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1. Introduction 

Prepositional phrase (henceforth PP) attachment disambiguation is an important task 

within the task of syntactic parsing of text. Based on the British National Corpus (BNC) 

[9], out of the top-ten most frequent words in English, four are prepositions (of, to, in and 

for). The frequency of the prepositions in the text emphasizes the need for correct PP 

attachment during the parsing process,  since it affects the resulted parse tree. An 

incorrect attachment can have a major influence in several linguistic tasks that embed 

syntactic parsing, such as information retrieval.  

Clearly, PP attachment disambiguation is not the only challenge in syntactic parsing. 

However, they still fail to accomplish a correct disambiguation, in comparison to the 

accuracy of the construction of the other parts in the parse tree [15].  

The problem of attachment ambiguity occurs when the syntactic rules allow more than 

one possible attachment for a single PP. Although each PP can have several attachment 

candidates, most of the PP attachment research has focused on the case of a single PP 

occurring immediately after an noun phrase, which in turn is preceded by a verb (thus 

the candidates are either the verb or the noun). Such an approach requires an oracle that 

provides the two hypothesized structures (noun and verb) that we choose between. These 

candidates are usually extracted from the gold standard parse trees, or detected by the 

parser as it tries to apply the PP attachment algorithm to attach or reattach a PP during 

the parsing process. When the parser fails to detect such a tuple, the disambiguation 

process will not be executed, which weakens the algorithm. Nevertheless, this binary 

definition of the problem covers most of the cases when syntactic parsers fail to attach 

the PP correctly. The oracle hypothesis is easy to detect, so we will also focus on this 

definition of the PP attachment problem. This task can be viewed as the binary 

classification of the PP attachment - noun or verb.  The success rate on the oracle-free 

versions is lower than on the binary ones [3]. 

In order to understand the difficulty of the PP attachment resolution,  it is useful to 

consider two examples (from [21]) “I ate a pizza with anchovies” vs. “I ate a pizza with 

friends”.  These two sentences are of the same structure in terms of POS tags. 

Nonetheless, the trees are different (Figure 1.1) and this is only due to the semantic 

difference between the nouns “friends” and “anchovies”. Anchovies are a common pizza 
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topping. Therefore, “with anchovies” is attached to the word “pizza” rather than “ate”. As 

for the noun “friends”, we do not usually consider friends as an eatable object, so the 

attachment will be to the verb.  This difference is very clear to us, humans, due to our 

vast common knowledge. However, naturally a syntactic parser will have to disambiguate 

these cases using semantic techniques.  These two sentences demonstrate the fact that 

syntactic parsing is not purely a syntactic task, and it can also benefit from semantic 

information. 

                

Figure 1.1: Parse trees for "I ate a pizza with friends" and "I ate a pizza with anchovies". While the 

part-of-speech tags are identical, we get two different parse trees. 

An even more complicated problem unfolds in the following two examples: “I saw a girl 

with a suitcase” vs. “I saw a girl with a telescope”. While we all know that the one who is 

holding the suitcase is the girl, the telescope possession cannot be determined based on 

this single sentence. In the second sentence, however, both attachments will be correct in 

terms of the syntax and the semantics, and only the context of this sentence might 

provide the required information to the ambiguity resolution. An example for such 

context will be a sentence in the same paragraphs that mentions who is in possession of 

the telescope. Despite the fact that the usual input for a parser is only the sentence, we 

claim that, whenever possible, having the context may improve the results, for instance, 

as a part of a discourse parsing or an analysis of a complete article.  

The methods that are commonly used to resolve the disambiguation are rule-based and 

statistical classification algorithms, comprised of supervised, semi-supervised and 

unsupervised learning (see Chapter 2). Naturally, we aim to learn as much as possible 

from an unlabeled corpora, since such corpora are incomparably larger than the labeled 

ones.  
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Figure 1.2: Two possible (and correct) parse trees for "I saw the man with a telescope" 

We present our method to derive such data from the British National Corpus, relying on 

previously introduced approaches but with substantial modifications. Despite the lack of 

the correct parse tree for the BNC sentences, we introduce a technique that uses them in 

addition to, or instead of, the labeled training corpus, which is rather small. We use the 

BNC to extract two sets of examples: ambiguous and unambiguous, classified according 

to an algorithm presented in this paper. On the ambiguous examples, we estimate the 

distribution of both classes (noun and verb attachment) using a syntactic parser. This is 

an estimation because the parser is not accurate (or else all work on PP attachment 

would be redundant), yet, since the parser attaches the PP correctly is most cases,  which 

is sufficient for us. In addition, we introduce a method to embed the sentence's context, 

when available, in an attempt to derive more knowledge regarding each prepositional 

phrase, and consequently to increase the accuracy.   

Our results are reported on two datasets. One is the standard benchmark for the binary 

definition of the pp attachment disambiguation problem, and the other is a dataset that 

was constructed by us from the WSJ tagged corpus. The standard dataset (developed by 

Ratnaparkhi et al. [24]) contains quadruplets of the form <v, n1, p, n2> along with the 

correct attachment (v and n1 are the attachment candidates, p is the preposition and n2 

is the head noun of the PP). The additional dataset was constructed mainly because the 

alignment to the original sentences is unavailable and cannot be done perfectly due to the 

many changes in the corpus over the years. 

The structure of this work is as follows: Chapter 2 presents previous work on the pp 

attachment problem and prior results (we usually measure accuracy). Chapter 3 

describes all of the linguistic tools that we use and the algorithms we apply. The results 

are summarized in Chapter 4. Chapter 5 contains conclusions and ideas for future work.  
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2. Literature Review 
In this section we review several relevant works on the task of PP-disambiguation. 

Hindle and Rooth (1993) suggested that many ambiguous prepositional phrase 

attachments can be resolved on the basis of the relative strength of association of the 

preposition with verbal and nominal heads, estimated on the basis of distribution in an 

automatically parsed corpus [14]. Learning from a large corpus (AP, 13 million words), 

they look at the log of the ratio of the probability of verb attach to the probability of noun 

attach, based on the candidates and the preposition. The PP will be attached to the more 

probable candidate.  

In order to overcome the problem of sparse data, an interpolation is being used - the 

probability of a single candidate attached to the preposition is interpolated with the 

probability of a noun/verb attachment for this preposition, covering the cases when the 

candidate is absent from the corpus, or the candidate is never attached to the preposition. 

Hindle and Rooth’s method required no explicitly annotated training data, nor did it use 

any semantic or syntactic processing of the text. Moreover, they didn’t use the noun 

object of the preposition (n2) at all in the disambiguation process. Their reported 

accuracy on the RRR set is 79.7. 

Ratnaparkhi, Reynar and Roukos (1994) introduced a Maximum Entropy (ME) model 

which attempted to predict the probability of attachment decisions by constructing 

statistical models [24]. Their model only made use of the lexical information within verb 

phrases, and did not depend on any external semantic knowledge base. They extracted 

verb-phrases with PP-attachment ambiguities from the Penn Treebank WSJ corpus and 

the IBM-Lancaster Treebank including the attachment information, and constructed the 

test and training datasets. The dataset, which consisted of 27,937 quadruplets, has since 

established itself as a benchmark dataset. The model which was based on models of 

exponential family constructed using the Maximum Entropy Principle, then assigned a 

probability to either of the possible attachments. The ME model produces a probability 

distribution for the PP-attachment decision using only the information from the 

ambiguous verb phrases in question. The experiment produced satisfactory results with 

the ME model predicting PP-attachments with 78.0% accuracy, compared to an average 

lexicographer performing at 88.2% accuracy. For comparison, they obtained PP-
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attachment resolution performances of three TreeBank experts on a set of three hundred 

randomly selected test events from the WSJ corpus. 

A test conducted with the human experts provided the following lower bounds of the 

performance on the data: always choosing noun attachment yields the precision of 59%. 

Choosing the most likely attachment for each preposition yields the precision of 72.2%. 

Another two interesting bounds were achieved while checking human attachment 

accuracy on a subset of the RRR corpus. Humans reached the accuracy of 88.2% provided 

only the quadruplets, and 93.2% provided both the quadruplets and the sentence from 

WSJ the quadruplet was extracted from. 

Nakov and Hearst (2005) proposed a method to resolve PP-attachment ambiguity using 

unsupervised algorithms which exploited the WWW as a very large corpus, making use of 

its surface features and paraphrases[20]. This was based on the assumption that phrases 

found on the WWW are sometimes disambiguated and annotated by content creators. 

Their experiment used n-gram models, where statistics were obtained by querying exact 

phrases including inflections and all possible variations derived from WordNet, against 

WWW search engines, using WordNet to extract synonyms from word sense hierarchies 

and to construct all possible variations of a given phrase. The accuracy of their statistical 

algorithm produced an average accuracy of 83.82% on the RRR data set. 

 

Collins and Brooks (1995) introduce the back-off model as a statistical approach for a PP 

attachment problem represented by a quadruplet of 4 head words - (v, n1, p, n2), the 

same as [21]. They suggested that the problem is analogous to n-gram language models in 

speech recognition, and that one of the most common methods for language modeling, the 

backed-off estimate, is applicable. Backed-off n-gram word models for speech recognition 

are used to estimate the probability of the next word in a text given the (n-l) preceding 

words.  This will enable using MLE on a sparse data, backing off to smaller n-grams if 

the counts are not high enough to make an accurate estimate at the current level. In a 

similar manner, they calculate the probability of each attachment for the tuple by 

starting with triplets counts, and backing off to pairs in case the triplets were not found 

in the corpus.  

The overall accuracy of their method is 84.1%. When analyzing the results according to 

the tuples that were detected in the training corpus, it is evident that the larger the 

detected tuple is, the higher its accuracy. 

Brill and Resnik (1995) presented a rule based corpus based approach to disambiguate a 

PP attachment [7]. The patterns that are used as rules are being learned using a 
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transformation- based error driven model. At the first stage, all PP are attached to the 

noun. Next, a set of transition patterns are being learned and scores, based on the error 

rate. Each pattern corresponds to a possible transition (from noun to verb attachment 

and vice versa). All patterns are generated from pre-defined templates. An example of a 

pattern template is “change attachment from X to Y if v is W” and the learned pattern is 

“change attachment from n1 to v if v is put”. In order to overcome the data sparseness in 

the training process, they added class information for nouns, taken from WordNet. Each 

noun was represented by a set of its hypernyms and the pattern was also extended to 

matching items in the hypernyms set (i.e. “v is a part of C”). The match had a boolean 

value, meaning that a word can either be contained in the hypernyms set or not. More 

delicate similarity measures were not tried.   

Stetina and Nagao (1997) propose a supervised learning method for PP attachment based 

on a semantically tagged corpus [25]. Their idea was to improve the performance of the 

back-off model developed by Collins and Brooks by increasing the percentage of full 

quadruplet and triple matches by employing a semantic distance measure. As a part of 

the algorithm, a sense disambiguation procedure was executed on the tuple words, in 

order to improve the accuracy of the query expansion. The sense disambiguation was 

performed using contextual similarity between ambiguous words (ambiguity is defined by 

multiple senses in WordNet). The pp disambiguation itself was performed using decision 

trees, and the reported accuracy is 88.1%. As they state in the paper, this accuracy is 

partly attributed to the positive bias of disambiguation of the testing examples against 

the same training set which is also used for the decision tree induction. 

The disambiguation errors are thus hidden by their replication in both the training and 

the testing sets. 

Ratnaparkhi (1998) proposed an unsupervised approach that uses a heuristic based on 

attachment proximity and trains from raw text annotated with only part-of-speech tags 

and morphological base forms, as opposed to attachment information [23]. After POS 

tagging and chunking the raw corpus, they count all <candidate, p, n2> triplets. As 

opposed to Stetina and Nagao, they only use unambiguous counts in the raw corpus, 

based on the hypothesis that the information in just the unambiguous attachment events 

can resolve the ambiguous attachment events of the test data. The accuracy reported on 

the RRR data set is 83.7%. 

Pantel and Lin (2000) presented an unsupervised corpus-based approach to pp 

attachment using an iterative process to extract training data from an automatically 

parsed corpus [22]. They use a collocation database to determine contextually similar 
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words to the noun and verbs in each quadruplet. In addition, using a large corpus, two 

datasets of the counts of triples of the form (candidate, p, n2) are created. The first one 

counts ambiguous cases (where the candidate appears within a short distance from the 

pp, but it may not be the correct attachment). The second only counts unambiguous 

cases. 

The attachment decision for a 4-tuple (v, n1, p, n2) is made in two stepa. First, v and n2 

are replaced by their contextually similar words and compute the average adverbial 

attachment score. Similarly, the average adjectival attachment score is computed by 

replacing n1 and n2 by their contextually similar words. The attachment is determined 

by the combination of average scores for each attachment candidate. The candidate with 

the higher score is selected. The accuracy of this method is 84.31% on the RRR dataset. 

Olteanu and Moldovan (2005) introducea new approach to disambiguate a pp attachment 

using a Support Vector Machine learning model that uses complex syntactic and 

semantic features as well as unsupervised information obtained from the World Wide 

Web [21]. Results were provided for three datasets - the benchmark RRR data set, a data 

set extracted from WSJ, aligned with the original sentence, and a data set extracted from 

FrameNet. Each data set enabled the usage of additional features - in the data set 

extracted from FrameNet, they used the semantic frames of each sentence in order to 

capture the semantic behavior of the verb candidate [5]. As for the dataset extracted from 

WSJ, they were able to use data extracted from the gold standard parse tree, but without 

using the actual information about the correct attachment. The queries to the WWW 

were generated from the quadruplet input, using lemmatization, without any semantic 

expansions. They report the accuracy of 92.83% and % 93.62 on both datasets that  were 

have created for this task, comparing the results with an accuracy of 86.1%, 

implementing Collins and Brooks back-off method on each of them. 

Zhao and Lin (2004) presented a nearest neighbor algorithm for resolving pp attachment 

ambiguity, using the cosine of the pointwise mutual information vector that represents 

each word (as well as with other common similarity measures, that performed worse than 

the cosine similarity) [27]. Given a quadruplet to be classified, they search the training 

classified examples to its top-k nearest neighbors and determine its attachment base of 

the known classifications of the nearest neighbors.  The similarity between two 

quadruples is determined by the distributional similarity between the corresponding 

words in the quadruples. The reported accuracy of their method is 86.5% on the RRR 

data set. 
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Bharathi et al. (2005) proposed an algorithm that uses a combination of supervised and 

unsupervised learning, along with information from WordNet [6]. Given a quadruplet, 

they check if it exists in the supervised data, and use that assigned tag. Otherwise, a 

back-off model is employed using the probabilities of smaller sub-queries in the labeled 

corpus, as well as searched in a large unlabeled corpus (the unsupervised stage). Their 

accuracy is 84.6% on the RRR dataset, and 86.44% and 88.99% on two additional data 

sets they extracted for this task. 

  

http://link.springer.com/search?facet-creator=%22Akshar+Bharathi%22
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3. Methods 

3.1 The corpora 

WSJ corpus 

The WSJ corpus is a collection of Wall Street Journal articles from 1987 to 1989 [10]. Out 

of 98,732 stories, a total of 2,499 were selected for syntactic annotation (see Section 

3.1.2.1), and this subset or stories is widely used in various NLP tasks, among them also 

PP disambiguation. 

 

Penn Treebank: 

Annotated Corpus 

The Penn TreeBank is a large annotated corpus, constructed between 1989 and 1996 

from a wide range of texts, such as the Wall Street Journal articles, IBM computer 

manuals, transcribed telephone conversations, etc. There are nearly 7M words of text 

annotated for POS, and 3M words of text syntactically annotated.  

The annotation process of this corpus was a two stage process for both POS and semantic 

tagging. First, an automated tagging was executed; afterwards a manual correction was 

performed by linguists.  

 

Annotations 

We distinguish between two sorts of annotations: POS (part-of-speech) annotation and 

syntactic annotations.  

POS tagging is the process of marking each word of the sentence with its part-of-speech 

based on its context in the sentence. The Penn Treebank tag set is considered to be one of 

the most popular tag sets for English. It consists of 36 POS tags and 12 other tags for 

punctuation and currency symbols [18] (see Figure 3.1). 

Syntactic parsing (also referred to as “syntactic bracketing”) is the process of the analysis 

of  a sentence according to a predefined formal grammar. In this task, phrases are being 

tagged according to a predefined syntactic tag set. Penn Treebank provides a set of 17 

syntactic tags (see Figure 3.2). 
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Figure 3.1: pos tags annotation from Pen TreeBank 

 

Figure 3.2: syntactic tags from Pen TreeBank 

 

RRR Data set 

The most popular and widely used benchmark for the PP attachment disambiguation 

problem was created by Ratnaparkhi, Reynar and Roukos [24]. This corpus contains 

quadruplets of the form <V, N1, P, N2>, where V and N1 are the attachment candidates 

and P and N2 are the preposition and head noun from the prepositional phrase 



13 

respectively. The tuples were automatically extracted from the Penn Treebank Wall 

Street Journal (WSJ) corpus, and each tuple appears with the correct attachment type – 

noun or verb, derived from the manual annotations of the WSJ corpus. The quadruplets 

dataset contains 20801 tuples for training, 4039 tuples for development and 3097 tuples 

for testing.  

It is known that the RRR data contains some noise, yet no corrected benchmark was 

published (Ratnaparkhi 1998, Stetina and Nagao, 1997). The noise can be divided into 

two categories: wrong extraction of the tuple, and wrong classification of the attachment. 

In the test corpus, we can find the word “the” appears 161 times as one of the nouns (n1 

or n2). In addition, we can find “‘s” 30 times as a noun. 

As for a possible misclassification, the quadruplet <requested, treatment, for, types> was 

extracted from the sentence “Timex had requested duty-free treatment for many types of 

watches, covered by 58 different U.S. tariff classifications”. While the gold standard 

attaches the pp to the noun (see Figure 3.3), in the RRR dataset, the quadruplet is 

classified as a verb attachment.  

                                 

Figure 3.3: a part of the gold standard parse tree to the sentence "Timex had requested 

duty-free treatment for many types of watches, covered by 58 different U.S. tariff 

classifications", focused on the attachment of "for many types of watches". The pp is a part 

of a noun phrase and is attached to "duty free treatment". 

 

WSJ-sent Dataset 

In order to overcome problems within the RRR dataset, as well as to align the 

quadruplets with their original sentence, we’ve extracted a new dataset from the WSJ 

(the same as Olteanu and Moldovan did; their data set was unavailable to us). It will be 

further referred to as the WSJ-sent dataset. 
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The data was extracted by the following method: using the gold standard parse trees 

from the WSJ corpus, we extract all prepositional phrases from all sentences. For each 

pp, we first detect the correct attachment, examining the governor of the pp, that is, the 

noun or the verb that the pp is attached to. We detect the governor by acceding from the 

pp node in the gold parse tree, until a node tagged as a noun phrase or a verb phrase is 

reached. 

Next, we check for a possible ambiguity, since we are only interested in pp attachment 

cases with more than one possible attachment candidate, one being a noun and one being 

a verb. For a verb governor, we search for a noun phrase that is also governed by the 

same verb, and is located between the verb and the pp. For a noun governor, we search 

for its verb governor (in cases like “the reservation for four diners was made two hours 

ago”, there is no ambiguity in the attachment, since “for four” can only be attached to the 

noun “reservation”). 

Overall, we’ve extracted 61,601 tuples, and divided them uniformly into three sets: train 

(80%), development (10%) and test (10%). Each tuple is aligned with its original sentence, 

and we also keep track of its context (a window of adjacent sentences). The original 

sentence, as well the as context, will be used by some of our features. 

 

BNC 

The BNC (British National Corpus) is a 100-million-word collection of samples of written 

and spoken language from a wide range of sources, designed to represent a wide cross-

section of both spoken and written British English from the latter part of the 20th 

century[9]. The BNC is provided with POS annotation and the lemma  (lemma is the 

canonical, or dictionary form for each word) for each word. 

This corpus is used in our work to build the probability distributions for each tuple, for 

each possible attachment. These distributions will be used as features for our classifier.  

 

3.2 Linguistics tools and Methods 

Stanford Parser 

The Stanford Parser was developed by the Stanford Natural Language Processing Group 

[15] is considered to be reliable and is widely used. It is based on probabilistic context-

free grammars (PCFGs) and provides both POS annotation and syntactic parse tree with 

its score. A significant advantage of the parser is its ability to return k best parse trees, 
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along with their score, enabling us to examine not only the selected option, but other 

candidates as well. 

 

WordNet 

WordNet is a large lexical database for the English language, that is still being developed 

at Princeton University. It contains nouns, verbs, adjectives and adverbs that are 

grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept, all 

(as of now) manually annotated. as of now,  It currently consists of 155,000 words. 

The main relation among words in WordNet is synonymy. Synonyms are two words that 

denote the same concept and are interchangeable in many contexts and are grouped into 

unordered sets (synsets). WordNet contains a total of 117,000 different synsets. 

WordNet contains more relations, such as hyponymy and hypernymy. A word is a 

hyponym of another word if it is its more specific term. A hypernym would be a more 

general term.  

A word sense hierarchy is a lexical tree formed by a sequence of hypernyms in different 

levels, with each level being trailed by the synset of a superordinate term (hypernym) to a 

limited depth. That is, the last level being the most generic superordinate term of the 

term in the first level (see Figure 3.3) 

 

 

 

 

 

 

 

 

Figure 3.3 

 

FrameNet 

The FrameNet project is building a lexical database of English that is both human- and 

machine-readable, based on annotating examples of how words are used in actual 

texts[5]. It contains more than 10,000 word senses, most of them with annotated 

examples that show the meaning and usage, as well as the more than 170,000 manually 

annotated sentences that provide a unique training dataset for semantic role labeling. 

Although having semantic frames proves to be helpful in the attachment disambiguation, 

the alignment of the frame to the sentence is a rather non-trivial task that is still a 

challenge in NLP. (In [11] they extracted quadruplets from the FrameNet database 
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sentences, having the frame manually annotated by the FrameNet annotator.) We, 

therefore, only use the realization data from FrameNet, as described in Section 3.4.1.2. 

Word Similarity 

Word similarity measures can be roughly divided into two categories: semantic thesauri 

based methods and distributional algorithms based on the observation that semantically 

related words tend to appear within the same context. Context can be defined as a entire 

document, the paragraph or a window of some predetermined size.  

Using a thesaurus like WordNet, we can calculate the distance between the two words in 

the parse tree[8]. However, due to the unbalancedness of the WordNet hierarchy trees, 

two pairs can be within different distances, but related in the same manner. Embedding 

the distance of the lowest common ancestor of both words from the root, or its height can 

improve results, but it will not completely solve the problem. 

The distributional method uses a vector representation of each word. The vector can 

represent the documents where each word appears or the context of each instance. The 

context is a bag-of-words of the words within a window that contains the word. We aim to 

represent each word with the context of content words – words that are not frequent in 

the language and therefore their presence in the context window is indicative. Setting the 

window size presents us with a tradeoff – using a small window will certainly lead to a 

loss of a valuable semantic knowledge on the word, while a big window generates more 

noise in the representation. We choose the first non-stop word or each side of each word w 

as the context, as in [27]. 

We use the cosine similarity of Positive Pointwise Mutual Information (PPMI) to 

calculate the relatedness between words, a standard technique in NLP. 

Cosine similarity between two vectors is calculated as follows: 
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3.3 Data Preprocessing 

As previously mentioned, we lemmatize each word in the corpora (both BNC corpus, RRR 

and WSJ-sent). In addition, we replace all named entities with special strings, denoting 

each entity type with a different string. Converting all named entities of the same type to 

a single string can generate more accurate statistics, since we don't need to distinguish 

between different numbers, names, etc.  

When we have the original sentence for the quadruplet (in the WSJ-sent corpus), we can 

a Named Entity Recognition (NER) tool. We use Stanford NER [12] to extract entities of 7 

categories:  PERSON, ORGANIZATION, LOCATION, DATE, TIME, MONEY and  

NUMBER. Finally, all the words are converted to lower case. 

For the RRR dataset (where the sentence is unavailable and thus using NER tool is not 

straight forward), we apply a preprocessing step, replacing all numbers with the token 

"YEAR" to 4-digit numbers, or "NUMBER" to the rest. In addition, all capitalized nouns 

are replaced with the token "NAME". 

 

3.4 Features 

The problem of PP attachment resolution, as already defined, can also be viewed as a 

classification problem - given a quadruplet and the sentence, we need to classify it as 

either a noun or verb attachment. We will use supervised machine learning to handle 

this problem. 

Our features can be roughly divided into three categories: 

1. Features that are only related to the quadruplet. 

2. Feature that are related to the quadruplet and the sentence it was extracted 

from. 

3. Features that are related to the quadruplet, sentence, and the sentence's context 

(meaning, the adjacent sentences in the text). 

Since in the RRR corpus, only the quadruplet is available, we will only use features of 

type 1, while working with WSJ-sent enables us to use all three types. 

  

3.4.1   Quadruplet Features 

3.4.1.1 BNC based features 

In order to determine the correct attachment for each quadruplet, it is necessary to 

extract the probabilities of such an attachment from the BNC. This corpus does not 

contain gold standard parses, nonetheless, it can still provide valuable information [1,3].  
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From our original quadruplet, we extract the following tuples, which will be searched in 

the BNC: attachment candidate + p + n2, attachment candidate + p and attachment  

candidate + n2. The term attachment candidate represents either n1 or v.  

The motivation behind searching these sequences in the BNC is that the correct 

attachment is more likely to appear in the large corpus than the wrong attachment. This  

is only correct for attachments that can be resolved within the sentence context, which is 

true for most of the cases. 

Query list generation 

For each tuple, we create a list of queries of interest. Since we are using lemmatization, 

we are not concerned with verb conjugations and single/plural for nouns.  We wish, 

however, to expand our queries with semantically related nouns and verbs. For instance, 

in the sentences “I ate a salad with a spoon” and “I ate a salad with a fork”, the words 

“fork” and “spoon” are related, though not synonyms.  For that purpose, we use semantic 

relatedness measures (see Section 3.2.4) to determine the related words of each noun and 

verb in the quadruplet. 

We used WordNet to extract all semantically related nouns and verbs, focusing on two 

semantic relations types: 

1. Synonyms – using each synset of the target word. A synset is a set of words that 

is interchangeable in some contexts without changing the truth value of the 

preposition in which they are embedded. 

2. Hypernyms – for each synset of the word, we extract all hypernyms and the 

hyponyms of each such hypernym. For example: one of the senses of “fork” is 

described by the gloss: “cutlery used for serving and eating food”. Its hypernym is 

“eating utensil” (“tableware implements for cutting and eating food”) and this 

synset’s hyponyms are “fork”, “spoon” and “table knife”. We, therefore, can refer 

to "spoon" as the “cousin” of "fork", since they share the same hypernym. 

In either expansion type, we are using all hyponym trees for each synset, since once a 

synset is selected as relevant, all hyponyms are also relevant. 

Choosing the correct synsets is a key point in the expansion process. Each word has 

several senses, some of which are totally distinct (such as for the word “bank”: among its 

senses we can find both “sloping land” and “financial institution”). Using too many senses 

will result in numerous queries, which may affect the performance. Most importantly, the 

count for tuples will be contaminated with the counts of irrelevant search results. On the 

other hand, we do wish to expand our queries as much as possible, since even though we 
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are given a big corpus such as the BNC corpus, we are not able to find examples of each 

correct tuple (that is, a correct attachment + p + n2).  

Choosing the correct synset involved some word sense disambiguation. Having only the 

quadruplet may not be enough (since we need the context of the word to decide between 

its senses).  Using the sentence (as we do in the quadruplet + sentence feature), provided 

us with the needed context. When the sentence is available us, we use Lesk's algorithm 

[17]. The algorithm disambiguates words using the overlap rate between the gloss and 

the sentence. 

We compile the final expansions list of each word using: 

● Senses ranking (when possible): using the Lesk disambiguation algorithm, we 

choose top k (k = 5 synsets for each word) senses and expand them to their 

hyponyms. 

● Related candidates ranking: for each synonym/related word, we calculate the 

cosine similarity between the mutual information vector representation of the 

original word and the related candidate. As in the senses selection, we take top k 

related words (k = 10).  

 

Searching queries in the BNC corpus 

In order to acquire the counts of the tuples of interest in the BNC corpus, we  perform 

preprocessing in order to align it with the tuples input format, but also to improve 

performance. 

The preprocessing steps are:  

1. Preprocess each file within the BNC corpus using the method described in 

Section 3.3. 

2. Index each file - Since we are dealing with multiple accesses to a big 

corpus (~100 million words), performing searches at runtime is not feasible 

performance-wise. 

Next, we search for all the constructed tuples, in an attempt to capture cases were a "hit" 

means a high probability to attach the pp to the attachment candidate. A simple search 

consisting of finding each word of the query, will not be enough, even if we maintain the 

order. This is because the pp can be unconnected to the attachment candidate, even 

though they are both present in the same sentence.  

We divide our search task into two tasks, as in [6]: The first task is to find the tuple 

within an unambiguous attachment case. For instance, consider the sentence "I traveled 



20 

by bus". In this sentence, the tuple (traveled, by, bus) represents an unambiguous 

attachment of the pp "by bus" to the verb "traveled", since there are no other candidates. 

The second task is to find the same tuple within an ambiguous case.  An example could 

be the same tuple within the sentence "I travel to work by bus".  In this case, although 

the correct attachment is to the verb, and thus this example can be counted as a proper 

example in favor of the adverbial attachment, we count this instance of the tuple as an 

ambiguous case.  

For each sentence in the BNC corpus, and each tuple in our query list, we check the 

following criteria: 

1. Each word from the tuple should be presented in the sentence, in the exact same 

order.  

2. No preposition should appear in the sub-sentence induced by the tuple (starting in 

the first tuple word and ends with the last word), other than the preposition from the 

tuple.  

3. If the tuple contains n2, we require no verbs between p and n2, otherwise n2 may 

not be the head noun of the preposition phrase that starts with p. 

Implementation wise, we use an indexing system to select the relevant tuples for each 

sentence, rather than searching for an instance of each tuple in each sentence.  

Next, we classify the instance as an ambiguous/unambiguous instance according the 

following set of rules (slightly modified from [10]): 

The ambiguous case: 

 n1_p: a verb before n1, within 5 words, no noun or verb between n1 and p 

 v_p: a noun between v and p, no verb 

 n1_p_n2 and v_p_n2: the mix of n1_p and p_n2, or v_p and p_n2, respectively. 

The unambiguous case: 

 n1_p: no verb before n1 within 5 words, no noun or verb between n1 and p 

 v_p: no noun between v and p, no verb 

 n1_p_n2 and v_p_n2: the mix of n1_p and p_n2, or v_p and p_n2, respectively. 

 

Features based on unambiguous search 

Based on the counts, we can calculate the probabilities of each attachment for the 

quadruplet.  

count-ratio (from [6]): the count ratio defined as: 
10log v

n

f

f
, f  defined as: 
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c represents the counts of each word/tuple. Unlike [6], we use semantic expansions, so c 

counts also all the instances of the expanded queries.. We still wish to distinguish 

between the tuples that contain the original quadruplet word and the extended tuple;  

thus we give more weight to the counts of the original one. Formally,  

e( )

x x i

i x

c c c


    , e(x)  = all the expansions of x, xc - unambiguous count only (for single 

words we use the regular instance count in the corpus). 

We set  arbitrarily to 0.7. 

               %hits 

dataset 

no_exp, true_at exp, true_at no_exp, false_at exp, false_at 

RRR 219/1285 759/1591 49/622 247/890 

WSJ-sent 1094/4174 1785/4431 446/2626 1519/3786 

Table 3.1: Hit rates in the BNC corpus for the test sets of both datasets. exp and no_exp stand 

for counts with/without expansions. true_at is a notation for tuples that represent the correct 

attachment (for a quadruplet that should be classified as adverbial attachment, the tuples are 

<v,p>, <v,p,n2>). false_at stands for the opposite – tuples that represent the incorrect 

attachment. It is notable that tuples that represent correct attachments are highly represented 

by the incorrect tuples.  

cand-p: depicts the probability of the candidate to be followed by the preposition.
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cand-n2: the conditional probability of the candidate given n2 in the same context (a 

window of 5 words).  The intuition to this feature can be explained using the pizza with 

anchovies examples. Anchovies are a popular pizza topping, and therefore are expected to 

frequently appear next to pizza. The relation between the pizza and the anchovies can be 

described without the preposition "with". For example – "I asked the vendor to put extra 

anchovies on my pizza".   
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Analysis of sample sentences from the BNC corpus  

So far we have only used the unambiguous counts.  The unambiguous counts cannot be 

used in a straightforward way, since each "hit" on a tuple supports the attachment to the 

candidate represented in the tuple which is not true for the unambiguous case.  We, 

therefore, save additional information which includes the sentences that contain an 

ambiguous case induced by each tuple. Since, for some tuples, we have many examples, 

we randomly choose 100 sentences out of all the examples.  

We extract the following features: 

parser-vote-ratio: Each sentence is being parsed. We calculate the average decision of the 

Stanford Parser. Since we try to disambiguate cases where one of the attachments is 

necessarily wrong, regardless of the context (as opposed to “I saw and man with a 

telescope”, where both attachments make sense),  the incorrect combination of “candidate 

+ p + n2” is not likely to appear as a valid attachment. There is additional discussion of 

the parser vote feature in Section 3.4.2 

amb-count-ratio: is defined the same as the count-ratio, except that c is defined in a 

different way for tuples counts: 

e( )

_ ( ) ( ( ) _ ( ) ( ) _ ( ))
i x

c amb x c x att rate x c i att rate i


     ,  

_ ( )att rate x  = #attachments to the candidate represented in x/ #of sentences. 

amb-relatedness: Another analysis on the ambiguous examples is to check the other 

attachment candidate in the ambiguous sentence. We follow the intuition that if for 

instance, a noun and a pp are found together several times, but the pp should be attached 

to the verb, then all of the verbs in this examples should be semantically related, and the 

same applies for a verb candidate and a pp. This feature measures the relatedness of the 

other candidates for each tuple, in respect to the noun candidate and to the verb 

candidate, and calculates the ratio between the two measures. 

backoff-prob:  We adapt Collins and Brook's backoff probability formula([4]) to use the 

counts of both unambiguous and ambiguous instanced or each tuple.  

We define this to be the sum of the ambiguous and unambiguous instances tuple.

( ) ( ) _ ( )f x c x c amb x   

The backoff algorithm to calculate 1 2(1| , , , )p v n p n  (1 represents noun attachment) 

works as follows: 
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If 1 2( , , , ) 0f v n p n  :  
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Else: if ( ) 0f p  , 
1 2

(1, )
(1| , , , )

( )

f p
p v n p n

f p
 , otherwise 

1 2
(1| , , , ) 1p v n p n   (default) 

We decide for the noun attachment if 1 2(1| , , , ) 0.5p v n p n  , otherwise it is a verb . 

3.4.1.2 Realizations from FrameNet 

Based on FrameNet realizations for each verb, we compiled a list of verbs + prepositions 

that appear together. This is not a complete list, and even if the preposition exists as a 

realization, it doesn’t mean that it will always indicate verb attachment. For example: “I 

eat Hummus in a pita” as opposed to “I eat hummus in a restaurant” (first is noun 

attachment, second is verb attachment). FrameNet provided additional information for 

each realization. For the lexical entry “eat.v”, we see that the proposition “in” refers to a 

place frame entity.  In the previous example, this helps distinguish between “Hummus in 

a pita” and between “Hummus in a restaurant”, since a restaurant is a place and 

therefore the frame fits. We still don’t use any semantic frame information since 

attaching the frame to the sentence and determining each frame element is a difficult 

task that is still being studied, and can only add more noise to the system. 

 

3.4.2   Quadruplets + Sentence Features 

POS of the verb 



24 

As previously mentioned, we lemmatize all verbs as part of the preprocessing on the data. 

However, the POS of the verb may hold some valuable information to the disambiguation 

process. The motivation for this assumption can be found in the following example: he 

was brought to school by his dad. Usually, the preposition "by" will not accompany the 

verb "bring". However, the passive form of the verb indicated that a verb attachment is 

possible.   

 

Stanford parser vote: 

The Stanford parser, by default, returns a single parse tree with its score, but it can 

easily be modified to return the top K parse trees. Our assumption is that in a case of a 

real ambiguity, we will have several trees with noun attachment, and several others with 

verb attachment. We assume that in most cases, most of the parse tree will have the 

same attachment. The first tree is sometimes chosen because of other grammatical 

reasons, and it won’t necessarily choose the correct PP attachment. When looking at the 

parse tree, we are only interested in the PP and its attachment. Trees with attachments 

that match neither n1 nor v are ignored.   

The feature calculates the difference between the noun and verb attachment. We did not 

use the Stanford parser score in the process, since this score is calculated based on many 

other factors beside the PP attachments.  

In addition to the majority feature, we also use the first parse tree (the actual output of 

the parser) as a feature, since in most cases we get a correct attachment.  

 

3.4.3  Quadruplets and Context Features 

Context Feature: 

In some cases, only contextual knowledge can properly disambiguate a PP attachment. 

For the example "I saw a man with a telescope", we need to determine who has the 

telescope. Sometime this can be determined within the sentence ("I saw a man with my 

telescope" vs. "I saw a man with a telescope in his hand"). In other cases, we need to look 

for clues in the previous or the following sentences ("I saw a man with a telescope…. 

Later he packed his telescope and left the place").  

Such ambiguity resolution can be very complicated. For the telescope example, we need to 

determine who has the telescope. Having a possessive pronoun attached to the word 

"telescope" simplifies the problem, but sometimes there are more complicated cases. The 

sentences "I saw a man with a telescope in his hand" is more complicated since the 

possessive pronoun is not attached to the telescope, and for "I saw a man with a 
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telescope. He was holding it with both hands" we already need anaphora resolution  as 

well as the knowledge that “hold” means "clasps". 

Clearly, for other prepositions, possession is irrelevant and we need to solve a different 

problem ("I've been looking for a trip for the entire month"), but even for "with" the 

relation is not always possession ("I ate pizza with friends"). 

We choose the following approach to handle the problem. For each attachment, we check 

for common appearances within k sentences from the analyzed sentence. To support noun 

attachment, we wish to find appearances of n1 + n2 in another sentence. To support verb 

attachment, we wish to find a common appearance of the subject of the verb + n2 (for "I 

ate pizza with friends" we check I + friends).  

In the case that the subject or n1 are pronouns, we will expand the query with other 

forms. For instance, for I + friends we will also search for "my + friend" and also "me + 

friend".  

 

3.5 Machine Learning 

The RRR corpus as provided was already divided into training, development and test 

sets. For each sentence in each set, we generate a vector of features discussed in the 

Features Section 3. Next, we use Support Vector Machine (SVM) [26] to generate a 

predictive model that in turn will be used to classify the test sample and predict the 

correct classification - noun or verb. Figure 3.2 demonstrates this whole process. 

As a machine learning tool, we use the Weka [13], an open source tool developed by the 

machine learning group from the University of Waikato. We used a polynomial kernel, 

and the parameters that are required for the training were determined using 2-fold cross 

validation.  
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4. Results 

RRR dataset: 

We have recreated Collins and Brook's back off model [4] on the RRR dataset with the 

accuracy of 84.3, which is slightly but not significantly lower than their reported accuracy 

(84.5%). 

We then implemented our own version of the back off mode, using counts from BNC, as 

explained in Section 3.4.1.1, both with semantic expansions and without them.  

We tried two approaches on this dataset: the first one is using SVM with a set of features, 

previously described, and the second one is MLE using the backoff-prob  described in 

Section 3.4.1.1. The results are presented in Table 4.1 

Description accuracy 

Most likely for each preposition 72.2 

Maximum entropy, words & classes (Ratnaparkhi et al., 1994) 81.2 

Maximum-Likelihood based (Collins and Brooks, 1995) 84.5 

Nearest-neighbor (Zhao and Lin, 2004) 86.5 

Maximum-Likelihood – counts on untagged corpus (*) 81.4 

Maximum-Likelihood – counts with expansion on untagged corpus (*) 81.1 

SVM using quadruplets features only (*) 80.3 

 

Table 4.1: Accuracy of PP-attachment ambiguity resolution on the RRR dataset (our 

results in bold) are marked with *. 

 

The accuracy of our methods is lower than the results of previous work on this task 

(Table 4.1). The back-off model proves to be the most accurate among the models we've 

tried, but the semantic expansions we added to the queries degraded the results, 

although not too drastically.  Building our statistical model upon the counts on the 

untagged corpus is clearly exposed to some noise. Our definition of the un-ambiguous and 

ambiguous hits in the BNC are relatively tight and precise, but the drawback of our 
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method is the recall – the inability to identify correctly all such examples. Stanford vote 

that was used on the ambiguous examples is also clearly not accurate enough.  

 

WSJ-sent dataset 

For this data set, we also ran the Collins and Brook's back off model to use it as a 

baseline. In addition, we've conducted three sets of tests – quadruplets features only, 

quadruplets and the sentence, and quadruplets, sentence and context. The results are 

presented in Table 4.2. 

ALGORITHM ACCURACY 

Collins and Brooks backoff 85.3 

Maximum-Likelihood – counts on untagged corpus (*) 82.5 

Maximum-Likelihood – counts with expansion on untagged corpus (*) 82.1 

SVM – only quadruplets features (*) 79.3 

SVM – quadruplets and sentence features (*) 83.3 

SVM – quadruplets, sentence and context features (*) 82.5 

 

Table 4.2: Accuracy of PP-attachment ambiguity resolution on the RRR dataset (our 

results in bold) are marked with *. 

 

The best configuration was the one that didn't use the context features, and therefore 

indicates that the context, while valuable in some cases, negatively impacts the results. 

Stanford majority feature, on the other hand, proves to be significant when out of 6078 

examples in the test set, Stanford parser attached correctly 4354 instances (71.63%), and 

the majority vote was correct for 4657 instances (76.62%). An example for a quadruplet 

shows that we got the majority votes correctly, but the first parse tree is incorrect is 

<bow,bidding,for,NAMEORGANIZATION> in the sentence "New England Electric 

System bowed out of the bidding for Public Service Co. of New Hampshire, …". The 

correct attachment appears in the second parse tree, but not the first one. 

 

Errors analysis on best configuration of the SVM algorithm 

 >be, executive, for, years< in the sentence: He had been a sales and marketing 

executive with Chrysler for 20 years 
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The correct attachment is an adverbial one, however our classifier assigns a noun 

attachment. Stanford parser attaches the PP correctly, while the majority votes for noun 

attachment (7 to 3).  However, when we examine all parse trees, the first 3 trees (with 

the highest scores) attach the PP to the verb. The scores are similar, so in this case they 

wouldn't have helped. 

The combination "be for year" (v+p+n2) appears 2429 times in the BNC corpus (without 

expansions), while "executive" for years appears only 3 times.  The lemma "be" appears in 

the corpus 3918903 times, while executive appears 7825 times. Overall, the relative 

frequency of "be for year" is lower than "executive for year". 

 >lift, ceiling, on, debt< in the sentence: The federal government suspended sales 

of U.S. savings bonds because Congress hasn't lifted the ceiling on government 

debt.  

The correct attachment is to the noun. However, our classifier chose verb. Stanford 

parser attaches correctly,  but the majority vote is slip (5 trees with each attachment 

type).   

(import, ban, on, use) in the sentence: In July , the Environmental Protection Agency 

imposed a gradual ban on virtually all uses of asbestos. 

The correct attachment is noun. This is an example of a sentence where the PP is in-

correctly attached by the Stanford parser. When checking the majority vote, we get a tie – 

5 trees attached to the noun and 5 trees attached to the verb. Our classifier attaches the 

PP correctly, since the combinations "ban use" and "ban on use" are more common than 

"impose on" and "impose on use". 

 <succeed, NAMEPERSON ,on, board> in the sentence: They succeed Daniel M. 

Rexinger , retired Circuit City executive vice president , and Robert R. Glauber , 

U.S. Treasury undersecretary , on the 12-member board. 

The correct attachment is to the verb. This is another example where our classifier 

succeeds while the Stanford parses fails to correctly attach the PP. All 10 parse trees that 

the Stanford Parser generate, attach the PP to the noun. However, the tuple 

(NAMEPERSON, on, board) is much more frequent than (succeed, on, board). Without 

semantic expansions, (NAMEPERSON, on, board) appears 65 times in the BNC corpus. 

Adding semantic expansions results in 179 hits. On the other hand, (succeed, on, board) 

appears only once, and twice with expansions.  Added to the fact the board is more 

frequent in the corpus than succeed, the frequency feature strongly indicates that the 

correct attachment is to the noun. 

 <reflecting, weakening, in, economy> in the sentence: Common wisdom suggests 

a single-digit rate of growth , reflecting a weakening in the economy and 

corporate profits . 
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The correct attachment in this example is to the verb. One of the sentences where the 

tuple “is the economy” was detected is “If we stick with 15 per cent rates until the 

Budget,  the prospects for positive growth in the economy do not look too good” is 

attached to the noun (growth).  The nouns growth and weakening are semantically 

related, and thus this this example supports noun attachment for the original tuple. 

Another supporting example can be found in the sentence “The cuts had been agreed 

without the collapse of the government or immediate catastrophe in the economy”. Also, 

“in the economy” is attached to “immediate catastrophe” which is semantically related to 

“weakening”. 

An interesting BNC example sentence is “That would cause a sharp slowdown in the 

economy next year , but could also herald an improvement in the UK 's record trade 

deficit”. Stanford Parser attaches “in the economy” to the verb “cause” instead of 

slowdown. Had the PP been attached correctly, we would have gotten another support for 

the noun attachment, since slowdown and weakening are related. Nevertheless, when we 

compare the verb “use” to the verb “reflecting” from the original tuple, there is no 

connection between them. Therefore, even if in this example the attachment is to the 

verb, it does not support a verb attachment in the original tuple. 

 <provides, service, in, states> in the sentence: Alltel , which provides local 

telephone service in 25 states , said it exercised its right of first refusal following 

an offer from an undisclosed third party to acquire the majority position in the 

franchise. 

The correct attachment is to the verb, however, the classifier chooses to attach the PP to 

the noun. Applying the BNC example sentences feature, we came across the sentence “he 

ought to have had his own being a war baby and a cog in the welfare state” where “in the 

welfare state” was attached to the noun cog  by the parser. The nouns “cog” and “service” 

are semantically related (through the sense “an act of help or assistance” for service and 

“a subordinate who performs an important but routine function” for cog), and therefore 

support noun attachment, while sentences with verb attachment contain verbs that are 

not semantically connected to “provide”.   
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5. Discussion 

One of the main conclusions from this work, and from reviewing previous work is that a 

new benchmark is evidently needed. In several papers ([21], [6] ), new datasets was 

created, mostly in order to align the quadruplets with their original sentences, but also to 

add more of the train/test examples and to correct the inaccuracies that were detected 

over the years in the RRR dataset (see Section 3.1). As previously mentioned, we also 

created a dataset of our own in order to overcome the flaws in the existing benchmark, 

but our obtained results cannot be compared to other reports. We assessed the quality of 

our data set using the Collins and Brooks back-off model, since it was done in [21] on 

their newly created data set. They report a bit higher accuracy, but this only emphasizes 

the necessity for the development and usage of a single new benchmark for this task.  

One major drawback of our proposed method is the extensive data preprocessing. Ideally, 

we need to extract all possible quadruplets, triplets and couples from the BNC, count 

them, and parse at least some of the sentences they we extracted from. For the purpose of 

our work, we searched the BNC only for the tuples we have extracted from the data set,  

yet it was time and resources consuming. The integration of such an algorithm within a 

real time syntactic parser will require an extensive preprocessing stage, and an efficient 

solution to hold all the calculated statistics and to access them quickly.  

We sense that the original sentence holds more information that can be valuable to the 

disambiguation process, besides the quadruplets representing the PP and its candidates, 

for instance, the adjectives or adverbs or v, n1, n2.  An example is if we suppose that n2 is 

the noun "machine". Knowing that the machine is a coffee machine (and not a sewing 

machine) might be beneficial to the disambiguation process. 

The expansion of our original quadruplets was done using WordNet and distributional 

probabilities methods. In recent years, word2vec[19] became one of the leading 

techniques to represent words as vectors in a semantic space. Therefore, it should be 

definitely considered as a technique to extract the related words for words in our 

quadruplets.  

Another feature worth trying would be using FrameNet frames to evaluate possible 

adverbial attachments. For the combination v + p, if the attachment is indeed adverbial, 
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then n2 should be an element of the semantic frame for v + p. Picking the correct frame 

involves the disambiguation of the verb, as does the match of n2 to the frame elements. 

Nevertheless, it can enrich the semantic knowledge that we aim to collect about each 

candidate + PP. 

Our experiments showed that the context feature had a low correlation to the correct 

attachment. The sparseness of the queries within the context can be blamed, naturally, 

but also the basic design of this feature (solely relying on counts, which creates a bias 

toward common verbs). We still believe that this should be further explored, despite the 

fact that this features forces the redesign of the classic syntactic parsing assignment of a 

single sentence to a sentence with its context. The semantic relations that are embedded 

in each preposition are perhaps too different to be captured within the context using the 

same features.  It might require some tailoring for each preposition (for instance, to 

disambiguate "with" we might look for possession).  
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 סאקלר ובברלי ריימונד שם על מדוייקים למדעים הפקולטה

 בית הספר למדעי המחשב על שם בלבטניק

 

 

 

 

 

 באמצעותעמימות בשיוך פסוקיות יחס הפגת 

 סמנטי וקורפוס חיצוני גדולמידע 

 

 

 

 

 

 

 

 "מוסמך אוניברסיטה"חיבור זה הוגש כעבודת גמר לקראת התואר 

  על ידי במדעי המחשב באוניברסיטת תל אביב

  לנה דנקין

 

 

 עבודה זו הוכנה בהדרכתו של

  נחום דרשוביץ' פרופ  

 

 

 

 

 

 

 ה"תשס, סיוון 



35 

 תקציר

 

מאפשרים את קיומו של חוקי הדקדוק של השפה מתקבלת כאשר פסוקיות יחס שיוך בעמימות 

שלכל פסוקית יחס יכולים להיות מספר למרות . יותר ממועמד אחד לשיוך פסוקית יחס יחידה

יחס מופיעה הרוב המחקר העוסק בבעיה זו התרכז במקרה יחיד שבו פסוקית , מועמדים לשיוך

זה מכסה את מקרה . ואותה הפסוקית השמנית מופיעה אחרי פועל, שמנית מיד לאחר פסוקית

אשר , במקרה זה עוסקיםוגם אנחנו , רוב המצבים שבהם המנתח התחבירי טועה בשיוך הפסוקית

 .הבחירה בין שיוך לפסוקית השמנית לבין הפועל, כלומר, תאריניתן לראות בו גם בעיית סיווג בינ

 

. משפטים בודדיםבדקנו שתי גישות עבור פתרון העמימות בשיוך פסוקיות היחס שלנו בבעבודה 

המבוססת על תכונות  (supervised learning)מונחית השתמשנו בלמידה , הראשונהבגישה 

זו הצריכה עבודה עם מאגר טקסט גדול גישה . סמנטיות שיכולות לסייע בתהליך פתרון העמימות

בגישה . חישובית ובנוסף שימוש בטכניקות מתקדמות של למידה, (thesauri)מספר ארגונים ו

משפטים שכנים )חיפשנו מידע נוסף בתוך מאגר המידע ממנו לקוחים המשפטים , השניה

בנסיון לחלק גם משם מידע אשר יכול לסייע בפתרון העמימות , עבור כל משפט (ופסקאות

 .ומציאת השיוך הנכון

 

 

 


