
Graph-Based Operational Semantics
Nachum Dershowitz

A graph-based low-level, generic specification language for asynchronous algorithms is
proposed, and a graph-based operational semantics for generic programs is elucidated. The
graphs incorporate vertices for atomic events and edges indicating control flow alongside
edges for data flow.

The basic atomic actions are reads, writes, tests, and choices. They are (quasi-) ordered by
control edges. Data edges carry values from whence they are produced to where they are
consumed. States are characterized by logical structures, so the actions refer to the current
interpretations of operations in the structure. The control order of a computation is dictated
by two considerations: Values must be retrieved before they can be used, and references to
the same unchanged location should yield the same values.

The suggested formalism allows one to infer, not just input-output behavior nor only what
events took place, but also how often and in what order they transpired. It may be applied to
illuminate the different possible semantics of Dijkstra’s guarded commands. In particular,
there is no obligation to evaluate all guards before proceeding.

Inspiration was derived from the work of the Gilbreths, Turing, Petri, Gurevich, and many
others.

