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Abstract

Standard pretrained language models operate on sequences of subword tokens without direct ac-
cess to the characters that compose each token’s string representation. We probe the embedding
layer of pretrained language models and show that models learn the internal character composi-
tion of whole word and subword tokens to a surprising extent, without ever seeing the characters
coupled with the tokens. Our results show that the embedding layer of RoBERTa holds enough
information to accurately spell up to a third of the vocabulary and reach high average character
ngram overlap on all token types. We further test whether enriching subword models with addi-
tional character information can improve language modeling, and observe that this method has a
near-identical learning curve as training without spelling-based enrichment. Overall, our results
suggest that language modeling objectives incentivize the model to implicitly learn some notion
of spelling, and that explicitly teaching the model how to spell does not enhance its performance
on such tasks.
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Abstract

Standard pretrained language models operate on sequences of subword tokens without direct ac-
cess to the characters that compose each token’s string representation. We probe the embedding
layer of pretrained language models and show that models learn the internal character composi-
tion of whole word and subword tokens to a surprising extent, without ever seeing the characters
coupled with the tokens. Our results show that the embedding layer of RoBERTa holds enough
information to accurately spell up to a third of the vocabulary and reach high average character
ngram overlap on all token types. We further test whether enriching subword models with addi-
tional character information can improve language modeling, and observe that this method has a
near-identical learning curve as training without spelling-based enrichment. Overall, our results
suggest that language modeling objectives incentivize the model to implicitly learn some notion
of spelling, and that explicitly teaching the model how to spell does not enhance its performance
on such tasks.
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1 Introduction

Contemporary subword tokenization algorithms such as BPE [11] partition a string into contiguous
spans of characters. Each span represents a frequent character ngram, from individual characters
(a), through prefixes (uni) and suffixes (tion), and even complete words (cats). The tokenizer then
converts each such span into a discrete symbol (a token) with no internal structure, effectively
discarding the token’s orthographic information. Therefore, a model operating over sequences
of subword tokens should be oblivious to the spelling of each token. In this work, we show
that despite having no direct access to the subwords’ internal character composition, pretrained
language models do learn some notion of spelling.

To examine what pretrained language models learn about spelling, we present the SpellingBee

probe. SpellingBee is a generative language model that predicts the character composition of a
token given only its (uncontextualized) vector representation from the pretrained model’s embed-
dings matrix. SpellingBee is trained on part of the model’s vocabulary, and then tested by spelling
unseen token types. If the probe can successfully reconstruct the correct character sequence from
an unseen token’s embedding, then there must be significant orthographic information encoded in
the vector.

We find that the embedding layers of several pretrained language models contain surprising
amounts of character information. SpellingBee accurately spells 31.8% of the held-out vocabulary
for RoBERTa-Large [7], 32.9% for GPT2-Medium [10], and 40.9% for the Arabic language model
AraBERT-Large [1]. A softer metric that is sensitive to partially-correct spellings (chrF) [9] shows
a similar trend, with 48.7 for RoBERTa-Large and 62.3 for AraBERT-Large. These results are
much higher than the baseline of applying SpellingBee to randomly-initialized vectors, which
fails to spell a single token.

Given that subword models learn some notion of character composition to fulfill language
modeling objectives, could they perhaps benefit from knowing the exact spelling of each token
a priori? To that end, we reverse SpellingBee’s role and use it to pretrain the embedding layer
of a randomly-initialized model, thus imbuing each token representation with its orthographic
information before training the whole model on the masked language modeling objective. We
compare the pretraining process of the character-infused model to that of an identical model whose
embedding layer is randomly initialized (and not pretrained), and find that both learning curves
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converge to virtually identical values within the first 1000 gradient updates, a fraction of the total
optimization process. This experiment suggests that while language models may need to learn
some notion of spelling to optimize their objectives, they can quickly acquire all the character-
level information they need without directly observing the composition of each token.
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2 Spelling Bee

To measure how much a model knows the character composition of its tokens, we introduce
SpellingBee, a generative probe that tries to spell out a token character-by-character. Specifically,
SpellingBee probes the original model’s embedding matrix, since spelling is a property of token
types, invariant to context. For example, given the embedding of the token cats, SpellingBee will
try to generate the sequence [c, a, t, s]. We do so by modeling SpellingBee as a character-based
language model, where the first token is a vector representation of the vocabulary item.1

Training We split the vocabulary to train and test sets,2 and use teacher forcing to train Spelling-
Bee. In the example of cats, SpellingBee will compute the following probabilities:

P(x1 = c | x0 = cats)

P(x2 = a | x0 = cats,x1 = c)

P(x3 = t | x0 = cats,x1 = c,x2 = a)

...

All of SpellingBee’s parameters are randomly initialized. The only parameters that are pretrained
are the token embeddings (e.g. the representation of cats or a), which are taken from the original
pretrained language model we intend to probe, and treated as constants; i.e. kept frozen during
SpellingBee’s training.

Inference & Evaluation Once SpellingBee is trained, we apply it to the test set using greedy
decoding. For each vocabulary item w in the test set, SpellingBee is given only the corresponding
embedding vector ew, and is expected to generate the character sequence w1, . . . ,wn that defines
w. We measure success on the test set using two metrics: exact match (EM), and character ngram
overlap score using chrF [9]. While EM is strict, chrF allows us to measure partial success. We
also report edit distance using Levenshtein distance ratio in Appendix A.

1 Some vocabularies have symbols for indicating preceding whitespaces ( ) or that the next token is part of the same word
(##). SpellingBee learns to predict these symbols too.

2 We test various train/test splits to ensure the robustness of our findings. See Section 3 for more detail.
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SpellingBee for Pretraining Embeddings While we mainly use SpellingBee as a probe, a varia-
tion of our method could potentially imbue the embedding layer with character information before
training a language model. We could train a probe with randomly-initialized embeddings (instead
of pretrained embeddings from another model) to predict the spelling of all vocabulary items, and
use these trained probe embeddings to initialize any target model’s embedding layer (instead of
random initialization). We experiment with this method in Section 6, but find that it does not have
any significant impact on the convergence of language models.
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3 Experiments

We begin with a series of probing experiments, where we apply SpellingBee to the embedding
layer of various pretrained models.1

Pretrained Models We probe four pretrained models: RoBERTa-Base and Large [7], GPT2-
Medium [10], and AraBERT-Large [1]. This set introduces some diversity in vocabulary, objective,
and scale: the first three models are trained on English corpora, while AraBERT is trained on text
in Arabic; GPT2 is an autoregressive language model, while the rest are masked language models;
RoBERTa-Base consists of 125M parameters (with 768 dimensions per embedding), while the
other models have approximately 350M parameters (with 1024 dimensions per embedding).

Control Since SpellingBee is a trained probe, one might claim that its performance may par-
tially stem from knowledge acquired during the probe’s training. To address this alternative ex-
planation, we wish to establish the probe’s baseline performance when provided with inputs with
no orthographic information. As an empirical control, we train and test SpellingBee on randomly-
initialized vectors, in addition to the main experiments where we utilize the pretrained embedding
layers.

Training & Testing Data We split the vocabulary into training and testing data using the fol-
lowing protocol. First, we randomly sample 1000 token types as test. We then filter the remaining
vocabulary to eliminate tokens that may be too similar to the test tokens, and randomly sample
32000 training examples.We experiment with three filters: none, which do not remove tokens be-
yond the test-set tokens; similarity, which removes the top 20 most similar tokens for every token
in test, according to the cosine similarity induced by the embedding vectors; lemma, which re-
moves any token type that shares a lemma with a test-set token (e.g. if diving is in the test set,
then diver cannot be in the training set).2 The lemma filter always applies the similarity filter first,
providing an even more adversarial approach for splitting the data. To control for variance, we

1 Hyperparameters are detailed in Appendix B.

2 We lemmatize using NLTK’s WordNet lemmatizer [2] for English and Farasa’s Stemmer [3] for Arabic.
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create 10 such splits for each model and filter, and report the averaged evaluation metrics over all
10 test sets.
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4 Results

4.1 Results

Main Result Table 4.1 shows how well SpellingBee can spell a vocabulary token using only
its frozen pretrained embedding. We observe that SpellingBee is able to accurately recover the
spelling of up to 40.9% of the test set, while the control is unable to spell even a single word
correctly. A similar trend can be seen when considering the finer character ngram metric (chrF).
Manually analyzing the predictions of the control baselines (see Appendix C) indicate that it pri-
marily generates combinations of frequent character sequences, which mildly contributes to the
chrF score, but does not affect EM. These results are persistent across different models and filters,
strongly indicating that the embedding layer of pretrained models contain significant amounts of
information about each token’s character composition.

One may suggest that training SpellingBee over 32000 examples may leak information from
the test set. For example, if dog was seen during training, then spelling out dogs might be easy.
We thus consider the similarity and lemma filters, which remove such near-neighbors from the
training set. While results are indeed lower (and probably do account for some level of informa-
tion leakage), they are still considerably higher than the control, both in terms of EM and chrF.
Results using the similarity and lemma filters are rather similar, suggesting that embedding-space
similarity captures some information about each token’s lemma.

Finally, we find that the properties of pretrained models also seem to have a significant effect
on the amount of spelling information SpellingBee can extract. Larger models tend to score higher
in the probe, and the model trained on text in Arabic appears to have substantially higher EM and
chrF scores than those trained on English corpora. One possibility is that Arabic’s rich morphol-
ogy incentivizes the model to store more information about each token’s character composition,
however it is also possible that AraBERT’s different vocabulary, which allocates shorter character
sequences to each token type, might explain this difference (we discuss the link between sequence
length and accuracy later in this section).

Overall, our probing experiments show that even though subword-based language models do
not have direct access to spelling, they can and do learn a surprising amount of information about
the character composition of each vocabulary token.
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Filter RoBERTa GPT2 AraBERT
Base Large Medium Large

E
M

None 27.3 31.8 32.9 40.9
Similarity 15.7 18.2 17.9 21.9
Lemma 15.7 17.7 16.5 19.5
Control 0.0 0.0 0.0 0.0

ch
rF

None 44.7 48.7 51.6 62.3
Similarity 32.7 35.1 36.4 46.0
Lemma 32.6 34.8 35.2 43.9
Control 7.0 7.0 7.0 7.0

Table 4.1: The percent of token types that can be spelled out exactly (EM) from their embed-
dings by SpellingBee, and the ngram overlap between SpellingBee’s reproductions and the
token types’ true spellings (chrF). The first three rows reflect different methods for filtering
the training data, and the fourth represents the control experiment, which uses randomly ini-
tialized embeddings. All SpellingBee instances in this table are trained on 32000 examples.

Probing with Less Training Data We further examine whether SpellingBee can extract in-
formation when trained on less examples. Figure 4.1 shows how well SpellingBee can spell
RoBERTa-Large’s vocabulary when trained on varying amounts of data, across all filters. We
find that more data makes for a better probe, but that even a few thousand examples are enough to
train SpellingBee to extract significant character information from the embeddings, which cannot

be extracted from randomized vectors (the control).1.

1 We provide additional analysis on spelling accuracy by subword frequency and length in Section 5
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Figure 4.1: The amount of character information SpellingBee is able to extract from
RoBERTa-Large, as measured by EM (top) and chrF (bottom), given different quantities of
training examples.
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Figure 4.2: The overall training loss (left), first steps of training loss (center), and validation
loss (right) of RoBERTa-Large, when training on the masked language modeling objective
with embeddings pretrained by SpellingBee (pretrained) and randomly-initialized embed-
dings (control).
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5 Analysis

5.1 Spelling Accuracy by Frequency

We test whether pretrained models tend to store more spelling-related information in higher-
frequency token types. We focus on RoBERTa-Large, and assign each token in the test set to its
frequency quintile according to the number of times it appeared in the pretraining corpus – from the
10000 most frequent token types (top 20%) to those ranked 40000-50000 in the vocabulary (bot-
tom 20%) – and measure the average performance of SpellingBee within each quintile. Figures
5.1 and 5.2 shows the results with and without the similarity filter. We observe that SpellingBee
is indeed able to extract more information from higher-frequency token types, suggesting that the
pretrained model has more information about their character composition.
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none Filter
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Figure 5.1: The EM scores of SpellingBee on RoBERTa-Large for each frequency quintile
with the none filter (top) and the similarity filter (bottom).
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Figure 5.2: The chrF scores of SpellingBee on RoBERTa-Large for each frequency quintile
with the none filter (top) and the similarity filter (bottom).

5.2 Spelling Accuracy by Length

We analyze the effect of token length on the probe’s ability to spell. A priori, it is reasonable to
assume that it is easier for the probe to spell shorter tokens, since less information needs to be
extracted from the embedding and there are less discrete decisions to be made while decoding.
Indeed, Figure 5.3 shows that with the none filter most vocabulary tokens with 2-4 characters
can be accurately reproduced from their vector representations, while longer tokens are harder
to replicate. This trend is particularly sharp when the similarity filter is applied, as the probe is
hardly able to spell tokens with 6 or more characters accurately; having said that, the probe is
able to generate many partially correct spellings, as measured by chrF (Figure 5.4). Perhaps a
less intuitive result is the probe’s failure to spell single-character tokens. A closer look reveals that
many of these examples are rare or non-alphanumeric characters (e.g. ç and $), which are probably
very difficult for the probe to generate if it had not seen them during training. While these results
show strong trends with respect to length, token length is also highly correlated with frequency,
and it is not necessarily clear which of the two factors has a stronger impact on the amount and
resolution of character-level information stored in the embedding layer of pretrained models.
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Figure 5.3: The EM scores of SpellingBee on RoBERTa-Large for each token length with
the none filter (top) and the similarity filter (bottom). The rightmost column groups together
tokens with length of 11 or above.
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Figure 5.4: The chrF scores of SpellingBee on RoBERTa-Large for each token length with
the none filter (top) and the similarity filter (bottom). The rightmost column groups together
tokens with length of 11 or above.
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6 Pretraining Language Models to
Spell

Our probing experiments reveal that language models learn some partial notion of spelling, de-
spite the lack of direct access to characters. Therefore, we hypothesize that learning to spell is
beneficial for language models, and propose pretraining the embedding layer using a variant of
the SpellingBee probe described in Section 2. Here, the goal is to imbue each embedding with
enough information for SpellingBee to accurately generate its surface form, and then initialize the
language model with the pretrained embeddings before it starts training on the language modeling
objective.

We apply this process to RoBERTa-Large, training the model’s embedding layer with Spelling-
Bee using the same hyperparameter settings from Appendix B, with the key difference being
that the embeddings are now tunable parameters (not frozen).1 We train RoBERTa-Large on En-
glish Wikipedia using the hyperparameter configuration of 24hBERT [4], and cease training after
24 hours (∼16000 steps). For comparison, we train exactly the same model with a randomly-
initialized embedding layer.

Figure 4.2 shows the masked language modeling loss with and without pretrained embeddings.
We see that the curves quickly converge into one. After only 1000 training steps, the difference
between the validation losses never exceeds 0.01. This result indicates that the model does not
utilize the character information injected into the tokens’ embeddings. Along with the results from
Section 4.1, we conjecture that the model learns an implicit notion of spelling during pretraining,
which is sufficient for masked language modeling, and does not benefit from explicitly adding
orthographic information.

1 To verify that this process does indeed encode the tokens’ spellings into the embeddings, we apply a SpellingBee probe
(using a different random initialization) to the learned embeddings, which yields 93.5% EM on held-out token types.
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7 Conclusion

This work reveals that pretrained language models learn, to some extent, the character composi-
tion of subword tokens. We show that our SpellingBee probe can spell many vocabulary items
using their uncontextualized embedding-layer representations alone. Trying to explicitly infuse
character information into the model appears to have a minimal effect on the model’s ability to
optimize its language modeling objective, suggesting that the model can independently learn all
the character-level information it needs for the task.
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A Levenshtein Distance

Levenshtein distance [6] is an edit distance metric that, given two strings, calculates the minimal
number of changes needed to be done in order to make the two strings identical. Levenshtein
distance ratio is the length-normalized version, which is computed by adding the sum of lengths
of both strings to the edit distance and dividing by the same sum of lengths. We report the main
experiment’s results using this ratio in Table A.1.

Filter RoBERTa GPT2 AraBERT
Base Large Medium Large

None 69.7 72.7 74.4 83.6
Similarity 61.5 63.7 64.5 75.8
Lemma 61.4 63.3 63.7 74.8

Control 25.6 26.4 27.0 25.7

Table A.1: Levenshtein distance ratio. The first three rows reflect different methods for
filtering the training data, and the fourth represents the control experiment, which uses ran-
domly initialized embeddings. All SpellingBee instances in this table are trained on 32000
examples.
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B SpellingBee – Hyperparameters

We implement SpellingBee with a 6-layer encoder-decoder model, with 512 model dimensions.
The model parameters are optimized with Adam [5] for 1000 steps with up to 1024 tokens per
batch, a learning rate of 5e-4, and a dropout rate of 0.1. These are the default hyperparameters for
training a transformer language model in Fairseq [8].
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C Manual Error Analysis

We manually analyze 100 random tokens that SpellingBee spelled incorrectly with the lemma fil-
ter to understand the nature of the spelling mistakes. Out of those 100 we display 20 mistakes in
Table C.1 alongside the spelling prediction of the control baseline. SpellingBee’s mistakes vary
from single-character typos to completely different words. Having said that, the vast majority of
mistakes have significant overlap with the correct spelling, such as shared prefixes and capitaliza-
tion.

Token SpellingBee Control

Issa Asey kinston
Rhod Rob hoedn

Memory Mathinge entically
metals metrys leaved
Reed Redd fomparing
break breach promoters
summit mosump seasons

Catholic Cravital tonversal
cleanup lamed paclus
Winner Womer purden
LIM LUM Send

Copy Cople providers
voicing relicing walking
Stab Stamb hoviders
356 353 budiance

find wive malding
Psychic Syptanc joacter
Looking Lowing parging

CLOSE DEFIC tuldence
prolific promistic complexement

Table C.1: Sampled SpellingBee errors with the lemma filter alongside the control baseline’s
spelling for the same tokens. The underscore ( ) represents a preceding whitespace.
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תקציר
שלמגווןעבורשפהמודלישלpretrainingב-מקובללנוהגהפכה(BPE)כגוןתתי-מיליםעלהמבוססתטוקניזציה

כיטוענות(MRLs)מורפולוגיתעשירותשפותעבורparsingעללאחרונהשפורסמועבודותאולם,ומשימות.שפות
אנוזו,בעבודהמורפולוגי.מידעהמכיליםקלטייצוגיומציעותאלה,שפותהולמותאינןBPEכדוגמתטוקניזציהשיטות

לוזקוקיםשהםהמידעכלאתהמודליםעבורמספקתמקדים,עיבודכלללאתווים,עלהמבוססתטוקניזציהכימשערים
maskedמאמניםאנוזו,השערהלבחוןכדימורפולוגיים.מאפייניםללמודמנתעל language modelבסגנוןBERT,

טורקיתעברית,שפות:בשלושמורפולוגיוניתוחחלקי-דיברתיוגעלניסויים.TavBERT-תוויםרצפיעלהפועל
מודליםעםשאימנוהמודלאתמשוויםאנובנוסף,מורפולוגי.מידעעםשיטותפניעלעדיפהשגישתנומראיםוערבית,
תיוגעבורבמעטטוביםביצועיםמשיגTavBERTכיומוצאיםתתי-מילים,טוקניזצייתעםשאומנודומיםמתחרים

עצוםמידהבקנהשפהמודליכימעידותאלהתוצאותמורפולוגי.ניתוחעבורמשמעותייתרוןמשיגאךחלקי-דיבר,

מסוגלים ללמוד דפוסים מורפולוגיים מורכבים כאשר ניתנת להם גישה לתווים גולמיים.



אוניברסיטת תל אביב
הפקולטה למדעים מדוייקים ע"ש ריימונד ובברלי סאקלר

בית הספר למדעי המחשב ע"ש בלווטניק

TavBERT-
למידת מורפולוגיה עשירה באמצעות

מיסוך רצפי תווים

חיבור זה הוגש כעבודת מחקר לקראת התואר "מוסמך אוניברסיטה" במדעי המחשב
על ידי:

עמרי קרן

העבודה נעשתה בבית הספר למדעי המחשב
בהנחיית ד"ר עמר לוי

תשרי תשפ"ב


