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Abstract

We present a method for testing satisfiability of boolean formulas using intersection-
based methods on boolean rings. Our method is different from standard DPLL
methods is the fact that it performs efficient learning on the formulas before splitting,
whereas other methods perform the learning generally after deep splitting. Our
method takes the advantage of algebraic properties, which exist in boolean rings, in
order to perform efficiently operations like unit propagation and intersection between
two sets of formulas, while avoiding potential size increase associated with the use
of the distributive law. We present the bin-lin approach, and show how we can use
efficiently Gauss elimination on the linear part, and Horn algorithms in the binomial

part, in order to increase the learning.
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Chapter 1

Introduction

Given a Boolean formula A, the satisfiability problem is concerned with finding an
assignment of truth values (0 and 1) to the propositional variables in A which makes
the formula equal to the constant 1 (true) or proving that the formula is equal to
the constant 0 (false). The satisfiability decision problem arises frequently as a
sub-problem in many applications, such as automated verification and automated
theorem proving, Artificial Intelligence (AI), Electronic Design Automation (EDA),
and many other fields of Computer Science and Engineering . Although Cook [8]
showed the problem of testing satisfiability to be NP complete, however it is still
open the possibility that some algorithms are acceptably efficient in a large number
of important cases. Many standard search procedures yield a decision procedure for
propositional logic. e.g. the Davis-Putnam procedure, resolution, model elimina-
tion and others. Beside the search procedures, graph based techniques like Binary
Decision Diagrams (BDDs), were proven to give very promising results.

Whatever the above techniques strengths and weaknesses, all known methods
take time exponential in the size of the input formula, in the worst case. Binary
decision diagrams have been most successful in hardware verification, though other
applications have been explored - Bryant [10] gives a survey. Stalmarck’s algorithm
has been applied to hardware verification, in a large number of real industrial sit-
uations, e.g. in railway interlocking systems, which generally require checking of
tautology involving something like 10° variables. This is too much for traditional

methods, including BDDs. Regardless of which of the above techniques performs
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1.1. Related work

better, most of them put more focus on the algorithmic side and less on the repre-
sentation of the formula. Most search procedures assume a conjunctive normal form
(CNF) representation, while Stalmarck’s algorithm assumes a triples representation.

In this thesis, we investigate a boolean ring representation of the formula. By
exploiting algebraic properties of this representations, we show that Stalmarck’s
algorithm can perform more efficiently. Boolean ring is an algebraic structure which
is equivalent to boolean algebra. The major representational differences are that
boolean rings use ezclusive-or (+) instead of (V) to represent boolean functions,
and that there is no need for negation in boolean ring. We present also several
fundamental simplifications that can be employed efficiently on boolean rings, and
later on we show how such simplifications can be used in the Stalmarck’s algorithm

in order to boost it.

1.1 Related work

The isomorphic relationship between boolean algebras and boolean rings was found
in 1963 by Stone [1] and probably date back to 1927 by Zhegalkin [3]. In 1983,
Hsiang and Dershowitz [21,22], presented a way to derive a boolean ring normal
form from a given boolean function using a canonical set of rewrite rules. In 1997,
Hsiang and Huang [24] presented some fundamental properties concerning boolean
rings, and presented a simple method for deriving the boolean ring normal form
directly from the truth table. They described a notion of normal form of boolean
function with a don’t care condition. Huang [2] showed that with an implementation
of a naive boolean ring based Davis-Putnam method, the number of splittings were
reduced by 30%. With this saving, however, came the price of a time-consuming
simplification process, to avoid potential size increase associated with the use of the

distributive law.



1.2. Our results

1.2 Our results

Our experiments show that the combination between Gauss elimination and Horn
method as simplifies in the bin-lin system can improve the stalmarck saturation
pre-process step by finding more relations between variables. This kind of learning
is proven to be very useful in reducing the number of splits in our DPL solver. Our
experiments show that for more than 700 tests that we had, the above methods are
showing approximately 13% improvement in reducing the number of the splits of
the DPL solver. Notice also that for some of the tests, the saturation stage was
enough to conclude the satisfiability checking result, thus eliminating the need for

DPL splits at all.

1.3 The organization of the thesis

The sequel of this thesis is organized as follows: In section 2 we give an overview
of the most known satisfiability testing methods. In section 3 we review boolean
rings, their properties and the Bin-Lin representation. In section 4, we review the
Stalmarck’s algorithm and its main characteristics. Horn formulas are discussed
in section 5. In section 6, we describe how boolean rings can be employed in the
Stalmarck’s algorithm. Numerical experiments as presented in section 7. We con-

clude in the last chapter and present future work.



Chapter 2

Overview of CSP

2.1 Basic concepts in solving CSP

2.1.1 Motivation

We begin this section by introducing a well-known constraint-satisfaction problem
(CSP), the 8-queen problem. Suppose that there is an 8 by 8 chessboard, and there
are eight queens. The goal of this game is to put these queens on the chessboard
such that no queen can attack the other either vertically, horizontally, or diagonally.
Although it is not difficult to find a solution that satisfies this requirement, we use
it here to illustrate the basic ingredients in a constraint-satisfaction problem.

A CSP can be divided into two parts. The first part is the problem domain; it
includes domain variables and the values that can be assigned to those variables.
For the 8-queen problem, a natural way is to consider each queen as an individual
variable and positions on chessboard as the domain of the variables. The second
part in a CSP is the constrains, which specify the relationship between assignments
on variables. In this problem, the goal is to place the queens so that the queens
cannot attack one another. This, however, is only part of the constraints. There is
additional constraint that no two queens can be placed on the same position.

The definition of a constraint-satisfaction problem (CSP) can be formalized as
follows. There is a set of variables, say V', and for each variable x in V, there is a

set, D,, which is the domain of x and defines the possible outcome of z. In many



2.1. Basic concepts in solving CSP

cases, the domains for all variables are the same, and we can simply use notation D
to refer to it and ignore the subscript x. There is also a set of constraints C', which
specifies the relationship between variables. The formal definition of constraints will
be given in Section 2.1.2. There a CSP is triple (V, D, C'), which gives the set of
variables, the domain of the variables and the constraints. The goal of a CSP is to
find an assignment of variables such that all of the constraints are satisfied. Such
an assignment is called a feasible solution (or for short, a solution).

Let us look at this definition more closely because the scope of it is very large.
For example, solving the system of linear equations that we had learned in junior
high school satisfies the definition: There is a set of variables, each variable is
taken over the real numbers, and linear equations are the given constraints. We
often use Gaussian Elimination or equation replacement to solve it. In this case, it
finds a feasible solution by solving constraints. Linear equations are simple, since
constraints are structured enough to be effectively manipulated and the process of
gathering a feasible solution is straightforward. However, there are many relaxations
that are still in the scope of a CSP but become much harder. For example, if we
relax the linear equations to be multivariate polynomial equations, then finding a
feasible solution over the real numbers (or complex numbers) has a much higher
complexity. Buchberger’s Grébner bases construction [4,5] is an algorithm that can
be used to simplify a set of multivariate polynomial equations into univariate, so the
problem becomes how to solve high order polynomial equation. The question that
can raise then is what would happen if we want to solve a multivariate polynomial
equation over integers? At first glance one would think that the problems with
integer numbers are simpler than those with real or complex numbers, but this is
not true. The problem to solve a multivariate polynomial equation over integers,
called the Hilbert’s tenth problem, is proven to be undecidable [16]. This means
that there exists no algorithm that can report the answer if it exists and tell no if
there is none.

Another approach to solving CSP is by enumeration. The idea in this approach
is to enumerate all possible solutions and then to check whether any is feasible.

There are two disadvantages with solving CSP’s by enumeration. First, the problem

5



2.1. Basic concepts in solving CSP

domain may be infinite, so exhaustive enumeration is impossible. Second, even if
the problem domain is finite and there is a way to do enumeration, the space that
needs to be explored may be too large to be enumerated in practice. However, in
many real applications when the domain is finite, enumeration shows much better
performance that constraint solving, especially when the feasible solutions scatter
over the search space.

There is no clear answer to the question of which approach is better. If there is
a well-developed mechanism to process the formulation of constraints, such as given
a system of linear equations, then solving constraints should be better. However,
in many hard applications, either the formulation of constraints is tool complicated
to be efficiently manipulated or the overall complexity of applying it is too high.
Enumeration seems to be the only alternative.

So far, we have defined what is CSP and shown the two general approaches to
solve it. In the next section, we discuss the classification of CSP’s according to the

requirements on the goals and formulation of constraints.

2.1.2 Classification of CSP

We discuss the classification from two perspectives: goal and problem domain.

Perspective from goal. Even given the same problem specification, different re-
quirements on the goal may lead to different levels of difficulty. In the 8-queen
problem introduced in Section 2.1.1, it needs to find only one feasible solution. For
problems of this nature, if the feasible solutions occupy a considerable proportion of
all possible solutions or if there is a known deterministic procedure to the construc-
tion, then it is usually not difficult to obtain one satisfactory solution. However, if
the 8-queen problem is made to ask for the total number of feasible solutions, then it
becomes much harder, and it is not known how to find this number without exhaus-
tive search. We discuss this issue in three levels: the decision level, the construction
level, and the optimization level.

At the decision level, what we consider important is whether there exists a

feasible solution; finding a solution is not the main concern, only its existence is.
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2.1. Basic concepts in solving CSP

For example, the answer for the 8-queen problem at the decision level is "yes”. In
fact, it can be shown that for any n > 4, the n-queen problem at the decision level
is affirmative. However, not all decision problems are so simple. We shall discuss
this later.

At the construction level, the requirement is to report a feasible solution if
there is one, or to answer "no” if there is none. The 8-queen problem is such an
instance. This level seems much important than the decision level, since it actually
constructs an item that satisfies the required conditions. However, in many cases
when the problem domain is finite, constructing a solution is equivalent to deciding
the existence, where the equivalence is defined to be within polynomial time loss
of efficiency. This fact is true as long as the formulation of a problem is general
enough that it is closed under divide-and-conquer, a methodology used to break a
large problem into smaller pieces. The linkage is as follows. We can choose a variable
and break the problem into smaller ones by instantiate all possible values to this
variable. If the decision procedure answers ”yes” to one of the branches, then go to
this branch and repeat this process again. Finally, a full solution will be constructed,
and that is indeed what we need. But this strategy cannot be applied to the n-queen
problem, since the problem is not an (n-1)-queen problem after we have placed one
queen on the chessboard (because it is not closed). We should remark that at this
level, if a solution is constructed, checking its correctness is usually easy (doable in
polynomial time).

The third level is the optimization level. It associates a weight to each solution
and asks for a solution of the minimum weight (or reversely, the maximum weight).
The weight can come from different measures such as the number of constraints that
have been satisfied or the sum of weights of the individual variables. This should
be the hardest level, since for most cases it is difficult even to verify the answer.
In discrete cases, it can actually be transformed into a decision problem. We can
simply add a goal value, ask whether there is a solution with smaller weight (in the
minimization version), then use bisection method to successively approximate the
optimum. In some situation, only a near optimal solution is needed, in which case

approximation algorithms can be used to find a solution within a certain bound.
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2.1. Basic concepts in solving CSP

Perspective from problem domain. The domain of the CSP can be discrete
or continuous. In the 8-queen problem, the domain is the positions on a chessboard.
Since there are 64 possibilities for each queen, it is discrete and finite. For solving a
system of linear equations, the domain is usually the real numbers. In this case, it
is continuous and infinite. Different kinds of domains lead to different strategies to
process them. For example, in the 8-queen problem, exhaustive search is possible
since there are only finitely many possibilities in the enumeration. Such a possibility

does not exist for linear equations over real numbers.

2.1.3 Formulation

In this thesis we focus on finite domain problems, where enumeration is often more
useful than solving constraints. We start this section by introducing general defini-

tions and then refine them in several directions.

General definitions. Recall that a constraint solving problem consists of a set of
variables, a set of domains over which the variables range, and a set of constraints
that restrict the values that the variables can be assigned. We also consider opti-
mazation problems in which a cost function is used to evaluate different assignments.
For simplicity we assume that the domains of all variables are the same. We call this
definition uniformity and it can easily be extended to diverse domains. In the rest
of the thesis, we use V' to denote a finite set of variables, D to denote the (finite)

domain of the variables in V and DV to denote the set of all functions from V to D.

Definition 2.1.1 (CSP without cost function) A constraint solving problem
(CSP) is a triple (V, D,C) where V and D are as described above, andC = {C4,...,Cy}
is a set of subsets of DV, called constraints. The goal of a CSP is to find an as-
signment I : 'V — D such that I € C for oll C € C. Assignment I is called a

feasible solution.

Definition 2.1.2 (CSP with cost function) A CSP with cost function is the
same as above, plus a function p from DV to A, where (A, <) is a partially ordered

set. The goal of a CSP with cost function is to find a feasible solution I : V —

8



2.1. Basic concepts in solving CSP

D such that p(I) is minimal for all feasible solutions. Assignment I is called an
optimal solution. When the ordering (A, <) is linear, we can speak of the mini-

mum solution, and we call this an optimum solution.

The most common type of CSP has propositional variables. In other words, the
variables have the truth values {0, 1} as the domain D. Tt is also convenient to allow
the variables to be undefined (and thus allow partial assignments). In this case we

consider the domain D* = {0, 1, x}, where * means "undefined”.

Definition 2.1.3 (Boolean constraint solving problem) A Boolean Constraint
Solving Problem (BCSP) is a CSP with cost function (V, D*,C, p) in which C is a set
of clauses and D* is {0, 1, x} where the elements stand for false, truth and undefined,

respectively.

The cost function is usually defined as a weighted sum of feasible solution. That
is, a non-negative weight is attached to each possible outcome of a variable and the

cost of a feasible solution is the sum of the costs of individual variables.

Definition 2.1.4 (The Satisfiability problem) Given a boolean formula A, the
satisfiability problem is the task of determining whether there exists an assignment
of truth values (0 and 1) to the propositional variables in A which makes the formula

equal to the constant 1.

For verification, boolean formula are normally derived from two sources:

e boolean functions z; = f;(x1,...,x,) representing a circuit or program (regis-

ters, for example, can be expressed as a sequence of boolean bit variables).

e Specifications that the functions z; and variables z; should satisfy.

The validity and equivalence problems are special cases of satisfiability: validity
of a formula A is the same as unsatisfiability of its negation A’; equivalence of
formulae A and B is the same as validity of the equality A = B (biconditional A +»
B). As is well-known, the satisfiability problem for formula given in conjunctive-

normal-from (CNF) is NP-complete [8].



2.1. Basic concepts in solving CSP

Logical formulation. Constraints in a CSP can be represented by a set of equa-
tions, inequalities, or logical formulas. We first show how to represent BCSP (Def-
inition 2.1.3) by propositional logic, and then to the general case. A literal in
propositional logic is a variable or the negation of the variable, and a clause is the
disjunction of literals, i.e. it links literals only by V. A sentence is a conjunction
of clauses, and such an expression is said to be in conjunctive normal form (CNF).
The goal of this kind of CSP is to find a assignment that makes a sentence true. In
this case, we often say that a sentence is satisfied by an assignment.

Constraints can also be expressed by more general expressions, the boolean ez-
pressions. It is defined inductively as (1) all variables are boolean expressions, (2)
if f and g are boolean expressions, then(—f), (f V g), (f A g) are also boolean ex-
pressions. Any boolean expression can be translated into an equivalent expression
in CNF (where the equivalence is defined on the satisfiability by assignments); how-
ever, the expressive power when consider the length of an expression as a resource is
very different. For example, given the same number of propositional variables, say
n, the parity function, which returns 1 if and only if there are odd numbers of inputs
which are 1’s, can be expressed as a boolean expression in length n?, but it requires
exponential length in CNF. Nevertheless, CNF is widely used instead for the general
boolean expressions for three reasons. First, from a practical point of view, a CSP
is usually specified by a set of simple constraints, which means that each individual
constraint can be expressed by a short boolean formula and constraints are joined
by the logical-and. This structure is very suitable for CNF because the logical-and
that joins constraints can be easily replaced by A, so the final CNF is simply to and
the CNF’s for each constraint. Second, it is a well-known fact that any boolean
formula can be expanded into a CNF within a constant multiple factor expansion if
extra variables are allowed. That is, satisfiability is kept under the transformation,
but the length of it will not be too long. Third, CNF has many elegant properties.
For example, it is closed under resolution and the expression is very simple and
easily implemented in a computer program.

Of course, CNF and boolean expressions are not the only possibilities to express

constraints (in fact, CNF is a special class of boolean expressions). Other ways to
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2.2. A survey of algorithmic aspects of CSP

express the binary domain, such as OBDD (Section 2.2.3), integer linear inequalities
(Section 2.2.4), and boolean rings (Section 2.2.5), are also discussed.

When the domain of the CSP is finite but not binary, we can use an encoding
method to transform it into binary. For example, in the 8-queen problem we can let
variable z; ; signify ”"putting queen ¢ at position j in row ¢”. Since there are only
eight queens, 7 ranges from 1 to 8. There are eight choices for each queen, so j also
ranges from 1 to 8. There are totally 64 propositional variables and a constraint
such as ”"each row must have one queen” can be expressed by

TitVZiaVTisVriaVTisVaieVarVasg, forl<i<8
A constraint like ”queen 7 cannot be placed at two places” can be expressed by

- V wy , for j < k.

Other constraints can be expressed similarly.

2.2 A survey of algorithmic aspects of CSP

2.2.1 The generate-and-test paradigm

Recall that a CSP contains variables, a domain, and constraints. One way to solve
a CSP is to generate all possible combinations of assignments to variables and then
to check whether there exists a feasible solution. This approach is very brute-force
and inapplicable. For example, in the 8-queen problem, if we place each queen freely
on the chessboard, then each queen has 64 choices and totally there are 648, which

248 ways to be generated and then verified. A better way to do this is by

equals to
observing that queens are symmetric with each other and there is no difference if
we interchanges the positions of two queens. Furthermore, if queen 1 has been put
in row 1, then queen 2 cannot be put in the same row. Hence one has to put each
queen in a different row. Then the domain of variable reduces from 64 to 8 and then

224

overall combination of assignments is 8%, which equals to 224, and the search space

shrinks from 2*8 to 224,

Forward-checking. One way to improve the performance is to formulate the

enumeration as a tree search. Initially, we chose a variable as the root of a tree

11



2.2. A survey of algorithmic aspects of CSP

Procedure Tree_search(M)
If no constraint is falsified by M then
begin
If all variables have been assigned values, then
Output M, which means a model is found.
Otherwise, let z be a variable which has not been assigned;
For each possible value v of z do
Tree_search (MU {z < v}).

end;

Figure 2.1: Forward-checking and backtracking

and split the root into branches according to the substitution of possible values to
that variable. This process can be repeated until a search tree is obtained. But
generating the tree alone does not save time since all of the instantiations happen
at the leaf nodes. To reduce complexity, during the enumeration, a node should
not spawn children if information about the node warrants that no solution for the
constraints can be produced below that node. This scheme is usually realized by
checking if there is a constraint that has been falsified. It relies on a fact that a
constraint in a CSP is usually specified by some of the variables, so incomplete
assignment can still determine the satisfiability of some constraints. This strategy is
called forward-checking, and a pseudo code for it is shown in Figure 2.1; the initial
call for the program is usually the empty set.

As in the 8-queen problem, suppose that the first queen is placed at position
(1,1). Then forward-checking prohibits placing the other queens at (2,2), (1, 7) and
(1,1), for all 1 <7 < 8. This definitely reduces the required search space. Note that
although forward-checking is only a sufficient condition for pruning a search tree, it

can save time significantly.

Tree traversal. We did not specify how to traverse a search tree in our previous
description. Actually, we use the depth-first search in the program in Figure 2.1. The

most common methods are depth-first search (DFS) and breadth-first search (BFS).
12



2.2. A survey of algorithmic aspects of CSP

Intuitively speaking, DFS traverses a tree in vertical way while BFS traverses it
horizontally. The information required by both strategies are quite different: the
data structure for DFS is a stack; the one for BFS is a queue. For practical reasons,
DFS is used more often than BFS, especially in solving CSP’s. First, the memory
required by DFS is proportional to the number of variables, while in BFS, it is
exponential. Second, for solving CSP, a feasible solution always occurs at the leaf
nodes. Hence, DFS can examine complete assignments much earlier than BFS,
which implied that a feasible solution has a better chance to be found by DFS than
by BFS in the same time. We do not mean that DFS is intrinsically superior to BF'S;

the overwhelming use of DFS in solving CSP is simply because it is more suitable.

Divide-and-conquer. The tree-version of the generate-and-test is an application
of the methodology divide-and-conquer. Divide-and-conquer breaks a large problem
into small pieces, solves them, and combines the results together. The smaller
problems are often simpler than the original one. If they are still hard to be solved,
this methodology can be applied repeatedly. In the tree-version of generate-and-test,
we choose a variable and split problem according to different values assigned to the
selected variable.

There are many ways to reduce the search or to speed up search process. We

discuss them in Section 2.4.

2.2.2 Davis-Putnam procedure

We introduce the most powerful procedure called the DPLL (Davis-Putnam proce-
dure) [6,7] in solving CSP in propositional logic. It was intended for solving the
Satisfiability Problem (See defintion 2.1.4).

There are four inference rules in DPLL, but only the last one is necessary:

1. Tautology Deletion: Remove a clause that is always true since it doesn’t

affect the satisfiability.

2. Pure-literal: A variable is pure in a set of clauses if it occurs only positively

or only negatively. If a variable is pure, setting its corresponding literal to

13



2.2. A survey of algorithmic aspects of CSP

true gives more satisfiability than false. Hence, all clauses containing the

literal can be removed.

3. Unit-clause: A clause is a unit clause if it contains only one literal. If there
is a unit clause, say L, in the sentence, then L must be true. All occurrences

of L in the set of clauses have to be true.

4. Splitting: Let S be the set of clauses and = be a variable in S. Let S[z —
true] and S[z — false| be the sentences in which z is set to true and false,
respectively. Then S is satisfiable if and only if S[z — true] or S[x — false]

is satisfiable. So S can be split into two cases: S[z — true] and S|z — false].

It is easy to see that DPLL is a decision procedure for the SAT problem. We mention
that Unit-literal rule should be applied as early as possible, since it only simplifies
the set of clauses, and this simplification may propagate to another literal. The
next rule, the Pure-literal rule, is often not implemented for two reasons. First, to
identify the purity of a literal is time -consume (with respect to the other rules)
and the effect is often not significant. Second, this rule is only useful for testing
satisfiability. If one needs to enumerate all satisfiable assignments instead of just
finding one, then applying the Pure-literal rule may loose some possible assignments.
We mention again that only Splitting rule is necessary for completeness and that

DPLL, in fact, lies in the generate-and-test paradigm.

2.2.3 Ordered binary decision diagrams

OBDD (Ordered Binary Decision Diagram) [9,10] is designed for efficiently manip-
ulating boolean functions. It was proposed by R. E. Bryant in 1986 and has many
applications in digital-system design, finite-state system analysis, artificial intelli-
gence, mathematical logic [10], model checking [11], and constraints-solving [12].
Let us imagine that we already have the mechanism of OBDD, and consider how
to solve the SAT problem. Let S be a set of clauses. A clause is a boolean function,
and hence, can be represented by an OBDD. Clauses are conjoined together in
S, so it corresponds to combining all of the OBDD’s by the logical-and operator.

It follows that S is satisfiable if and only if the combined result is not the null
14



2.2. A survey of algorithmic aspects of CSP

function (boolean function that always outputs 0). In OBDD, Bryant provides an
O(my - mgy)-time algorithm to perform the and-operation, where m; and my are the
size of OBDD'’s for boolean functions f and g, respectively.

This approach incurs a natural question: How to represent a boolean function in
OBDD? If the representation is not compact enough, then this approach is useless.
A brute-force way is representing boolean functions by truth-tables; this is not
amenable in practice since storing an n-variable boolean function requires 2" bits.
But for a usual SAT problem with about 100 propositional variables, it is easy
to be solved by a DPLL prover. Bryant overcomes the truth-table representation
problem by using the Shannon’s expansion rule to expand a boolean function as a
discriminate tree. We explain it briefly as follows. A boolean function f can be

expanded into

I,I,"fx:l\/ff'fx:o, (21)

where f,—; is the restriction function of f by x=1, and f,_y is by 2=0; A total
ordering on the variables is given so that the expansion rule can follow this arrange-
ment. Then he defines two operations, the merge and eliminate rules, to compact a
discriminate tree by an acyclic graph, and thus the number of nodes can be reduced
significantly. The idea in the merge rule is combining duplicated structures by using
hash table, while in the elimination rule, it removes nodes in the acyclic graph that
are redundant in the OBDD representation. After applying these two rules, each
boolean function can be represented by a unique OBDD, with the assumption that

a total ordering on the variables is given. We summarize some features of OBDD:

1. The representation for boolean functions is unique with respect to the ordering

on variables and it can be constructed quickly using a hash table.

2. Symmetrical boolean functions can be expressed by OBDD’s with O(n?) nodes,

where n is the number of variables.

3. Given two OBDD’s of sizes my and m,, any binary operation on boolean
functions can be performed in time O(m; - my), and identifying whether two

OBDD'’s represent the same boolean function can be done in constant time.
15
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4. Find an assignment that yields 1 or 0 for an OBDD can be done in O(n), and
the number of assignments that satisfy the represented boolean function can
be counted in time linear to the size of an OBDD (this is specially useful to

CSP’s that count the number of answers).

There are many variant of OBDD, including the ZBBD’s (Zero suppressed BDD’s)
[13,14], used for representing combinatorial sets, and the BRDD’s (boolean Ring

Decision Diagram’s) [15], used for manipulating boolean rings.

Saturation. This traditional method to prove a theorem in logic uses inference
rules to generate the consequences of a given formula. Logically, an unsatisfiable
formula entails all formulee. So, to establish satisfiability of formula A, one refutes its
negation A’, by inferring a contradiction from A’. The total number of consequences
is in general exponential.

In general, a proof will require some form of case splitting. Let A[z] denote the
current set of formula, containing occurrences of the propositional variable x. From
Alz], one may infer the disjunction A[0] + A[l], where A[0] and A[l] denote the
formulee after making the assignment x = 0 or x = 1, respectively. The original
formulation of Davis and Putnam is such a method. Given a CNF formula A[x],
one splits on z by computing A[0] and A[1], which is followed by merging, which
consists of converting (by distributing and simplifying) their disjunction A[0] + A[1]
to CNF. More generally, one can split on any formula. Let A[B] be a formula
containing a sub-formula B. From A one may infer anything that follows from the
disjunction A[1]B + A[0]B’. In the clausal setting this is the ground resolution rule:
D+ B,B'+C+F D+C. In the sequent setting, this is the “consensus” rule, B — D,
B -CrFD+C.

One method which is based on the above inference rule is known as Recursive
Learning, and it was presented in [41], as and efficient technique for a well known
domain of automatic test pattern generation. This problem is indeed very useful in
VLSI where, for a given circuit, one wants to check whether one of the signals in the
design is stuck at zero or one (fault detection). This problem can be easily trans-
formed to a satisfiability problem, (finding a feasible solution to the satisfiability

16
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problem is indeed as generating the test vector). Traditional techniques are based
on using a decision tree to systematically explore the search space when trying to
generate a test vector. Using recursive learning with sufficient depth of recursion
during the test generation process guarantees that implications are performed pre-
cisely; i.e. all necessary assignments for fault detection are identified at every stage
of the algorithm so that no backtracks can occur. Knowledge about necessary as-
signments is crucial for limiting or eliminating altogether the number of backtracks
that must be performed. Backtracks occur only after wrong decision have been
made that violate necessary assignments. Hence, it is important to realize that if all
necessary (mandatory) assignments are known at every stage of the test generation
process, there can be no backtracks at all.

Learning is defined as temporary injection of logic values at certain signals in
the circuit to examine their logical consequences. By applying simple logic rules,
certain information about the current situation of value assignments can be learned.
The learning routines can be called recursively and thus provide for completeness.
The maximum recursion depth determines how much is learned about the circuit.
The time complexity of this method is exponential in the maximum depth of recur-
sion. It is clear that any method that identifies all necessary assignments must be
exponential in time complexity because this problem is NP-complete.

The algorithm described in Figure 2.2 represents the recursive learning algorithm
that was presented in [41]. G represents the gates of the circuits, while r is the
current recursion level of the algorithm (initially equals 0), and 7,4, is the maximum
recursion level. The algorithms starts with applying MakeDirectImplications on
the gates of G. This function indeed computes implications according to the values
on the pins of every gate. For example, assume an AN D gate, g of two signals a and
b. If it is given that the value of ¢ is 1 then it can be implied immediately that the
value of both a and b is 1. Next, the function function UnJustifiedGates is applied
to compute all the gates which are not justified. A gate g is called unjustified if there
are one or several unassigned input or output signals of g for which it is possible to
find a combination of value assignments that yields a conflict at g. Otherwise, ¢ is

called justified.
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Procedure RecursiveLearning(G,r + 1,74:)
MakeDirectImplications (G)
U" := UnJustifiedGates(G)
if (r < rp..) then
foreach g; € U"
J := Justifications(g;)
foreach justification .J; € J
MakeAssignments (J;)
RecursiveLearning(G,r + 1, 740)
If there is a signal f in the circuit G which has the
same value V in all consistent justifications .J; € J then,
assume f =1V in level r
MakeDirectImplications (G)
If all the justifications are inconsistent then,

values in level r are inconsistent

Figure 2.2: Recursive learning

A justification of a gate g is a set of signal assignments of its unassigned input or
output signals, that make the value of the gate ¢ justified. As an example, assume
an OR gate g between two signals a and b. Assume also that the signal a is already
assigned with the value 0. The justifications of the gate g are {b = 0,9 = 0} and
{b=1,9 = 1}. So the main part of the algorithm is to compute the assignments
for all the justifications, and call recursively with the next recursive level. The
learning part is whenever a signal f is the circuits get a concrete value V' in all the
consistent justifications, then f = V', and direct implications are computed out of
this new fact. It is of high importance to notice that the consistent justification is
made for concrete values V', only then a learning is achieved. In case the set of the

assignments weren’t consistent, then the current level of recursion is not consistent.
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2.2.4 Integer linear programming

In Linear Programming, constraints are expressed by a system of linear inequalities

Z Qij* T > bi, fOT]. <i< ka (22)

1<j<n

where k is the number of constraints, and a’s and b’s are constants. It asks for
the following question: Find and assignment that minimizes the following objective

function

for constants d’s. Linear Programming is known to be solvable in polynomial
time [17,18]. In practice, however, the potentially exponential Simplex Method [19]
is widely used. When the variables are restricted to integers, it is called Integer
Linear Programming, and is known to be much harder than the original case over
the real numbers. We can easily reduce the SAT problem (cf. Section 2.2.2) to
Integer Linear Programming by restricting the variables to be 0-1 values through
inequalities and replacing the logical-or by summation and the negation of variable
x by 1-z. For example, let S be {z Vy,zV —y,—z Vy,-xV —-y}. Then S can be

transformed into the following linear inequalities:

r4+y>lz+(1—-y)>1,1-2)+y>1,(1—-2)+(1—y) >1, (2.4)

which are equivalent to

r+y>lr—y>0,—r+y>0—x—y>—1. (2.5)

We also need to add 1 > x > 0 and 1 > y > 0 to make sure that z and y are
binary. Hence, Integer Linear Programming is also NP-hard.

Many strategies are developed for Integer Linear Programming such as linear
program relaxation, branch-and-bound, cutting-plane method, and interior-point

methods. For extended reference, see [20].
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2.2.5 The boolean Ring method

In boolean ring, two operators, the logical-and (-) and exclusive-or (@), are used
instead of the three operators, logical-and (A), inclusive-or (V), and negation (—),
in boolean algebra. Boolean ring uses fewer operators, but the expressive power of
boolean ring is much superior than boolean algebra in term of formula complezrity
[15]. Let = and y be propositional variables. It is not difficult to verify that the

following rules define the correspondence between boolean algebra and boolean ring:

TANY <— Ty
zVy — x-ydrxdy

r +— &1

The operator (-) may be suppressed and operator @ may be replaced by (+)
since a boolean ring is indeed an integer polynomial over the filed Z, with the
idempotent rule (z - x = z for all ). Therefore the expressions in boolean ring
are often called boolean polynomials. One of the advantages in boolean ring is that
equational replacement can be applied naturally, which is difficult in boolean algebra.

For example, if we have two equations

zy+2z=0 (2.6)
2y +1=0 (2.7)

then it is easy to conclude that z should be 1. This fact can be seen by ’adding’
Eq. 2.6 to Eq. 2.7; the sum should be zy 4+ xy + 2 4+ 1 = 0, but since ezclusive-or
is nilpotent (i.e. z + z = 0 for all z), the two xy’s disappear and it is equivalent
to 2+ 1 = 0. Again by adding 1 on both sides and by the nilpotence, we have
z = 1. This example illustrates that boolean ring is much more ’algebraic’ than
boolean algebra. Once constraints are expressed by boolean ring, several methods
can be applied to it, which includes the term-rewriting method [21], the Grébner

bases construction [4,5,23], and the Davis-Putnam method in boolean ring [24].
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2.3 Difficulties with CSP

Exhaustive search is helpful for solving combinatorial problems. In this section, we

show the difficulties of this approach.

2.3.1 Combinatorial explosion

When the number of variables in a CSP increases, the search space usually grows
exponentially. This fact implies that exhaustive search is not scalable.

This barrier is often called the combinatorial explosion, and can be explained
by the following reasons. The first is that the possible combination in a problem is
always multiplicative to the number of variables, which is often quadratic or cubic
to the problem size. This kind of growth rate is extremely large. For example, if
the nodes in the search space is 2 for a problem, then when n (the size of input)
goes from 5 to 10, the number of search spaces goes from 22° to 2!, which is not
manageable by any modern computer. The second is that the running time that we
would like to pay is only additive. Therefore, the time that we would like to pay is
relatively smaller than the required running time for exhaustive search.

The above argument may seem naive since it assumes that the search is brute-
force. However, no known improvement can completely overcome this problem. In

the next section, we summarize negative results on solving CSP’s.

2.3.2 NP-completeness

The first negative result in solving CSP’s is that SAT is NP-complete. An NP-
complete problem cannot have any polynomial-time algorithm unless P=NP. The
complexity class P contains all decision problems that are solvable in polynomial
time and the complexity class NP contains those that can be verified in polynomial
time. However, no one knows whether P equals NP, and NP-completeness captures
the idea that they are problems most unlikely in P. Furthermore, once an NP-
complete problem is proven to be in P, then all NP-problems are polynomial-time
solvable.

Some special cases of SAT remain NP-complete. The k-SAT problem is the
21
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restriction that the number of literals in each clause is at most k. An instance of this,
called the 3-SAT, is NP-complete [8]. Tt is the first known NP-complete problem and
logical formulation makes it much easier to express other problems. Hence, 3-SAT is
widely used to prove the NP-completeness for the other problems. In fact, 3-SAT is
still NP-complete even if we restrict the occurrence of each variable (either positive
or negative) at most three times. 2-SAT, however, is linear time solvable [25] (by
using a slight modification of the Davis-Putnam procedure discussed in Section 2.2.2
by paralleling the Splitting rule). Another direction to impose the restriction is on
the number of positive literals in each clauses. 3-SAT is still NP-complete even
if the number of positive literals in each clause is at most two (with or without
the restriction that the number of occurrences of each variable is three). However,
Horn-SAT where each clause contains at most one positive literal is linear-time
solvable. The other formulation, such as the integer linear programming, also faces
the same condition. For comprehensive discussion on computational complexity, we
suggest [26].

Being in NP-complete does not imply that it cannot be solved. It only says
that it seems impossible to find an exact and deterministic way to collect a solu-
tion. There are several approaches to this. First, some problems do not require
optimal answers and a near-optimal solution is still acceptable, so approximation
algorithm may be useful. The second approach resorts randomness, and for exam-
ple, randomized algorithms can do primality testing in polynomial time, and no
deterministic polynomial-time algorithm is known. However, this approach is inad-
equate for solving mathematical problems, since a mathematical conclusion should
not involve uncertainty in its proof. Therefore, exhaustive search is possibly the

only candidate for solving hard CSP’s.

2.4 Heuristics

Suppose that exhaustive search is the only way that we know how to solve a problem.
This means that no efficient method is available, but among all ways to exhaustive

search, some are more effective than the others. Strategies that improve exhaustive

22



2.4. Heuristics

search are called heuristics. We remark, however, that no method is appropriate in
all instances. We separate the discussion according to complete search and incom-
plete search. The basic difference between them is that in complete search, when
it reports no answer in a decision problem, there is really no answer. Incomplete
search cannot guarantee that. Incomplete search is especially useful when there
is an easy way to verify a solution and when the solutions are quite dense in the
whole space. It is often more effective than complete search when it is applicable.
But in many applications, incomplete search is either useless or provides only upper
bounds or lower bounds. Problems that we consider here are all of this kind, so
complete search is our main interest. Extended references and discussion can be

found in [20, 27].

2.4.1 Complete methods

A straightforward way to achieve complete search is to explore the entire search
space, like what we have described in Section 2.2.1. Recall that in a search process,
a search tree is incrementally built and internal nodes on the tree represent partial
assignment that can be extended by further instantiating variables. Not all search
space defined in this way is necessary. There are two kinds of nodes in a search
tree in a decision problem: Those that lead to a visible solution, and those that
do not. If we can give up nodes that will not lead to a visible solution as early
as possible, then the search space can be reduced greatly. Forward-checking (cf.
Section 2.2.1) is such an example. On the other hand, the search space varies with
different variable-splitting orderings. A better splitting strategy can often keep the

whole search space smaller. We discuss these strategies as follows.

Branch-and-bound. Suppose we want to solve a minimization problem. As an
example, consider the MBCSP (Monotone Boolean Constraint-Satisfaction Prob-
lem), which asks the following question: Given a set of clauses that contain no
negative literals, find and assignment that uses as few 1’s as possible. Informally
speaking, when the search is proceeding, if we have already found an assignment

that uses only five 1’s, then we can prune all branches that have already used five 1’s.
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Branch-and-bound is useful in many optimization problems, such as the traveling-
salesman problem. It is one of the most useful, general and elegant heuristic tech-

niques.

Variable-splitting strategies. A search tree is determined by the ordering of
split variables. Different orderings may lead to different sizes of search trees. For
example, the Unit-clause rule in the Davis-Putnam procedure in section 2.2.2 can be
seen as "lifting” a literal in a unit-clause to be split. This literal is set true and the
effect can be propagated to the other clauses. This explains why the Davis-Putnam
procedure is effective. For general CSP’s, heuristics of variable splitting such as to
split a variable with the least number of branches or a variable that satisfies the most
number of constraints, is also useful. There is a limit to how much variable-splitting
strategies can help. There exists a search tree with exponential nodes regardless of
the splitting ordering when only forward-checking is implemented. We remark that
although variable splitting strategies cannot make search polynomial-time solvable,

they are usually quite useful in solving practical problems.

Prune-and-search. Prune-and-search always generates linear-time algorithms to
solve a problem. It lies in different spectrum to the generate-and-test paradigm (cf.
Section 2.2.1). Its general description is as follows. Suppose the input of a problem
is of size m. If each time we can prune a constant fraction of the input in linear time,
then the whole problem is still solvable in linear time. A typical example to this
strategy is finding the k-th largest element is an array. If at each run, a constant
fraction of the input can be identified not to contain the k-th largest element in
linear time then they can be pruned, and the process can be applied recursively.

The overall time is still linear.

Incomplete methods. Incomplete methods are useful for many applications and
they gave different levels of satisfaction under different assumptions. If there exists
an ‘easy‘ way to verify the correctness of a solution found by an incomplete method,
then its major problem is how to find such an answer. Several techniques can be

used to this, however, they are not beyond two factors: local improvement and
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randomness.
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Chapter 3

Boolean Rings

3.1

Introduction

Definition 3.1.1 A ring, in the mathematical sense, is a set R together with two

binary operators + and % (commonly interpreted as addition and multiplication,

respectively) satisfying the following conditions:

1.

Additive associativity: For all a,b,c € R, (a +b) +¢c=a+ (b+¢),

. Additive commutativity: For all a,b € R,a+b =10+ a,

Additive identity: There exists an element 0 € R, such that for all a € R,
O+a=a+0=a,

Additive inverse: For every a € R, these exists b € R, such that a + b =
b+a=0

Multiplicative associativity: For all a,b, ¢ € R, (a*b) x ¢ = a * (b * ¢),

Left and right distributivity: For all a,b,¢c € R,a * (b+c¢) = (a *b) + (a * c)
and (b+c¢)xa = (bxa)+ (cxa)

Definition 3.1.2 We say that a ring R has a multiplicative identity if there exists

an element 1 € R such that ax1 =1%xa=a for all a € R.

Definition 3.1.3 A boolean ring is a ring R that has a multiplicative identity, and

in which every element is idempotent, i.e. a * a = a for every a € R.
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Boolean ring is an algebraic structure which is equivalent to boolean algebra.
The major representational differences are that boolean rings use exclusive-or (+)
instead of (V) to represent boolean functions, and that there is no need for negation
in boolean ring. Furthermore, there is a unique boolean ring normal form for every
boolean function. It is curious, however, that in spite of its long history and elegant
algebraic properties, the boolean ring representation had rarely been used in the

computational context.

3.2 The formalism of boolean rings

A Boolean ring is a commutative ring (B,+,-,0,1) in which - is idempotent (i.e.
x-x = x) and + is nilpotent (i.e. x +x = 0). The operator + is known in logic

design as ezclusive-or (xor). By introducing the relationship

TNy — T-YyY
sVy — zT-y+ax+y

r — x+1

one can show that the corresponding algebraic structure (B,+,-,0,1) is a boolean
algebra [36]. Expressions in boolean ring are called boolean polynomials, or for
short polynomials, in order to distinguish them from boolean formulas represented
in boolean algebra. A monomial in boolean ring is either the expression 0, 1, or
a 'product’ of distinct variables. On other words, a polynomial that uses only ’-’.
A boolean ring is in Boolean Ring Normal Form (BRNF) if it is a sum of distinct

monomials. The axioms of boolean rings are:
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xxr = T
20 = 0
rl = =z

r+xz = 0

r+0 = =

r(y+2) = zy+az
xy = yx
r+y = y+z
(zy)z = x(yz)
(z+y)+z = a2+ (y+2)

Distributivity (sixth axiom) is the potentially expensive step, even when the subterm
x is shared in some directed-acyclic-graph. Propositional formulae can be converted
to boolean ring (exclusive-or) normal form (BRNF): tautologies reduce to 1; con-
tradictions (unsatisfiable formulae) to 0; contingent formulae to neither. (See [34].)

The boolean ring formalism differs from boolean algebra in that it defines a
unique normal form (up to associative and commutativity of the two operators) for
each boolean formula, called a boolean polynomial, that can be directly by applying
the first six axioms from left to right to any formula. Using boolean rings, however,
is not without drawbacks. The main problem is that the distributivity law causes
the length of the boolean polynomial to be exponential in the worst case.

Though, considering the above simplification rules as rewrite rules from left to
right, we can easily recognize the distributive rule z(y 4+ z) = zy + xz as the reason
for such exponential explosion. In our work we will eliminate the distributive rule
from the boolean ring simplification rules, and instead other techniques will be used

(See next section).

Definition 3.2.1 (Binomial Equation) A boolean polynomial is called binomial
is it is either of the form m; + my where m; and my are distinct monomials. A

boolean ring equation is called binomial if it is either m; +ms =0 or of m; =0

Definition 3.2.2 (Linear Equation) A boolean polynomial is called linear if it is
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expressed as a sum of distinct variables or 1. A boolean equation is called linear if

it is an equation of a linear polynomial.

In the following we define several parameters in a boolean polynomial. The degree
of a monomial is the number of distinct variables in the monomial. The degree of
the monomial 1 is zero. The degree of a boolean polynomial is defined to be the
largest degree among all monomials in it. The length of a polynomial is the number
of its distinct monomials. The number of different variables in a polynomial is called
its variety. We use B to denote a set of binomial equations and use £ to denote a
set of linear equations. Therefore, by definition, the length of each equation in B is
at most two and the degree of each equation in £ is at most one.

Our algorithms are on B and L. Let us express it by a pair (B,L£). Instead
of solving a set of boolean ring equations, we try only to decide the satisfiability
of BU L. This splitting is useful since by this way we can get benefit from the

characteristics of everyone of these representations.

Inference rules Previous studies of the above representation of boolean rings did
not allow simplification across B and L in order to ensure the closeness of the
formalism. Hence, equations in B and £ were processed independently except for
the unit rules. An equation is called a wunit rule if it is of the form z = 0 or
x =1, where x is a variable. The notion U is generally used to store the set of unit
rules currently discovered. Let reduced(L) be the resulting set of equations that no
more simplifications can be applied within £ UU. (Since L is linear, the process is
indeed the Gaussian elimination). The definition of reduced(B) is similar, but in
addition to this, a new rule is added: Split equation xy - x5+ 2, = 1 into x; = 1 for
1 < x < n. Unit rules can be applied across B and L, so the effect of the unit rules
may propagate between B and L. If contradiction happens during simplification,
then the input (B, £) is unsatisfiable.

In our work, we extend the learning between the B and L to process also poly-
nomials of the form x + y = 0. If this equation was inferred in the binomial system
B, then it is transferred automatically to the linear system (£). Further details to
follow.
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The Bin-Lin Approach. We are studying the advantages of the following novel
representation: Let B be a set of binomial equations (equations between conjunc-
tions of propositional variables or constants), and £ be a set of linear equations over
the propositional variables. Instead of solving a general set of boolean-ring equa-
tions, we try only to decide the satisfiability of BU L. It is built on the combination
of B and L, with the restriction that simplification can only be applied within B or
within £. This model is powerful enough to handle all cases.

The input is a pair BUL and an ordering > on monomials is given. The inferences

rules are:
1. Termination test: If 1 = 0 has been inferred, the system is unsatisfiable.
2. Tautology Deletion: Remove all trivial equations A = A.

3. Decomposition: Decompose any equation x1zs---x, = 1 in B into z; =

1,...,$k:1.

4. Propagate Rule: Use all equations of the form x =0,z =1, or x =y in BUL
to simplify equations in BU L.

5. Simple Rules: Use additional optional inference rules to infer unit, binary, or

monomial equations that can be added to B and/or L.

6. Simplification: Reduce one equation by another within B or £, but not across

the two.

7. Splitting Rule: Split the system of equations by considering BU {z = 1} and
B U {xz = 0}, individually.

Equations in B and L are for the most part processed independently. Relatively fast
methods exist for processing each of the two components. The simplification step is
not needed for completeness, but rather to improve search efficiency.

Simple inference rules are used to discover regularity between variables and gen-
erate new equations that can help reduce efforts in exhaustive search. For example,
one can find all binary equations x = y that follow from only one of B or L in poly-

nomial time. The idea of performing shallow inferences to derive essential relations
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is central to the method of “recursive learning” [35] that we described in section
2.2.3. Another approach which we are adapting is the Stalmarck’s algorithm which

is described in the next section.
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Stalmarck’s algorithm

One important saturation-based approach is Stalmarck’s algorithm [32]. Stalmarck’s
algorithm is a tautology checker. It deals with boolean formulae, i.e. expressions
formed with the two constants 1 (true), 0 (false), the unary symbol = (negation), the
binary symbols A (conjunction), V (disjunction), = (implication), < (logical equiv-
alence) and a set of variables. This method is working on a special representation
of formulas knows as triples. The transformation of the formulas to triples is done
in two phases : The first phase is a translation from formulas in propositional logic
to formulas built from only implication and 0 (false). The following transformations

are repeatedly applied :

AVB to -A—B
ANB  to -(A — -B)
-—A to A

-A to A—1

The second phase of the transformation is to translate those clauses to triple
representation, where a triple (x,y, z) is an abbreviation for z +» (y — 2). 0 and
1 are treated as special cases of a propositional variable. 0 (False) is written as
0 in triplets, while 1 (True) is written as 1. This process involves defining new
intermediate variables that will represent sub formulas.

Ezample: Assume the formula p — (¢ — p). We introduce a new variable b1 that
will be equivalent to the sub-cluase (¢ — p). We introduce another new variable b2
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which will be equivalent to the whole formula. Thus we get the following :

bl > (¢ — p)
b2 +» (p — bl)

The next step is to translate those clauses to triple representation, where a triple
(x,y, z) is an abbreviation for z <> (y — 2). L and T are treated as special cases
of a propositional variable. L (False) is written as 0 in triplets, while T (True) is

written as 1. For the above example, we get:

(b1,q,p)
(b2, p,b1)

The algorithm works by using these triplets to make logical inferences. All the
facts used and deduced by the algorithm can be considered as equations between
literals. The starting point is the single assignment v* = 0 where v* represents the
whole formula. The objective is to reach contradictory equation of the form v = —w.

The algorithm uses a set of inference rules, known as simple rules to derive
new information about the variables. It uses the triplet together with the existing
equations to deduce new equations via some obvious deductions. For example, we

know that if (y — z) is false, the y must be true and z false. We write rule as :

(0,9,2)
(r1) y/1  z/0

A terminal triplet is one that is contradictory. For example, the triple (1,1,0) is
terminal because 1 — 0 cannot be true. The only other terminal triplets are (0, z, 1)
and (0,0,x). Applying a rule to an element of a set of triplets gives a new set of
triplets into which we substitute the newly calculated variables instantiations. The

remaining 6 simple rules are :

(z,y,1) (2,0, 2)
(r2) o1 (r3) .
(7,1, 2) . (x,y,0)
o B2 ) 2D
(2,2, 2) (7,9, v)

(r6) z/1  z/1 (r7) z/1
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Chapter 4. Stalmarck’s algorithm

Figure 4.1: Splitting on one variable

In general, simple rules alone are not sufficient to prove formulas. If after ap-
plying simple rules, no contradictory assignment has been reached, the next step is
to use the so-called dilemma rule. This involved case-split over a variable (real or
intermediate).

Suppose that applying simple rules has yielded a set of equations (E), and that
we choose v as a variable to split over. Then we applying simple rules on the
sets EU{v = 1} and E U {v = 0} to produce new sets of equations E; and FEj
respectively. Even if we have not gained a contradictory assignment in both F
and Ej, the case split may still yield new information. Set £ = E; N Ey. If a set
of equations contains a contradictory assignment, then F equals to the other set.
Notice that to distinguish the intersection operation with the recursive learning, the
intersection in Stalmarck’s method contains equations between variables, e.g. the
fact that v; = v;, while in the recursive learning, only concrete values which where
found to be justified are used in the learning process.

We presented in this thesis a similar algorithm based on boolean rings repre-
sentation. Our procedure has three inference rules. The first one is reduce, which

reduces a set of boolean ring equations A to an inter-reduced set reduced(A), us-
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Figure 4.2: Splitting on more variables

ing a set of Simple Rules. The second inference rule is split(A,z), which splits A
into two sets, 49 = AU{z = 0} and A; = AU {z = 1}. The third inference
rule is intersect(Ap, A1), which computes the intersection between two boolean ring
equations sets, Ag and A;. The procedure works are follows: Given the inputs set
of equations A, we first reduce it using a set of simplification rules. If the result-
ing set contains contradiction (1=0), then A is inconsistent. Otherwise choose a
boolean variable x and split(reduced(A),z) accordingly to generate Ay and A;. Fi-
nally intersect(Ay, A1) to generate A'. Reduce A’ to get reduced(A’). If the resulting
set contains contradiction (1=0), then A is inconsistent. Otherwise, split on another
variable. If all the variables were split, then we reiterate the splitting process but
this time we split for more variables before computing the intersection. Figure 4.1
illustrates splitting on on variable, while Figure 4.2 illustrates splitting on more

variables.
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Procedure Stalmarck (A,V)
if (V'=0) return A

Pick z € V'
Ap := Stalmarck (AUZz, V'\ )
A; := Stalmarck (AUuz, V'\ x)

A" := Intersect(Ay, 4)
A := Simple Rules(A’)
if Sat(A) return TRUE
if UnSat(A) return FALSE

Procedure Stalmarck-SAT(A,V,)n):

A" := Simple Rules(A)

if Sat(A’) return TRUE

if UnSat(A’) return FALSE

foreach n variables {z;---z,} €V
A" := Stalmarck (A',{zi---x,})
if Sat(A”) return TRUE
if UnSat(A”) return FALSE

return (A")

Figure 4.3: Stalmarck-SAT

The above algorithm is illustrated in Figure 4.3. The main function is called
Stalmarck-SAT. It accepts as arguments the problem A, the set of the variables
V' participating in the problem and the maximal splitting depth n. The algorithm
works as follows: First it performs a call for Simple Rules which indeed performs
a set of polynomial time inference rules (e.g. unit propagation). If upon comple-
tion the problem is found to be satisfiable or unsatisfiable, the result is returned.
Otherwise, we iterate on every subset of variables in V' of length n. These sets will

determine the splittings which are going to be performed. For every one of these
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Chapter 4. Stalmarck’s algorithm

sets, we call a subfunction Stalmarck which performs a splitting on every one of the
variables in V', but the essence of the algorithm is that it performs an intersection
between the two split sets Ag and A, so that new facts which are found in the
intersect are stored, and hopefully they can be useful for succeeding splits. In this
way, the Stalmarck’s method is a learning method.

Notice that some intersections might not be useful, especially if no new facts
where found. However, in the framework we are presenting, the Stalmarck’s method
is performed as a pre-process to a brute-force search algorithm which performs ex-
haustive search. The main point here is that the Stalmarck’s method is a polynomial
time cost since we are limiting n to 3 for practical reasons. Further discussion is
available in chapter 6 which deals with applying Stalmarck’s method on boolean

rings.
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Chapter 5

Horn Clauses

It is well known that the satisfiability problem is NP-complete for the class of all
propositions. Therefore, if one is looking for a polynomial-time satisfiability test,
one is led to consider subclasses of propositions. One such class is the class of
propositional Horn formulae, which enjoys nice properties [37-39]. We discuss
these properties in our work and show how Horn clauses can be integrated into our

Sat solver.

5.1 Preliminaries

Definition 5.1.1 A literal is either a propositional letter P(a positive literal) or the
negation =P of a propositional letter P (a negative literal). A basic Horn formula is
a disjunction of literals, with at most one positive literal. A basic Horn formula will
also be called a Horn clause, or simply a clause. A Horn formula is a conjunction
of basic Horn formulae.

First, observe that every Horn formula A is equivalent to a conjunction of distinct
basic Horn formulae by associativity , commutativity and idempotence of ” A”. Since
”V” also has these properties, each basic Horn formula is equivalent to a clause of

one of three types:
1. @, a propositional letter, or
2. =P, V...V=P, where ¢ > 1 and Py, ... P, are distinct propositional letters; or
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3. P V...V~F,VQ where ¢ > 1, Py,... P, are distinct propositional letters,

and () is a propositional letter.

For example, (=P, V = Py) A (P3) A (=P V =P, V 2 Py) A (=P V Ps) is equivalent to
(=P, V =Py) A (P3) A (=Py V Ps). In the rest of the thesis, it will be assumed that
Horn formulae are in this "reduced” form, i.e. that there are no duplicate clauses

and no duplicate literals within clauses.

5.2 The class of propositional Horn

The class of propositional Horn formulae is obtained by restricting the form of the
conjuncts in the conjunctive normal form of a proposition. If a proposition A has
conjunctive normal form Cy A...C,,, where each C; is a disjunction of propositional
letters (positive literal) or negations of propositional letters (negative literal), A is
a Horn formula if and only if each C; contains at most one positive literal.

From results of Jones and Laaser [39] ,it can be shown that testing satisfiability of
propositional Horn formulae is complete class P of problems solvable in polynomial
time (In the size of the input). By observing that the satisfiability problem of
Horn propositions reduces to the problem of determining whether the empty string
belongs to the language generated by a context-free grammar G = (N, T, P, S), a
very simple algorithm running in time O(N?) can be also obtained.

In [40], the authors present two linear algorithms for deciding whether a propo-
sitional Horn formula is satisfiable. The essence of these methods is to test whether
sets of paths of a certain kind called peddlings, exist in a graph associated with the
Horns formula. In brief, the methods differ in the strategy used to find a peddling.

The graph associated with a Horn proposition A describes the logical implications
defined by the basic Horn propositions in it. The nodes of this graph are the distinct
propositional symbols occurring in A plus two special nodes, one for TRUE and one
for FALSE. The edges are labeled with basic Horn formulae. The fundamental
property of the graph associated with the proposition A is that A is unsatisfiable if
and only if there is a peddling from TRUE to FALSE.
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5.3 The Graph associated with a Horn proposi-
tions and pebblings

Assume that the Horn formula A is a conjunction of M basic Horn formulae, that the
number of occurrences of literals in A is NV, and the number of distinct propositional
letters occurring in A is K. A graph G4 is associated with a Horn proposition A.
This graph implicitly represents all possible ways of checking the satisfiability of
A, and is a powerful tool. Indeed, the satisfiability problem is expressible as a
pebbling problem on G4, and this provides intuition to the various strategies used
by satisfiability testing algorithms. The graph associated with a Horn proposition
can be used to determine which propositional letters must be TRUE in all truth
assignments satisfying A, if any. A propositional letter @) is forced to be TRUE
iff either () is a basic Horn formula in A, or there is some basic Horn formula
C; =-P,V...V~2FP,VQ and it is already been established that P, ...V P, must
all be TRUE. If the above situation occurs and () must also have the value FALSE
(which is the case if =@ is a basic Horn formula in A), there is an inconsistency and
A is not satisfiable.

The number of nodes of the network corresponding to A is only K + 2, and its
total size including edges is approximately the size of A. Since it can be processed
in linear time this is a fast and novel approach to the Horn formula satisfiability
problem.

The Horn clauses is used easily to check in linear time whether the Horn system
is unsatisfiable or not by simply checking whether there is a pebbling (i.e. path)
from the node marked with true to the node marked with false. If such path is
found, then the system is not satisfiable. However, the system can be used also to
infer equality between variables. If a pebbling is found from the node of variable x
to a node of variable y and vise-versa, then we can conclude the equality between
the variables © and y. This technique was proven to be highly useful in the infer-
ence rules system that we built on top of the boolean rings system in the Bin-Lin
representation.

The Horn clauses is used in our system since the binomial part on the Bin-Lin
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5.3. The Graph associated with a Horn propositions and pebblings

system that we described previously can be easily transformed to a Horn system.
In the below, we list down transformation rules from any possible equation in the

Bin-Lin system to its equivalent Horn formula.
e, =1 —
e 1, =0 — -~
exr -z, =0 — -z V---V-ox,

¢ Ty Ty =25 —> 7w V---Vox,Va, Vo, , 0wV,

Notice that the transformation in the last rule stems from that fact that the equiv-

alence between z; - - -z, and z; can be represented by two implications:
® T Ty = T
® I, =TTy

while the first implication is by itself a Horn formula, the second one can be split
into the following formulas, z; = x1,-+-,2; = x,, and every one of them is Horn
formula.

For the general binomial equation, the transformation is achievable in the same
manner. Assume the Binomial equation zyxs---x, + y192---y; = 0. The equation

is transformed into two implications:

X Tp — Y1Y2° Y
ylyZ...yl _> 1‘11;2...1;”
Every implication can be split into a set of implications such that the right hand

side of the implication includes only on variable resulting the following implications.

T1X2 Ty, — Y1

T1To* Ty — Y2

T1X2 Ty — Y

and
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5.3. The Graph associated with a Horn propositions and pebblings

MyYyz---yp — I1

My2 -y — T2

Yiy2 -yt — Tn
Notice that every implication is indeed a Horn formula, e.g. zz9---2, — y; =
-1V xry V.-V x, Vy. This way, out of the equation x1z9 -2, = Y192 -y,

the following Horn formulas are introduced:

Ve Ve--Vox, Vi

Ve VeV ox, Vs

Ve VeV ox, Vi

YV oy Ve Voo Vi
Y1V oy Ve Vooy Vg

Y1V oy Ve Voy Vg,
Getting this system of Horn formulas, the associated Horn graph can be built. The
main usage of the graph is to check satisfiability of the Horn formulas, by checking
whether there is a pebbling from the node representing the TRUE value and the
node representing the FALSE value. Though, the above graph can be used for unit
refutation to detect equivalence between variables. Checking whether x; = x;, can
be reduced to checking whether pebblings from z; to z; and from z; to x; exist.

More on this in the next chapter.
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Chapter 6

Stalmarck’s algorithm on

boolean rings

In this chapter, we describe how Stalmarck’s algorithm can be applied on boolean
rings using the Bin-Lin approach, by using efficient techniques like the Horn clauses

and the Gaussian elimination.

6.1 Translating the SAT instance to boolean ring
representation

An instance of the satisfiability (SAT) problem is a boolean formula that has the

following components:
1. A set of n variables: z,...,x,
2. The three logical connectives: logical—or(V) , logical —and(-) and negation(—)
3. 7(” and ”)” for grouping subformulas
The boolean formula can be defined recursively by the following:
e Every variable is a boolean formula.
e If F is a boolean formula then —F is a boolean formula too.

e If 7| and F; are boolean formulas, then F; V F; is a boolean formula too.
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e If 7, and F; are boolean formulas, then F; - F5 is a boolean formula too.
e If F is a boolean formula then (F) is a boolean formula too.

Given a boolean formula F, the goal of the satisfiability problem is to determine
whether there exists a truth values to the variables of F that makes F satisfiable.
For every boolean formula F, there exists a linear translation to boolean ring
(BR) formula Fgr with the two logical connectives : - (logical-and) and + (exclusive-
or). The translation is done on the by induction on the subformulas of F. For every
subformula F; of F we associate a variable. We use these variables to build a set of

equations in BR. The translation is done by the following:

If F; is a variable, then F; is also a variable in BR.

o If F; is of the form —~F;

j, and the equivalent variable of F; is v;, then a new

variable v; is defined and a new equation v; = v; + 1 is added to BR.

o If F; is of the form F; vV F, and the equivalent variable of F; (Fj) is v;
(vg respectively), then a new variable v; is defined and a new equation v; =

vj + v + v; - vy, is added to BR.

o If F; is of the form F; A Fj, and the equivalent variable of F; (F) is v; (v
respectively), then a new variable v; is defined and a new equation v; = v; - vy,

is added to BR.

For example, given F = 1 A (x5 V x3), it can be transformed into BR as follows:

V1 = (.fL'g\/l‘g,) =29 +X3+ T2 T3 (61)
V9 =T ANV =21V (62)

The above translation process results a set of equations between variables and BR
formulas, expressed using - and + only. The next step is to transform this system
to a Bin-Lin representation. Equation 6.2 is already a binomial one while equation
6.1 is not. In order to transform equation 6.1 to Bin-Lin, we introduce a new

temporary variable v3 and the equation 6.1 is now written as:
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V3 = T2 - T3 (63)
V1 = To + T3+ Vs (64)

In this case, equation 6.3 is binomial and equation 6.4 is linear. The number of the
new variables defined in BR is equal to the number of the logical connectives in (F)
and the number of the auxiliary variables which are defined in the above process
the transformation to Bin-Lin representation. Assuming this number is m, then the
variable vy, is equivalent to the formula (F). Testing the satisfiablity on this system,
is equivalent to the task of testing whether there is an assignment to the variables
Ty, Ty -, that makes the variable v,, equals to one 1. This is done indeed by
adding an extra linear equation v,, = 1 to the Bin-Lin system and checking for

satisfiability.

6.2 A generalized algorithm for Satisfiability check-
ing

The approach we are presenting in our work is different from the naive DPL sat
solvers. While DPL solvers are based on splitting on variables till a contradiction is
found, and only then a process of conflict learning and backtracking is performed, in
our approach, we perform a polynomial cost process of learning before the splitting
is performed. This way, the learning can hopefully reduce the number of the splits
and thus improve the overall run time.

Figure 6.1 illustrates our boolean ring Sat solver. First, the Stalmarck proce-
dure, is as described in chapter 4,where Simple Rules are sound polynomial infer-
ences, and Intersect is a polynomial under-approximation of the intersection of
the theories of the two sets of formulze. The output of the Stalmarck procedure is a
set of formulas on which two tests can be applied.; Unsat and Sat are incomplete
polynomial tests for unsatisfiability and satisfiability, respectively. The function
Stalmarck is being used as a sub-routine in our main BR-SAT procedure which acts

as a manager to the way the saturation is called. In the following, we are getting
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into details of every one of the algorithm’s components.

6.3 Unit refutation (aka Simple Rules)

The Bin-Lin representation of the equations is essential in our algorithm since it
provides efficient unit refutation operations on the sets of equations. Splitting the set
of boolean ring equations into Binomial and Linear enables using algebraic properties
of polynomial complexity. Hence new information retrieved from the unit refutation
and the intersection operation between two sets of equations, can be retrieved easily.

The first set of the inference rules is defined on formulas, and are derived from

the boolean rings axioms. The used axioms are:

xr-T r—+x

(1)7 (2) 0

ORI
z+0

(5)

The second set of the inference rules are defined on equations, and they are as

X

follows:

F+0=0 F+1=1
O O—F—5
F+1=0 F+0=1
O %=1 W—F=1

T1X9 - xy =1

(5)

=1z, =1
$1$2+$1+l‘2:0
.1'1:0,1'2:0

(6)

T1To + X1 = 1

(7)

The above rules are used in the Simple Rules function, which simplifies the set of

.1'1:1,1'2:0

the equations.
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Procedure Stalmarck (A,V’)
if (V' =0) return A

Pick v € V'
Ay := Stalmarck (AUz, V'\x)
Ay := Stalmarck (AUuxz, V'\x)
A" := Intersect(Ay, 4;)

A := Simple Rules(A’)
if Sat(A) return TRUE

Procedure BR-SAT(A,V,MaxSaturationDepth) :
A" := Simple Rules(A)
if Sat(A’) return TRUE
if UnSat(A’) return FALSE
CurrentSaturationDepth := 1
While (CurrentSaturationDepth < MaxSaturationDepth)
Begin
repeat
LearningWasFound := FALSE
foreach CurrentSaturationDepth variables
{21+ - TowrrentSaturationDepth } € V'
A" := Stalmarck (A',{z;---x,})
if Sat(A”) return TRUE
if (A" #£ A')

LearningWasFound := TRUE
until LearningWasFound = FALSE
CurrentSaturationDepth++

End
DPL (A")

Figure 6.1: BRSat
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6.3.1 Unit refutation on the Linear equations

Unit refutation on the Linear equations can be performed easily using Gaussian elim-
ination. All the linear equations are boolean ring eqautions in which each monomial
is either a single variable or a constant; it takes the form x; +xo +---+ 29 =1 or
T1+ X2+ -+ 29 = 0, where the z; are distinct propositional variables. Having this

type of equations, Gaussian elimination can be easily applied in order to compute:

e Variables which are equal to 1 (True)
e Variables which are equal to 0 (False)

e New linear equations. e.g. from x; + x5 = 1 and z; + x3 = 1, one can infer

1‘2—|—IL’3:0.

Notice that the above new facts can now be passed to the Binomial system and thus

contribute to the unit refutation which is performed on the Binomial system.

6.3.2 Unit refutation on the Binomial equations

A binomial equation, as defined previously, is a boolean ring equation with at most
two monomials, that is, an equation of one of the three forms: m +m’' =0, m =0
or m = 1, where m and m’ are products of distinct propositional variables. Unit
refutation on the binomial equations is performed using Horn graphs (See chapter
5). The graph associated with the Horn formulas (which are being extracted from
the Binomial system) supports very useful functionality. Besides the polynomial
time cost for checking whether (true — false), it can be used as well for checking
equivalency between variables. For example, checking whether the Horn system
implies and equivalence between two variables x; and z; can be done by checking
whether there are peddlings from z; to z; and vise versa. These peddlings imply
that z; — x; and vise versa, and thus the equivalence between z; and z;.

Unit refutation can be employed by enumerating all the possible equivalence
relations between all the variables in the binomial equations system. The equivalence

check is performed on the Horn graph in polynomial time. Every equivalence relation
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between two variables is added automatically to both the Binomial and the Linear

systems.

6.4 The intersection operation

The intersection is performed between two sets of equations Ag and A; which where
split on some variable x;. The purpose of this intersection is to compute relations
between variables which may save the number of the needed splitting. In this way,
if a new equivalence relation between two variables z; and x; belongs to the inter-
section, then the splitting is performed on one variable. In this way, the number of
the splitting can be reduced.

Given two Bin-Lin systems (B, L£o) and (By, £1), the purpose is to compute the
intersection system (B', £') which include the maximum set of relations between
variables that exist in both (By, £y) and (By, £1). The intersection is performed on
the binomial and the linear systems separately, i.e. B' = BoN By, and L' = Lo N L.
Every equation which exists in both By and B; (respectively £, and £,) exists in B’
(respectively £'). The unit refutation which enumerates all the possible equivalence
relation between all the variables, is the operation that enriches the intersection and

causes the reduction in the splitting.

6.5 The Sat solver main steps

Notice that our sat solver consists of two main parts: The first one is the saturation
phase, where learning new equations and relations between variables is performed.
This is a limited procedure in the maximal allowed splitting depth. Once this depth
is reached, and no results of the satisfiability of the problem are found, we skip to
the DPL based solver. In our flow, we limit the number of the maximal saturation
depth to 3. Notice also that the algorithm for which the results where performed,
has a more reduced number of allowed splits in the saturation phase.

The saturation phase works as follows: we first perform simple rules and check

whether the problem is satisfiable or unsatisfiable. If the answer is one of the above,
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then we exist and the problem was solved in polynomial time. Otherwise, we iterate
the saturation depth starting with 1 till we reach MaxSaturationDepth. For every
iteration, we call Stlamarck procedure using any set of variables of length equation
to current saturation depth (CurrentSaturationDepth). This process continues till
no learning is found and in this case we increase CurrentSaturationDepth. The
process ends till we reach MaxSaturationDepth.

Notice that the pre-process stage is assumed to find as much learning as it can
in order to help the DPL in the splits. We tested this method and it was proven to

be a useful one. More results in the next chapter.

6.6 Examples

Example 1: Consider the following Bin-Lin system:

Yzt =1 (6.5)
r+ig=1 (6.6)
Tty bt =0 (6.7)
r+t3+tg=1 (6.8)
toto+ s =0 (6.9)
ty-tytts =0 (6.10)
Tty ttg=0 (6.11)

Notice that the first 4 equations are the linear part and the last 3 equations are
the binomial. The inputs of the system are z,y, z while the other ¢; variables are
temporary variables . Based on the simple rules where were presented in section 6.3,
no learning can be performed in this case, and thus a splitting is needed. Assume
that the variable we need to split is x.

In case of x = 0, from equation 6.6 we get £, = 1 and from 6.11 we get 5 = 0.
From 6.8 we learn that t3 = 1 and thus from equation 6.9 that ¢, = 1. From

6.5 that y + z = 1. Similarity, in case of x = 1, equation 6.6 implies that ¢, = 0.
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Equation 6.10 implies t5 = 0 and thus from equation 6.7 we learn that ¢3 = 1.

From equation 6.9 we learn that ¢t; = 1. From 6.5 that y + 2 = 1.

This example demonstrates how inequality between the variables y and 2z can be

easily concluded since it appears in both splitting branches. In the next example,

we’ll see how the combination of Gauss elimination and Horn clauses can be useful

in a way that unsatisfiability of formulas can be detected after splitting on variable

x while without these techniques further splitting is needed.

Example 2: Consider the following Bin-Lin system, as a complementary set to the

one presented in example 1.

The system of example 1 is :

y+t10:0
t10+t11:0
t13+t14:0

tig -ty +111 =0

Z+t12't13:0
l‘+t4:1
$+t3+t5:0
r+t3+tg=1
t1-to+13=0
t3-t4+15=0
$'t3+t6:0

(6.12)
(6.13)
(6.14)
(6.15)

(6.16)

(6.17)
(6.18)
(6.19)

(6.20)

(6.21)
(6.22)

(6.23)

Notice that the above first 5 equations can be transformed to a Horn system (based

on the description in section 5.3). Applying the learning algorithm on the Horn

graph (built on top of equations 6.12 ...
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also z — y which indeed an equivalence between the variables z and y, i.e. the
above system implies z + y = 0. This fact accompanied with the above conclusion
from example 1 (z +y = 1) immediately implies that the system is not satisfiable.
Without the Horn learning we should need to split more on one of the variables y
or z.

This example illustrates a case were extra learning would save redundant split-
ting. In this case, the critical learning about the equality between the variable z and
y was done by performing Horn based learning. The same above example, if passed
to a Stalmarck’s based representation, further splitting would be needed since it

doesn’t have the above enriched learning techniques.
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Chapter 7

Numerical Experiments

7.1 How the tests were carried out

The test base that we had included more than 700 real life tests which were taken
from circuit design. The problems inputs are ranging from 5 to 12 inputs. The
reason for not choosing larger number of inputs is due to the fact that for problems
with more than 12 inputs, the Sat solver was exceeding the timeout limit which was
specified (300 CPU seconds). It is important to note that the implementation is
not performance tuned, and it is not designed to compete with any commercial or
academic SAT solver. It was designed to show a Proof of Concept (POC) for the
ideas which were presented in previous chapters. Thus, the criterion for the success
of our proposed method was based on the number of the splits that our method was
saving in the DPL stage, i.e. comparing the number of splits in the DPL stage, with
and without the learning capabilities.

The implementation includes two parts: the first one is doing saturation using
Stalmarck’s algorithm in order to perform as much learning as it can, while the
second part is doing simple DPL. We didn’t invest effort in optimizing the DPL
solver, however we had integrated a simple conflicts reasoning. In any case, the
DPL solver was not taking more that 2" — 1 splits (where n is the number of the
inputs).

The tests were performed on a 32 bit Linux machine (RedHat 7.1) with 2G

memory.
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7.2 Results

We had performed 5 experiments for every test. For every one of them we show the
number of splits in the saturation stage (Stalmarck’s algorithm) working as a pre-
process, the number of splits in the DPL stage, and a percentage of the improvement
in the number of the splits in the DPL stage vs. the initial version of DPL without
the saturation.

Here is the description of the experiments which were performed.

1. DPL without intersection In this experiment, we perform the basic DPL
Sat solver with simple conflict reasoning. No reasoning was performed in this
stage. The number of splits for this stage is going to be our reference when

we compare the other strategies which were tested.

2. DPL with basic saturation Here we apply the Stalmarck algorithm with
the basic simple rules retrieved from the Boolean ring axioms as our saturation
(learning rules) . The intersection between the two split branches is a syntactic

one. We observed around 1.5% reduction in the DPL splits.

3. DPL with Gauss based saturation Here we enrich the saturation stage by
applying a Gaussian elimination process on the linear part of the two Bin-Lin

systems. The reduction average of the splits in the DPL stage raised to 2.2%.

4. DPL with Horn based saturation Here we enrich the saturation stage
by applying a Horn clauses learning process on the binomial part of the two

Bin-Lin systems. The reduction average raised to 6.7%.

5. DPL with Gauss and Horn based saturation Here we enrich the satu-
ration stage by applying a Horn clauses learning process on the binomial part
of the two Bin-Lin systems, and a Gaussian elimination process on the linear

part. The reduction average raised to 13%.

Some experimental results are displayed in Table 7.1.
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Inps. | Gts. I II I11 v A% Avg.
DPL | DPL % DPL % DPL % DPL % Sat.
5 18 | 15 14 6.7% | 14 6.7% | 14 6.7% | 10 | 33.3%| 13
3 38 |31 31 0.0% | 31 0.0% |13 581% | 13 | 58.1% | 15
6 37 |63 63 0.0% | 56 11.1% | 63 0.0% | 56 11.1% | 18
6 10 |20 19 5.0% | 19 5.0% | 17 15.0% | 17 15.0% | 16
7 33 | 38 37 2.6% | 37 2.6% |37 2.6% |19 | 50.0%]| 19
7 36 |95 95 0.0% | 95 0.0% |95 0.0% | 45 52.6% | 21
8 30 [ 116 | 115 | 0.9% | 115 [ 0.9% | 115 | 0.9% |0 100% | 22
8 34 | 191 | 191 | 0.0% | 191 | 0.0% | 191 | 0.0% |6 96.9% | 24
9 39 | 507 | 507 | 0.0% | 507 | 0.0% | 504 | 0.6% | 127 | 75.0%| 27
9 45 | 17 0 100%1 0 100% | O 100% | 0 100% | 9
10 63 | 511 | 511 | 0.0% | 432 | 15.5% | 511 | 0.0% | 214 | 58.1% | 30
10 54 | 258 | 257 | 0.4% | 257 | 0.4% | 257 | 0.4% | 65 74.8% | 28
11 41 | 1794|1794 ] 0.0% | 1794 | 0.0% | 896 | 50.1% | 896 | 50.1% | 33
11 52 | 1187 | 1187| 0.0% | 593 | 50.0% | 1187 | 0.0% | 593 | 50.0% | 33
11 46 | 1983|1983 | 0.0% | 1983 | 0.0% | 1983 | 0.0% | 991 | 50.0% | 33

Table 7.1: Representative runs with and without merging

7.2.1 Explanation to the table contents

The first column marked with "Inps.” is indeed the number of the inputs of the
problem, while the second column marked with ”Gts.” presents the number of the
gates.

The third column is the results of the first experiment which was described
above. The numbers represents the number of the splits in the DPL sat solver.
Subsequently, we have 4 main columns which represent the results of the next 4
experiments (marked with I, II, III, IV). Every one of the main columns includes
two sub-columns. the first one represents the number of the splits in the the cor-
responding excrement, while the second sub-columns represents the improvement
which is measured by the percentage of the reduction of the number of the DPL

splits in the same test compared to the origional learning free DPL run (represented
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in the third columns marked with I). The last column, represents the number of the
splits which were invested in the learning phase (Stalmarck’s method), in average.
Notice that in our method we limit the maximal depth in the saturation stage to be
3, which means that we are doing saturation on tree variables at most. This indeed

puts polynomial time limits to the number of the splits in the saturation stage.

7.2.2 Analysis of the results

Notice that for the 700+ results that we had, the combination of Gauss and Horn
simplification methods on the Bin-Lin system was showing approximately 13% im-
provement in average. However, we observed app. 10% improvement in average on
14% of the tests, app. 23% improvement in average on 25% of the tests and app.
50% improvement in average on app. 14% of the tests, which means that for 14%
of the problems, we are saving 50% of the splits which is pretty remarkable.
Notice also that for some of the tests, the saturation stage was enough to conclude
the satisfiability checking result. For some, the basic saturation was enough while
for others, only the combination between Gauss elimination and Horn could lead to

the result.
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Chapter 8

Conclusions and future work

8.1 Conclusions

The experiments which were presented in the previous chapter show that the com-
bination between Gauss elimination and Horn clauses on the Bin-Lin system can
improve the Stalmarck saturation pre-process step by finding more relations be-
tween variables in the Bin-Lin system and later on, affect the number of the DPL
splits. Notice that for some examples, Gauss elimination alone was responsible for
the reduction, and in others, Horn algorithms was the main factor. The interesting
cases where when combined both of them and then we noticed the extra improve-
ment. We believe that integrating such polynomial time cost methods in existing

fast DPL sat solvers can contribute a lot to the performance.

8.2 Future work

As previously mentioned in this thesis, our implementation was not tuned in terms
of performance and thus it cannot compete with industrial or academic sat solvers.
It was a proof of concept for the ideas that we presented.

Hence, next steps would be to integrate the learning methods that we presented
in one of the industrial sat solvers which are performance tuned, and measure the
improvement in terms of performance and not only the reduction of the number of

the splits.
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Appendix A

Running BRSat

The way BRSAT is called is as follows:
brsat -f < InputFile > < Options >

The < InputFile > is of the .br format (which is described in appendix B).

The < options > are:

-verbose [default, debug]

-initial_split_depth < number >

-max_split_depth < number >

-time < number >

-intersect [none , basic , gauss , horn , advanced]

—-help

where < number > denotes an integer number > 1, and [ vall, val2, ...]

denotes a list of choices, of which one should be selected.

-verbose: Determines the verbosity level of the run, where the default prints
the result of the Sat solver run and some statistics about the number of the splits.
Normal output can look like :

The system is NOT Satisfiable.

User input variables count = 8

User internal variables count = 30
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Appendix A. Running BRSat

Temporary variables count = 40
Total variables count = 78
Saturation split count = 8

Total split count = 8

Total run time is 3.969 CPU second.
while the debug verbosity level gives more information about the stage in which the

sat solver is performing.

-initial_split_depth: The default value is 1. < number > determines the start-

ing saturation depth.

-max_split_depth: The default value is 3. < number > determines the maximal

saturation depth.
-time: < number > determines the global timeout of the run in CPU seconds.

-intersect: The default value is basic. The switch determines the intersection
operation which is going to be performed in the saturation level. none means that
no saturation is going to be performed. basic means that simple intersection on the
Bin-Lin system is going to be performed, and gauss means that Gauss elimination
is going to be applied on the linear system before the intersection while Horn means
that Horn clauses based learning is going to be applied on the Binomial system
before the intersection. advanced means that a combination of Gauss elimination
and Horn based learning is going to be applied on the Bin-Lin system before the

intersection.

-help: Simply shows the switches and a brief description about everyone of them.
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Appendix B

The .br format

Formula —  TRUE
| FALSE

| variable

| ~ Formula

| ( Formula )

| Formula + Formula
| Formula & Formula
|

Formula # Formula

De fintionLine — variable := Formula
DefintionSection —» DefintionLine
| De fintionSection
SatProblem — defintions:
De fintionSection

satisfy: variable

Where variable := [a-zA-Z] [a-zA-Z0-9[] .-]*
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Appendix C

Overview of the Source Code

BRSAT consists of the following source files:

buffer.h/c
Auxiliary functions for implementing a buffer data structure.
table.h/c
Auxiliary functions for implementing a table data structure, including hash
functions manipulations.
utils.h/c
Global auxiliary functions.
timer.h/c
Auxiliary functions for controlling the timeout mechanism, including defining,
starting and stopping a timer.
IR.h/c
Functions responsible for converting the input file to an Internal Format (IR)
which is going to be transformed to a Bin-Lin representation.
binlin.h/c
Functions for manipulating the Bin-Lin representation of the formula.
variable.h/c
Definitions of variables which are mainly used during loading the input file.
monom.h/c
Monom definition and manipulation functions.

fomrula.h/c
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Formula definition and manipulation functions.
equation.h/c

Equation definition and manipulation functions.
hornclauses.h/c

The Horn graph data structure and the learning functions.
brsat.h/c

Main sat solver algorithms and verification manager.
main.c

Main of the program. Includes initialization and call to BRSat main functions.
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