = 0, j = 1,

F (0) = 1, and F (1) = 0, then (per row 2) ∆+(X) = {F (0) 7→ 0, F (1) 7→ 1, j 7→ 2}. For

this X, ∆(X) = ∆+(X), and the next state X ′ = τ(X) has i = 0 (as before), j = 2,

F (0) = 0 and F (1) = 1. After one more step (per row 1), in which F is unchanged,

the algorithm reaches a terminal state, X ′′ = τ(X ′), with j = n = i+ 1 = 2. Then (by

row 0), ∆+(X ′′) = ∅ and ∆(X ′′) = ⊥.

2.4 The Representation Theorem

Abstract state machines clearly satisfy the three Sequential Postulates: ASMs define a

state-transition function; they operate over abstract states; and they depend critically

on the values of a finite set of terms appearing in the program (and on the unchanging

values of parts of the state not modified by the program). For example, the critical

terms for our sorting ASM are all the terms appearing in it, except for the left-hand

sides of assignments, which contribute their proper subterms instead. These are j 6= n,

(j = n) ∧ (i + 1 6= n), F (i) > F (j), i + 2, j + 1, and their subterms. Only the values

of these affect the computation. Thus, any ASM describes a classical algorithm over

structures with the same vocabulary (similarity type).

The converse is of greater significance:

Theorem 2 (Representation [62, Theorem 6.13]). Every classical algorithm, in the

sense of Definition 1, has a behaviorally equivalent ASM, with the exact same states

and state-transition function.

The proof of this representation theorem constructs an ASM that contains con-

2.4. THE REPRESENTATION THEOREM 23

ditions involving equalities and disequalities between critical terms. Closure under

isomorphisms is an essential ingredient for making it possible to express any algorithm

in the language of terms.

A typical ASM models partial functions (like division or tangent) by using the

special value, undef, denoting that the argument is outside the function’s domain of

definition, and arranging that most operations be strict, so a term involving an unde-

fined subterm is likewise undefined. The state of such an ASM would return true when

asked to evaluate an expression c/0 = undef, and it can, therefore, be programmed to

work properly, despite the partiality of division.

In [5], the analysis and representation theorem have been refined for algorithms

employing truly partial operations, operations that cause an algorithm to hang when

an operation is attempted outside its domain of definition (rather than return undef).

The point is that there is a behaviorally equivalent ASM that never attempts to access

locations in the state that are not also accessed by the given algorithm. Such partial

operations are required in the next section.

Chapter 3

What is an Effective Algorithm?

3.1 Introduction

In 1900, David Hilbert posed, among other problems, the research challenge of how

to effectively determine whether any given polynomial with rational coefficients has

rational roots [70]:1

[Probleme] 10. Entscheidung der Lösbarkeit einer Diophantischen

Gleichung. Eine Diophantische Gleichung mit irgend welchen Unbekan-

nten und mit ganzen rationalen Zahlencoefficienten sei vorgelegt: man soll

ein Verfahren angeben, nach welchem sich mittelst einer endlichen Anzahl

von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen

Zahlen lösbar ist.”

In the same lecture, as his famous second problem, Hilbert asked for a proof of the

consistency of (Peano) arithmetic.

Later, he and Wilhelm Ackermann underscored the importance of the decision

problem for validity of formulaæ in (first-order predicate) logic, which they called the

Entscheidungsproblem [71, pp. 73–74]:2

1[Problem] 10. Determination of the solvability of a Diophantine equation. Given
a Diophantine equation with any number of unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.

2The Entscheidungsproblem is solved when we know a procedure that allows for any given logical ex-
pression to decide by finitely many operations its validity or satisfiability. . . . The Entscheidungsproblem
must be considered the main problem of mathematical logic. . . . The solution of the Entscheidungsprob-
lem is of fundamental significance for the theory of all domains whose propositions could be developed
on the basis of a finite number of axioms.

24

3.1. INTRODUCTION 25

Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt, das

bei einem vorgelegten logischen Ausdruck durch endlich viele Operationen

die Entscheindung über die Allgemeingültigkeit bzw. Erfüllbarkeit erlaubt.

Das Entscheidungsproblem muss als das Hauptproblem der mathematis-

chen Logik bezeichnet werden. . . . Die Lösung des Entscheidungsproblems

ist für die Theorie aller Gebiete, deren Sätze überhaupt einer logischen En-

twickelbarkeit aus endlich vielen Axiomen fähig sind, von grundsätzlicher

Wichtigkeit.

Hilbert was seeking an effective procedure that could solve every instance of the

validity question, positively or negatively: “We assume that we have the capacity to

name things by signs, that we can recognize them again. With these signs we can then

carry out operations that are analogous to those of arithmetic and that obey analogous

laws” (quoted in [107]).

In 1936, Alonzo Church suggested that the recursive functions, or the computa-

tionally equivalent lambda-definable numeric functions, capture the intended concept

of “effectively calculable” procedure [26, p. 356]. With his formalization of absolute

effectivity in hand, he proceeded to demonstrate that no effective solution exists for

the Entscheidungsproblem. When Church subsequently learned of Alan Turing’s inde-

pendent proof of undecidability [113], he conceded that Turing’s machines have “the

advantage of making the identification with effectiveness in the ordinary (not explicitly

defined) sense evident immediately” [25, p. 43]. Similarly, Kurt Gödel [54, pp. 369–370]

realized that Turing’s model of effective computation, which provides “a precise and un-

questionably adequate definition of the general concept of formal system”, strengthens

his earthshaking incompleteness results and establishes that “the existence of unde-

cidable arithmetical propositions and the non-demonstrability of the consistency of a

system in the same system can now be proved rigorously for every consistent formal

system containing a certain amount of finitary number theory”. In short, Hilbert’s

dream of devising a complete and consistent finite axiomatization of mathematics, as

expressed in his second problem, is inherently unattainable.

Stephen Kleene reformulated Church’s contention that the recursive functions and

the effective numeric functions are one and the same as a “thesis” ([73, p. 60], [74,

p. 332], [75, p. 232]):

Thesis I. Every effectively calculable function (effectively decidable predi-

26 CHAPTER 3. WHAT IS AN EFFECTIVE ALGORITHM?

cate) is general recursive.

Thesis I†. Every partial function which is effectively calculable (in the sense

that there is an algorithm by which its value can be calculated for every

n-tuple belonging to its range of definition) is potentially partial recursive.

Turing’s and Church’s theses are equivalent. We shall usually refer to them

both as Church’s thesis, or in connection with that one of its. . . versions

which deals with “Turing machines” as the Church-Turing thesis.

Church’s thesis asserted that the recursive functions are the only numeric functions

that can be effectively computed. Turing’s thesis staked the analogous claim that any

function on strings that can be mechanically computed can be computed, in particular,

by a Turing machine. Turing showed [113, Appendix] that with a suitable interpretation

of strings as numbers, his machines compute exactly the recursive functions.

Three main lines of argument have been adduced in support of this thesis ([74,

p. 320], [95, pp. 18–19], [74, p. 321]):

• Despite concerted efforts, no more powerful effective computational model has

been devised.

• “By means of detailed combinatorial studies, the proposed characterizations of

Turing and of Kleene, as well as those of Church, Post, Markov, and certain

others, were all shown to be equivalent,” as have all subsequent effective models.

• Turing’s analysis of “the sorts of operations which a human computer could per-

form, working according to preassigned instructions” showed that these can be

simulated by Turing machines.

Gödel is reported [32] to have believed “that it might be possible . . . to state a set

of axioms which would embody the generally accepted properties of [effective calcula-

bility], and to do something on that basis”. As explained by Shoenfield [103, p. 26]:

It may seem that it is impossible to give a proof of Church’s Thesis. How-

ever, this is not necessarily the case. . . . In other words, we can write down

some axioms about computable functions which most people would agree

are evidently true. It might be possible to prove Church’s Thesis from such

axioms. . . . However, despite strenuous efforts, no one has succeeded in

doing this (although some interesting partial results have been obtained).

3.2. EFFECTIVE STATES 27

This challenge of proving the Church-Turing Thesis is number one in Richard

Shore’s list of “pie-in-the-sky problems” for the twenty-first century [23]. Indeed, Har-

vey Friedman [49] has predicted that sometime in this century, “There will be an unex-

pected striking discovery that any model of computation satisfying certain remarkably

weak conditions must stay within the recursive sets and functions, thus providing a

dramatic ‘proof’ of Church’s Thesis.”

We discuss such an axiomatization of effectiveness in Sections 2.2–3. Unlike Turing’s

analysis [113], and subsequent generalizations [52, 79, 80, 105, 106, 108, 109], our axioms

of effective computation are, at the same time, both formal and generic. They are

formal, in that they may be cast as precise mathematical statements [15, 41]; they are

generic, in that they apply to computations with arbitrary states (Section 3.2) and

arbitrary programmable transitions (Section 3.4).

Computability is a more general notion than recursiveness or Turing computability.

Just as Turing machines provide a computational model for strings and recursive func-

tions for the natural numbers, there are comparable notions of effectiveness for other

data types, as explained in Sections 3.2 and 3.5.

Beyond that, Turing extended the notion of computability to devices provided with

oracles that “magically” provide answers to questions for which there may be no effec-

tive means of providing answers. See Sections 3.3 and 3.5.

3.2 Effective States

For an algorithm to be effective, it must be possible, not only to describe transitions

finitely, but also to fully describe its initial states, that starting subset of the algorithm’s

states containing input values. Only a state that can be described finitely may be

deemed effective.

Already in 1922, Emil Post [87, pp. 427–428] noted the following about states of

effective computations:

We . . . assume [symbolic representations] to be finite and we might say dis-

crete. . . . Each symbolization can be considered to consist of a finite number

of unanalysable parts (unanalysable from the standpoint of the symboliza-

tion) these parts having certain properties and certain relations with each

other. . . . The ways in which these parts can be related will be assumed

28 CHAPTER 3. WHAT IS AN EFFECTIVE ALGORITHM?

to be specified for the whole system of symbolizations. . . . The number of

these elementary properties and relations used is finite and . . . there is a

certain specific finite number of elements in each relation. . . . The symbol-

complexes are completely determined by specifying all the properties and

relations of [their] parts. . . . Each complex of the system can be completely

described [by a conjunction of relations]. . . .

In other words, not only should states be symbolic and be represented by relational

structures, but they need to be finitely representable if they are to be effective. Ac-

cordingly, we insist that effective states harbor no information beyond the means to

reach domain values, plus anything that can be derived therefrom.

To handle inputs, we postulate some subset of the critical terms, namely the input

terms, for which every possible combination of domain values occurs in some initial

state, and such that all initial states agree on all terms over the vocabulary of the

algorithm except these.

In general, an algorithm’s domain might be uncountable—as in Gaussian elimina-

tion over the reals, but, when we speak of “effective” algorithms, we are only interested

in that countable part of the domain that can be described effectively. Thus, we may

as well restrict our discussion to countable domains and assume that every domain

element can be described by a term in the algebra of the states of the algorithm. Fur-

thermore, a state’s operations could easily require an infinite table lookup. Thus, the

initial state of an algorithm may contain ineffective infinite information, in which case

the algorithm could not be deemed effective, so we need to place finiteness restrictions

on the initial states of algorithms. Another problem is that the same domain element

might be accessible via several terms, generating non-trivial relations, which might hide

non-computable information.

Several ways of overcoming these potential problems and capturing the notion that

initial states have a finite description, thereby characterizing effectiveness, have been

suggested. One alternative [92] characterizes an effective (initial) state as one for which

there is a (semi-) decision procedure for equality of terms in the state. That is, there is

Turing machine for determining whether a state interprets two terms (given as strings)

as the same domain value. A second alternative [41] requires that there exist an (arbi-

trary) injection from the chosen domain of the algorithm into the natural numbers such

that the given base functions (in initial states) are all tracked (under that injection)

3.2. EFFECTIVE STATES 29

by partial-recursive functions. These two approaches are somewhat circular: the first

relies on Turing-machine computability and the second on recursive functions.

A more objective approach [15] takes its cue from constructor domains. Con-

structors provide a way to give a unique name for any domain element, and the do-

main can be identified with the Herbrand universe (free-term algebra) over construc-

tors. Destructors provide an inverse operation for constructors. For every construc-

tor c of arity k, we may have destructors c1, . . . , ck to extract each of its arguments

[ci(c(x1, . . . , xi, . . . , xk)) = xi], plus c0, which returns an indicator that the root con-

structor (of a value) is c. Constructors and destructors are the usual way of thinking of

domain values of effective computational models. For example, strings over an alphabet

{a,b,. . .} are constructed from a scalar (nullary) constructor ε() and unary constructors

a(·), b(·), while destructors may read and remove the last letter. Natural numbers in

unary (tally) notation are normally constructed from (unary) successor and (scalar)

zero, with predecessor as destructor. The positive integers in binary notation are con-

structed out of (the scalar) ε and (unary) digits 0 and 1, with the constructed string

understood as the binary number obtained by prepending the digit 1. The destructors

are the last-digit and but-last-digit operations. For Lisp’s nested lists (s-expressions):

the constructors are (scalar) nil (the empty list) and (binary) cons (which adds an

element to the head of a list); the destructors are car (first element of list) and cdr

(rest of list). To construct 0-1-2 trees, we would have three constructors, A(), B(·),

and C(·, ·), for nodes of out-degree 0 (leaves), 1 (unary), and 2 (binary), respectively.

Destructors may choose a child subtree, and also return the degree of the last-added

(root) node.

We may assume that domains include two distinct truth values and another distinct

default value, and—furthermore—that we have (scalar) constructors, true, false, and

undef, for all three. Boolean operations are effective finite tables, so we may presume

them.

Definition 3 (Effective State [15]). A state is effective if its domain is isomorphic to

a free constructor algebra and its operations all fall into one of the following categories:

those free constructors and their corresponding destructors and equality; (infinitely) de-

fined operations that can themselves be computed effectively with those same construc-

tors (perhaps using a richer vocabulary); and finitely many other defined location-values

(not undef).

30 CHAPTER 3. WHAT IS AN EFFECTIVE ALGORITHM?

In general, then, the operations in states come in three flavors: domain constructors;

defined functions; and black-box oracles. For a state to be effective, it should provide

means to access all the elements of its domain and should not have any oracles.

Function symbols C construct a particular domain in a given state if the state

assigns each value in the domain to exactly one term over C (so the terms over C form

a free Herbrand algebra). Constructors are the usual way of thinking of the domain

values of computational models. For example, strings over an alphabet {a,b,. . .} are

constructed from a nullary constructor ε() and unary constructors a(·), b(·), etc. The

positive integers in binary notation are constructed out of the nullary ε and unary 0 and

1, with the constructed string understood as the binary number obtained by prepending

the digit 1. A domain consisting of integers and Booleans can be constructed from

true, false, 0, and a “successor” function that takes non-negative integers (n) to the

predecessor of their negation (−n − 1) and negative integers (−n) to their absolute

value (n). To construct 0-1-2 trees, we would have three constructors, k0(), k1(·), and

k2(·, ·), for nodes of outdegree 0 (leaves), 1 (unary), and 2 (binary), respectively.

Definition 4 (Effective State).

• A state is basic if it includes constructors for its domain, plus totally undefined

operations, meaning that they all always yield the same default value (undef, say),

and no oracles.

• Such states are (absolutely) effective.

• Moreover, a state is effective also if all its defined operations can be effectively

computed (in a bootstrapped sense to be made precise below) from basic states

and with the same constructors.

Proposition 5 (Effectiveness is invariant under effecive transition). Let A be an algo-

rithm with transition τ . Let X be an effective (basic) state of A. Then τ(X) is also an

effective (basic) state of A.

Proof. Follows from the fact that according to the Postulate III effective transition may

affect only finitely many locations of X.

This effectiveness requirement excludes states with ineffective oracles, such as the

halting function, but allows one to be given effective operations, like equality of trees

3.3. ORACULAR STATES 31

or division of integers. Having only free constructors at the foundation prevents the

hiding of potentially uncomputable information by means of equalities between distinct

representations of the same domain element. This is the approach to effectiveness

advocated in [15], extended to include partial functions in states, as in [5].

3.3 Oracular States

Turing [114] introduced the powerful idea of computability relative to oracles, saying,

“We shall not go any further into the nature of this oracle apart from saying that it

cannot be a machine.” We may think of a Turing machine that is equipped with a

special tape for querying oracles and special states qM and qo for each oracle o in O.

When, during an execution, the machine enters state qo, the oracle magically answers

by replacing the string x on the query tape with the value o(x) and reverts to state

qM .

In the presence of oracles, we still want the domain to be constructive, or else

there may be no finite way of representing inputs and outputs, but now we allow basic

operations that may not be effective. Accordingly, we speak, instead, of “relative”

effectiveness.

Definition 6 (Relatively Effective State).

• A state is basic in oracles O, if it includes constructors for its domain, totally

undefined operations, plus oracles O.

• Such states are relatively effective.

• Moreover, a state is relatively effective also if all its defined operations can be

computed from basic states with the same constructors and oracles.

One can give an alternate characterization of effective state, one that is based on

oracular Turing machines, extending a suggestion of Wolfgang Reisig [92].

Lemma 7. A state X is effective relative to a set of oracles if and only if there is a

Turing machine with the same oracles that can semi-decide the congruence induced by

X. In other words, given two terms over the vocabulary of X as input, the machine

returns true whenever both terms are defined and assigned the same values by X, false

when both are defined but not equal, and diverges otherwise. Input and output for the

machines’s oracles is via constructor terms.

32 CHAPTER 3. WHAT IS AN EFFECTIVE ALGORITHM?

The proof is along the lines of the non-oracular one in [16].

3.4 Effective Algorithms

The sequential postulates limit transitions to be effective, in the sense of being amenable

to finite description, but they place no constraints on the nature of the contents of states.

In particular, states may contain ineffective oracles. To preclude that and ensure that

an algorithm is effective, in an absolute sense, it suffices to place limits on initial states.

Postulate IV (Initial State). Initial states of an effective algorithm are all (absolutely)

effective (in the sense of Definition 4). Initial states of a relatively effective algorithm

are all relatively effective (in the sense of Definition 6). Initial states of a basic algo-

rithm are all basic (in the sense of Definition 4). In both cases, initial states over the

same domain are all identical, except for input values.

Since transitions make only finitely many changes, once initial states are effective,

so are all subsequent states.

We will say that an algorithm computes a partial function f over a domain D if

there are input terms such that their values in all initial states with domain D cover all

possible input values. We also demand that those states otherwise agree on the values

of all terms, so no information is hidden in individual states. Given values ā for the

input terms, the corresponding input state leads, via a sequence of transitions specified

by the algorithm, to a terminal state in which the value of some designated output term

is f(ā) whenever the latter is defined, and leads to an infinite computation whenever

it is not.

When we spoke earlier (Definitions 4 and 6) of “bootstrapping”, we meant that there

is a way of programming the defined operations, using constructors and oracles, if any.

And if there is any way of programming them, then there is an abstract-state-machine

program that fits the bill. For example, with 0 and successor (add 1), one can program

addition (+), starting from basic states, so addition my be included in the initial states

of (absolutely) effective algorithms over the natural numbers. Multiplication is also

effective, since there is a program for multiplication that makes use of addition.

We are requiring that all elements of an algorithm’s domain be accessible via terms

in initial states (inaccessible superfluous elements may be removed with no ill effect).

3.5. RELATIVELY EFFECTIVE ALGORITHMS 33

But note that a transition may cause accessible elements to become inaccessible in later

states [92].

3.5 Relatively Effective Algorithms

Just like Turing extended his machines to incorporate oracles, the notion of recursive

functions has been extended to allow oracles, for total functions by Turing [114, p. 175]

and for partial ones later by Kleene [74, p. 178].

One form of this generalization is as follows: The partial-recursive functions relative

to oracles O is the class of partial functions over the naturals, N, that includes the

constant zero (nullary) function, successor, all the projections, plus the operations in

O, and is closed under composition, primitive recursion, and minimization. We say

that an algebra (with finitely or infinitely many partial functions) over the naturals is

recursive in O if all its functions are.

Another extension of recursion theory applies it to domains other than the naturals.

For this, we need the concept of “simulation” under encodings. An algebra A with

domain D simulates an algebra B with domain E if there is an injective encoding ρ of

E into D such that for every partial function g of B there is a partial function f of A,

such that ρ ◦ g = f ◦ ρ. A detailed discussion of simulations may be found in [12].

So, a state X over vocabulary F and arbitrary domain Dom is computable over

oracles O if there is an encoding of Dom into the naturals and a recursive structure

Y with domain N over oracles ρ ◦ o ◦ ρ−1 for all o ∈ O that simulates X via ρ. An

algorithm is relatively computable if all its initial states are computable all over the

same oracle. And a model is relatively computable if all its algorithms are, via the

same encoding and same oracle. Sans oracles, we call it computable. This is akin to a

computable algebra, as in [50, 82, 90, 112], but we are not placing restrictions on the

injective encoding.

Were we not to require the encoding to be an injection, we could trivially simu-

late everything by encoding everything by a single constant. One may ask whether

the allowance of any injective encoding between the arbitrary domain and the natural

numbers is sensible. But it turns out that, as long as all domain elements are reachable

by ground terms, any arbitrary injective representation implies the existence of a bi-

jection between the domain and the natural numbers [16, Lemma 1]. Hence, the initial

34 CHAPTER 3. WHAT IS AN EFFECTIVE ALGORITHM?

functions of a computable algorithm are isomorphic to some partial-recursive functions,

which makes their effectiveness hard to dispute.

For example, one standard injective encoding of lists, with nullary “ε” and binary

“:” as constructors, is given by ρ(ε) = 0 and ρ(x : y) = 2ρ(x)3ρ(y). The standard

bijective encoding is ρ(ε) = 0 and ρ(x : y) = 2ρ(x)(2ρ(y) + 1).

These two notions, effective relative to oracles and computable over oracles, are

coextensional (cf. the non-oracle case proved in [15]).

Alternative An equivalent definition—along the lines of Gödel’s [54] original defini-

tion of recursive equations—is to say that an algebra over domain Dom, with finitely

many operations F , is computable relative to O if there exist constructors C for Dom

and a finite set E of equations defining F . Each equation in E is of the form f(s̄) = t,

where f is a symbol for an operation in F , s̄ is a tuple of constructor terms built from C

and variables, and t is an arbitrary term built from F , C, and variables. The equations

define an operation f in F relative to O if for all tuples c̄ of ground constructor terms,

one can deduce (by substitution of equals for equals) E ∪O ` f(c̄) = d for at most one

ground constructor term d, where O is now an infinite set of (ground) equations giving

the (defined) values of the oracular functions in constructor terms.

For example, a computable algebra of lists with an append operation ? is defined

by ε ? z = z and (x : y) ? z = x · (y ? z). With ? as the (in this case, computable) oracle,

one can define list reversal using just r(ε) = ε and r(x : y) = r(y) ? (x : ε).

Chapter 4

Universality

4.1 Introduction

Alan Turing, in his groundbreaking 1936 paper on the undecidability of the Halting

Problem and the Entscheidungsproblem [113], also invented the notion of a universal

machine. He explained the idea as follows:

The universal computing machine. It is possible to invent a single

machine which can be used to compute any computable sequence. If this

machine I is supplied with a tape on the beginning of which is written the

[standard description] of some computing machine M , then I will compute

the same sequence as M .

There are two domains that are standard in discussions of computability: (1) finite

strings over finite alphabets—for which the Turing-computable partial functions are

the effective ones, and (2) the natural numbers—for which the effective functions are

identified with the partial recursive ones. Davis [31] and Rogers [94] have proposed gen-

eral definitions of universality for Turing machines and for partial recursive functions,

respectively.

For other (countable) domains, we will adopt the analogous notion of effectiveness

of a model of computation that was developed in [15] and was described in Chapter 3.

Armed with the appropriate concept of generic effectiveness, we extend the notion of

universality to arbitrary sets of functions over arbitrary domains (Section 4.4), while ad-

dressing oft-ignored questions of “honesty” of representations of domains (Section 4.3),

pairings of elements (Section 4.5), and encodings of programs (Section 4.2).

35

36 CHAPTER 4. UNIVERSALITY

4.2 Encodings

In the simplest case, a universal function simply “carries on its shoulders” a whole set of

functions. Let Φ be some (usually, but not necessarily, countably infinite) set of unary

functions over a domain D. Given a binary function ψ over D, let Ψ = {ψa : a ∈ D},

where ψa = λy. ψ(a, y), be the set of all specializations in its first parameter of ψ. We

say that ψ is universal for Φ if Ψ ⊇ Φ. This is the same as requiring there to be an

encoding # : Φ → D such that φ computes ψ#φ for all φ ∈ Φ. In practice, of course,

we are interested in an effective universal function ψ. By setting its parameter, the one

universal function provides an effective means of computing any and all computable

functions.

Unless stated otherwise, the functions we speak of may be partial or total. In

particular, universal functions are partial by their very nature, and may be undefined

at some points. In other words, their computation might not halt for some (or all)

inputs. Equality of the two partial functions, the original one φ and the simulation

ψ#φ, means that φ(y) = ψ(#φ, y) for all y ∈ D, where equality (here, as well as later)

is “Kleene’s”, so the two sides must also agree with regard to the values at which either

is undefined, in which case both must be undefined.

We are placing no demands on the encoding (#), only that there be some parameter

value (a = #φ) for which the universal function (ψ) exhibits the identical input-output

behavior as that of the given function (φ). The idea of universality is that one function

can by itself compute a collection of functions, in an extensional sense, but not that it

uses the same, or similar, means as the given programs.

In particular, nothing in our definition explicitly rules out a perverse, non-

computable permutation of a standard enumeration of programs, like assigning even

codes to total (universally halting) φ and odd codes to strictly partial ones. Such an en-

coding, however, would preclude a universal function ψ being effective, because, were

it to be, then λi. ψ2i would be an effective enumerator of programs for all the total

recursive functions, an impossibility.

In point of fact, normally one is provided with a set of programs (standard descrip-

tions of Turing machines, say) in some formalism (that is, programming language),

which specifies the computed functions Φ, albeit with infinite duplication (there are

always infinitely many programs with the same input-output behavior). There is no

4.3. REPRESENTATIONS 37

harm in this, as then, from out point of view, #φ is the code (e.g. the Gödel number)

of any one out of the infinitely many programs that compute φ, which as it happens is

an uncomputable coding. The related notion of an interpreter of one programming lan-

guage in another, on the other hand, would suggest that the interpreter has an effective

way of understanding the programs it is “‘interpreting”, in which case we would want

distinct codes for distinctly behaving programs. This way or that, the above definition

of universality captures the intended extensional containment: a function ψ is universal

for a set of programs if its projections Ψ form a superset of the functions Φ computed

by the given set of programs.

If one wants to incorporate functions of greater arity than 1, then one requires a

family of universal functions, one for each arity, which we may imagine as one and

the same varyadic function, and demand that φ(y1, . . . , y`) = ψ(#φ, y1, . . . , y`), for all

arities `, and values y1, . . . , y`.

4.3 Representations

To relate sets of functions (extensional models of computation) over two different do-

mains, C and D, we will employ a liberal notion of “simulation”, with inputs mapped

from C to D via an arbitrary (not explicitly effective) representation ρ and outputs

by the same, or another, representation σ. For example, one typically represents a

Platonic number n as used by recursive functions as a string in unary (1n) or in binary.

Conversely, a string can be viewed as a number in a base the size of the alphabet. By

the same token, graphs and other data structures can be represented as strings. What

we don’t really want is for the representation to include non-trivial computational in-

formation, like whether the graph has a Hamiltonian cycle.

Definition 8 (Simulation of Functions). For partial functions, g : C⇀C and h :

D⇀D, and (injective) representations ρ, σ : C 1-1−→D, we write h wσρ g and say that h

simulates g via ρ and σ, if g = σ−1 ◦h ◦ ρ, qua partial functions, that is, if σ(g(x)) =

h(ρ(x)) for all x in C, where equality is Kleene’s and σ is strict (in the sense that σ of

undefined is undefined).

Definition 9 (Simulation of Models). For sets of partial functions, G ⊆ [C⇀C] and

H ⊆ [D⇀D], we write H wσρ G and say that H simulates G via ρ and σ if for all

g ∈ G there exists h ∈ H such that h wσρ g. We say that H simulates G, and write

38 CHAPTER 4. UNIVERSALITY

simply H w G, if H wσρ G for some choice of representations ρ and σ.

When ρ and σ are the identity function, H wσρ G is the superset relation, H ⊇ G.

Simulation is transitive and reflexive.

When σ = ρ, it was shown in [14, Thm. 4.7] that ρ is necessarily effectively com-

putable (over C ∪D) if there is an effective function ŝ ∈ H that simulates a successor

function s ∈ G, that is, a function that enumerates its domain: C = {si(e) : i ∈ N}

for some e ∈ C. (The significance of successor was noted in [102].) The analogous

requirement for non-numerical domains is that its constructor functions be simulated.

Even when σ 6= ρ, it turns out that both must be effectively computable, provided

that—in addition—the identity function is simulated effectively.

Proposition 10. If there are effective simulations over domain D of the constructor

and identity functions of domain C, via representations ρ and σ, then ρ and σ are

effectively computable for C ∪D.

Proof. Consider the constructors 0 and s(·) of the naturals, by way of example, and

let i be identity. It follows from the definitions that i(y) = y, σ(i(x)) = ı̂(ρ(x)), and

σ(s(x)) = ŝ(ρ(x)), where the hats indicate the respective simulating functions over D.

Putting those together, we have ı̂−1(σ(s(x)) = ρ(s(x)) and σ(s(x)) = ŝ(ρ(x)), from

which it follows that ρ(s(x)) = ı̂−1(ŝ(ρ(x))).

We are assuming that there are constructors for D; they can be used to effectively

enumerate all of D. So, the inverse ı̂−1 of the simulation of the injection i : C 1-1−→D is

computable for elements of the image σ(C) of σ inD. Hence, ρ is effectively computable,

and so is σ(x) = σ(i(x)) = ı̂(ρ(x)).

When there are more arguments, the representation function ρ is extended to tuples:

ρ〈x1, . . . , x`〉 = 〈ρ(x1), . . . , ρ(x`)〉. Otherwise, the above definitions are unchanged.

4.4 Universality

Using the above notion of simulation, we arrive at the following generic definition of a

universal function:

Definition 11 (Universality). Let Φ be some set of unary functions (over a domain C).

A binary partial function ψ (over domain D) is universal for Φ if Ψ (= {λy. ψ(a, y) : a ∈

D}) simulates Φ.

4.5. PAIRING 39

In other words, ψ is universal for Φ if there is some injective input representation

ρ : C 1-1−→D, and an injective output representation σ : C 1-1−→D, plus an arbitrary

encoding # : Φ → D of the functions in Φ, such that ψ(#φ, ρ(x)) = σ(φ(x)) for all

φ ∈ Φ and x ∈ C. Note that if ψ is universal (Ψ w Φ) and ψ′ simulates ψ (hence,

Ψ′ w Ψ), then ψ′ is also universal (Ψ′ w Φ by transitivity). Cf. [95, Thm. 1].

Our main result is that an effectively computable universal function can only simu-

late effective functions, as long as it simulates the constructors of a domain. Thus, the

representation cannot in fact provide the universal function with any information that

might allow computation of the uncomputable.

Theorem 12. Let Φ be some set of unary functions over a domain C, including con-

structors and identity. Then, if there is an effective universal function (over any domain

D) for Φ, then all the simulated functions φ ∈ Φ are also effective.

Proof. Let ψ be the universal function. We have φ = σ−1 ◦ψ#φ ◦ ρ, for any φ ∈ Φ. By

Proposition 10, ρ and σ are effective, since the simulations (ŝ = ψ#s, ı̂ = ψ#i , etc.)

of the constructors and identity (s, i , and the like) are effective. So φ is an effective

composition of effective functions.

In other words, the universal function cannot underhandedly simulate harder func-

tions than it itself is capable of computing.

Nevertheless, just because ρ is effective does not mean that it cannot hide some

information, albeit computable, in the representation, simply by mapping x ∈ C to

a “tuple” [x, f(x), g(x), . . .] in D, for finitely many computable functions f , g, etc.,

such as Hamiltonianism. (The square brackets here stand for any standard tupling

operation that effectively converts a sequence into a single element.) But if there is

an effective injective ρ and universal function ψ, there is also an effective bijective ρ′

and universal function ψ′, with the latter doing all the hard work. So, restricting the

notion of simulation to bijective representations, though that is not the way things are

usually done, could make sense.

4.5 Pairing

One potential problem with the above definition of universal function is that some

models of computation—like Turing machines—do not take their inputs separately, but,

40 CHAPTER 4. UNIVERSALITY

rather, all functions are unary (string-to-string for Turing machines). In such cases,

one needs to be able to represent pairs (and tuples) as single elements. One standard

pairing function for the naturals is the injection 〈i, j〉 := 2i3j . Another, among many,

is the Cantor bijection 〈i, j〉 := 1
2(i+ j)(i+ j + 1) + j or this one: 〈i, j〉 := 2i(2j + 1).

For strings, one usually uses an injection like 〈u,w〉 := u;w, where “;” is some symbol

not in the original string alphabet.

There are several ways to go. The pairing function could reside in the source domain

C, or in the target domain D, or in the representation of C as D. Regardless, this need

raises a critical issue. Unless we demand that pairing be effective, there could be a

machine that does too much, computing even non-effective functions. For example, a

näıve definition might simply ask that pairing be injective and that φ(x) = ψ〈#φ, x〉

for all φ ∈ Φ and x ∈ D (omitting parenthesis around the pair). The problem is

that an injective pairing could cheat and include the answer in the “pair”. For Turing

machines, say, the pair 〈u,w〉 might be represented as u;w when machine u halts on

input w and as u:w when it doesn’t. Better yet, one could map 〈#φ, y〉 7→ [φ(y),#φ, y],

where the square brackets are some ordinary tupling function for the domain. Then a

putative universal machine could effortlessly “compute” virtually anything, computable

or otherwise, just by reading the encoded input pair.

So, we clearly need for pairing to be effectively computable, as Davis and Rogers also

insist. But we are talking about models in which no function takes two arguments, so

we might not have an appropriate notion of computable binary function at our disposal.

To capture effectiveness of pairing in such circumstances, we demand the existence of

component-wise successor functions. Given a successor function s for domain D (i.e.

D = {sn(e)} for some e ∈ D) and a pairing function 〈·, ·〉 : D×D 1-1−→D, the component-

wise successor functions operate as follows: s1 : 〈a, b〉 7→ 〈s(a), b〉 and s2 : 〈a, b〉 7→

〈a, s(b)〉. If s, s1 and s2 are effective, then we will say that pairing is effective. This

is because one can program pairing so that 〈z, y〉 := si1(s
j
2〈e, e〉), where z = si(e) and

y = sj(e). And if pairing is effective, then its two projections (inverses), π1 : 〈a, b〉 7→ a

and π2 : 〈a, b〉 7→ b, are likewise effective. (Generate all representations of pairs in a

zig-zag fashion, until the desired one is located. What the projections do with non-pairs

is left up in the air.)

Another concern is that requiring that pairing be computable is too liberal for the

purpose. One does not really want the pairing function to do all the hard real work

4.5. PAIRING 41

itself. For example, the mapping could include φ(x) in the pair, even if it only can

do that for φ that are known to be total (like, for the primitive recursive functions,

of which there are infinitely many), or all functions that halt within some recursive

bound. That would make it a trivial matter to be universal for those functions—just

transcribe the answer from the input.

If, in addition to being effective, pairing is bijective, then we will deem it honest,

since then there is no room for hiding information. For bijective pairing with effective

projections, there is an effective means of forming a pair 〈a, b〉 (by enumerating all of D

until the two projections give a and b, respectively). Note that, with bijectiveness alone,

without effectivity, one could still hide a fair amount of uncomputable information in a

bijective mapping. For instance, imagine that 0 is the code of the totality predicate and

that the rest of the naturals code the partial-recursive functions in a standard order.

Map pairs (i + 1, z) to 3〈i, z〉, where 〈·, ·〉 is a standard pairing; map (0, z) to 3j + 1

when z is the (code of the) jth total (recursive) function; and map (0, z) to 3k + 2

when z is the kth non-total (partial recursive) function. Now, let U be some standard

effective universal function. Then, for y divisible by 3, ψ(y) := U(y/3) would compute

all the partial-recursive functions, whereas ψ(y) := y ≡ 1 (mod 3) would compute the

uncomputable totality predicate, when y = (0, z) is not divisible by 3.

In the presence of a (not necessarily honest) pairing function, we say that ψ is

universal if Ψ w Φ, where, this time, ψa = λy. ψ〈a, y〉.

Definition 13 (Unary Universality). Let Φ be some set of unary functions (over a

domain C). A unary function ψ (over domain D) is universal for Φ, via pairing

function 〈·, ·〉 (over D), if Ψ (= {λy. ψ〈a, y〉 : a ∈ D}) simulates Φ. If, in addition,

pairing is bijective, then we call the universal function honest.

That is, ψ is universal if ψ〈#φ, ρ(x)〉 = σ(φ(x)) for φ ∈ Φ and x ∈ C. Of course, we

are interested in the case where both pairing and the universal function are effective.

Theorem 14. Let Φ be some set of unary functions over a domain C, including con-

structors and identity. Then, if there is an effective unary universal function (over any

domain D) for Φ, via an effective pairing, then all the simulated functions φ ∈ Φ are

also effective.

Proof. Apply Theorem 12 to ψ′(z, y) := ψ〈z, y〉.

42 CHAPTER 4. UNIVERSALITY

Suppose Φ = {φz}z is some standard enumeration of (the definitions of) the partial-

recursive functions. Based on Davis’s second definition of a universal Turing machine

(which relies on a notion of effective mappings between strings and numbers, namely,

recursive in Gödel numberings), Rogers defines the property “universal(III)” of a unary

numerical function ψ to be that φz(x) = γ(ψ〈z, x〉) for some effective (recursive) bijec-

tion γ and effective (but perhaps dishonest) pairing 〈·, ·〉. Let’s say that such a ψ is

Rogers-universal.

We may conclude the following from the definitions:

Theorem 15. If a function is Rogers-universal, then it is universal in the sense of

Definition 13. Furthermore, there is an honest effective universal function.

Proof. Let ψ be the given Rogers-universal function. Take the standard enumeration

for the encoding #, identity for the input representation ρ, and γ−1 (which is well-

defined and effective) for the output representation σ. Then, ψ〈#φz, ρ(x)〉 = ψ〈z, x〉 =

σ(φz(x)), as required.

For the second part, take some bijective pairing 〈〈·, ·〉〉 with effective projections π1

and π2, and let ψ′ := λr. ψ〈π1(r), π2(r)〉 be our honest universal function. Putting

those together, we get ψ′〈〈z, x〉〉 = ψ〈z, x〉 = σ(φz(x)).

Chapter 5

Generic Evolving Systems

5.1 Introduction

As we mentioned in the Introduction, there are multiple levels at which to understand

the same overall system necessitates an abstraction mechanism. Atomic physics is of

no relevance to the ecologist; the ecologist’s view of the system is the same regardless

of whether the standard model of quantum physics is at play at the atomic level or not.

This means that the behavior of the entities at the ecological level should be modeled

independently of the underlying physical model, which translates into the requirement

that states qua structures are isomorphism-closed (making them oblivious as to how

the domain values they deal with are in fact implemented) and that their evolution

respects those isomorphisms. The main goal of this chapter is to provide a well-define

set of rules of such system

On each level of the ecological system, there are interacting entities: populations

interact on the ecology level, organisms on the biological level, cells on the biochemical

level, etc. The interacting entities need not all have “algorithmic” behavior. Aspects

of the external environment (such as weather conditions) can also be treated as entities

with which algorithmic components trade information. Accordingly, we need a model

of communication between entities, which we shall refer to as “cells”, in addition to a

model of their individual evolution. To that end, we can allow the control of one cell

to access values in another cell—a shared-memory viewpoint, or request values from

another cell—a message-based framework. Similarly, we can allow one cell to set values

in another cell or to request those changes from the other cell (depending again on one’s

viewpoint). We can address both the shared-memory and message-passing paradigms

43

44 CHAPTER 5. GENERIC EVOLVING SYSTEMS

in very similar manners.

Many systems, be they natural or artificial, create new entities as they evolve in

time. Accordingly, we also model the “birth” of new component cells.

5.2 Formalization

We progress from the simple to the complex: cells, organs, systems. And from the

general to the specific: connectivity, communication, evolution, programming.

5.2.1 Entities

We consider evolving networks of communicating entities, called cells. Cells are drawn

from a set (or class) C. Each cell possesses an interface comprising various ports, some

designated for input, called in-ports, and others for output, out-ports.

The Principle of Connectivity is that cells communicate via directed channels be-

tween ports, each of which is controlled by a cell. We denotet V = V ι] V o be the

bipartite space of all possible ports, in-ports V ι and out-ports V o. Each port is associ-

ated with a particular cell in C. If Vc are the ports of cell c ∈ C, then V ι
c is its in-ports,

and V o
c is its out-ports. Each port is assigned a (permanent) position within the cell.

We may refer to a port at position p in cell c by the name c.p.

Channels connect two ports with each other and are used for communication be-

tween cells. Each channel is owned (or “controlled”) by exactly one cell, not necessarily

one that it connects to. The creator of a created (non-primeval) channel is its owner.

The set of possible channels of communication is E = V o × V ι × C. These may be

viewed as directed edges of a bipartite graph with edges from V o to V ι, labeled by

owners in C. An owner has the inherent right to modify or delete its channels.

Any particular system has a network of connections via a set of “active” channels

G ⊆ E. A channel with in-port ι and out-port o is denoted o →− ι. Ownership is

indicated by labeling the channel: o
c

→− ι, or “coloring” it with the (unique) color of

its owner. A channel is usually owned by one of the cells it connects. If it is owned

by its out (tail) end, we call it blue-tailed and draw it o→− ι. If it is owned by its in

(head) end, we call it red-headed and draw it o→− ι. In sum, the topology of a system

entails cells C, ports V , and a network that is defined by a ternary relation G involving

out-ports, in-ports, and owners. One may wish to limit the number of channels that

5.2. FORMALIZATION 45

may be connected to a port, or to in-ports only. This translates into a bound on the

(total) degree, or (just) in-degree, of vertices in the graph G.

5.2.2 Interaction

The cells of a system interact by means of inter-cell communication over its channels.

Communication flows from the cell at the out-port side to the side that is plugged into

an in-port. So the flow is in the direction of the arrow used to display connectivity

of channels. The out-port end of a channel takes output from the cell at that end;

the other end, the in-port, provides input to the cell at that end. The ports of cells

harbor values, which need not stay constant. Each channel communicates the value of

its out-port to the cell at its input end. Think of the channel as a sensor wire that

transmits information from surrounding cells in the environment. Communiqués within

a system take on values from some fixed (finite or infinite) alphabet A. The value of

port p ∈ V is denoted [[v]]. (Later, this notation will be refined to refer to the state

of the cell in which p resides.) The idea is that the two ports at the two sides of a

channel should share the same value: [[ι]] = [[o]] for every channel o →− ι. Some sort

of handshaking may be warranted before this equality is established. Until then, the

out-port’s value might be unavailable, that is, undefined. Dormant ports are those

whose value is undefined, indicated by ⊥.

Different communication standards may be contemplated: included shared memory

and message passing. Taking a shared-memory perspective: The cell at the head ι of a

red-headed channel o→− ι pulls (reads) the value [[o]] from the port o at the other end.

The cell at the tail end o of a blue-tailed channel o→− ι pushes (writes) the value [[o]]

to the cell at the other end ι. If the channel is not owned by either end, then it involves

a pull and a push.

From a message-passing perspective: The cell at the head ι of a red-headed channel

o →− ι requests the value [[o]] from the port o at the other end. The cell at the tail

end o of a blue-tailed channel o →− ι serves the value [[o]] to the cell at the other end

ι. If the channel is not owned by either end, then it involves a request and a serve.

For message-passing, it would make sense if only one channel, the requesting/serving

channel, were connected to an un-owned port at any given time. There could be a time

delay between a request for a value from a serving cell and its receipt by the client. This

would hold up execution of that part of the client process that awaits the requested

46 CHAPTER 5. GENERIC EVOLVING SYSTEMS

value. We do not pursue here truly partial operations, since they may be viewed as

unanswered requests.

The evolution of a cell depends in part on the communications it receives at its

in-ports. Surfaces are partial functions from ports V to the alphabet A. The set of

possible surfaces is Σ = [V ⇀ A]. When all the defined ports of a surface are located

in the same cell or organ, the surface is called a membrane. Let M ⊆ Σ be all possible

membranes. A cell produces a membrane as output.

5.2.3 Evolution

The state of a cell evolves. Let Ξ the set of possible states in which an individual cell

can be. A cell c ∈ C may still be “embryonic”, in which case it is in the undefined state

⊥. Let’s refer to cell c ∈ C in state x ∈ Ξ as the pair c.x. Let’s refer to the value of a

port p ∈ V when cell c ∈ C is in state x ∈ Ξ as [[p]]x.

States each have a patchboard, which is the set of channels that it currently owns.

A patchboard is a subgraph of the connection graph G. If G is the current connections

of a system, then

c.x] = {o
c

→− ι ∈ G}

is state c.x’s patchboard. Let B ⊆ E be all possible patchboards.

The output membrane of a cell is the current values of its out-ports. The output

membrane of state x is

xo = λp ∈ V o. [[p]]x .

Every cell also has an input membrane, the current values of its input ports. The input

membrane of state x is

xι := λp ∈ V ι. [[p]]x .

The state of a cell includes a store, in addition to its patchboard and output mem-

brane. The set of possible stores is denoted Q. We may, therefore, view the state of a

cell as being an element of Ξ = Q×B ×M . Define the following projections for states

x = 〈q, b, σ〉 ∈ Ξ: x$ = q, x] = b, and xo = σ.

Cellular evolution is governed by plans. Each cell has an unchanging plan θ, which

determines the evolution of the state in response to input. In general, a plan θ is a

state-transition relation (or multivalued function) that depends on input surfaces. To

simplify the exposition, we deal only with plans that are partial functions, θ : Σ×Ξ ⇀ Ξ

5.2. FORMALIZATION 47

(rather than multivalued functions θ : Σ×Ξ ⇒ Ξ). These can be indexed as θσ : Ξ ⇀ Ξ

for each σ ∈ Σ. Let Θ = [Σ× Ξ ⇀ Ξ] be all possible plans for cellular evolution.

Evolution may affect the store, patchboard, and output membrane of a cell. It is

convenient to define the following:

• θ$(x) = θ(x)$ ∈ Q is the updated store;

• θ](x) = θ(x)] ∈ B is the updated patchboard;

• θo(x) = θ(x)o ∈M is the updated output membrane.

Cells have independent existence, so there can be many cells in the same state and

carrying identical plans.

The Principle of Representation states that salient aspects of states may be captured

by a relational structure. Let F be the (finite or infinite) vocabulary and D be the

domain of some cell. The shape of a cell is given by F and D. Domains may be

finite (automata), countably infinite (machines), or uncountable (processes). D should

include the communication language A, which could include cell identities C. A location

in a store comprises the identity of a cell c ∈ C, a function symbol f ∈ F, and a sequence

d̄ = (d1, . . . , dn) of values from D of length n, where n is the fixed arity of f in c.

5.2.3.1 Signals

Cells evolve over time in response to input signals. The passage of time is an indepen-

dent natural process. Imagine a ticking clock with a time-stamp at its out-port. Time

T is a linearly ordered set, ordered by <. Usually, we assume that time has a minimal

element 0. A cell’s evolution may begin in time with an initial state. A cell’s evolution

over time may end in a terminal state.

A signal is a partial function u : T ⇀ Σ from time to surfaces Σ that is defined

within some (half-open) segment [i..j) of time. That is, u(k) = ⊥ for all k < i and for

all k ≥ j (≥ is of course the reflexive closure of the inverse of <). Note the difference

between the signal being undefined outside the interval, and for there to be a defined

signal within the interval that happens to be undefined at every one of its ports. Let

U = [T ⇀ Σ] be the set of all possible signals. The starting time u0 ∈ T of a signal

u ∈ U operating over an interval [i..j) is i; the ending time u∞ ∈ T is j. In other

words, u0 = min k ∈ T. u(k) 6= ⊥ and u∞ = min k > u0. u(k) = ⊥.

48 CHAPTER 5. GENERIC EVOLVING SYSTEMS

Suppose that θ ∈ Θ is the plan of cell c ∈ C. It is convenient to write xu to

abbreviate θu(x), for x ∈ Ξ and u ∈ U . We can write k as short for the unadulterated

time signal λj ∈ [0..k). λp ∈ V ι. j, which just tracks time. Then xk is the state that

results from letting state x ∈ Ξ evolve until time k ∈ T.

Signals u, v ∈ U may be concatenated, but only provided v0 = u∞:

u • v = λk.

u(k) if k < u∞

v(k) if v0 ≤ k

⊥ v0 6= u∞.

Of course (u • v)0 = u0 and (u • v)∞ = v∞.

The Principle of Timelessness is that signals that are alike—except for the time at

which they occur—have the same effect. That is, for all plans θ ∈ Θ, signals u, v ∈ U ,

and order-preserving isomorphisms α : U ↔ v, we have

u ∼=α v ⇒ θu = θv .

This means that cellular functions are oblivious to the time at which a signal is received,

unless—of course—the signal includes the time.

The Principle of Causality states that the present and the future depend only on

the past. Formally, this is

θu•v = θu ◦ θv ,

for plans θ ∈ Θ and signals u, v ∈ U . We are using relational notation for composition

of functions: (θu ◦ θv)(x) = θv(θu(x)). Put differently, Causality says that

xu•v = (xu)v ,

for states x ∈ Ξ.

Evolving cells produce output signals in response to input signals. Let

u..j(k) =

u(k) if k < j

⊥ if k ≥ j ,

5.2. FORMALIZATION 49

for j ∈ [u0..u∞], be the prefix of signal u restricted to the interval [u0..j). Then, let

θ̃u(x) = λj. θou..j (x)

denote the output signal that results from applying plan θ with signal u ∈ U to state

x ∈ Ξ. It follows that

θ̃u•v = θ̃u • (θu ◦ θ̃v) .

Abbreviating an output signal θ̃u(x) as xũ, we have that

x ˜u•v = xũ • (xu)ṽ .

Let L be the set of locations of some cell shape. A store is a set of values of lo-

cations, as for classical algorithms. A cell’s in-ports are among its locations. Out-

ports are just those locations whose values are made available for outgoing com-

munications. The changes in a state over time may be captured by changes to

its components. To keep the notation below relatively simple, it is nice to define

anti-elements for sets. For any set S, let S−1 = {s−1 : s ∈ S} be the set of

anti-elements for S. The idea is that anti-elements annihilate their counterparts:

S′ ∪ S−1 = S′ \ S. (So this union is not necessarily commutative.) Viewing stores

as location-value pairs, define—for fixed plan θ ∈ Θ and signal u ∈ U :

∆$(x) =
(
x$ \ θ$u(x)

)−1 ∪ (θ$u(x) \ x$
)
.

These are anti-elements for what θ removes from x’s store plus (ordinary) elements for

what it adds. Viewing patchboards as port-port edges (pairs):

∆](x) =
(
x] \ θ]u(x)

)−1 ∪ (θ]u(x) \ x]
)
.

Viewing the output membrane as a set of port-value pairs:

∆o(x) =
(
xo \ θou(x)

)−1 ∪ (θou(x) \ xo
)
.

Bagging everything together, and keeping elements of different sorts separate, we

50 CHAPTER 5. GENERIC EVOLVING SYSTEMS

can let

∆(x) = ∆$(x)]∆](x)]∆o(x) .

Then (using elements and anti-elements) a transition θ can be reconstructed from the

difference ∆:

θu(x) = x ∪∆(x) .

For ordinary discrete time, T = N, instead of talking about an input signal u,

we can talk about an input sequence, which is a sequence of membranes. The input

sequence given by a signal u: is

u(u0) u(u0 + 1) . . . u(u∞ − 1)

Let’s denote this sequence of membranes

σ0 σ1 . . . σn

Let σ be one of these input membranes σi and let Domσ be its domain of definition.

The current set of values of those in-ports of a cell x may be defined in this way:

σ∗ = {p 7→ [[p]]x : p ∈ Domσ} .

Viewing an input membrane as a set of port-value pairs, the effect of an input step may

be described as follows:

xσ = x ∪ σ−1∗ ∪ σ .

Let xσ = θ{j 7→σ}(x) be the next state for x ∈ Ξ after receiving a single-point signal

σ ∈ Σ. The total effect on a cell x’s store of one discrete step with input σ is:

xσ = θ(xσ) .

In other words, first the input values are inserted into cellular locations, and then the

state transitions to the next state.

5.2. FORMALIZATION 51

5.2.4 Systems

States may come in a variety of types. The cellular structure of cells of the same type

are of the same shape and cells of the same type are governed by the same plan. The

number of types is typically finite. A tissue is a set of interconnected cells of the same

type.

Cells can conceive and give birth to new cells of the same type. The Principle of

Motherhood asserts that every cell has at most one mother and that mothers are aware

of the identity of their offspring. Motherless cells are primeval.

An organ is either a simple cell or it is a complex organ consisting of a set of

interacting organs. An organ may be viewed from the outside just like a cell. The

status X : C⇀ Ξ of an organ is a partial function giving the state in which of its cells

is. The set of possible organ states is Λ = [C⇀ Ξ]. An organ may interact with other

organs. It follows (from the fact that every channel has a unique owner) that the union

of patchboards of all cells of a system with status X defines the system’s network G:

G(X) =
⋃

c∈C
X(c)] .

A system is an organ that does not interact with any external organs. The state of

a complex organ is the is the set of states of its internal organs, including the graph

of their interconnections. An organ’s ports are the union of the ports of its internal

organs. The patchboard of an organ is its externally connected owned ports. The

behavior of a complex organ is the sum of the behaviors of its components, its internal

organs, which are either cells or other organs. An organ’s policy is that each of its

internal organs minds its own policy. The set of all policies is Π = [C ⇀ [Ξ ⇀ Ξ]].

Surfaces may be fused to operate over the symmetric difference of their interfaces:

σ 	 σ′ = λm.

σ(m) if m ∈ Dom σ \Dom σ′

σ′(m) if m ∈ Dom σ′ \Dom σ

⊥ otherwise .

The graph G(X) of an organ X induces an (unlabeled) acquaintance graph K based

52 CHAPTER 5. GENERIC EVOLVING SYSTEMS

solely on ownership:

K = {c −→ a, c −→ b : a.p
c

→− b.q ∈ G} .

The idea is that a cell “knows” the cells it connects by means of a channel it owns. Let

K∗ be the reflexive-transitive closure of this (binary) relation K. States can only learn

the identity of cells that they know about.

Plans may follow rules or not. The Principle of Describability is that an organ is

algorithmic if its evolution has a finite description (in terms of changes to the structure

of states). This is analogous to the case of classical algorithms. Algorithmic plans

may be described by programs. Programs operating in sequential time must define the

one-step transition relation θσ. This may be done in the basic language of abstract

state machines, which includes the following at a minimum:

• general assignments: f(s1, . . . , sn) := t (terms s1, . . . , sn, t in the vocabulary of

the state);

• conditionals: r : P (Boolean term r and program P); and

• parallel composition: P&Q (programs P , Q).

The semantics of a program is a function form states to sets of updates. The semantics

of the above constructs are as follows:

• general assignment:

[[f(s̄) := t]] (x) = {f([[s̄]]x) 7→ [[f([[s̄]])]]x}
−1 ∪ {f([[s̄]]x) 7→ [[t]]x} ;

• conditionals:

[[c : P]] (x) =

[[P]] (x) if [[c]]x = true

∅ otherwise ;

• parallel composition:

[[P&Q]] (x) = [[P]] (x) ∪ [[Q]] (x) .

In addition, we want:

5.2. FORMALIZATION 53

• higher-order assignments: f := g; where f and g are functions (of the state

vocabulary) of the same arity,

• serial composition: P ; Q (programs P , Q); and

• parallel choice: P | Q (programs P , Q).

The semantics are as follows:

• higher-order assignments:

[[f := g]] (x) = {f(d̄) 7→
[[
f(d̄)

]]
x

: d̄ ∈ D∗} ∪ {f(d̄) 7→
[[
g(d̄)

]]
x

: d̄ ∈ D∗} ;

• serial composition:

[[P ; Q]] (x) = [[P]] (x) ∪ [[Q]] (x ∪ [[P]] (x)) ;

• parallel choice:

[[P | Q]] (x) is either [[P]] (x) or [[Q]] (x) .

We should also allow conditional and choice terms:

• conditional: the value [[r : s]]x of the conditional term r : s is [[s]]x provided

[[r]]x = true, and has no value otherwise;

• choice: the value [[s | t]]x of the choice term s | t is either [[s]]x or [[t]]x.

Conditionals go hand-in-hand with choice, as in

[[(r : s) | (¬r : t)]]x =

[[s]]x if [[r]]x

[[t]]x otherwise .

A foreign location is indicated by a port-valued expression of the form

c.f(s1, . . . , sn), where c is cell-valued and f(s1, . . . , sn) yields a location in c. Only

local locations and shared resources may appear on the left of assignments. A foreign

resource on the left of an assignment is an agent. A resource that only appears on the

right side or in conditions is an asset (that is, read-only).

54 CHAPTER 5. GENERIC EVOLVING SYSTEMS

A new cell may be conceived by means of a creation term

ν(P)

where P is a program. All expressions in P are evaluated with respect to the mother,

but all assignments are made to locations in the fetus (baby cell). All other operators

in the baby are completely undefined. The value of this term is the identity c ∈ C of

the baby. Additional assignments may be made to operations in (unborn) fetuses by

referring to its locations with terms like c.f(s1, . . . , sn). Babies are birthed by means

of the command

&(c1, . . . , cn)

where the ci ∈ C are the babies’ identities.

When born, the baby cell will run the same algorithm as its mother, but its store

may differ. Flags can be set to specialize the behavior of offspring. The command

&(ν()) launches an independent new cell with pristine store, but it would have no way

to interact with other cells.

The program of an organ as a whole is just the union of the programs of its con-

stituent “organelles” (sub-organs), with functions disambiguated by the name of the

cell they reside in. Of course, some cells might not be governed by programs, but rather

provide environmental input, like measurements of natural phenomena (e.g. thermome-

ters, barometers, velocimeter). Whereas an individual programmed cell may own only

a bounded number of channels, an organ can create more and more new cells, each of

which is connected to external cells. Programs as described above can cause conflicts

(“clashes”) when different assignments (in one or more cell plans) attempt to assign

different values (at one and the same moment) to a single location. The outcome of

such a conflict is any one of the possibilities. (These nondeterministic semantics are

preferable to a system crash.)

5.2.4.1 Effectiveness

The Principle of Effectiveness is that an algorithmic organ is effective if its initial status

has a finite description. In general, for a system to be deemed effective, not only should

its transitions and evolutions be describable by a finite text, but also the initial states

with the operations they are endowed with. For an organ to be effective, it should have

5.2. FORMALIZATION 55

finitely many cells, each governed by an effective algorithm. The number of cells and

their inter-connections may grow unboundedly during its evolution. This is analogous

to the classical case.

5.2.4.2 Continous Time

For continuous-time systems, the discrete programming language is extended with

• continuous (explicit) assignments: f(s1, . . . , sn) :≈ t,

which stay in force until a new assignment is made to the same term by some program.

Jumps are effected by conditionals. Additional constraints on algorithmic evolution

make sense in the continuous context. These include that tests should test for conditions

that have non-zero duration and that the dynamics of a system change only finitely often

in a finite period of time. A jump in the evolution of a continuous-time cell is a change in

its dynamics, in contrast with flows, during which the dynamics are fixed. Various other

possibilities make sense for programming continuous-time systems (implicit equations,

infinitesimals). To achieve synchronous behavior in a continuous-time environment,

there would need to be a global clock to which other cells are connected, directly or

indirectly.

5.2.5 Discussions

Many instances of plans come to mind. When foreign locations provide only read-only

resources, write abilities to a public (but not shared) memory need to be achieved

via requests—as in modern hardware. A cell c can allocate resources for requests r,

addresses a, and values v, which it makes available to a memory module. The latter

runs a program of the sort p.r : m(p.a) := p.v, for some “archive” function m. A similar

setup may be used to serve stored values.

When unboundedly many cells use the same controlled archive, some queueing

mechanism needs to be set up, by means of which individual cells can place requests

while the archive deals with them one at a time.

If (automata) cells share a finite domain (as in cellular models), then unbounded

memory is achievable by means an unbounded number of connected cells. In this case

an unbounded number of steps may be needed to access a particular datum.

56 CHAPTER 5. GENERIC EVOLVING SYSTEMS

To model a physical or biological system in which units are each governed by rules,

but adjacent units exchange values or signals, one could represent their interface as a

channel. For example, the temperature of a wall would be a public function over R2 of

one side or the other.

Positions in space (of physical or biological systems) may be modeled by having

each cell keep track of its own position. Neighboring cells would need to be in contact

to avoid overlap.

Chapter 6

What is a Parallel Algorithm?

6.1 Informal View

Informally, a parallel algorithm consists of a (finite or infinite) set of cells, whose indi-

vidual states all evolve according to the same algorithm. The state of each cell, at any

moment, is a (logical) structure with a tripartite vocabulary F] F ′] G consisting of

private (internal) operations F , public (global) G, and embryonic F ′, the latter having

the same similarity type as F . (There could be any fixed number of embryonic copies

F ′, F ′′, . . . , F (k), but let us leave it simple for now, one child at a time.) The individual

cells all run a “classical” (sequential) algorithm in the sense of Chapter 2.

Initially, all cells agree on G and their F ′ are pristine (completely undefined). A

single global step of the algorithm comprises of the following stages.

1. First, each cell C takes one classical step, producing a set of updates U .

2. Cells’ private operations F and embryonic operations F ′ are updated per U .

3. Then the union of all the cell’s public updates together are applied to every cell’s

public G. If there is any disagreement between cells regarding updates to G (the

same location getting contradictory new values), the whole system aborts. (Abortion

could be replaced with nondeterministic behavior, should one prefer.)

4. Assuming there are no conflicts, mitosis takes place as follows: Each cell C in

which the values of the operations F ′ were modified splits into two, a mother C and

daughter C ′. The daughter C ′ inherits G, as updated, from her mother; her F is a

copy of her mother’s F ′. For both mother and daughter, F ′ is reinitialized to undef

57

58 CHAPTER 6. WHAT IS A PARALLEL ALGORITHM?

(undefined).

5. If one wishes, an individual cell can be allowed to die and be dropped from the

global organism whenever it has no next state, as when it suffers an internal clash.

6.2 Parallel Algorithms

An algorithm is generally viewed as a state-transition system composed of a set of

states and a transition function (or, more generally, a relation) over states.

Definition 16 (Parallel System). A parallel system consists of a set (or class) S of

states, a (nonempty) subset S0 ⊆ S of which are initial, a federacy of (countably or

uncountably many) identities I, localized states Xi ∈ S for each X ∈ S and i ∈ I, and

a (partial) transition function τ : S ⇀ S. Whenever τ is undefined for a state X ∈ S,

we will say that X is terminal.

We first explain what the states of a parallel algorithm look like and then discuss

algorithmic transitions.

6.2.1 Global States

We need for systems to comprise multiple local processes, what we called “cells”. As

explained above, states should be formalized as (first-order) logical structures over some

vocabulary, fixed by the algorithm. Since we are dealing with parallel algorithms, with

both private and shared memory, each cell has a local state, which is a structure over

a (finite) vocabulary G] F , where the (current) values of operations in G are stored

(conceptually, at least) in global locations, accessible to all cells, while private data is

stored as values of operations in its personal copy of F .

Each cell has its own unique identity, taken from some index set (or class) I.

Suppose F = {f1, . . . , fk}. Then the k local functions of cell i ∈ I are indexed

Fi = {f1i , . . . , fki }, where, for each j = 1, . . . , k, the functions f ji have the same arity

for all cells i. It will be convenient in what follows to denote F j = {f ji : i ∈ I}. The

global state of the algorithm will be an algebra over the combined (possibly infinite)

vocabulary V = G ∪ F ∗, where F ∗ =
⋃
i∈I Fi =

⋃k
j=1 F

j .

Let X be a state of A with domain (universe, carrier) D. Let g be some function

in V (either in G or in F ∗) of arity n and ū be an n-tuple of elements of that domain.

6.2. PARALLEL ALGORITHMS 59

Then, by interpreting g, X determines the value [[g]]X (ū) of its location g(ū). For any

ground term t, we write [[t]]X = w to mean that the value of t as interpreted in X is w.

When state X with transition τ is not terminal, we say that g(ū) 7→ w is an update

of X if τ changes the value of g(ū) to be w in τ(X), which was not its value in X. By

∆τ (X), we denote the set of all updates of X under τ .

Each cell works with only part of the global state. We define the ith localization

Xi of global state X of federacy I to be the structure X with its “active” vocabulary

restricted to Vi, meaning that all other functions (F ∗ \ Fi) are everywhere undefined,

taking on the otherwise unused value undef. Note that the localization of a localization

Xi is Xi itself. The evolution of the ith cell should utilize only the values of the defined

functions of the ith localization, identifying its private F with the indexed functions

Fi. Transitions for a cell can only change values of its functions and of its progeny. We

say that a localization Xi is empty if every function in Fi is also undefined. These are

nascent cells, yet to be born. We call Xi an i-state when it’s not empty.

Identities are just a fiction to distinguish one cell from another; when comparing

states, the individual identities should be ignored. Two states are the same if they

are the same up to permutation of cell identities. Similarly, two sequences of state

transitions are the same if there is a permutation of identities for the states in one of

the sequences that makes it identical to the other sequence.

To facilitate state comparison, we define a anonymization operator] that wipes off

the identifier, that is, it erases the identity-index from function symbols. Thus, the

anonymized X]
i is obtained from a localized cell Xi by restricting the vocabulary to Vi

and pretending that the remaining symbols f ji are just f j , for all j. Accordingly, we

say that Xi = Yk, for two localizations, if X]
i = Y]

k , that is, if they are identical when

anonymized. Similarly, we say that transition τ generates the same updates for Xi and

Yk if the updates to G are the same in both Xi and Yk, the updates to Fi in Xi are

the same as the updates to Fk in Yk, and the updates to other locations are the same

up to the choice of indices for updates to daughter cells. In such a case, we will simply

write ∆τ (Xi) = ∆τ (Yk). We denote by ∆i
τ (X) the set of all updates to locations of Fi

in X. As before, we write ∆i
τ (X) = ∆k

τ (Y) if ∆i
τ (X)] = ∆k

τ (Y)].

To capture the uniform behavior of cells, we introduce templates, which are terms

over an unadorned vocabulary G∪{f1, . . . , fk}, where f j is a symbol of the same arity

as the f ji ∈ F . For each i ∈ I, the template t induces a critical term ti, obtained by

60 CHAPTER 6. WHAT IS A PARALLEL ALGORITHM?

replacing each occurrence of f j by f ji . Given states X and Y from the same transition

system, we say that they agree on a set of templates T and indicate X ≡T Y if

[[ti]]X = [[ti]]Y for every t ∈ T and i ∈ I. In words, every localized term defined by a

template t has the same value in both X and Y .

To compare different cells we should again ignore their specific identities. Let Xi

and Xk be distinct localizations of global state X. We say that Xi ≡T Xk (the two

states “agree”) if [[ti]]X = [[tk]]X for each t ∈ T . Similarly, we may compare localizations

of two distinct global states. We write Xi ≡T Yk, for localization Xi of X and Yk of Y ,

if [[ti]]X = [[tk]]Y for each t ∈ T .

6.2.2 Algorithms

Let A = (S,S0, I, τ) be a parallel system of federacy I over vocabulary V . We deem

it to be “algorithmic” if it satisfies a number of postulates, which we now proceed to

explicate.

Postulate V (Abstract State). A parallel system is abstract if the following properties

hold:

1. Its states are structures over a vocabulary V .

2. All states share the same vocabulary.

3. The functions in its states are all strict: f(. . . , undef, . . .) = undef for all f ∈ V .

4. Its states (and also the set of initial states and the set of terminal states) are closed

under isomorphism (of first-order structures).

5. Its states are also closed under localizations, that is, if X is a state, then Xi is also

a state, for each identity i.

6. Isomorphic states are either both terminal or else their next states are isomorphic,

via the same isomorphism.

7. Transitions preserve the domain of states.

States as structures make it possible to consider any data structure sans encodings.

In this sense, algorithms are generic. The structures are “first-order” in syntax, though

domains may include sequences, or sets, or other higher-order objects, in which case the

6.2. PARALLEL ALGORITHMS 61

state would provide operations for dealing with those objects. States with infinitary

operations, like the supremum of infinitely many objects, are precluded. Closure under

isomorphism ensures that the algorithm can operate on the chosen level of abstraction

and that states’ internal representation of data is invisible to the algorithm. This means

that the behavior of an algorithm, in contradistinction with its “implementation” as

a program in some particular programming language, cannot depend on the memory

address of some variable.

It must be possible to describe the effect of transitions in terms of the information

in the current state. To that end, we use templates, which refer to global locations

in the current state and to local locations in each cell. Parallel algorithms use these

templates to describe state transitions, without referring to cells individually. If every

referenced location has the same value in two states, then the behavior of the algorithm

must be the same for both of those states. This, the essence of what makes a process

algorithmic, is a crucial insight of [62].

Each cell is fully responsible for its local updates. The updates created by an

individual cell may not depend on its identity, but only on global and local locations

that are available to it.

Postulate VI (Localization). An abstract parallel system with state-transition τ and

identities I is localized if there exists a finite set T of templates such that ∆τ (Xi) =

∆τ (Yk) and ∆i
τ (X) = ∆k

τ (Y) whenever Xi ≡T Yk for states X and Y and identities

i, k ∈ I.

Moreover, all updates of a global state are generated solely by local cells.

Postulate VII (Globalization). An abstract parallel system with state-transition τ and

identities I is globalized if ∆τ (X) =
⋃
i∈I ∆τ (Xi) for all states X and identities i ∈ I.

For ordinary (non-parallel) algorithms, one asks for the following [62, Bounded

Exploration Postulate]:

Definition 17 (Algorithmicity). An abstract parallel system with state-transition τ

is algorithmic if there exists a finite set T of templates such that X ≡T Y implies

∆τ (X) = ∆τ (Y) for all states X and Y .

Proposition 18. Algorithmicity follows from localization and globalization.

62 CHAPTER 6. WHAT IS A PARALLEL ALGORITHM?

Proof. Suppose X ≡T Y for states X,Y and some finite set of templates T . Assume

that δ = f(u1, . . . , un) 7→ u0 is an update of X. Then, by globalization, there exists a

cell i such that δ is an update of Xi. Since X ≡T Y there exists a j such that Xi ≡T Yj .

From localization, we deduce that δ is an update of Yj , and from globalization that

it is an update of Y . Hence ∆τ (X) ⊆ ∆τ (Y). Inclusion of ∆τ (Y) in ∆τ (X) is proved

in the same way. Hence ∆τ (X) = ∆τ (Y), as required.

6.2.3 Childhood

If some localization of X is empty but is not empty for τ(X), this indicates that a child

has been born. We demand that once a cell has been created, no other cell can change

its internals.

Postulate VIII (Fertility). An abstract parallel system with state-transition τ and

identities I is fertile if there exists a (input-independent) bound n ∈ N, such that, for

any localization Xi of a state X with identity i ∈ I, τ(Xi) has at most n non-empty

localizations.

The idea here is that in a single step each cell may participate in the creation of only

a bounded number of new processes.

Lastly, each newborn cell has exactly one mother:

Postulate IX (Motherhood). An abstract parallel system with state-transition τ and

identities I is maternal if whenever a localization Xi of a state X with identity i ∈ I

is empty, but is non-empty for τ(X), there is an identity k ∈ I such that ∆i
τ (X) ⊆

∆τ (Xk).

6.2.4 Parallel Algorithms

With the above requirements in place, we can state what a parallel algorithm is.

Definition 19 (Parallel Algorithm). A parallel algorithm is a parallel state-transition

system that satisfies Postulates V–IX.

Proposition 20. Any parallel algorithm over a finite vocabulary may be described by

an ordinary algorithm.

Proof. Consider an algorithm over a finite vocabulary V . Then instead of V = G∪F ∗,

we may assume that we only have V = G (and we required that G be finite). So for

6.3. PARALLEL PROGRAMS 63

this case, the algorithm is only required to have the abstract state and algorithmic

properties, and postulates VI–IX are redundant. Also, our final set of templates T

is just a finite set of terms over V = G. So what we have is a classical (sequential)

algorithm with critical terms T , as defined by Gurevich in [62].

6.3 Parallel Programs

The two basic program instructions are assignment and creation.

Assignment. An atomic assignment is an instruction of the form g(t1, . . . , tn) := t0,

where t0, . . . , tn are templates and g ∈ V has arity n.

Let Xi be a localization of X. Assume that
[[
tji

]]
X

= uji for each j = 0, . . . , n. If

g ∈ G, then application of an assignment a on X for i generates an update ∆a(Xi) =

{g(u1i , . . . , u
n
i) 7→ u0i }, with the appropriate index i. If g ∈ F , then the application

generates an denoted ∆a(Xi) = {fi(u1i , . . . , uni) 7→ u0i }, with the appropriate index i.

If one of the tj is undefined (undef) in Xi, then ∆a(Xi) = ∅. The application of a to

X generates the update set ∆a(X) =
⋃
i∈I ∆a(Xi).

Parallel assignment. More generally, a parallel assignment rule a is a finite set of

atomic assignments, written out as a1 ‖ a2 ‖ · · · ‖ a`. The update set generated by this

instruction is ∆a(X) =
⋃`
j=1 ∆aj (X). If ∆a(X) includes conflicting updates (different

values assigned to the same location), then the rule is not applied.

Creation. This is an instruction denoted new.a of the form new a, where a is a

parallel assignment.

Suppose a is a single assignment f(t1, . . . , tn) := t0, and let Xi be one localization.

The transition initializes some empty localization Xki by setting fki(
[[
t1i
]]
X
, . . . , [[tni]]X)

to be
[[
t0i
]]
X

. Then ∆new.a(Xi) = {fki(u1i , . . . , uni) 7→ u0i }, where each uji =
[[
tji

]]
X

.

However, if any one of the uji is undefined, then ∆new.a(Xi) = ∅. For each cell i, the

transition chooses a different daughter cell ki. In general, the update is appended to

the total set of updates ∆new.a(X) =
⋃
i∈I ∆new.a(Xi).

If a is a parallel assignment a1 ‖ a2 ‖ . . . ‖ a`, then application of new.a chooses

a unique empty Xki for each Xi such that all the templates in the atomic assignments

are defined for Xi. In this case, ∆new.a(X) =
⋃`
j=1 ∆new.aj (X). If there is no way to

64 CHAPTER 6. WHAT IS A PARALLEL ALGORITHM?

choose a unique ki for each i such that the rule can be applied to it, then the rule is

not applied at all.

Guard. An atomic guard is a condition of the form s = t or s 6= t. A guard t = s

evaluates to true for localization Xi if [[ti]]X = [[si]]X , and t 6= s is true if [[ti]]X 6= [[si]]X .

More generally, a guard may be a conjunction c of atomic guards c1 & c2 & . . .& cn,

which is true for Xi when each cj is.

Guarded assignment. This is an instruction denoted c : a of the form if c then a,

where c is a guard and a is a parallel assignment rule. Application of c : a to state X

generates the set of updates ∆c:a(X) =
⋃
{∆a(Xi) : i ∈ I, [[c]]Xi = true}.

Guarded creation. This instruction c : new.a takes the form if c then new a,

where a is a parallel assignment and c, a guard. The assignments are executed on each

Xi for which the guard c evaluates to true.

Definition 21 (Parallel Abstract State Program). A parallel (abstract state) program

is a finite set P = {r1, . . . , rn} of rules as above. To execute P on state X, all rules are

executed simultaneously, that is, ∆P (X) =
⋃
ri∈P ∆ri(X). If ∆P (X) has conflicting

updates, then no updates are applied at all.

For state X, we denote by P (X) the state obtained by application of program P

on X. If no rule in P applies, then P is not defined for X.

Note that for each instance of creation, the program chooses new unused indices

from I in some fashion. Since we always treat states and computations as identical if

they are the same up to permutation of cells (that is, of indices to function symbols),

the specific choice is immaterial.

6.4 Representation Theorem

A parallel program P is a characteristic program of algorithm A if P (X) = τ(X) for

each state X of A. We shall presume for simplicity that A is over a vocabulary G∪F 1

only and denote it by G ∪ F . We will also assume that in Postulate VIII we have at

most one child born per step (n = 2). All proofs can be easily extended to the general

case.

6.4. REPRESENTATION THEOREM 65

By globalization, ∆τ (X) =
⋃
i ∆τ (Xi). So we start with localized states Xi. We

prove that the transition of Xi can be described by a rule composed of assignment and

creation rules.

By our simplifying assumption, the algorithm has only one local function. So Xi’s

defined locations are over the vocabulary G ∪ {fi}. Furthermore, we limit creation to

at most one child per transition. Hence, defined locations of τ(Xi) are over G∪{fi, fk}

for some k ∈ I. So we may treat Xi and τ(Xi) as ordinary states of an ordinary

(non-parallel) algorithm over finite vocabulary G ∪ {fi, fk} with critical terms Ti ∪ Tk.

Let δ = h(u1, . . . , un) 7→ w be an update in ∆τ (Xi). According to [91, Lemma 5]

(or [62, Lemma 6.2]), for each value uj = 0, . . . , n there exists a term tj ∈ Ti ∪ Tk such

that
[[
tj
]]
Xi

= uj . Let αδ be the ordinary assignment rule h(t1, . . . , tn) := t0. We have

∆αδ(Xi) = {δ}, Denote by αi the assignment obtained as a parallel composition of αδ

for all δ ∈ ∆τ (Xi). Obviously, ∆αi(Xi) = ∆τ (Xi).

Take a look at h(t1, . . . , tn) := t0, bearing in mind that
[[
tj
]]
Xi

= uj for j = 0, . . . , n.

In particular, tj must be defined (not undef) in Xi. Since the only defined locations

of Xi are those of G ∪ {fi}, we may conclude that tj are all terms over G ∪ {fi}, not

referring at all to values in the child cell. And since all defined locations of τ(Xi) are

over G ∪ {fi, fk}, we may conclude that h ∈ G ∪ {fi, fk}. Accordingly, we partition αi

into two parallel assignment rules: ai are all those rules with h ∈ G∪{fi} and ni are for

rules with h = fk. Obviously, αi = ai ‖ ni. We may call the characteristic assignment

of Xi.

Let a] be obtained from ai by replacing fi with f . Then a] is an assignment

rule over the templates T . From the definition of parallel assignment, we obtain that

∆a](Xi) = ∆ai(Xi). Let n] be obtained from ni by replacing fi and fk with f . From

the definitions of parallel creation and of comparing updates for different cells, we

obtain that ∆new.n](Xi) = ∆ni(Xi). Define the program α] = a] ‖ new.n]. Then

∆α](Xi) = ∆a](Xi) ∪∆new.n](Xi) = ∆αi(Xi).

Lemma 22. Let Xi be a localized state of a parallel algorithm with identity i, and αi

the characteristic assignment for Xi and τ . Then α](Xi) = αi(Xi) = τ(Xi).

Proof. That α](Xi) is τ(Xi) follows from the above discussion. That αi(Xi) is τ(Xi)

follows from [91, Lemma 11].

Updates of localized states depend on the values of templates only.

66 CHAPTER 6. WHAT IS A PARALLEL ALGORITHM?

Lemma 23. Let Xi be a localized state of a parallel algorithm with identity i, and αi

the characteristic assignment for Xi and τ . If Yi is a localized state with the same

identity i and Xi ≡T Yi, then α](Yi) = αi(Yi) = τ(Yi).

Proof. Since α] is a rule over T it will contain updates based on the values of T only.

Considering that Xi ≡T Yi, we will have ∆α](Xi) = ∆α](Yi). It follows from the

previous lemma that α](Xi) = τ(Xi). According to the localization postulate, we

have ∆τ (Yi) = ∆τ (Xi), again since Xi ≡T Yi. Combining all together, we conclude

that α](Yi) = τ(Yi), as claimed.

Every localized state Xi induces an equivalence relation ∼Xi on templates T ac-

cording to which s ∼Xi t iff [[si]]Xi = [[ti]]Xi . We show next that update commands for

localization Xi are determined by this relation.

Lemma 24. Let Xi be an i-state of an algorithm, Yk an k-state, and αk the charac-

teristic assignment for Yk and τ . If ∼Xi=∼Yk , then α](Xi) = αk(Xi) = τ(Xi).

Proof. We may treat Xi and Yk as ordinary states over finite vocabularies, as we did

at the start of this section. We are given that [[si]]Xi = [[ti]]Xi iff [[sk]]Yk = [[tk]]Yk for any

templates s, t ∈ T . By [91, Lemma 13], we get αi(Xi) = τ(Xi). By Lemma 22, we may

conclude that α](Xi) = τ(Xi). Recall that we consider states to be equal if they are

equal up to a permutation of identities.

We are ready to prove that any parallel algorithm may be described by a parallel

program.

Theorem 25 (Representation). For each parallel algorithm, there exists a character-

istic parallel abstract program.

Proof. For any equivalence relation ∼ on templates T , we define the guard c∼ to be

the conjunction of equalities s = t for all s, t ∈ T such that s ∼ t, plus the conjunction

of disequalities s 6= t for all s, t ∈ T such that s 6∼ t. For each possible relation ∼, we

choose a localized state Xi of the algorithm with the relation ∼ between its instantiated

templates Ti (provided there is such a state), and call it X∼. Then we can define the

program R∼ = if c∼ then α]∼, where α∼ is the characteristic assignment for X∼.

Obviously c∼ evaluates to true on X∼, and hence R∼(X∼) = α]∼(X∼).

Define P to be the parallel program consisting of rulesR∼ for all possible equivalence

relations ∼ of T , for which there is at least one state X∼. Since T is finite, it has only

6.4. REPRESENTATION THEOREM 67

finitely many distinct equivalence relations, and so program P is finite. We claim that

P is a characteristic program of the algorithm, that is, P (X) = τ(X) for any state X.

Consider some localized state Xi satisfying the relation ∼i on templates. By

Lemma 24, α∼i(Xi) = τ(Xi). Exactly one guard in P applies to Xi and that is c∼. So

P (Xi) = P∼i(Xi) = α]∼i(Xi) = α∼i(Xi) = τ(Xi).

Assume finally that X is a general state of the algorithm. By globalization, the up-

date of X is a union of updates of all its localizations Xi, that is, ∆τ (X) =
⋃
i∈I ∆τ (Xi).

By the abstract state axiom, Xi is also a state. According to localization, updates

for Xi do not depend on whether Xi is considered as a standalone state or a localization

of a general state. So it is enough to show that ∆P (Xi) = ∆τ (Xi) for all i ∈ I, which

was just established in the previous paragraph.

Chapter 7

Extended Computational Thesis

7.1 Introduction

In 1936, Turing [113] invented a theoretical computational model, the Turing machines,

and proved that they compute exactly the same functions over the natural numbers

(appropriately represented) as do the partial-recursive functions and the lambda cal-

culus. His deep insight was that computation, however complex, can be decomposed

into simple atomic steps, consisting of single-step motions and the testing and writing

of individual symbols. In 1971, Hartmanis [67] and Cook and Reckhow [29] devel-

oped the random-access register machine (RAM) model for the purpose of measuring

computational complexity of computer algorithms. This theoretical model is close in

spirit to the design of modern (von Neumann architecture) computers and serves as a

more realistic measure of (asymptotic) time and space resource usage than do Turing’s

machines. The question addressed here is to what extent RAMs are in fact the ideal

model for measuring algorithmic complexity.

In his handbook survey on computational models, van Emde Boas writes:

Register-based machines have become the standard machine model for

the analysis of concrete algorithms. [117, p. 22]

If it can be shown that reasonable machines simulate each other within

polynomial-time bounded overhead, it follows that the particular choice of

a model in the definition of feasibility is irrelevant, as long as one remains

within the realm of reasonable machine models. [117, p. 4]

I firmly believe that complexity theory, as presently practiced, is based

on the following assumption, held to be self evident:

68

7.1. INTRODUCTION 69

Invariance Thesis: There exists a standard class of machine models,

which includes among others all variants of Turing Machines [and] all vari-

ants of RAM’s. . . . Machine models in this class simulate each other with

Polynomially bounded overhead in time, and constant factor overhead in

space. [116, p. 2] (cf. [117, p. 5])

The Church-Turing Thesis [74, Thesis I†] asserts that all effectively computable

numeric functions are recursive and, likewise, that they can be computed by a Turing

machine, or—more precisely—can be simulated under some representation by a Turing

machine. As Kleene [76, p. 493] explains,

The notion of an “effective calculation procedure” or “algorithm” (for which

I believe Church’s thesis) involves its being possible to convey a complete

description of the effective procedure or algorithm by a finite communica-

tion, in advance of performing computations in accordance with it.

This claim has recently been axiomatized and proven [15, 41](see Chapter 2).

The extended thesis adds the belief that the overhead in such a Turing machine

simulation is only polynomial. One formulation of this extended thesis is as follows:

The so-called “Extended” Church-Turing Thesis: . . . any function naturally

to be regarded as efficiently computable is efficiently computable by a Turing

machine. (Scott Aaronson [1])

The Extended Church-Turing Thesis states . . . that time on all “reasonable”

machine models is related by a polynomial. (Ian Parberry [85])

The Extended Church-Turing Thesis makes the . . . assertion that the Turing

machine model is also as efficient as any computing device can be. That is,

if a function is computable by some hardware device in time T (n) for input

of size n, then it is computable by a Turing machine in time (T (n))k for

some fixed k (dependent on the problem). (Andrew Yao [122])

Indeed, it is widely believed that all effective classical (that is, deterministic, non-

parallel, non-analog, non-interactive) models are polynomially-equivalent with regard to

the number of steps required to compute. For example, it is well-known that multitape

Turing machines (TMs) require quadratic time to simulate RAMs [29] and that single-

tape Turing machines require quadratic time to simulate multitape ones [69]. It remains

70 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

conceivable, however, that there exists some sort of model that is more sophisticated

than RAMs, one that allows for even more time-wise efficient algorithms, yet ought

still be considered “reasonable”.

We demonstrate that the programs of any classical (sequential, non-interactive)

computation model or programming language that satisfies natural postulates of ef-

fectiveness (which specialize Gurevich’s Sequential Postulates)—regardless of the data

structures it employs—can be simulated by a random access machine (RAM) with only

constant factor overhead. In essence, the effectiveness postulates assert the following:

states can be represented as logical structures; transitions depend on a fixed finite set

of terms (those referred to in the algorithm); basic operations can be programmed

from constructors; and transitions commute with isomorphisms. Complexity for any

domain is measured in terms of constructor operations. It follows that algorithmic

lower bounds for the RAM model hold (up to a constant factor determined by the algo-

rithm in question) for any and all effective classical models of computation, whatever

its control structures and data structures. This substantiates the Invariance Thesis (a

polynomial-time version of the “extended” Church-Turing Thesis), namely that every

effective classical algorithm can be polynomially simulated by a Turing machine.

In fact, as will be shown here, RAMs provide optimal complexity, regardless of what

control structures are available in the programming model and what data structures

are employed by the algorithm. Specifically, we show that any “effective” computation

model (or programming language) can be simulated with only constant slowdown by a

(pointer) RAM, measured in terms of basic, constructor operations.

Theorem (Main for Sequential). (Theorem 32) Any effective classical algorithm us-

ing no more than T (n) constructor/destructor operations for inputs of size n can be

simulated by a RAM in order T (n) steps, with a word size that may grow up to order

log T (n) + log n.

We proceed to prove this claim in the following manner:

1. For a generic, datatype-independent notion of algorithm, we adopt the axiomatic

characterization of classical algorithms over arbitrary domains as was described in

Chapter 2.

2. To restrict attention to effective algorithms only—as opposed, say, to conceptual

7.1. INTRODUCTION 71

algorithms like Gaussian elimination over reals—we adopt the formalization of ef-

fective algorithms over arbitrary domains as was described in Chapter 3.

3. For measuring complexity, we limit operations to basic ones: testing equality of

domain elements, application of constructors and destructors, and lookup of stored

values (Section 7.2, Definition 26). We would not, for example, normally want to

treat multiplication as a unit-cost operation. A basic algorithm is one that only

employs only these basic operations (Section 3.2, Definition 4).

4. Basic algorithms may be emulated step-by-step with Extended Storage Modification

Machines (EMMs), combining results in [62], [5] and [42] (Section 7.4, Lemma 29).

5. Lastly, we show how each step of an EMM can be simulated by a constant number

of RAM steps, operating on words of logarithmic size (Section 7.4, Lemma 30).

In [5], it was shown that the emulation can be made precise in that it does not

access locations in states that the original algorithm does not.

Having agreed on the right way to measure complexity of effective algorithms over

arbitrary data structures (item 3. above), we could have gone on to show directly how

to simulate any basic, effective algorithm by means of multidimensional RAMs [93].

Instead, we choose to build (item 4.) on the little-known result of [42], linking a version

of EMMs with certain simple abstract state machines, which we will call GASMs. (This

work long predates the formalization of effectiveness in [15, 41].) By showing that RAMs

simulate EMMs efficiently (which is simpler than showing that they emulate RAMs)

and that GASMs emulate any basic implementation of an effective algorithm, the four

models (RAM ≥ EMM ≥ GASM ≥ effective algorithm) are chained together and the

desired invariance result is obtained in a strong sense—without undue complications.

In [46], the lambda calculus was extended with one-step reduction of primitive

operations, and it was shown that any effective computational model can be simulated

by this calculus with only constant factor overhead. The catch is—as the authors

indicate – that individual steps can themselves be far from basic and quite complex.

Turning to the parallel case, in 1976, Chandra, Kozen, and Stockmeyer [24] proved

that alternating polynomial time is equivalent to deterministic polynomial space. In

1977, A. Borodin [18] suggested that this result may be generalized:

[P]arallel time and space are roughly equivalent within a polynomial factor.

72 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

This thesis is usually referred to as the Parallel Computational Thesis. In 1978, S.

Fortune [47] defined a parallel random access machine (PRAM) and proved that “de-

terministic parallel RAM’s with number processes no more then exponential can accept

in polynomial time exactly the sets accepted by Turing machines with polynomially

bounded tape.” Later, in 1986, Ian Parberry [85] provided an example showing that a

Common PRAM with an exponential number of initial processes may compute NPC

problems in constant time. He explains that in his opinion this example does not vio-

late the parallel computational thesis but probably this model (PRAM with exponential

number of processors at initial state) should not be considered “reasonable”:

[T]he parallel computational thesis does not attempt to say that time on all

parallel machine models is related; . . . it talks only about “reasonable” mod-

els. . . . Thus . . . a model is a counterexample to the parallel computational

thesis only if it is “reasonable”.

Based on the suggestion of Parberry, we do the following: In Chapter 6, we defined

a generic parallel algorithm. We restrict that general model to effective ones, similar

to the method we used in Chapter 3 for the classical sequential model. That will give

us a general effective parallel algorithm. With that in hand, we will prove our main

result for parallel models:

Theorem (Main for Parallel). (Theorem 40) Polynomial time of effective parallel al-

gorithms with no more than an exponential number of cells is equivalent to Turing

polynomial space.

So the only non-Turing possibility for an effective parallel algorithm is when there

are more than an exponential number of initial processors.

7.2 Measuring Complexity

The common approach measures (asymptotic) complexity as the (maximum) number of

operations relative to input size. As we want to count atomic operations, not arbitrarily

complex operations, we should count constructor operations. So we have a choice: to

count all the operations executed by an effective algorithm, or to count the transition

steps of its corresponding basic algorithm. We take the latter route. To measure the

time needed for the execution of a basic algorithm, we use—for the time being—the

7.2. MEASURING COMPLEXITY 73

“uniform measure” [117, pp. 10–11], under which every transition is counted as a one

time unit. Later, we will address the question of what cost to assign to each transition

step.

To handle arbitrary data types, the only sensible and honest way is to define the

size of a domain element to be the number of basic operations required to build it:

Definition 26 (Size). The size of a domain element is the minimal number of con-

structor operations required to name that value.

The size |n| of a unary number n, represented as sn(0), is n + 1. The size of n in

binary is dlg ne; for example, |5| = 3, the length of 0(1(ε)), the initial 1(for the string

101) being understood. The size of Turing-machine strings is (one more than) the

length of its tape, since string constructors are unary (see the basic Turing-machine

implementation in [15]). The size of the tree C(B(A(), A()), B(A(), A()), B(A(), A()))

is only 3, because subtrees can be reused, and the whole tree can be specified by

C(s, s, s) where s = B(r, r), r = A() .

An effective algorithm is allowed to access effective oracles (e.g. multiplication) in

its initial states, which however are required to be programmable (i.e. algorithmically

describable) by a basic algorithm, that is, using constructors and destructors only (usu-

ally with a larger vocabulary). In other words, by bootstrapping an effective algorithm,

we get a basic one, which is the right one to consider for measuring complexity.

Definition 27 (Complexity). We measure the complexity of an effective algorithm by

the number of basic operations (constructors, destructors, equality) required to perform

the computation from initial to final states, relative to the input size.

In other words, we inline effective sub-algorithms to get a basic one and measure

the complexity of the latter.

Consider an effective algorithm rev to reverse the top-level elements of a Lisp-like

list. The domain consists of all nested lists L; that is, either an empty list 〈〉, or else

a nonempty list of lists: 〈〈〉〉, 〈〈〉〈〉〉, 〈〈〉〈〉〈〉〉, . . . , 〈〈〈〉〉〉, 〈〈〈〉〉〈〉〉, . . . , 〈〈〉〈〈〉〈〈〉〉〉〉,

The function rev: L → L takes a list 〈`1 . . . `n〉 and returns 〈`n . . . `1〉, with the sublists

`j unchanged. For instance, rev(〈〈〉〈〈〉〈〈〉〉〉〉)=(〈〈〈〉〈〈〉〉〉〈〉〉).

Now, rev could be a built-in operation of the Lisp model of computation, which in

one fell swoop reverses any list. Clearly, constant cost for rev is not what is intended;

74 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

we want to count the number of basic list operations needed to reverse a list of length

n. So there is no escape but to take into account how rev is implemented internally.

Suppose rev(x) is effectively something like this:

y := x; z := nil

repeat

if y = nil

then return z

else [z := cons(car(y), z); y := cdr(y)]

We want to count the operations executed by this implementation, which is cn for some

constant c that is the (maximum) number of (constructor and destructor) operations in

a single iteration. Note that any straightforward Turing machine would require many

more steps, quadratic in the size of the input x, rather than the number of elements

at the top level, as in this list-based algorithm. In any RAM implementation, each list

is represented by some natural number; what encoding is chosen is immaterial, as long

as all operations perform consistently. Regardless of what number is used for the list

` = 〈〈〉〈〈〉〈〈〉〉〉〉, car(rev(car(rev(`)))) should return the number that represents 〈〈〉〉.

7.3 Machine Models

7.3.1 Random Access Machines

The RAM machine has access to a finite number of registers, and memory locations

indexed by non-negative integers; each register or memory location can hold a non-

negative integer. For the definition of RAMs, we take the set of instructions suggested

by Cook and Reckhow in [29] and use the classification of RAM machines suggested by

Boas in [117].

• For basic RAMs, the following operations are considered to take “unit time”:

1. X ← C, where X is a register and C is a constant.

2. X ← [Y], where [Y] denotes the contents of the memory location indexed by

Y .

3. [Y]← X.

4. TRA m if X > 0: Transfer control to the m-th line of the program if X > 0.

7.3. MACHINE MODELS 75

• Successor RAMs are an extension of basic RAMs with successor/predecessor op-

erations:

5. INC X. Increase the value of register X by 1.

6. DEC X. Decrease the value of register X by 1.

• Arithmetic RAMs are the model originally defined by Cook and Reckhow in [29];

they extend basic RAMs with addition and subtraction:

5. X ← Y + Z.

6. X ← Y − Z.

• Multidimensional RAMs are an extension of the classical ones, allowing for mem-

ory organization in multiple dimensions. The instruction set remains the same,

but memory cells are accessed using one address per dimension.

Proposition 28 ([93]). Multidimensional arrays may be organized in the memory of

a one-dimensional arithmetic RAM in such a way that a program can access an entry

indexed by [i1, . . . , i`] in a constant number of steps, whether or not it is a first-time

access (given that a unit instruction can operate over words of size O(log i1 + . . . +

log i`)).

The trick is to segment the memory into big chunks in such a way that one can com-

pute squares of indices, hence, cell locations, without need for multiplication; see [93]

for details. One can also have more than one array in such a RAM.

7.3.2 PRAMs are Parallel Algorithms

To see how PRAMs meet the requirements we laid out for parallel algorithms, we need

to understand what the states would look like from the point of view of our postulates.

The domain of the states of a PRAM is the integers (and whatever is isomorphic to the

integers). The states are all endowed with the arithmetic capabilities of PRAMs. The

global PRAM memory is a global function; the local memories are local; the registers

are global or local, as the case may be. The templates are the various registers and

expressions appearing in the PRAM program. Forking, however, requires copying all

local information to the global area, creating a new cell, and then copying the local

information to its proper place.

76 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

As we do no allow an effective parallel algorithm to start with initial non-trivial

cells, the effective parallel algorithm corresponding to a PRAM would have to first

create some input-dependent number of cells and supply them with their local data.

The individual cells can also be told what their id is when they are created. Only

after setting up such an initial state, from the PRAM’s point of view, would one start

running the PRAM program proper.

7.3.3 Extended Storage Modification Machines

SMMs [99] manipulate a dynamic pointer structure (while reading an input string and

writing to output). Their memory takes the form of a dynamic labeled (multi-) graph.

Edges are labeled; nodes are named (not necessarily uniquely) by a path to them from

a distinguished focus node. A machine may add new nodes to the structure and can

redirect edges (perhaps rendering some nodes inaccessible in the process).

Let Λ be a finite alphabet of direction labels and X be a finite set of nodes with

a distinguished focus. For each direction δ ∈ Λ, there is a corresponding function over

nodes, such that δ(x) = y exactly when there is a labelled edge x
δ−→ y.

For the convenience, we will denote by ‖W‖ the end-node of path W .

The set of machine instructions, which may be labeled, is as follows:

• goto `—Continue with instruction labeled `.

• newW—Create a new node at the end of path W ; if W is empty, then the new

node becomes the focus; if W = Uδ then the edge labeled δ from the node ‖U‖

is redirected to a new node; all pointers from this new node are directed to the

original ‖W‖.

• W := V—Redirect the last edge of path W to point to the end node of path V .

• if V = W then P—If paths V and W end at the same node, execute P .

• if V 6= W then P—If paths V and W end at distinct nodes, execute P .

For example, the instruction if AA 6= AB then AA := B has the effect shown in

Figure 7.1

We extend the syntax of SMMs with an “inverse” operation, and refer to them as

EMMs:

7.3. MACHINE MODELS 77

Figure 7.1: SMM: Emulating assignment.

Figure 7.2: Extended SSM: Application of ‘Remember‘ operand

• remember〈W,V1, . . . , Vk, δ1, . . . , δk〉 will remember node ‖W‖ as the one with

edges of type δi pointing to nodes ‖Vi‖, for i = 1, . . . , k. In case of collision with

previous applications of remember, previously stored values are forgotten.

• lookup〈V1, . . . , Vk, δ1, . . . , δk〉:

– The machine will set an edge labeled 〈V1, . . . , Vk, δ1, . . . , δk〉 to point from

the focus to a node X if X was the last one remembered as the node with

edges δi pointing to nodes ‖Vi‖.

– If there is no appropriate node remembered by the machine, then an edge

labeled 〈V1, . . . , Vk, δ1, . . . , δk〉 outgoing from the focus will be removed, if

such exists.

For example, performing remember〈C,B,AA, 1, 2〉 on the topology the machine

will remember the node P as the one with edge of type 1 outgoing to node X and edge

of type 2 outgoing to Z. Assume the edges labeled C and 1 have been removed and we

request lookup〈B,AB, 1, 2〉. The outcome is shown in Figure 7.3.

Note that, despite the fact that P is not reachable from the focus and that its

outgoing edges were changed, the machine still remembers it as the one that satisfies

the requirement of lookup, since it was the last one remembered as such. The set of

78 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

Figure 7.3: Extended SSM: Application of ‘Lookup‘ operand.

edge labels is fixed for any one program, even though these compound labels may be

nested.

That all is based on the result from [5], showing that the emulation can be made

precise in that it does not access locations in states that the original algorithm does

not.

7.3.4 Parallel Random Access Machines (PRAMs)

For the definition of RAMs, we take the set of instructions suggested by Cook and

Reckhow in [29] and use the classification of RAM machines suggested by Boas in [117].

For basic RAMs, the following operations are considered to take “unit time”:

1. X ← C, where X is a register and C is a constant.

2. X ← [Y], where [Y] denotes the contents of the memory location indexed by Y .

3. [Y]← X.

4. TRA m if X > 0: Transfer control to the m-th line of the program if X > 0.

5. READ X. Get next input value.

6. PRINT X. Print to the output tape.

Successor RAMs are an extension of basic RAMs with successor/predecessor oper-

ations:

7. INC X. Increase the value of register X by 1.

8. DEC X. Decrease the value of register X by 1.

Arithmetic RAMs are the model originally defined by Cook and Reckhow in [29];

they extend basic RAMs with addition and subtraction:

7.3. MACHINE MODELS 79

7. X ← Y + Z.

8. X ← Y − Z.

Multiplication RAMs extend Arithmetic RAMs with multiplication and division:

9. X ← Y ∗ Z.

10. X ← Y : Z.

A multidimensional RAM operates a multidimensional memory, rather then one

dimensional, as a classical variant. Thus an entry address is defined by a tuple of

natural namers.

A parallel RAM (PRAM) consists on several independent sequential processors,

each with its own private memory and communicating with one another through a

shared (global) memory. In one unit of time, each processor can execute a single RAM

operation (and write to one global or local memory location). All processors execute the

same RAM program. PRAMs are classified by a type of RAM unit time operations, i.e.

in one step of basic PRAM each process can execute one basic RAM instruction. Same

for arithmetic and multiplication PRAMs. In addition to this, each process may create

a child process, using FORK command. The child process will run the same program

as her parent does and will receive from parent the label for the “first command to

execute”. We use FORK in the way it was pioneered in [47]:

11. FORK label. Create a child process which starts execution from label.

A multidimensional PRAM is a PRAM that has a multidimensional memory, both

global and local.

Another important classification is by restriction on shared memory access. In a

single step of PRAM, each process can access an entry in shared memory for either read-

ing or writing. And each type of access can be either exclusive (one process access) or

common (multiple process access) under some restriction. The exclusive read/write re-

striction prevents reading from/writing to the same global memory cell simultaneously

by two distinct processors. We denote these options by R–read, W–write, E–exclusive,

C–common. So CREW PRAM stays for common read exclusive write parallel random

access machine. In this type of machine, any process may read any shared memory

80 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

entry at any step. But at a single step any entry may be written to by at most one

process.

A common write machine should have in its description a restriction for conflict

resolution, for a case when multiple processors call for a write to the same global mem-

ory cell. Some commonly used methods are: (a) COMMON model:” all processors

writing to the same location write the same value” (b) ARBITRARY model: ”any pro-

cess participating in common write may succeed and algorithm should work correctly,

regardless of winner” (c) PRIORITY model: ”there is a linear order on processors and

the one with minimal priority succeeds”.

All of the above PRAM models do not differ much in their computational power.

PRIORITY PRAM (the strongest model from the above) can be simulated by EREW

PRAM (the weakest model from the above) with the same number of processors and

with only O(logP) time overhead, where P is the number of processors [45].

7.4 RAM Simulation of Basic Algorithms

As explained in Section 7.2, we should measure the complexity of effective algorithms

in terms of basic operations. Thus, we need to show how RAMs simulate basic al-

gorithms. As an intermediary device, we make use of the extension of Schönhage’s

Storage Modification Machines, EMMs, described in the previous section. We prove

that constructor-based algorithms can be simulated by an EMM, which, in turn can

be simulated by an arithmetic multidimensional RAM. And all this with negligible

overhead. (One could avoid EMMs altogether and show directly how to simulate basic

algorithms by multidimensional RAMs, but that would engender the expense of a great

deal of technical detail.)

Lemma 29. Any basic algorithm can be simulated by an EMM with at most constant

factor overhead in the number of transitions.

Proof. A similar claim was proved in [42, Lemma 1] for a different set of algorithms—

we’ll call them GASMs—and a different extension of SMMs. We prove that GASMs

emulate our basic algorithms step-for-step and that our EMMs simulate GASMs with

constant-factor overhead in the number of steps.

GASMs satisfy the axiom of algorithmicity, with an added ability to access

(import) at a single transition a bounded number of fresh (as yet unused) elements.

7.4. RAM SIMULATION OF BASIC ALGORITHMS 81

Without further restrictions on the domain, available oracles and import behavior,

this class obviously contains also non-effective algorithms, like Euclidian geometry al-

gorithms working over the space of reals or algorithms with access to a Turing halting

oracle. Also unrestricted and thus unpredictable behavior of import cannot be con-

sidered effective. On the other hand, our basic algorithms access domain elements by

invoking constructors. So a GASM emulating it will use the same vocabulary as the

emulated basic algorithm, and each time a basic algorithm wants to access an element

via constructors, a GASM will import a new domain element for that, if that is a

first-time access.

It was proved in [42] that any GASM can be simulated for only constant-factor

overhead by another GASM whose vocabulary has only nullary (scalar) and unary

function symbols plus, optionally, a unique binary symbol used for ordered pairing

of elements. The idea behind that is simple: a function of arity n is considered a

unary function working over ordered n-tuples. Those n-tuples may be created by n− 1

applications of pairings. Since the vocabulary of algorithms is finite and depends on

algorithm only, the process requires only a bounded number of pairings. They prove

that a GASM as above and without pairing can be simulated by a classical SMM.

For simulation of pairing, they introduce an extension rule, create. An application of

create V,W , for paths V,W , provides the machine with access to a node representing

the ordered pair 〈‖V ‖, ‖W‖〉 (‖V ‖ being the end node of V), in other words, a node

with edges labeled 1st and 2nd pointing to nodes ‖V ‖ and ‖W‖, respectively. A

machine will use the existing node when possible or else will create a new one (and

that despite the fact that the desired node might be inaccessible from the focus). To

avoid nondeterminism, it is required that any call to pairing be via the create rule.

Obviously, create may be simulated by our remember and lookup extensions.

Just replace each appearance of create by a formal program computing the following:

Use lookup. If nothing is found, use new to create the desired node and

then use remember on it.

Also, any change of edges outgoing that node should be remembered (EMMs with

our extension can, in general, remember any change it performs).

Lemma 30. EMMs can be simulated by multidimensional successor RAMs with at

most constant factor overhead in the number of transitions.

82 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

Proof. We give each node x ∈ X a unique integer identifier x̂. When a new node is

created, its identifier will be the successor of the largest previously used integer. In

this way, a graph with n nodes uses identifiers 1, . . . , n. An identifier for a new node is

created using successor.

For each δ ∈ Λ we define an array, also named δ, and write δ[i] = j if the contents

of the ith entry of array δ is j. (All the arrays can be stored together in one multidi-

mensional array.) To simulate the state of an SMM, these arrays will have the following

property:

For all nodes x, y ∈ X, we have δ[x̂] = ŷ if and only if x
δ−→ y.

A constant focus will contain the identifier of the focus. With this construction, one

can find the end point of an edge out of node x labeled δ via a simple query for the

value of δ[x̂]. This can be done in one RAM operation. And an end node of a path of

length k can be found in k RAM operations.

Since an SMM program is described finitely, the paths it may query have length

bounded by the length of this description. We may conclude from this that, whenever

a RAM needs to investigate a path, this path has bounded length and thus the inves-

tigation can be performed in a bounded number of RAM operations. It is easy to see

that any SMM instruction can be performed using only a bounded number of RAM

instructions, corresponding to following and updating edges in the graph.

The extended instruction of EMMs, however, requires the ability to compute the

source node of a path. To simulate this, we will have to extend our construction as

well. Let Λ = {δ1, . . . , δk}. We define a k-dimensional array A and utilize it to simulate

the extension in the following way:

• An application of remember〈W,V1, . . . , Vk, δ1, . . . , δk〉 will be simulated by

A
[
‖̂V1||, . . . , ‖̂Vk‖

]
:= ‖̂W‖. If an edge labeled δi is missing in the description of

a command, then the array index will be 0.

• The application of lookup〈V1, . . . , Vk, δ1, . . . , δk〉 will therefore be (remember that

an empty path stands for the focus node): δ
[
‖̂ε‖
]

:= A
[
‖̂V1||, . . . , ‖̂Vk‖

]
, with

δ = 〈V1, . . . , Vk, δ1, . . . , δk〉 and with 0 for missing labels.

All the above operations use only assignments and comparisons and may be im-

plemented with only basic RAM commands. A multidimensional RAM with multiple

arrays can be easily implemented using one array of large enough dimension.

7.4. RAM SIMULATION OF BASIC ALGORITHMS 83

Corollary 31. Any basic algorithm can be simulated by a multidimensional successor

RAM with only a constant factor in the number of transitions.

Proof. To measure the complexity of effective algorithm we “bootstrap” it to a basic

one, and then measure the complexity of the latter (see Definition 27). It follows

from Lemma 29 that any basic algorithm may be simulated by an EMM, which, by

Lemma 30, is doable with a multidimensional successor RAM.

Everything is in place now to prove our primary result for sequential systems, the

Invariance Thesis, which states that every basic algorithm can be simulated by a RAM

with the same order of number of steps.

Theorem 32 (Main for Sequential). Any effective algorithm using no more than T (n)

constructor/destructor operations for inputs of size n can be simulated by a (arithmetic)

RAM in order T (n) steps, with a word size that may grow to order log max{T (n), n}

bits.

Proof. It follows from Corollary 31 that any basic algorithm may be simulated by a

multidimensional successor RAM, which, in turn, can be simulated by an ordinary

arithmetic RAM, by Proposition 28.

Until now, we charged one time unit per transition step, be it a basic algorithm, an

EMM, or a RAM. If we desire to count basic operations—constructors and destructors—

which is natural for basic algorithms, the overhead will be only a constant factor, since

each transition of a basic algorithm may be fully described by a bounded number of

invocations of basic operations, where the bound depends on the algorithm only (the

maximum number of certain operations) and not on the inputs.

The numbers manipulated by the RAM can grow proportionately to the length

of the computation, because there are a bounded number of new domain elements

introduced in any one step. So the word length of the RAM is logarithmic in the

computation length, plus the length of input if the algorithm is sublinear.

For a RAM, one might, in fact, wish to charge according to the length of the numbers

stored in its arrays [29]. For basic algorithms, counting lookup of values of defined

functions and testing equality of domain elements of arbitrary size as atomic operations

may also be considered unrealistic. Just as it is common to charge a logarithmic cost

for memory access (lg x to access f(x)), it would make sense to place a logarithmic

charge lg x+ lg y on an equality test x = y.

84 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

Corollary 33. Basic algorithms (that is, algorithms with basic initial states) and (or-

dinary) storage modification machines (SMMs) simulate each other to within a constant

factor.

Proof. This follows from the fact that an arithmetic RAM is equivalent time-wise to

an SMM, up to a constant factor [99], and that basic algorithms can easily emulate

RAMs.

7.4.0.1 Less Space but More Time

Let X1 ; · · · ; Xn be a run of a basic algorithm and let a be an element in domain

of this run. We say that a is active at Xi, for some i, if there is a critical term t

whose value over Xi is a; that is activated at Xi if there is some j ≤ i such that a is

active at Xj ; and that it is accessible at Xi if it can be obtained by a finite sequence of

constructor operations on active elements. It was demonstrated in [92] that an element

that is accessible at Xi may become inaccessible at Xi+1. Inaccessible values should

be recycled, much like a Turing machine does not preserve prior values of its tape.

The space usage of Xi is the minimal number of constructor applications required to

construct all active accessible values of Xi. The space complexity of a run is the maximal

space usage among all states in the run.

For term t, we denote the minimal graph representing it by G(t). Its nodes will

each contain a small constant, indicating a vertex label or a pointer, corresponding to

an edge in the graph. Note that, since G(t) is minimal, it does not contain repeated

factors.

To prevent repeated factors, not just in one term but in the whole state, we merge

the individual term graphs (see [86]) into one big graph and call the resulting “jungle”

of terms, a tangle. The tangle will be used to maintain the constructor-term values of

all the critical terms of the algorithm. See [36].

Consider, for example, the natural way to merge terms t = f(c, c) and s = g(c, c),

where c is a constant. The resulting directed acyclic graph G has three vertices, labeled

f , g, and c. Two edges point from f to c and the other two from g to c. Our two terms

may be represented as pointers to the appropriate vertex: G(t) refers to the f vertex

and G(s) to g, where we are using the notation G(t) to also refer to the vertex in G

that represents the term t. The tangle is shown in Figure 7.4:

7.4. RAM SIMULATION OF BASIC ALGORITHMS 85

Figure 7.4: An example of tangle representation

On account of the above considerations, tangles are very convenient for distinguish-

ing accessible elements from the inaccessible.

Theorem 34 (Space Invariance Theorem). Any effective algorithm with time complex-

ity (constructor operations) T (n) and space complexity S(n) can be simulated by an

arithmetic RAM in order nT (n) + T (n)2 steps and order S(n) space, with a word size

that grows to order logS(n).

Proof. In [36], we described how, as an intermediate device, one can simulate basic

algorithms using tangles. It is pretty clear how to construct a tangle for a finite set of

domain elements. A tangle that simulates state Xi, then, is a tangle for all activated

elements of Xi, which we denote by G(Xi). For each critical term t, we keep a pointer,

called also t, which points to the value of t in G(Xi). In [36, Thm. 16], it was shown

that a basic algorithm with time complexity T (n) can be simulated by a RAM that

implements tangles with time complexity nT (n) + T (n)2, using words of size log T (n).

To obtain the desired result, we need to show that the simulation can be performed

with some sort of garbage collection so that each G(Xi) is a tangle of only accessible

elements of Xi. Since tangles are acyclic, all we need to do is to maintain a reference

count for each node, incrementing it when a new pointer to the node is made and

decrementing when a pointer is removed. Whenever the count goes to zero, the node

may be added to the free list so that it can be recycled. Only when the free list is

empty would a new node be allocated, upping the space usage.

Each of the T (n) constructor operations now comes with a bounded number of

additions and subtractions of reference counters by the arithmetic RAM. There is also

86 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

the cost of collecting free nodes; indeed, it could be that almost all nodes are recycled

in a single step. But amortized, this adds a small constant factor to the time spent by

the RAM, since for each creation of a node, of which there are at most T (n) +n, there

can be at most one freeing up of it. The space overhead is one counter per node, which

may double the required space.

7.5 Effective Parallel Algorithms

We say that a state of parallel algorithm is basic if it is finitely describable. This means

that it should be basic in the sense of Definition 4 and have a finite number of processes.

Similar to the case in Section 3.2, effective states are an extension of basic states with

a finite number of effective oracles. In another words, a state of parallel algorithm is

effective if it is effective in a sense of Definition 4 and it should have a finite number of

processors.

• We say that a parallel algorithm is basic/effective if its initial state is ba-

sic/effective.

• We say that a basic parallel algorithm is in function-normal form if its functions

(global and local) all but one have arity zero or one, and one constructor of arity

two.

Proposition 35. Any effective parallel algorithm may be emulated by an effective al-

gorithm in function-normal form.

Proof. This proof for a different case of abstract state machines was first suggested

in [43]. The idea is that a function with n arguments is considered as a function

with one argument, which is an n-tuple. And an n-tuple is constructed by n − 1

applications of pairing. So the emulating algorithm will have a pairing function as one

of its constructors. The other functions will have the same names as in original one,

but all will be have arities either zero or one. Instead of appealing to f(u1, . . . , un) it

will appeal to f(〈u1, 〈u2, 〈u3, . . . 〈un−1, un〉 . . .〉〉〉). Since the signature of algorithm is

finite, this can be done during the same transition.

7.6. PRAM SIMULATION OF BASIC PARALLEL ALGORITHMS 87

7.6 PRAM Simulation of Basic Parallel Algorithms

Proposition 36. Any effective parallel algorithm in function-normal form can be simu-

lated by a 3-dimensional Successor Common PRAM with oracle access to some injection

H : N3 → N and with word size big enough for one-step processing of desired H values.

The overhead in running time is some constant multiplicand, which depends on the

simulated algorithm. The number of required processors is equal to the number of cells.

Proof. Let A be an effective parallel algorithm with global functions G = {g1, . . . , gk}

and local functions F = {f1, . . . , fl}. Let X be a state of A. Let D be the domain of X.

Let C ⊂ G be the constructors of D. We choose some order on C, i.e. C = c1, . . . , ck.

Recall that we identify D with a free-term algebra over C.

1. Domain Simulation

We first define injections E : D → N3 and I(u) = H(E(u)) in the following recursive

way:

• undef→ (0, 0, 0)

• ci → (i, 0, 0), when ci is a constructor of arity zero (i.e. constant);

• ci(u)→ (i, I(u), 0), when ci is a constructor of arity one, and u ∈ D is a domain

element;

• ci(u1, u2)→ (i, I(u1), I(u2)), when ci is the unique constructor element of arity

two, and u1, u2 ∈ D are domain elements.

E and I are injections since we identified D with a free-term algebra and H is an

injection.

2. Algebra Simulation

We are going to describe a multidimensional PRAM state XH that will simulate X

via domain injection I. The PRAM state XH has the following:

• a number of processors equal to the number of cells in X,

• a 3-dimensional shared memory, referred to by G,

• a 2-dimensional local memory for each processor, referred to by F .

To each local cell Xi in X we allocate one processor in XH and we refer to it as pi.

In the shared memory of XH we will store global values of X. The local memory

88 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

of each processor pi will store local values of cell Xi. The isomorphism of states is

defined as follows:

• G[i, 0, 0] = I([[gi]]) if gi is a global constant and zero otherwise;

• G[i, I([[u]]), 0] = I([[gi(u)]]) if gi() is a global function and zero otherwise;

• G[i, I([[u]]), I([[v]])] = I([[gi(u, v)]]) for the unique arity-2 constructor gi(., .) and

zero otherwise;

• F [i, 0] = I([[fik]]) for some processor pk if fi is a local constant and zero other-

wise;

• F [i, I([[u]])] = I([[fik(u)]]) if fi() is a local function and zero otherwise;

• All other entries of shared and local memories are zero.

3. State Simulation

The only information that XH is missing to simulate X via injection I is the values

of critical terms. Let T be the critical templates of A. For further convenience, we

assume that T is closed under the subterm relation (otherwise we take the closure).

Then each local cell Xi knows the values of its critical terms Ti. Hence, each

processor pi should keep a pointer for the values of terms in Ti. For this, for each

term ti ∈ Ti the process pi will store a constant named t in its local memory. And

if [[ti]] = u at Xi then pi should store I(u) as the value of its local constant t. With

this information, XH simulates X via injection I.

4. Transition Simulation

We next show that there exists a program PH for multidimensional PRAM with

oracle access to H such that if τ(X) = Y then PH(XH) = YH (where τ is a transition

function of algorithm A).

So let X be a state of A. According to the globalization postulate, a transition of

X may be viewed as the union of transitions of all local cells Xi of X. According

to the localization postulate, updates of Xi are the same, whether it is a global

state with just one cell or a local cell of a bigger state, i.e. τ(X) = ∪iτ(Xi). Hence

it is enough to provide a program PH such that PH(XiH) = YiH for any i ∈ I. In a

more general way, it is enough to prove that PH(XH) = YH for any i-state X.

Let X be an i-state for some i. Let Y := τ(X). Let XH be a PRAM state simulating

X, as we described above. Then XH has only one processor. Let T be critical

7.6. PRAM SIMULATION OF BASIC PARALLEL ALGORITHMS 89

templates of A. Let P be a characteristic PASM program of A, as described in

Theorem 25. For each transition, P performs a bounded number of basic operations

on critical terms: comparisons, assignments and new operations. We should explain

how a PRAM may simulate each single basic operation:

• Basic comparison operations ask to compare the values of two critical terms.

Since, as we assumed, XH has those values in special local constants, the unique

processor should only compare the values of those two constants. This is done

in one single operation, since we assumed that a processor may operate any

data entry in one step.

• A basic assignment operation h(s) := t applied on X creates one update δ =

h(sX) 7→ tX . We assumed that T is closed under the subterm relation. Hence

at XH we have local values for all terms s and t.

If h is some global function gi, an assignment is simulated by a shared mem-

ory write command: G[i, I([[s]]), 0] ← I([[t]]). If h is some local function

fi, the assignment is then simulated by a local memory write command:

F (i, I([[s]])) ← I([[t]]). This again can be done in one operation, since we

assumed that a processor may operate any data entry in one step.

• The new operation is simulated by the FORK command of PRAMs. An

application of this command returns 0 for a child and the child’s process id

(pid) for a mother. This provides a way for a process to know that it is a

“newborn” one. Some initial information that a mother passes to her child

should be created by the mother in shared memory. A mother should wait for

the child to copy this information to its local memory and then the mother

should clean it. Only after that may the mother move to the next step. Since

according to the motherhood postulate, a mother may create only a bounded

number of data entries for a child, the number of steps required to complete

this task is also uniformly bounded. A mother can be programmed to “sleep”

(using increment/decrement operations) while its child copies the data. So

this action may be simulated in a constant (depending on algorithm) number

of PRAM steps.

Note that a PRAM performs a multiple number of assignments in one step. This

is not equivalent to sequentially performing the same assignment statements (like

90 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

PRAM does). As an example, assume that we have the local value f(0) = 0. Con-

sider two assignment statements: f(0) := 1 and f(1) := f(0). Sequential application

will result in:

whereas simultaneous application will result in:

So to avoid that, before a PRAM starts to construct the updates of XH , it should

make a copy of all critical term values in XH and use them for reference.

According to the Algorithmic postulate, only a bounded number of assignments

may be executed in one step. Assume that this bound for our algorithm is m.

According to the Fertility postulate, only a bounded number of children can be

born by one mother in one step. Assume that this bound for our algorithm is n.

In addition, according to the Motherhood postulate, only a bounded number of

data units may be passed from mother to child. Assume that this bound for our

algorithm is d.

So to simulate one transition of PSM-Program (and thus of parallel algorithm), a

PRAM process should do as described in Algorithm 3.

Sleep pauses are inserted to synchronize the actions of distinct processes.

Proposition 37. Any basic effective parallel algorithm may be simulated by a Multi-

plication Common PRAM with only constant multiplicand price in running time and

with the same number of processors, provided that the PRAM operates on words of

logarithmic size.

Proof. To prove that a Multiplication Common PRAM may simulate basic PASM in

function-normal form, according to Proposition 36, we only have to show that we may

7.6. PRAM SIMULATION OF BASIC PARALLEL ALGORITHMS 91

Algorithm 3 The parallel RAM simulates one step of a basic parallel ASM Program

4.1. Create a local copy of all critical term values.

4.2. Perform all assignment operations.

• Stay here for exactly m operations (sleep if required).

4.3. Create initial information for a children in shared memory.

• Stay here for exactly n · d operations (sleep if required).

4.4. Call FORK the required number of times and wait for children to update their
initial information.

• Stay here for exactly n operations (sleep if required).

4.5. Clean children’s information from shared memory.

• Stay here for exactly n · d operations (sleep if required).

4.6. Update critical term values for the next step.

compute some bijection H : N3 → N, preserving the logarithmic size. And this may be

computed by the Cantor tuple function:

π2(x1, x2) =
1

2
(x1 + x2) · (x1 + x2 + 1) + x2

πn(x1, . . . , x
n) = π(πn−1(x1, . . . , xn−1), xn)

Since we are only interested in π3 we may derive the desired formula and compute it

with a bounded number of arithmetic operations - multiplication, addition, division by

2.

Now we only should map the 3-dimensional memory to dimension one. And that

can be done again by π3.

Proposition 38. Any Multiplication Common PRAM with time complexity T (n) and

with P (n) processors may be simulated be an Arithmetic Common PRAM with O(log(n·

T (n)) · log log2(n ·T (n)) · log log log(n ·T (n))) time overhead and with P · log(n ·T (n)) ·

log log(n · T (n)) · log log log(n · T (n)) processors.

Proof. It was proved in [100] that multiplication of n-bit numbers can be done by

circuits of bounded fan-in with depthO(log n) and number of agentsO(n·log n·log log n)

(construction is logspace uniform, i.e. there exists a TM which on input of size n

generates in logspace a program executed by each processor). It was proved in [72]

that bounded fan-in circuit can be transformed into circuit with bounded both fan-in

and fan-out with only constant multiplicand increase a number of gates and in depth.

92 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

The latter can be simulated by an Arithmetic EREW PRAM, where gates are simulated

by processes and time is equivalent to depth. Obviously, an Arithmetic EREW PRAM

may be considered as a special case of an Arithmetic Common PRAM.

Combining the above, an Arithmetic Common PRAM may perform a multiplication

of n-bit numbers with an extra O(n · log n · log log n) processes and in O(log n) time.

In one single step, an Arithmetic PRAM may at most double the number it already

has in its memory. So starting with input n, during T (n) steps the maximal value it may

generate is n · 2T (n), which can be stored in memory using log(n · 2T (n)) = log n+ T (n)

bits. According to the above, multiplication of numbers with log n+ T (n) bits can be

done in O(log(log n+ T (n))). To do so, one process may require an extra

O((log n+ T (n)) · log(log n+ T (n)) · log log(log n+ T (n))

processes.

Recall that we simulate a multiplication PRAM. Hence a processor that desires to

perform multiplication will have to create its helpers by himself. Thus, it will have to

evoke FORK for

O((log n+ T (n)) · log(log n+ T (n)) · log log(log n+ T (n))

times. And then all those helpers may perform multiplication in O(log(log n+ T (n)))

steps. We may evoke FORK from child processes also, until we got enough processes.

Hence, creating n processes will require log n steps. And hence, creating

O((log n+ T (n)) · log(log n+ T (n)) · log log(log n+ T (n))

processes may be done in

O(log((log n+ T (n)) · log(log n+ T (n)) · log log(log n+ T (n))) = O(log(log n+ T (n)))

steps. Hence the overall time for one multiplication is still O(log(log n+ T (n))) steps.

The total number of processors used will be:

O(P (n) · (log n+ T (n)) · log(log n+ T (n)) · log log(log n+ T (n)))

7.7. DISCUSSION 93

given that P (n) is the number of processors in initial multiplication PRAM. That

completes the proof.

Proposition 39. Any basic effective algorithm with time complexity T (n) and with

P (n) processors can be simulated by an Arithmetic EREW PRAM with time complexity

T (n) · polylog(n · T (n)) · polylog(P (n)) and with P (n) · polylog(n · T (n)) processors.

Proof. Let A be a basic effective algorithm with time complexity T (n) and with P (n)

processors. It may be simulated by an Arithmetic Common PRAM with time com-

plexity T (n) · polylogT (n) and with P (n) · polylogT (n) number of processors, as we

proved in Proposition 38. An Arithmetic Common PRAM in its turn may be simu-

lated by EREW PRAM of the same type with only logP (n) time overhead, were P (n)

is the number of processors, as was proved in [45, 118]. Hence, any effective algorithm

with time complexity T (n) and with P (n) processors may be simulated by Arithmetic

EREW PRAM with time complexity T (n) · polylog(n · T (n)) · polylogP (n) and with

P (n) · polylog(n · T (n)) processors.

Theorem 40 (Main for Parallel). Polynomial time of effective parallel algorithms with

number of cells no more then exponential in running time is equivalent to Turing poly-

nomial space.

Proof. It was proved in [47, Th. 1] that

∞⋃
k=1

T (n)k-time-Arithmetic-PRAM =

∞⋃
k=1

T (n)k-TM-Space

provided that T (n) ≥ log n and the number of processors of the PRAM is no more

than exponential in the parallel time. The desired statement thus follows from this and

Proposition 39.

7.7 Discussion

We have shown (Theorem 32) that any algorithm running on any effective classical

model of computation can always be simulated by an arithmetic RAM with minimal

(linear) overhead and with words of at most logarithmic size, counting constructor

operations for effective algorithms. So lower bounds for the RAM model are (up to a

94 CHAPTER 7. EXTENDED COMPUTATIONAL THESIS

constant factor) lower bounds in an absolute sense. We have also seen (Theorem 34)

that space complexity may be preserved with only a quadratic increase in time.

It follows that to outperform any RAM, an alternative model must violate one of

the postulates. This can be for a number of reasons:

• It is not a discrete-time state-transition system—examples include various ana-

log models of computation, like Shannon’s General Purpose Analog Computer

(GPAC). See the discussion in [122].

• States cannot be finitely represented as first-order logical structures, all over

the same vocabulary—for example models allowing infinitary operations, like the

supremum of infinitely many objects.

• The number of updates produced by a single transition is not universally

bounded—examples are parallel and distributive models (and probably quantum

algorithms, as is widely believed).

• It has a “non-effective” domain—for example, continuous-space algorithms, as

in Euclidian geometry or, alternatively, access to non-programmable oracles, like

the halting function for Turing machines.

Chapter 8

Generic Cellular Automata

8.1 Introduction

Recent years have seen progress in the understanding of the fundamental notions of

computation. We have seen in previous chapters that abstract state machines (ASMs)

suffice to emulate state-for-state and step-for-step any classical algorithms, as axiom-

atized by Gurevich [62]; that any algorithm that satisfies an additional effectiveness

axiom—regardless of its program constructs and data structures—can be simulated by

what we called an effective ASM ; and that such effective algorithms over arbitrary

domains can be efficiently simulated by a random access machine (RAM). In this way,

the gap between the informal and formal notions of computation has been reduced, and

the classical Church-Turing thesis—that Turing machines entail all manner of effective

computation—and its extended version—claiming that “reasonable” effective models

have comparable computational complexity—both sit on firmer foundations.

At the same time, von Neumann’s cellular model [119] has been enhanced to en-

compass more flexible forms of computation than were covered by the original model.

In particular, the topology of cells can be allowed to change during the evolution of an

interconnected device, in what has been called “causal graph dynamics” [2]. Cellular

automata have the advantage of better reflecting the laws of physics that a real comput-

ing machine must comply with. They respect the “homogeneity” of space-time in that

processor cells and memory cells are uniform in nature, in contradistinction with Tur-

ing machines, RAMs, or ASMs, whose control are centralized. This cellular approach

can help us better understand under what conditions the physical Church-Turing the-

sis [52], stating that no physically plausible device can compute more functions than a

95

96 CHAPTER 8. GENERIC CELLULAR AUTOMATA

Turing machine can, might hold [44].

In what follows, we show that any algorithm can be simulated by a dynamic cellular

automaton, thus showing that a homogenous physically-plausible model can implement

all algorithmic computations. We begin, in the next section, with basic information

about cellular automata. It is followed by a description of the simulation and then a

brief discussion.

8.2 Background

8.2.1 Cellular Automata

Classical cellular automata are defined as a static tessellate of cells. Initially, each cell

is in one of a set of predefined internal states, conventionally identified with colors, of

which we will have only finitely many. Sitting somewhere to the side is a clock, and

every time it ticks, the colors of the cells change. Each cell looks at the colors of its

nearby cells and at its own color and then applies a transition rule, specified in advance,

to determine the new color it takes on for the next clock tick. Transitions are simple

finite-state automata rules. In this model, all cells change at the same time and their

transition rules are all the same.

The underlying topology may take different shapes and have different dimensions.

The definition of neighborhood may vary from one automaton to another. On a two-

dimensional grid, the neighbors may be the four cells in the cardinal directions (called

the “von Neumann neighborhood”), or it can include the for corner cells (the “Moore

neighborhood”), or perhaps a block or diamond of larger size. In principle, any fixed

group of cells of any arbitrary shape can be looked out to determine which transition

applies. A sequential automaton is the special case when one cell is active and only

that cell can perform a transition step. In addition, the transition marks one of the

active cell’s neighbors (or itself) to be active for the following step.

To model reality better, one should consider the possibility that the connections be-

tween cells also evolve over time. For dynamic cellular automata [2], cells are organized

in a directed graph. Similar to the above classical case, each cell is colored in one of a

palette of predefined colors. Edges also have colors, to indicate the type of connection

between cells, adding flexibility. Transitions are governed by global clock ticks. In

the sequential case one cell is marked active. This cell inspects its neighborhood and

8.2. BACKGROUND 97

Figure 8.1: Examples of transition rules.

applies a transition rule.

The difference between the static and dynamic cases is that in the static case, the

transition is governed by different colorings of the cells in a fixed neighborhood, while

in the dynamic case, it is governed by a set of different neighborhood patterns, each

with various colored cells connected by colored edges. In both cases, a transition rule

defines a transformation of the cells in a detected pattern: in the static case colors

change, while in the dynamic case, connections may also change and new cells may be

added. With each clock tick, the active cell inspects its neighborhood to detect one of

those predefined patterns. Then the transition rule is applied according to the detected

pattern. (Cells never die in this model, but they may become disconnected from every

other cell.) Examples of such transitions are shown in Figure 8.1.

Note that there might be several transition patterns in the neighborhood of an

active cell. For example, given that an active cell detects a pattern of the second type

in the example in the figure, it might choose to act according to the first rule instead. If

a neighborhood of the active cell contains pattern p, while some subset of its cells also

constitute a transition pattern p′, we can demand that no transition be applied using

p′. We call this restriction maximality. (Intuition may be purchased from the following

scenario. Assume that your neighbors make a lot of noise from time to time. If at a

given time point you have only one noisy neighbor, you might decide to stay put in

98 CHAPTER 8. GENERIC CELLULAR AUTOMATA

peace. But if there are two of them, you would want to call the police. What’s worse,

if you have three or more rowdy neighbors, you might also need an ambulance. If there

is some noise around, a transition might be applied erroneously, as if there were only

one noisy neighbor, which is not the natural intent.) So, we want the more specific

rules to take precedence over the less constrained ones.1 In our example, if the second

pattern is applicable, then the first one is not applied. All the same, patterns may

overlap, so transitions remain non-deterministic. For example, consider the following

neighborhood:

In general, these choices can affect the final result, but the simulation we describe has

the same outcome regardless.

8.3 Simulating Algorithms with Cellular Automata

We allow only finitely-describable topologies for cellular automata, and we bound their

dynamics, requiring that its transition relation should also be describable by a finite

number of patterns.

Our main result is that cellular automata with bounded dynamics can simulate

the behavior of any classical algorithm over any unordered domain. We first show

how the graph structures of cellular automata can represent the unordered domains

of algorithms. Then we show how a transition may simulate manipulations of domain

elements.

1An alternative would be to supply a (partial) order according to which transition rules are tried.

8.3. SIMULATING ALGORITHMS WITH CELLULAR AUTOMATA 99

8.3.1 Bounded Dynamics

Suppose some domain is constructed over two atoms a and b. The classical tree repre-

sentation of an element {{a,b}, {{a}}, {a}} looks like this:

To avoid obvious reduplication of data, we should use edges pointing to shared locations.

This representation is called a term-graph [86], and our sample element will look like

this:

Now, assume that we want to represent two distinct elements {{a,b}, {{a}}, {a}}

and {{a,b}, {b}}. To avoid reduplication here, we again use pointers to locations shared

by both and call the resulting structure a tangle [36]. In our example, the tangle will

look as follows:

Next, we need to represent the values of functions. We use a slight modification:

For each k such that an ASM has a non-constructor function of arity k, we append

to the tangle an ordered k-tuple. Assume that our vocabulary has a binary function

g(·, ·), and assume our ASM has critical terms t and p. Suppose we need to represent

state X with values t = {{a,b}, {{a}}, {a}}, p = {{a,b}, {b}}, and g(t, p) = {a,b}. For

convenience, we add a focus node called Criticals. Edges outgoing from this node point

100 CHAPTER 8. GENERIC CELLULAR AUTOMATA

to the values of critical terms and are labeled appropriately. Our modified tangle will

look as follows:

With tangles, we do not have duplicate nodes, that is, no two distinct nodes have

the same subtrees, since every domain element is represented by at most one node.

As the last step, we reverse all tangle edges, except for those representing critical

terms values, to allow directed access from nodes to parents:

(This step is not necessary, but will have the arrows going in the direction of most of

the movements.) Note that both in-degree and out-degree are unbounded.

The node labeled Criticals will serve as the active one in the following sequential

simulation.

8.3.2 The Simulation

We base the proof of our main result, on the fact that the evolution of any algorithm

may be captured by an ASM program. We show that given a domain simulation as

above, for each mechanical rule in a program, there is a set of transition rules of a

cellular automaton that emulates it. And since each algorithmic transition is described

by a finite rule, we will only need finitely many automaton rules to simulate it.

Lemma 41. Cellular automata simulate the application of pairing 〈·, ·〉 in constant

time.

8.3. SIMULATING ALGORITHMS WITH CELLULAR AUTOMATA 101

Proof. Assume we want to apply a rule p := 〈t, t′〉, where t, t′, and p are critical terms.

The transition rule for the cellular automaton would be as follows:

We need the second rule to cover the case when the pair already exists; the first rule is

more general and will only fire if the second one is inapplicable.

(The annotations X and Y are not labels; they are used to indicate which nodes on

the right of a pattern correspond to which nodes on the left. For convenience, colorless

cells like these match a node of any color; skirting formality, this way we need not

unnecessarily multiply patterns to cover every possible color combination.)

Lemma 42. Cellular automata simulate the application of choice ε in constant time.

Proof. This operation is used in statements of the form let x = ε(t) in A. A straight-

forward definition of the appropriate transition for a cellular automaton will of necessity

be nondeterministic, like the ε operation itself. The pattern chooses the element of t

for each of its uses in statement A, like this:

Lemma 43. Cellular automata simulate the application of conditional tests in constant

time.

Proof. Each transition of an ASM performs a bounded number of actions of two types:

Boolean statements and assignments. Since their number is bounded by the algorithm,

it is enough for us to describe the simulation of one operation of each type. We have

two types of Boolean conditions, inclusions and comparisons:

102 CHAPTER 8. GENERIC CELLULAR AUTOMATA

• Boolean membership ∈ is used only as a condition. A statement

if t ∈ p then t := p

for example, is expressed as follows:

• Boolean comparison is used as a condition. For example, an ASM described by a

rule

if t 6= p then t := f(t, p)

would be simulated by a cellular automaton with the following transitions to cover

all cases (there is a node for f(t, p); there is a node for the pair 〈t, p〉 but not the

value; neither):

Lemma 44. Cellular automata simulate the application of singleton formation {·} in

a linear number of steps.

Proof. Assume that an algorithm applies a rule p := {t}, where t and p are critical

8.3. SIMULATING ALGORITHMS WITH CELLULAR AUTOMATA 103

terms. We simulate the singleton operation in three steps. First we create a node for

the singleton and mark it singleton suggestion. We also choose another node, if there is

one, and mark it singleton candidate:

Then we check if there there already exists a node for that singleton, and if so,

we discard the new singleton node created in previous step. To check, we go over

all neighbors of X and check each of them in turn. If the requisite singleton node is

found, we point to it as the singleton (with a p-marked arrow) and disconnect the newly

created node from the tangle. If the tested node is not the desired one, we mark it with

a cable that states that the node was tested and move on to the next candidate. When

104 CHAPTER 8. GENERIC CELLULAR AUTOMATA

there are no candidates we mark the newly created node as the desired singleton.

As the last step, we remove the marks from the nodes and then remove the edge

singleton found:

As always, we use the rule which forces the most constrained pattern to be applied.

8.3. SIMULATING ALGORITHMS WITH CELLULAR AUTOMATA 105

The cost is linear, since we need to check every set of which t is a member to see if

it is a singleton.

Lemma 45. Cellular automata can simulate applications of the union of two sets with

a quadratic number of operations (relative to the number of elements in the sets).

Proof. Suppose we want to simulate the operation t := s ∪ p, where t, p, s are critical

terms, with s pointing to a node indicated by X and p pointing to Y . The simulation

will proceed in several stages; the correct order of those steps will be assured by the

maximality restriction on transitions. Similar rules should be added to the transition

for each possible node coloring. Recall that we want only one instance of each value.

In the beginning, we have to find whether we already have a node representing

union of s and p. For this we will go over all accessible nodes from (any) one of the

elements that belong in the union. We will show that verifying one node can be done

in linear time, so the overall procedure runs in quadratic time.

1. Assume we want to check whether the element whose root is pointed to by u is

the union of s and p. We start by creating a special edge to this element. This

edge, labeled check, will serve as a lock indicating that we are in the midst of

the verification process and will not allow other transitions to get involved in the

middle.

2. Next, we detect the elements appearing in all of u, s and p. Edges from those

elements are colored with a special color:

The same is done (in parallel) with t and p.

106 CHAPTER 8. GENERIC CELLULAR AUTOMATA

3. Next, we detect common elements of u and s but not in p. Pointers from detected

elements are again marked with the special color:

The same is done with u and p.

4. If s, p, and u are all empty, then u is indeed the union of s and p. Mark it as such.

Otherwise, u is not the union node:

8.3. SIMULATING ALGORITHMS WITH CELLULAR AUTOMATA 107

5. Once the status of u is clear, we remove the marks from edges:

Each element identified to not be the union is marked with a special color for the

duration of the search so as not to re-check it, similar to the singleton case.

Once all the possible elements have been checked, and no union found, we are ready

to create the union.

1. First, we create a new node which will eventually hold the union:

A special marked edge tells the automaton that it is the process of creating a union.

2. We start with copying to u the elements that are common to s and p, and mark the

edges:

108 CHAPTER 8. GENERIC CELLULAR AUTOMATA

3. In a similar manner, we copy elements that are present in one set only:

4. Once all edges are marked, we know that the desired node is created and we mark

it appropriately:

This rule applies only when no element transfers remain.

5. Once the is union mark appears, all that remains is to clean the marks left en

route:

6. As soon as the union is ready and its neighborhood is clean, we may remove the

lock:

8.3. SIMULATING ALGORITHMS WITH CELLULAR AUTOMATA 109

Note again that the maximality restriction on transitions ensures that all the above

steps are applied in the prescribed order.

We know that every classical algorithm is emulated step-by-step, state-by-state by

an ASM consisting of a fixed number of comparisons and assignments [62]. That fact,

along with the previous lemmata, is what is needed to achieve the main goal of this

chapter:

Theorem 46 (Main). Cellular automata with bounded dynamics (i.e. all the nodes in

a pattern are within a bounded distance of the focus) and without loops (there are no

directed cycles within patterns) can simulate the performance of any classical algorithm

over an unordered domain with quadratic multiplicand overhead.

Proof. We have to ensure that, once the automaton starts to simulate the singleton

or union operation, it cannot be interrupted by the application of other transition

rules. Otherwise, foreign steps could affect the elements of the sets involved in these

set operations. This problem can be precluded, for instance, by changing the color of

the Criticals node during the simulation of those operations.

Each step of the original algorithm can only create a bounded number of new sets.

Hence the size of the sets involved in any union operation is bounded by the size of

the sets in the initial state plus some multiple of the algorithm’s steps so far. So the

overall overhead caused by unions is quadratic.

Chapter 9

Continuous Time

9.1 Introduction

We seek to gain an understanding of the fundamentals of analog systems, that is,

systems that operate in continuous (real) time and with real values. Several different

approaches have been taken in the pursuit of continuous-time models of computation.

One is inspired by continuous-time analog machines, and has its roots in models of

natural or artificial analog machinery. An alternate approach, one that can be referred

to as inspired by continuous-time system theories, is broader in scope, and derives from

research in systems theory done from a computational perspective. Hybrid systems

and automata theory, for example, are two such sources of inspiration. See the survey

in [19].

At the outset, continuous-time computation theory was mainly concerned with ana-

log machines. Determining which systems should actually be considered to be algorith-

mic in nature is an intriguing question and relates to philosophical discussions about

what constitutes a programmable machine. All the same, there are a number of early ex-

amples of actual analog devices that are generally accepted to be programmable. These

include Pascal’s 1642 Pascaline [30], Hermann’s 1814 Planimeter, Bush’s landmark 1931

Differential Analyzer [22], as well as Bill Phillips’ 1949 water-run Financephalograph

[121]. Continuous-time computational models also include neural networks and systems

that can be built using electronic analog devices. Such systems begin in some initial

state and evolve over time in response to input signals. Results are read off from the

evolving state and/or from a terminal state.

Another line of development of continuous-time models was motivated by hybrid

110

9.1. INTRODUCTION 111

systems, particularly by questions related to the hardness of their verification and

control. In this case, the models are not seen as models of necessarily analog machines,

but, rather, as abstractions of systems about which one would like to establish some

properties or derive verification algorithms.

Our goal is to capture all such models within one uniform notion of computation

and of algorithm. The most interesting case is the hybrid one, where the system’s

dynamics change in response to changing conditions, so there are discrete transitions

as well as continuous ones. To that end, we adopt and adapt some of the ideas embodied

in Gurevich’s abstract-state machine formalism for discrete algorithms [61], which we

have been using throughout this dissertation.

Capturing the notion of algorithmic computation for analog systems is a first step

towards a better understanding of computability theory for continuous-time systems.

Even this first step is a non-trivial task. Some work in this direction has been done

for simple signals. See, for example, [27, 28] for an approach within the abstract-

state machine framework. An interesting approach to specifying some continuous-time

evolutions, based on abstract state machines and using infinitesimals, is [98]. However,

a comprehensive framework, capturing general analog systems seems to be wanting.

See [19] for a discussion of the diverse analog computability theories.

In this chapter, we adapt and extend ideas from work on ASMs to the analog

case, that is to say, from notions of algorithms for digital models to analogous notions

for analog systems. We go beyond the easier issue of “continuous space”, that is,

discrete-time models or algorithms with real-valued operations, since these have already

been made to fit comfortably within the ASM framework, for which, see [5]. Indeed,

algorithms for discrete-time analog models, like algorithms for the Blum-Shub-Smale

model of computation [11], can be covered in this setting. The geometric constructions

in [92] are simple (loop-free) examples of continuous-space algorithms.

In the next section, we introduce dynamical transition systems, defining signals and

transition systems. In Section 9.3, we introduce abstract dynamical systems. Next, in

Section 9.4, we define what an algorithmic dynamical system is. Then, in Section 9.5,

we define analog programs and provide some examples, followed by a brief conclusion.

112 CHAPTER 9. CONTINUOUS TIME

9.2 Dynamical Transition Systems

Analog systems may be thought of as “states” that evolve over “time”. The systems

we deal with receive inputs, called “signals”, but do not otherwise interact with their

environment.

9.2.1 Signals

Typically, a signal is a function from an interval of time to a “domain” value, or to a

tuple of atomic domain values. For simplicity, we will presume that signals are indexed

by real-valued time T = R, are defined only for a finite initial (open or closed) segment

of T, and take values in some domain D. Usually, the domain is more complicated

than simple real numbers; it could be something like a tuple of infinitesimal signals.

Every signal u : T ⇀ D has a length, denoted |u|, such that u(j) is undefined beyond

|u|. To be more precise, the length of signals that are defined on any of the intervals

(0, `), [0, `), (0, `], [0, `] is `. In particular, the length of the (always undefined) empty

signal, ε, is 0, as is the length of any point signal, defined only at moment 0.

The concatenation of signals is denoted by juxtaposition, and is defined as expected,

except that concatenation of a right-closed signal with a left-closed one is only defined

if they agree on the signal value at those closed ends, and concatenation is not defined

if they are both open at the point of concatenation. The empty signal ε is a neutral

element of the concatenation operation.

Let U be the set of signals for some particular domain D. The prefix relation on

signals, u ≤ v, holds if there is a w ∈ U such that v = uw. As usual, we write u < v for

proper prefixes (u ≤ v but u 6= v). It follows that ε ≤ u ≤ uw for all signals u,w ∈ U .

And, u ≤ v implies |u| ≤ |v|, for all u, v.

9.2.2 Transition Systems

Definition 47 (Transition System). A transition system 〈S,S0,U , T 〉 consists of the

following:

• A nonempty set (or class) S of states with a nonempty subset (or subclass) S0 ⊆ S

of initial states.

• A set U of input signals over some domain D.

9.3. ABSTRACT DYNAMICAL SYSTEMS 113

• A U-indexed family T = {τu}u∈U of state transformations τu : S → S.

Initial states might, for example, differ in the values of parameters, such as initial

values.

It will be convenient to abbreviate τu(X) as just Xu, the state of the system after

receiving the signal u, having started in state X. We will also use Xũ as an abbreviation

for the trajectory {Xv}v<u, describing the past evolution of the state.

For simplicity, we are assuming that the system is deterministic. Note that the clas-

sical ASM framework for digital algorithms, though initially defined for deterministic

systems, has been extended to nondeterministic transitions in [53, 65].

Should one want to model the possibility of terminal states, then the transforma-

tions would be partial functions τu : S ⇀ S. We gloss over this distinction in what

follows.

Definition 48 (Dynamical System). A dynamical system 〈S,S0,U , T 〉 is a transition

system, where the transformations satisfy

τuv = τv ◦ τu,

for all u, v ∈ U , and where τε is the identity function on states.

This implies that Xuv = (Xu)v.

It follows from this definition that τ(uv)w = τu(vw), since composition is associative.

It also follows that instantaneous transitions are idempotent. That is, τa ◦ τa = τa, for

point signal a, because then aa = a.

9.3 Abstract Dynamical Systems

9.3.1 Abstract States

A vocabulary F is a finite collection of fixed-arity function symbols, some of which may

be tagged relational. A term whose outermost function name is relational is termed

Boolean. The following definition extends the notion of algorithm (Definition 1) from

discrete systems, with which we have been working until now, to the analog case:

Definition 49 (Abstract Transition System). An abstract transition system is a dy-

namical transition system whose states S are (first-order) structures over some finite

vocabulary F , such that the following hold:

114 CHAPTER 9. CONTINUOUS TIME

1. States are closed under isomorphism, so if X ∈ S is a state of the system, then any

structure Y isomorphic to X is also a state in S, and Y is an initial state if X is.

2. Input signals are closed under isomorphism, so if u ∈ U is a signal of the system,

then any signal v isomorphic to u (that is, maps to isomorphic values) is also a

signal in U .

3. Transformations preserve the domain (base set); that is, DomXu = DomX for every

state X ∈ S and signal u ∈ U .

4. Transformations respect isomorphisms, so, if X ∼=ζ Y is an isomorphism of states

X,Y ∈ S, and u ∼=ζ v is the corresponding isomorphism of input signals u, v ∈ U ,

then Xu
∼=ζ Yv.

In particular, system evolution is causal (“retrospective”): a state at any given

moment is completely determined by past history and the current input signal. This is

analogous to the postulates for discrete algorithms except that subsequent states Xu

depend on the whole signal u, not just the prior state X and current input.

To keep matters simple, we are assuming (unrealistically) that all operations are

total. Instead, we simply model partiality by including some undefined element ⊥ in

domains. See, however, the development in [5].

9.3.1.1 Vocabularies.

We will assume that the vocabularies of all states include the Boolean truth constants,

the standard Boolean operations, equality, and function composition, and that these

are always given their standard interpretations. We treat predicates as truth-valued

functions, so states may be viewed as algebras.

There are idealized models of computation with reals, such as the BSS model [11],

for which true equality of reals is available in all states. On the other hand, there are

also models of computable reals, for which “numbers” are functions that approximate

the idealized number to any desired degree of accuracy, and in which only partial

equality is available. See [5] for how to extend the abstract-state-machine framework

to deal faithfully with such cases.

9.4. ALGORITHMIC DYNAMIC SYSTEMS 115

9.3.2 Updates of States

As in the classical case, we need to capture the changes to a state that are engendered

by a system. For a given abstract transition system, define its update function ∆ as

follows:

∆(X) = λu. Xu \X

We write ∆u(X) for ∆(X)(u). The trajectory of a system may be recovered from its

update function, as follows:

Xu = (X \ ∇u(X)) ∪∆u(X)

where

∇u(X) := {` 7→ [[`]]X : ` 7→ b ∈ ∆u(X) for some b}

are the location-value pairs in X that are updated by ∆u.

9.4 Algorithmic Dynamic Systems

A template is a term over the algorithm’s vocabulary containing a variable. Let t(x)

be a template, u a domain element, and X a state. The variable x formalizes the idea

of an incoming port, which receives a signal u.

We denote by [[tu]]X the value of t(u) on X (i.e. we substitute u for x and compute

its value in X). We say that states X and Y agree on tu if [[tu]]X = [[tu]]Y . Let T

be a set of critical templates, all with the same variable x and u, a domain element.

Let Tu be {su : s ∈ T}. We say that states X and Y agree on Tu if [[su]]X = [[su]]Y

for all s ∈ T . This will be abbreviated X =Tu Y . We also say that states X and Y

are similar, with respect to Tu if, for all templates s, t ∈ T , we have [[su]]X = [[tu]]X iff

[[su]]Y = [[tu]]Y . This will be abbreviated X ∼Tu Y .

9.4.1 Algorithmicity

The current state, “modulo” its critical terms, unambiguously determines future states.

Definition 50 (Algorithmic Transitions). An abstract transition system with states S

over vocabulary F is algorithmic if there is a fixed finite set T of critical templates

over F , such that ∆u(X) = ∆u(Y) for any two of its states X,Y ∈ S and signal u ∈ U ,

116 CHAPTER 9. CONTINUOUS TIME

whenever X and Y agree on T . In symbols:

X =Tu Y ⇒ ∆u(X) = ∆u(Y) .

This implies

Xũ =Tu Yũ ⇒ ∆u(X) = ∆u(Y) .

Furthermore, similarity should be preserved:

Xũ ∼Tu Yṽ ⇒ Xua ∼Tu Yva ,

where a ∈ U is any point signal (|a| = 0).

Following the reasoning in [62, Lemma 6.2], every new value assigned by ∆u(X) to

a location in state X is the value of some critical template. That is, if ` 7→ b ∈ ∆u(X),

then b = [[tu]]X for some critical t ∈ T .

Proposition 51. Every new value assigned by ∆u(X) to a location in state X is the

value of some critical term. That is, if ` 7→ b ∈ ∆u(X), then b = [[tu]]X for some critical

t ∈ T .

Proof. By contradiction, assume that some b is not critical. Let Y be the structure

isomorphic to X that is obtained from X by replacing b with a fresh element b′. By

the abstract-state postulate, Y is a state. Check that [[tu]]Y = [[tu]]X for every critical

template t. By the choice of T , ∆u(Y) equals ∆u(X) and therefore contains b in some

update. But b does not occur in Y . By (the inalterable-base-set part of) the abstract-

state postulate, b does not occur in Yu either. Hence it cannot occur in ∆u(Y) = Yu\Y .

This gives the desired contradiction.

Agreeability of states is preserved by algorithmic transitions:

Lemma 52. For an algorithmic transition system with critical templates T , it is the

case that

X =Tu Y ⇒ Xu =Tu Yu

for any states X,Y ∈ S and input signal u ∈ U .

9.4. ALGORITHMIC DYNAMIC SYSTEMS 117

9.4.2 Flows and Jumps

A “jump” in a trajectory is a change in the dynamics of the system, in contrast with

“flows”, during which the dynamics are fixed. Formally, a jump corresponds to a

change in the equivalences between critical terms, whereas, when the trajectory “flows”,

equivalences between critical terms are kept invariant. Accordingly, we will say that a

trajectory Xũ flows if all intermediate states Xw and Xv (ε < w < v < u) are similar.

It jumps at its end if there is no prefix w < u such that all intermediate Xv, w < v < u,

are similar to Xu. It jumps at its beginning if there is no prefix w ≤ u such that all

intermediate Xv, ε < v < w, are similar to X.

9.4.3 Analgorithms

Putting everything together, we have arrived at the following.

Definition 53 (Analog Algorithm). An analog algorithm (or “analgorithm”) is an

algorithmic (abstract) transition system, such that no trajectory has more than a finite

number of (prefixes that end in) jumps.

In other words, an analog algorithm is a signal-indexed deterministic state-transition

system (Definitions 47 and 48), whose states are algebras that respect isomorphisms

(Definition 49), whose transitions are governed by the values of a fixed finite set of

terms (Definition 50), and whose trajectories do not change dynamics infinitely often

(Definition 53).

9.4.4 Properties

System evolution is causal (“retrospective”): a state at any given moment is completely

determined by past history and the current input signal.

Theorem 54. For any analog algorithm, the trajectory can be recovered from the im-

mediate past (or updates from the past). In other words, Xu, for right-closed signal u,

can be obtained (up to isomorphism) as a function of Xũ (that is, the Xv, for v < u)

plus the final input u∗.

In fact, Xu depends on arbitrarily small segments Xu(t,|u|), t < |u|, of past history.

Proof. This is a direct consequence of Definition 49.

118 CHAPTER 9. CONTINUOUS TIME

9.4.5 Further Considerations

It might also make sense to disallow the value given to a location ` at some time t to

depend on infinitely many prior changes. For example, one would not want the value

of f(t) to be set at every moment t to 2f(t/2). Rather, the value of every location `

at moment t should be determined by values provided by the signal at time t and by

values of locations in the state that are “stable” at t. By stable, we mean that there is

a non-empty interval of time up to t in which its value is constant. Furthermore, this

temporal dependency of locations should be well-founded.

It may happen that the system of equations that controls transitions has a critical

non-unique solution for the given initial conditions. For example, the equation y′(x)2 =

4y(x), restricted to the initial condition y(0) = 0, has two distinct solutions, namely,

y ≡ 0 and y = x2. In this case, we would want to add some continuity constraint.

We would want to require that a choice of the solution made in the initial state is not

changed for the whole trajectory governed by that equation.

9.5 Programs

9.5.1 Definition

Definition 55 (Analog Program). An analog program P over a vocabulary F is a

finite text, taking one of the following forms:

• A constraint statement v1, . . . , vn s.t. C, where C is a Boolean condition over F

and the vi are terms over F (usually subterms of C) whose values may change in

connection with execution of this statement.

• A parallel statement [P1 ‖ · · · ‖ Pn] (n ≥ 0), where each of the Pi is an analog

program over F . (If n = 0, this is “do nothing” or “skip”.)

• A conditional statement if C then P , where C is a Boolean condition over F ,

and P is an ASM program over F .

We can use an assignment statement f(s1, . . . , sn) := t as an abbreviation for

f(s1, . . . , sn) s.t. f(s1, . . . , sn) = t. But bear in mind that the result is instantaneous,

so that x := 2x is tantamount to x := 0, regardless of the prior value of x. Similarly,

x := x + 1 is only possible if the domain includes an “infinite” value ∞ for which

∞ =∞+ 1.

9.5. PROGRAMS 119

9.5.2 Semantics

In the simple case, where the changes in state at time t depend only on the current

signal u and state X, we can envision the following sequence of events:

1. All non-stable locations in X (see Section 9.4.5) have undefined values.

2. The signal sets the value of location ı, yielding X ′.

3. Critical terms are evaluated in X ′. (Only relevant terms need be evaluated, per [5].)

This may involve looking up the values of pre-defined “static” operations in the

state, like multiplication or division.

4. All conditionals are evaluated, yielding a set of enabled constraints.

5. All enabled constraints are solved (deterministically, we are assuming). In the ex-

plicit case, this means that all enabled assignments are “executed” in parallel, yield-

ing a resultant state X ′′.

9.5.3 Examples

To begin with, consider analog algorithms that are purely flow, that is to say without

any jumps. Flow programs invoke a time parameter, which we assume is supplied

by the input signal. In simple continuous-time systems, the state evolves continually,

governed by ordinary differential equations, say.

For example, the motion of an idealized simple pendulum is governed by the second-

order differential equation

θ′′ +
g

L
θ = 0 ,

where θ is angular displacement, g is gravitational acceleration, and L is the length of

the pendulum rod. Let the signal u ∈ U be just real time. States report the current

angle θ ∈ F . All states are endowed with the same (or isomorphic) operations for real

arithmetic, including sine and square root, interpreting standard symbols. Initial states

contain values for g, L, and the initial angle θ0 when the pendulum is released.

For small θ0, the flow trajectory τt(X) can be specified simply by

θ = θ0 · sin
(√

g

L
· ı
)
,

120 CHAPTER 9. CONTINUOUS TIME

∫ ∫ ∫-1

q q
t

z
y

x

Figure 9.1: A GPAC for sine and cosine.

where ı is the input port and nothing but θ changes from state to state. The update

function is, accordingly,

∆t(X) =

{
θ 7→ θ0 · sin

(√
g

L
· ı
)}

.

Hence, the critical term is θ0 · sin(
√
g/L · ı). It can be described by the program

[
θ s.t. θ = θ0 · sin

(√
g

L
· ı
)]

.

One of the most famous models of analog computations is the General Purpose Ana-

log Computer (GPAC) of Claude Shannon [101]. Figure 9.1 depicts a (non-minimal)

GPAC that generates sine and cosine: in this picture, the
∫

signs denote some integra-

tor, and the −1 denotes some constant block. If initial conditions are set up correctly,

such a system will evolve according to the following initial value problem:
x′ = z x(0) = 1

y′ = x y(0) = 0

z′ = −y′ z(0) = 0 .

It follows that x(t) = cos(t), y(t) = sin(t), z = − sin(t). In other words, this simple

GPAC that generates sine and cosine can be modeled by program

[x, y, z s.t. x = cos(ı) ∧ y = sin(ı) ∧ z = −y] .

This system could also be modeled implicitly as:

Solve
(
{x′ = z; y′ = x; z′ = y}, {x = 1; y = 0; z = 0}, t

)
,

with states incorporating an operation Solve that takes a system of differential equa-

9.5. PROGRAMS 121

tions, initial conditions, and a given time t, and returns the current values of the

dynamic variables (x, y, z, in this example).

Our proposed model can also adequately describe systems (like a bouncing ball) in

which the dynamics change periodically. The physics of a bouncing ball are given by

the explicit flow equations

v = v0 − g · t

x = v · t ,

where g is the gravitational constant, v0 is the velocity when last hitting the table, and

t is the time signal—except that upon impact, each time x = 0, the velocity changes

according to

v0 = −k · v ,

where k is the coefficient of impact. The critical Boolean term is x = 0. In any finite

time interval, this condition changes value only finitely many times.

This system can be described by a program like

[if x 6= 0 then x, v s.t. v = v0 − g · t, x = (v0 − g · t) · t

‖ if x = 0 then v0 := −k · v] ,

where x stands for its height, and v, its speed. Every time the ball bounces, its speed

is reduced by a factor k.

Chapter 10

Conclusions and Future Work

In 2000, Gurevich [62] proposed an axiomatization of arbitrary (classical) algorithms.

Later, Boker and Dershowitz [15, 16] provided an axiomatization of effectiveness, and

proved [15, 41] that the classical version of the “Church-Turing Thesis” follows from

those axioms. We have extended their axiomatization of effectiveness to the relative

case (Section 3.5). We defined a generic measure of input size and time complexity for

arbitrary domains (Definitions 26 and 27) and used that to prove the Invariance Thesis

for classical algorithms (Theorem 32). We have also suggested a generic definition of a

universal machine over arbitrary domains (Definition 11) and addressed the commonly

overlooked issue of “honesty” of representation.

In [10], Blass, Gurevich, and Shelah defined classical algorithms over unordered

domains. As an effective domain has, by its nature, an order that is not presupposed

by the algorithm, unordered domains provide a more honest way to define algorithms.

Inspired by that and the general definition of causal graph dynamics of Arrighi and

Dowek [2], we proved that a slightly enhanced version of their model (Section 8.2.1)

can simulate all classical algorithms over unordered domains (Section 8.3).

In [8], Blass and Gurevich suggested an axiomatization of generic parallel algorithm.

Though their definition is very general, it is hard to restrict to the effective case. So we

proposed a new model of generic parallel computation (Definition 19). Our model is less

general, since it only uses shared memory interaction and bounds the number of children

begotten by one agent in one step. On the other hand, this model, in its unrestricted

version, allows any number of processes in the initial state (also infinitely many) and

may be naturally restricted to the effective case (Section 7.5). We used this model to

prove that polynomial parallel time and PSPACE are equivalent (Theorem 40).

122

123

We also gave a formalization of some desiderata of analog algorithms (Chapter 9)

and generic interactive algorithms (Chapter 5).

There are various potential directions for future research. Parallel algorithms should

be generalized to incorporate message passing between cells. Distributed algorithms

and an appropriate ASM language were described in [61]; yet there is no proof of

equivalence of the concurrent model and a generic programming language. There is also

the question of what axioms may be needed for effectiveness of distributed algorithms.

For the analog world, a full and satisfactory axiomatic characterization is still required.

Also, a notion of (relative) effectiveness for continuous time should be devised. A

description of cellular automaton for parallel, distributed, and analog cases remains to

be done.

A representation of an effective domain may hide information, providing the model

with unexpected computational powers. For example, in the graph domain, nodes

may be ordered in a Hamiltonian path order whenever such order exists, allowing

some NP problems to be solved in polynomial time. Here, we have suggested one way

to overcome this difficulty by using another computational model, namely, dynamic

cellular automata. Still, the proper definition of an “honest” representation of an

effective domain seems elusive.

Bibliography

[1] Scott Aaronson. Quantum computing since Democritus. Lecture notes, Fall
2006. Available at http://www.scottaaronson.com/democritus/lec4.html

(accessed on December 31, 2013). 7.1

[2] Pablo Arrighi and Gilles Dowek. Causal graph dynamics. Information and Com-
putation, 223:78–93, February 2013. 8.1, 8.2.1, 10

[3] Mike Barnett and Wolfram Schulte. The ABCs of specification: AsmL,
behavior, and components. Informatica (Slovenia), 25(4):517–526, Novem-
ber 2001. Available at http://research.microsoft.com/pubs/73061/

TheABCsOfSpecification(Informatica2001).pdf (accessed on December 31,
2013). 2.1

[4] Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. When are two algorithms
the same? Bulletin of Symbolic Logic, 15(2):145–168, 2009. Available at http:

//nachum.org/papers/WhenAreTwo.pdf (accessed on December 31, 2013). 2.2.4

[5] Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. Exact exploration
and hanging algorithms. In Proceedings of the 19th EACSL Annual Confer-
ences on Computer Science Logic (Brno, Czech Republic), volume 6247 of Lec-
ture Notes in Computer Science, pages 140–154, Berlin, Germany, August 2010.
Springer. Available at http://nachum.org/papers/HangingAlgorithms.pdf

(accessed on December 31, 2013); longer version at http://nachum.org/papers/
ExactExploration.pdf (accessed on December 31, 2013). 1.9, 2.2, 2.2.2, 2.4, 3.2,
4., 7.1, 7.3.3, 9.1, 9.3.1, 9.3.1.1, 3.

[6] Andreas Blass and Yuri Gurevich. Abstract state machines capture paral-
lel algorithms. ACM Transactions on Computation Logic, 4:578–651, Novem-
ber 2003. Available at http://research.microsoft.com/en-us/um/people/

gurevich/Opera/157-1.pdf (accessed on December 31, 2013). 1.6

[7] Andreas Blass and Yuri Gurevich. Ordinary interactive small-step algorithms,
Part I. ACM Transactions on Computational Logic, 7(2):363–419, April 2006.
Available at http://tocl.acm.org/accepted/blass04.ps (accessed on Decem-
ber 31, 2013). 2.2, 2.3.2

[8] Andreas Blass and Yuri Gurevich. Abstract state machines capture paral-
lel algorithms: Correction and extension. ACM Transactions on Computation
Logic, 9(3), June 2008. article 19. Available at http://research.microsoft.

com/en-us/um/people/gurevich/Opera/157-2.pdf (accessed on December 31,
2013). 1.6, 10

124

http://www.scottaaronson.com/democritus/lec4.html
http://research.microsoft.com/pubs/73061/TheABCsOfSpecification(Informatica2001).pdf
http://research.microsoft.com/pubs/73061/TheABCsOfSpecification(Informatica2001).pdf
http://nachum.org/papers/WhenAreTwo.pdf
http://nachum.org/papers/WhenAreTwo.pdf
http://nachum.org/papers/HangingAlgorithms.pdf
http://nachum.org/papers/ExactExploration.pdf
http://nachum.org/papers/ExactExploration.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-1.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-1.pdf
http://tocl.acm.org/accepted/blass04.ps
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-2.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/157-2.pdf

BIBLIOGRAPHY 125

[9] Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time.
Annals of Pure and Applied Logic, 100:141–187, 1999. 1.8

[10] Andreas Blass, Yuri Gurevich, and Saharon Shelah. On polynomial time com-
putation over unordered structures. Journal of Symbolic Logic, 67(3):1093–
1125, 2002. Available at http://research.microsoft.com/en-us/um/people/
gurevich/Opera/150.pdf (accessed on December 31, 2013). 10

[11] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and
complexity over the real numbers: NP completeness, recursive functions and
universal machines. Bull. Amer. Math. Soc. (NS), 21:1–46, 1989. 1.3, 9.1, 9.3.1.1

[12] Udi Boker and Nachum Dershowitz. How to compare the power of computa-
tional models. In S. Barry Cooper, Benedikt Löwe, and Leen Torenvliet, editors,
Computability in Europe 2005: New Computational Paradigms (Amsterdam, The
Netherlands), volume 3526 of Lecture Notes in Computer Science, pages 54–64,
Berlin, Germany, 2005. Springer. 3.5

[13] Udi Boker and Nachum Dershowitz. Abstract effective models. In M. Fernández
and I. Mackie, editors, New Developments in Computational Models: Proceedings
of the First International Workshop on Developments in Computational Models
(DCM 2005; Lisbon, Portugal; July 2005), volume 135/3 of Electronic Notes in
Theoretical Computer Science, pages 15–23, 2006. 1.9

[14] Udi Boker and Nachum Dershowitz. Comparing computational power. Logic
Journal of the IGPL, 14(5):633–648, 2006. 1.5, 4.3

[15] Udi Boker and Nachum Dershowitz. The Church-Turing thesis over arbi-
trary domains. In Arnon Avron, Nachum Dershowitz, and Alexander Rabi-
novich, editors, Pillars of Computer Science, Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday, volume 4800 of Lecture
Notes in Computer Science, pages 199–229. Springer, Berlin, 2008. Available
at http://nachum.org/papers/ArbitraryDomains.pdf (accessed on December
31, 2013). 1.5, 3.1, 3.2, 3, 3.2, 3.5, 4.1, 7.1, 7.1, 7.2, 10

[16] Udi Boker and Nachum Dershowitz. Three paths to effectiveness. In Andreas
Blass, Nachum Dershowitz, and Wolfgang Reisig, editors, Fields of Logic and
Computation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70th
Birthday, volume 6300 of Lecture Notes in Computer Science, pages 36–47, Berlin,
Germany, August 2010. Springer. Available at http://nachum.org/papers/

ThreePathsToEffectiveness.pdf (accessed on December 31, 2013). 1.9, 1.9,
3.3, 3.5, 10

[17] Egon Börger. The origins and the development of the ASM method for high level
system design and analysis. Journal of Universal Computer Science, 8(1):2–74,
2002. Available at http://www.jucs.org/jucs_8_1/the_origins_and_the/

Boerger_E.pdf (accessed on December 31, 2013). 2.1

[18] A. Borodin. On relating time and space to size and depth. SIAM J. Com-
put., 6:733–744, 1977. Available at http://www.cs.toronto.edu/~bor/Papers/
relating-time-space-size-depth.pdf (accessed on August 13, 2013). 7.1

http://research.microsoft.com/en-us/um/people/gurevich/Opera/150.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/150.pdf
http://nachum.org/papers/ArbitraryDomains.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf
http://nachum.org/papers/ThreePathsToEffectiveness.pdf
http://www.jucs.org/jucs_8_1/the_origins_and_the/Boerger_E.pdf
http://www.jucs.org/jucs_8_1/the_origins_and_the/Boerger_E.pdf
http://www.cs.toronto.edu/~bor/Papers/relating-time-space-size-depth.pdf
http://www.cs.toronto.edu/~bor/Papers/relating-time-space-size-depth.pdf

126 BIBLIOGRAPHY

[19] O. Bournez and M.L. Campagnolo. A survey on continuous time computations.
New Computational Paradigms. Changing Conceptions of What is Computable
(Cooper, S.B., Löwe, B., Sorbi, A., eds.) New York, Springer-Verlag, pages 383–
423, 2008. 1.3, 9.1

[20] Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and E. Hainry. Polyno-
mial differential equations compute all real computable functions on computable
compact intervals. Journal of Complexity, 23:317–335, 2007. 1.3

[21] Olivier Bournez, Nachum Dershowitz, and Evgenia Falkovich. Towards an axiom-
atization of simple analog algorithms. In Manindra Agrawal, S. Barry Cooper,
and Angsheng Li, editors, Proceedings of the 9th Annual Conference on Theory
and Applications of Models of Computation (TAMC 2012, Beijing, China), vol-
ume 7287 of Lecture Notes in Computer Science, pages 525–536, Berlin, May
2012. Springer. Available at http://nachum.org/papers/SimpleAnalog.pdf

(accessed on December 31, 2013). 1.9

[22] Vannever Bush. The differential analyzer. Journal of the Franklin Institute,
212(4):447–488, 1931. 1.3, 9.1

[23] Samuel R. Buss, Alexander A. Kechris, Anand Pillay, and Richard A. Shore. The
prospects for mathematical logic in the twenty-first century. Bulletin of Symbolic
Logic, 7(2):1169–1196, 2001. Available at http://www.math.ucla.edu/~asl/

bsl/0702/0702-001.ps (accessed on Dec. 13, 2011). 3.1

[24] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981. 7.1

[25] Alonzo Church. Review of Alan M. Turing: On computable numbers, with an
application to the Entscheidungsproblem. Proceedings of the London Mathemat-
ical Society, 2(42):230–265, 1936. Journal of Symbolic Logic, vol. 2, 1937, pp.
42–43. 3.1

[26] Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:345–363, 1936. 1.5, 3.1

[27] J. Cohen and A. Slissenko. On implementations of instantaneous actions real-time
asm by asm with delays. Proceedings of the 12th Intern. Workshop on Abstract
State Machines (ASM ’2005) Paris, France, pages 387–396, 2005. 9.1

[28] Joelle Cohen and Anatol Slissenko. Implementation of sturdy real-time abstract
state machines by machines with delays’. Proceedings of the 6th Intern. Conf. on
Computer Science and Information Technology (CSIT 2007), Yerevan, Armenia,
September 2007. 9.1

[29] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access ma-
chines. Journal of Computer Systems Science, 7:354–375, 1973. Available at
http://www.cs.utoronto.ca/~sacook/homepage/rams.pdf (accessed on De-
cember 31, 2013). 1.8, 7.1, 7.3.1, 7.3.1, 7.3.4, 7.3.4, 7.4

[30] D. Coward. Doug Coward’s Analog Computer Museum, 2006. http://www.

cowardstereoview.com/analog/ (accessed on Jan. 10, 2012). 9.1

http://nachum.org/papers/SimpleAnalog.pdf
http://www.math.ucla.edu/~asl/bsl/0702/0702-001.ps
http://www.math.ucla.edu/~asl/bsl/0702/0702-001.ps
http://www.cs.utoronto.ca/~sacook/homepage/rams.pdf
http://www.cowardstereoview.com/analog/
http://www.cowardstereoview.com/analog/

BIBLIOGRAPHY 127

[31] Martin Davis. The definition of universal Turing machine. Proceedings Amer.
Math. Soc., 8:1125–1126, 1957. 1.7, 4.1

[32] Martin Davis. The myth of hypercomputation. In Christof Teuscher, editor, Alan
Turing: Life and Legacy of a Great Thinker, pages 195–212. Springer, 2003. 3.1

[33] Nachum Dershowitz. The generic model of computation. In Proceedings of
the Seventh International Workshop on Developments in Computational Models
(DCM 2011, July 2012, Zürich, Switzerland), Electronic Proceedings in Theo-
retical Computer Science, pages 59–71, 2012. Available at http://nachum.org/
papers/Generic.pdf (accessed on December 31, 2013). 2.1

[34] Nachum Dershowitz. Res publica: The universal model of computation. Proceed-
ings of the 22nd EACSL Conference on Computer Science Logic (CSL), Torino,
Italy, pages 5–10, 2013. Available at http://www.cs.tau.ac.il/~nachumd/

papers/ResPublica.pdf. 1.9

[35] Nachum Dershowitz and Evgenia Falkovich. The invariance thesis. Logical
Methods in CS. Submitted. Available at http://www.cs.tau.ac.il/~nachumd/
papers/TIH.pdf. 1.9

[36] Nachum Dershowitz and Evgenia Falkovich. A formalization and proof of the
Extended Church-Turing Thesis. In Proceedings of the Seventh International
Workshop on Developments in Computational Models (DCM 2011), volume 88
of Electronic Proceedings in Theoretical Computer Science, pages 72–78, Zürich,
Switzerland, July 2011. Available at http://nachum.org/papers/ECTT_EPTCS.
pdf (accessed on December 31, 2013). 1.9, 7.4.0.1, 7.4.0.1, 8.3.1

[37] Nachum Dershowitz and Evgenia Falkovich. Effectiveness. In Hector Zenil, ed-
itor, A Computable Universe, pages 77–97. World Scientific, Singapore, Decem-
ber 2012. Available at http://nachum.org/papers/Universe.pdf (accessed on
February 14, 2013). 1.9

[38] Nachum Dershowitz and Evgenia Falkovich. Honest universality. Special is-
sue of the Philosophical Transactions of the Royal Society A, 370(1971):3340–
3348, 2012. Available at http://www.cs.tau.ac.il/~nachumd/papers/

HonestUniversality.pdf. 1.9

[39] Nachum Dershowitz and Evgenia Falkovich. Cellular automata are generic. Pro-
ceedings of the Tenth International Workshop on Developments in Computational
Models (DCM 2014), Ugo Dal Lago and Russ Harmer, eds., Vienna, Austria,
2014. Available at http://www.cs.tau.ac.il/~nachumd/papers/Cell.pdf. 1.9

[40] Nachum Dershowitz and Evgenia Falkovich. Generic parallel algorithms. Pro-
ceedings of Computability in Europe 2014: Language, Life, Limits (CiE), Arnold
Beckmann, Erzsbet Csuhaj-Varj, Klaus Meer, eds., Budapest, Hungary, Lecture
Notes in Computer Science, 2014. Available at http://www.cs.tau.ac.il/

~nachumd/papers/GenericParallel.pdf. 1.9

[41] Nachum Dershowitz and Yuri Gurevich. A natural axiomatization of computabil-
ity and proof of Church’s Thesis. Bulletin of Symbolic Logic, 14(3):299–350,
September 2008. Available at http://nachum.org/papers/Church.pdf (ac-
cessed on December 31, 2013). 1.5, 1.9, 2.2.3, 3.1, 3.2, 7.1, 7.1, 10

http://nachum.org/papers/Generic.pdf
http://nachum.org/papers/Generic.pdf
http://www.cs.tau.ac.il/~nachumd/papers/ResPublica.pdf
http://www.cs.tau.ac.il/~nachumd/papers/ResPublica.pdf
http://www.cs.tau.ac.il/~nachumd/papers/TIH.pdf
http://www.cs.tau.ac.il/~nachumd/papers/TIH.pdf
http://nachum.org/papers/ECTT_EPTCS.pdf
http://nachum.org/papers/ECTT_EPTCS.pdf
http://nachum.org/papers/Universe.pdf
http://www.cs.tau.ac.il/~nachumd/papers/HonestUniversality.pdf
http://www.cs.tau.ac.il/~nachumd/papers/HonestUniversality.pdf
http://www.cs.tau.ac.il/~nachumd/papers/Cell.pdf
http://www.cs.tau.ac.il/~nachumd/papers/GenericParallel.pdf
http://www.cs.tau.ac.il/~nachumd/papers/GenericParallel.pdf
http://nachum.org/papers/Church.pdf

128 BIBLIOGRAPHY

[42] S. Dexter, P. Doyle, and Y. Gurevich. Gurevich abstract state ma-
chines and Schönhage storage modification machines. J. UCS, 1:279–303,
1997. Available at http://jucs.org/jucs_3_4/gurevich_abstract_state_

machines/Dexter_S.pdf (accessed on February 14, 2013). 4., 7.1, 7.4

[43] Scott Dexter, Patrick Doyle, and Yuri Gurevich. Gurevich abstract state ma-
chines and schoenhage storage modification machines. Springer J. of Universal
Computer Science, 3:279–303, 1997. 7.5

[44] Gilles Dowek. The physical Church thesis as an explanation of the Galileo thesis.
Natural Computing, 11(2):247–251, 2012. 8.1

[45] D. M. Eckstein. Simultaneous memory access. Technical Report TR-79-6, Com-
puter Science Department, University of Iowa, 1979. 7.3.4, 7.6

[46] Marie Ferbus-Zanda and Serge Grigorieff. ASMs and operational algorithmic
completeness of lambda calculus. In Andreas Blass, Nachum Dershowitz, and
Wolfgang Reisig, editors, Fields of Logic and Computation: Essays Dedicated to
Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of Lecture Notes
in Computer Science, pages 301–327. Springer, Berlin, Germany, August 2010.
Available at http://arxiv.org/pdf/1010.2597v1.pdf (accessed on February
14, 2013). 7.1

[47] S. Fortune and J. Wyllie. Parallelism in random access machines. Proceedings
10th Annual ACM Symposium on Theory of Computing, pages 114–118, 1978.
1.6, 7.1, 7.3.4, 7.6

[48] Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal
of Theoretical Physics, 21:219–253, 1982. 1.2

[49] Harvey M. Friedman. Mathematical logic in the 20th and 21st centuries. FOM
mailing list. April 27, 2000. Available at http://cs.nyu.edu/pipermail/fom/

2000-April/003913.html (accessed on December 6, 2011). 3.1

[50] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philo-
sophical Transactions of the Royal Society of London, 248:407–432, 1956. 3.5

[51] Zvi Galil and Wolfgang J. Paul. An efficient general-purpose parallel computer.
Journal of the ACM, 30:360–387, 1983. 1.6

[52] Robin Gandy. Church’s thesis and principles for mechanisms. In The Kleene
Symposium, volume 101 of Studies in Logic and the Foundations of Mathematics,
pages 123–148. North-Holland, 1980. 1.5, 2.2, 3.1, 8.1

[53] Andreas Glausch and Wolfgang Reisig. An ASM-characterization of a class
of distributed algorithms. In Jean-Raymond Abrial and Uwe Glässer, ed-
itors, Rigorous Methods for Software Construction and Analysis, volume
5115 of Lecture Notes in Computer Science, pages 50–64. Springer, Berlin,
2009. Available at http://www2.informatik.hu-berlin.de/top/download/

publications/GlauschR2007_dagstuhl.pdf (accessed on December 31, 2013).
9.2.2

http://jucs.org/jucs_3_4/gurevich_abstract_state_machines/Dexter_S.pdf
http://jucs.org/jucs_3_4/gurevich_abstract_state_machines/Dexter_S.pdf
http://arxiv.org/pdf/1010.2597v1.pdf
http://cs.nyu.edu/pipermail/fom/2000-April/003913.html
http://cs.nyu.edu/pipermail/fom/2000-April/003913.html
http://www2.informatik.hu-berlin.de/top/download/publications/GlauschR2007_dagstuhl.pdf
http://www2.informatik.hu-berlin.de/top/download/publications/GlauschR2007_dagstuhl.pdf

BIBLIOGRAPHY 129

[54] Kurt Gödel. On undecidable propositions of formal mathematical systems. Lec-
ture notes by S. C. Kleene and J. B. Rosser, Inst. for Advanced Study, Princeton,
1934. Reprinted with corrections and postscriptum in M. Davis (ed.): The Un-
decidable – Basic Papers on Undecidable Propositions, Unsolvable Problems and
Computable Functions, Raven Press, 1965, pp. 39–74. The postscriptum is also
reprinted in Gödel’s Collected Works, vol. I, pp. 369–371. 3.1, 3.5

[55] E. Mark Gold. Limiting recursion. J. Symbolic Logic, 30(1):28–48, 1965. 2.2.1

[56] Leslie M. Goldschlager. A universal interconnection pattern for parallel comput-
ers. Journal of the ACM, 29:1073–1086, 1982. 1.6

[57] Saul Gorn. Algorithms: Bisection routine. Communications of the ACM,
3(3):174, 1960. 2.1

[58] Daniel S. Graça. Some recent developments on Shannon’s general purpose analog
computer. Mathematical Logic Quarterly, 50:473–485, 2004. 1.3

[59] Daniel S. Graça and J. Félix Costa. Analog computers and recursive functions
over reals. Journal of Complexity, 19:644–664, 2003. 1.3

[60] Daniel Graupe. Principles of Artificial Neural Networks. World Scientific, 2007.
1.3

[61] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Egon Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press, Ox-
ford, 1995. Available at http://research.microsoft.com/~gurevich/opera/

103.pdf (accessed on December 31, 2013). 1.9, 2.1, 2.3.1, 2.3.2, 9.1, 10

[62] Yuri Gurevich. Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1(1):77–111, July 2000. Available
at http://research.microsoft.com/~gurevich/opera/141.pdf (accessed on
December 31, 2013). 1.1, 1.9, 1.9, 2.1, 2.2, 2.2.3, 2, 6.2.2, 6.2.2, 6.2.4, 6.4, 4., 8.1,
8.3.2, 9.4.1, 10

[63] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic essence of
AsmL. Theoretical Computer Science, 343(3):370–412, October 2005. Available
at http://research.microsoft.com/~gurevich/opera/169.pdf (accessed on
December 31, 2013). 2.1

[64] Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Toward industrial strength
abstract state machines. Technical Report MSR-TR-2001-98, Microsoft Re-
search, October 2001. Available at http://research.microsoft.com/en-us/

um/people/gurevich/opera/155.pdf (accessed on December 31, 2013). 2.3.1

[65] Yuri Gurevich and Tatiana Yavorskaya. On bounded exploration and bounded
nondeterminism. Technical report, Microsoft Research, January 2006. Available
at http://research.microsoft.com/~gurevich/opera/177.pdf. 9.2.2

[66] David Harel. On folk theorems. Communications of the ACM, 23(7):379–389,
July 1980. 2.1

[67] Juris Hartmanis. Computational complexity of random access stored program
machines. Mathematical Systems Theory, 5:232–245, 1971. 1.8, 7.1

http://research.microsoft.com/~gurevich/opera/103.pdf
http://research.microsoft.com/~gurevich/opera/103.pdf
http://research.microsoft.com/~gurevich/opera/141.pdf
http://research.microsoft.com/~gurevich/opera/169.pdf
http://research.microsoft.com/en-us/um/people/gurevich/opera/155.pdf
http://research.microsoft.com/en-us/um/people/gurevich/opera/155.pdf
http://research.microsoft.com/~gurevich/opera/177.pdf

130 BIBLIOGRAPHY

[68] A. Hemmerling. Systeme von Turing-Automaten und Zellularraume auf rahm-
baren Pseudomustermengen. Journal of Information Processing and Cybernetics
EIK, pages 47–72, 1979. 1.6

[69] F. E. Hennie and R. E. Stearns. Two-way simulation of multitape Turing ma-
chines. J. of the Association of Computing Machinery, 13:533–546, 1966. 7.1

[70] David Hilbert. Mathematische probleme: Vortrag, gehalten auf dem interna-
tionalen Mathematiker-Kongreß zu Paris 1900 (in German), 1900. Available at
http://wikilivres.info/wiki/Mathematische_Probleme (accessed on Dec. 1,
2011). 1.5, 3.1

[71] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik (in
German). Springer-Verlag, Berlin, 1920. English version of the second (1938)
edition: Principles of Theoretical Logic (R. E. Luce, translator and editor), AMS
Chelsea Publishing, New York, 1950. 1.5, 3.1

[72] H. J. Hoover, M. M. Klawe, and N. J. Pippenger. Bounding fan-out in logical
networks. JAMC, 31:13–18, 1984. 7.6

[73] Stephen C. Kleene. Recursive predicates and quantifiers. Transactions of the
American Mathematical Society, 53(1):41–73, 1943. Reprinted in M. Davis (ed.),
The Undecidable, Raven Press, Hewlett, NY, 1965, pp. 255–287. 3.1

[74] Stephen C. Kleene. Introduction to Metamathematics. D. Van Nostrand, New
York, 1952. 3.1, 3.5, 7.1

[75] Stephen C. Kleene. Mathematical Logic. Wiley, New York, 1967. 3.1

[76] Stephen C. Kleene. Reflections on Church’s thesis. Notre Dame Journal of Formal
Logic, 28(4):490–498, 1987. 2.2, 7.1

[77] Donald Knuth. Ancient Babylonian algorithms. Communications of the ACM, 15,
1972. Available at http://steiner.math.nthu.edu.tw/disk5/js/computer/

1.pdf (accessed on September 27, 2014). 1.1

[78] Donald E. Knuth. Algorithm and program: Information and date. Communica-
tions of the ACM, 9:654, 1966. 1.1

[79] Andrĕı N. Kolmogorov. O ponyatii algoritma [on the concept of algorithm]
(in Russian). Uspekhi Matematicheskikh Nauk [Russian Mathematical Surveys],
8(4):1175–1176, 1953. English version in: Vladimir A. Uspensky and Alexei L.
Semenov, Algorithms: Main Ideas and Applications, Kluwer, Norwell, MA, 1993,
pp. 18–19. 1.5, 3.1

[80] Andrĕı N. Kolmogorov and Vladimir A. Uspensky. K opredeleniu algoritma
(in Russian). Uspekhi Matematicheskikh Nauk [Russian Mathematical Surveys],
13(4):3–28, 1958. English version: On the definition of an algorithm, American
Mathematical Society Translations, ser. II, vol. 29, 1963, pp. 217–245. 1.5, 3.1

[81] Bruce J. MacLennan. Analog computation. Encyclopedia of Complexity and
System Science, Robert A. Meyers et al., eds., Springer, pages 271–294, 2009. A
draft is available at http://www.cs.utk.edu/~mclennan/papers/RAC-TR.pdf.
1.3

http://wikilivres.info/wiki/Mathematische_Probleme
http://steiner.math.nthu.edu.tw/disk5/js/computer/1.pdf
http://steiner.math.nthu.edu.tw/disk5/js/computer/1.pdf
http://www.cs.utk.edu/~mclennan/papers/RAC-TR.pdf

BIBLIOGRAPHY 131

[82] A.I. Mal’tsev. Constructive algebras I. Russian Mathematical Surveys, 16:77–129,
1961. 3.5

[83] L. F. Menabrea. Sketch of the Analytical Engine invented by Charles Babbage.
Bibliothèque Universelle de Genève, 82, October 1842. With notes upon the
Memoir by the Translator Ada Augusta, Countess of Lovelace. 1.2

[84] Jonathan W. Mills. The nature of the extended analog computer. Physica D:
Nonlinear Phenomena, 237:1235–1256, 2008. 1.3

[85] Ian Parberry. Parallel speedup of sequential machines: A defense of parallel
computation thesis. SIGACT News, 18(1):54–67, March 1986. 1.8, 7.1, 7.1

[86] Detlef Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kre-
owski, and G. Rozenberg, editors, Handbook of Graph Grammars and Com-
puting by Graph Transformation: Applications, Languages and Tools, vol-
ume volume 2, chapter 1, pages 3–61. World Scientific, 1999. Avail-
able at http://www.informatik.uni-bremen.de/agbkb/lehre/rbs/texte/

Termgraph-rewriting.pdf (accessed on December 31, 2013). 7.4.0.1, 8.3.1

[87] Emil L. Post. Absolutely unsolvable problems and relatively undecidable propo-
sitions: Account of an anticipation. In M. Davis, editor, Solvability, Provability,
Definability: The Collected Works of Emil L. Post, pages 375–441. Birkhaüser,
Boston, MA, 1994. unpublished paper, 1941. 2.2, 3.2

[88] Marian B. Pour-El and J. Ian Richards. Computability in analysis and physics.
Perspectives in Mathematical Logic, 1, 1989. 1.3

[89] Hilary Putnam. Trial and error predicates and the solution to a problem of
Mostowski. J. Symbolic Logic, 30(1):49–57, 1965. 2.2.1

[90] Michael. O. Rabin. Computable algebra, general theory and theory of computable
fields. Transactions of the American Mathematical Society, 95(2):341–360, 1960.
3.5

[91] Wolfgang Reisig. On Gurevich’s theorem on sequential algorithms. Acta
Informatica, 39(4):273–305, April 2003. Available at http://www2.informatik.
hu-berlin.de/top/download/publications/Reisig2003_ai395.pdf (ac-
cessed on December 31, 2013). 2.1, 6.4, 6.4, 6.4

[92] Wolfgang Reisig. The computable kernel of Abstract State Machines. The-
oretical Computer Science, 409(1):126–136, December 2008. Draft available
at http://www2.informatik.hu-berlin.de/top/download/publications/

Reisig2004_hub_tr177.pdf (accessed on December 31, 2013). 3.2, 3.3, 3.4,
7.4.0.1, 9.1

[93] John Michael Robson. Random access machines with multi-dimensional memo-
ries. Information Processing Letters, 34:265–266, 1990. 7.1, 28, 7.3.1

[94] Hartley Rogers, Jr. On universal functions. Proceedings of the American Math-
ematical Society, 16(1):39–44, February 1965. Available at http://www.jstor.

org/stable/2033997. 1.7, 4.1

[95] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1966. 2.2.1, 3.1, 4.4

http://www.informatik.uni-bremen.de/agbkb/lehre/rbs/texte/Termgraph-rewriting.pdf
http://www.informatik.uni-bremen.de/agbkb/lehre/rbs/texte/Termgraph-rewriting.pdf
http://www2.informatik.hu-berlin.de/top/download/publications/Reisig2003_ai395.pdf
http://www2.informatik.hu-berlin.de/top/download/publications/Reisig2003_ai395.pdf
http://www2.informatik.hu-berlin.de/top/download/publications/Reisig2004_hub_tr177.pdf
http://www2.informatik.hu-berlin.de/top/download/publications/Reisig2004_hub_tr177.pdf
http://www.jstor.org/stable/2033997
http://www.jstor.org/stable/2033997

132 BIBLIOGRAPHY

[96] Lee A. Rubel. A survey of transcendentally transcendental functions. American
Mathematical Monthly, 96:777–788, 1989. 1.3

[97] Lee A. Rubel. The extended analog computer. Advanced in Applied Mathematics,
14:39–50, 1993. 1.3

[98] Heinrich Rust. Hybrid abstract state machines: Using the hyperreals for de-
scribing continuous changes in a discrete notation. In Wolf Zimmermann and
Bernhard Thalheim, editors, Proceedings of the 11th International Workshop on
Abstract State Machines Advances in Theory and Practice (ASM 2004, Luther-
stadt Wittenberg, Germany), volume 3052 of Lecture Notes in Computer Science,
pages 281–233, Berlin, May 2004. Springer. 9.1

[99] A. Schönhage. Storage modification machines. SIAM J. Computing, 9:490–508,
1980. 7.3.3, 7.4

[100] A. Schönhage and V. Strassen. Schnelle multiplikation grosser zahlen. Computing,
7:281–292, 1971. 7.6

[101] Claude E. Shannon. Mathematical theory of the differential analyzer. Journal of
Mathematics and Physics, 20:337–354, 1941. 1.3, 9.5.3

[102] Stewart Shapiro. Acceptable notation. Notre Dame Journal of Formal Logic,
23(1):14–20, 1982. 4.3

[103] Joseph R. Shoenfield. Recursion Theory, volume 1 of Lecture Notes In Logic.
Springer, Heidelberg, 1991. 3.1

[104] R. K. Shyamasundar and S. Ramesh. Real time programming: Languages, spec-
ification & verification. World Scientific, 2002. 1.3

[105] Wilfried Sieg. Mechanical procedures and mathematical experiences. Mathe-
matics and Mind (A. George, editor), Oxford University Press, Oxford, pages 1
71–117, 1994. 1.5, 3.1

[106] Wilfried Sieg. Step by recursive step: Church’s analysis of effective calculability.
Bulletin of Symbolic Logic, 3(2), 1997. 1.5, 3.1

[107] Wilfried Sieg. Hilbert’s programs: 1917–1922. Bulletin of Symbolic Logic, 5(1):1–
44, 1999. Available at http://www.math.ucla.edu/~asl/bsl/0501/0501-001.
ps (accessed on Dec. 13, 2011). 1.5, 3.1

[108] Wilfried Sieg and John Byrnes. K-graph machines: Generalizing turing’s ma-
chines and arguments. In P. Hájek, editor, Gödel 96: Logical Foundations of
Mathematics, Computer Science, and Physics, volume 6 of Lecture Notes in Logic,
pages 1 98–119. Springer-Verlag, Berlin, 1996. 1.5, 3.1

[109] Wilfried Sieg and John Byrnes. An abstract model for parallel computations:
Gandy’s thesis. The Monist, 82(1):150–164, 1999. 1.5, 3.1

[110] Diomidis Spinellis. The Antikythera mechanism: A computer science perspective.
IEEE Computer, 41(5):22–27, May 2008. 1.2

[111] Cliff Stoll. The curious history of the first pocket calculator. Scientific American,
290 (1):929, January 2004. 1.2

http://www.math.ucla.edu/~asl/bsl/0501/0501-001.ps
http://www.math.ucla.edu/~asl/bsl/0501/0501-001.ps

BIBLIOGRAPHY 133

[112] J. V. Tucker and Jeffery I. Zucker. Abstract versus concrete computation on
metric partial algebras. ACM Transactions on Computational Logic, 5(4):611–
668, 2004. 3.5

[113] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265,
1937. Corrections in vol. 43 (1937), pp. 544–546. Reprinted in M. Davis
(ed.), The Undecidable, Raven Press, Hewlett, NY, 1965. Available at http:

//www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf (accessed on De-
cember 31, 2013). 1.5, 1.7, 1.9, 2.2, 3.1, 4.1, 7.1

[114] Alan M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, 45:161–228, 1939. 3.3, 3.5

[115] Alan M. Turing. Intelligent machinery. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 7. Edinburgh University Press, 1969. Unpublished
1948 report for the National Physical Laboratory. 1.5

[116] Peter van Emde Boas. Machine models and simulations (Revised version). Tech-
nical Report CT-88-05, Institute for Language, Logic and Information, University
of Amsterdam, August 1988. Available as http://www.illc.uva.nl/Research/
Reports/CT-1988-05.text.pdf (accessed on December 31, 2013). 7.1

[117] Peter van Emde Boas. Machine models and simulations. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume A: Algorithms and
Complexity, pages 1–66. North-Holland, Amsterdam, 1990. 7.1, 7.2, 7.3.1, 7.3.4

[118] U. Vishkin. Implementation of simultaneous memory address access in models
that forbid it. J. of Algorithms, 4:45–50, 1983. 7.6

[119] John Von Neumann and Arthur W. Burks. Theory of Self-Reproducing Automata.
University of Illinois Press, Urbana, IL, 1966. One chapter available at http://

cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf (accessed on May 15,
2014). 8.1

[120] J. Wiedermann. Parallel turing machines. Technical report, University Utrecht,
1984. 1.6

[121] Wikipedia. MONIAC computer. http://en.wikipedia.org/wiki/MONIAC_

Computer (accessed on Mar. 1, 2012). 9.1

[122] Andrew C. Yao. Classical physics and the Church-Turing Thesis. Journal of
the ACM, 77:100–105, January 2003. Available at http://eccc.hpi-web.de/

eccc-reports/2002/TR02-062/Paper.pdf (accessed on December 31, 2013).
7.1, 7.7

http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
http://www.illc.uva.nl/Research/Reports/CT-1988-05.text.pdf
http://www.illc.uva.nl/Research/Reports/CT-1988-05.text.pdf
http://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf
http://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf
http://en.wikipedia.org/wiki/MONIAC_Computer
http://en.wikipedia.org/wiki/MONIAC_Computer
http://eccc.hpi-web.de/eccc-reports/2002/TR02-062/Paper.pdf
http://eccc.hpi-web.de/eccc-reports/2002/TR02-062/Paper.pdf

	Introduction
	Algorithmic Computation
	Mechanical Computation
	Analog Computation
	Natural Computation
	Effective Computation
	Parallel Computation
	Universal Computation
	Complexity of Computation
	Outline of this Thesis

	What is a Sequential Algorithm?
	Background
	Sequential Algorithms
	Sequential Time
	Abstract State
	Effective Transitions
	Equivalent Algorithms

	Abstract State Machines
	Programs
	Semantics

	The Representation Theorem

	What is an Effective Algorithm?
	Introduction
	Effective States
	Oracular States
	Effective Algorithms
	Relatively Effective Algorithms

	Universality
	Introduction
	Encodings
	Representations
	Universality
	Pairing

	Generic Evolving Systems
	Introduction
	Formalization
	Entities
	Interaction
	Evolution
	Systems
	Discussions

	What is a Parallel Algorithm?
	Informal View
	Parallel Algorithms
	Global States
	Algorithms
	Childhood
	Parallel Algorithms

	Parallel Programs
	Representation Theorem

	Extended Computational Thesis
	Introduction
	Measuring Complexity
	Machine Models
	Random Access Machines
	PRAMs are Parallel Algorithms
	Extended Storage Modification Machines
	Parallel Random Access Machines (PRAMs)

	RAM Simulation of Basic Algorithms
	Effective Parallel Algorithms
	PRAM Simulation of Basic Parallel Algorithms
	Discussion

	Generic Cellular Automata
	Introduction
	Background
	Cellular Automata

	Simulating Algorithms with Cellular Automata
	Bounded Dynamics
	The Simulation

	Continuous Time
	Introduction
	Dynamical Transition Systems
	Signals
	Transition Systems

	Abstract Dynamical Systems
	Abstract States
	Updates of States

	Algorithmic Dynamic Systems
	Algorithmicity
	Flows and Jumps
	Analgorithms
	Properties
	Further Considerations

	Programs
	Definition
	Semantics
	Examples

	Conclusions and Future Work
	Bibliography

