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Abstract

Weshowhow acoustic prosodic features, such as pitch and gaps, can be used computationally for detecting
symptoms of schizophrenia from a single spoken response. We compare the individual contributions of
speech and text modalities to the determination whether the speaker has schizophrenia. Our classification
results clearly show that the prosodic features capture more information than the linguistic ones. We find
that, when combined with those prosodic features, linguistic features improve classification only slightly.
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Chapter 1

Introduction

Schizophrenia is an acute mental disorder characterized by delusions, hallucinations, and thought disorders.
Thought disorders are disturbances in the normal way of thinking, typically presented as various language
impairments, such as disorganized speech, which is related to abnormal semantic associations between words
[Aloia et al., 1998]. These include the following: (1) poverty of speech; (2) pressure of speech, fast, loud
and hard-to-follow responses; (3) “word salad”, random-word selection at times; (4) derailment, moving
from one topic to another during a conversation; and (5) tangentiality, providing an irrelevant response,
never reaching the answer to a question. Andreasen [1979] supplies some statistics for symptoms of thought
disorder, with the most common being derailment, loss of goal, poverty of content, and tangentiality.

Diagnosing thought disorders is performed by clinicians and mental-health professionals, typically by
means of a conversation. This is an arduous and subjective process. Mental-health professionals are on
constant lookout for objective computational assessment tools that can help identify whether a person is
showing signs of thought disorders.

There have been previous attempts at developing computational tools for analyzing language with the
goal of detecting symptoms of mental-health disorders; we describe some of those works in the following
section. Generally speaking, speech and text are the two modalities of a human language that can be
processed and analyzed for the diagnosis of mental-health disorders. For this purpose, processing speech is
typically done for the purpose of modeling the prosody by extracting features related to intonation, stress
and rhythm. One of the most popular prosodic symptoms is flattened intonation, or aprosody, which is
interpreted as inability of a person to properly convey emotions through speech. This is a negative symptom
of schizophrenia. Another negative symptom that is associated with speech is alogia, or poverty of speech,
presented as very minimal speech. Metaphorically, it has been claimed [Cherry, 1964, Spoerri, 1966] that
patients with schizophrenia sometimes sound like a person talking on the phone, referring to the low-quality
aspect of the voice, sometimes referred to as a “creaky” voice. Cohen et al. [2013] associate acoustic-based
analysis of speech, generally speaking, with clinically-rated negative symptoms, while associations with
positive symptoms have been found to be inconsistent.
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Prosody may reflect elements of language that are not encoded by grammar or by choice of vocabulary.
On the other hand, the transcription of speech is typically processed for capturing linguistic and semantic
characteristics of the conversation.

In this work, we study the salience of prosodic (from speech) and linguistic (from text) features, for the
classification task of automatically detecting whether a given utterance was generated by someone who is
diagnosed with schizophrenia, or by control. To do that, we measure the contribution of each set of features
once when used individually for classification, and again when both sets are combined together.

Our dataset comprises transcribed interviews, collected from nativeHebrew-speaking inpatients officially
diagnosedwith schizophrenia at amental health center in Israel, and from a demographically balanced control
group. The prosodic features that we use are based on pitch, which we extract using an audio processor.
The linguistic features are extracted from the transcription of the audio files, and are designed to capture
symptoms such as derailment and incoherence, following a previous work [Bar et al., 2019] that has shown
the efficacy of such features when used in a similar classification task.

Prosodic features have been computationally examined previously and were shown to be effective for
detecting schizophrenia—for example by Kliper et al. [2010, 2015] for English speech. For Chinese, Huang
et al. [2022] combined prosodic features with linguistic features for assessing the severity of thought disorders
in examined schizophrenia patients.

However, none of these works compare the individual contributions to classification of each of the
modalities when used in combination.

Our contribution is twofold: (1) We show how acoustic prosodic features can be used for detecting
symptoms of schizophrenia from only a single spoken response, given in Hebrew; and (2) we measure the
individual contribution of both speech and text modalities to the task of detecting whether the person who
generated a given utterance has schizophrenia or not. Our classification results clearly show that the acoustic
prosodic features capture more information than the linguistic ones. When combined with those prosodic
features, linguistic features improve classification only slightly.
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Chapter 2

Related Work

The extensive literature about language characteristics and schizophrenia is examined in [Covington et al.,
2005]. The authors distinguish between two types of language impairment among patients with schizophre-
nia: thought disorder—defined as disturbances in the normal way of thinking, and schizophasia—comprising
various dysphasia-like impairments such as clanging, neologism, and unintelligible speech. They also claim
that patients with thought disorders produce and perceive sounds in an abnormal way, manifesting as flat
intonation or unusual voice quality. Hoekert et al. [2007] conducted a meta-analysis of 17 studies between
1980 and 2007. They found that prosodic expression of emotions is significantly impaired with schizophre-
nia. Martínez-Sánchez et al. [2015] compared the speech of 45 medicated schizophrenia patients and 35
healthy controls, all native Spanish speakers from Spain. The results revealed that patients paused more,
talked more slowly, and showed less variability in speech and fewer variations in syllable timing. [Alpert
et al., 2000] examined whether “flat affect”, defined as emotionless speech, which is one of the symptoms of
schizophrenia, indicates an emotional deficiency or whether this is only a communication issue. They did
not find evidence for impairment in any other aspect of emotion expression besides prosody.

There is a large body of work that studies the efficacy of computational approaches for diagnosis of
mental-health disorders. We continue by listing some related work that use computational tools to process
acoustic speech signals for diagnosis of mental-health disorders, followed byworks that use natural-language-
processing (NLP) tools for analyzing speech transcriptions for the same purpose.

In a systematic review [Low et al., 2020] that analyzes 127 studies, the authors conclude that speech
processing technologies could aid mental-health assessment; however, they mention several caveats that
need to be addressed, especially the need for comprehensive transdiagnostic and longitudinal studies. Given
the diverse types of datasets, feature extraction procedures, computational methodologies, and evaluation
criteria, they provide guidelines for both data acquisition and building machine-learningmodels for diagnosis
of mental-health disorders.

Kliper et al. [2015] trained a support vector machine (SVM) classifier that gained about 76% accuracy
in a binary classification task of identifying people with schizophrenia and controls, using acoustic features.
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The study population comprised 62 English-speaking participants, divided into three groups: patients with
schizophrenia, patients with clinical depression, and healthy controls. In a three-way classification task
over the three groups, their classifier achieved about 69% accuracy. Every participant was interviewed and
recorded by a mental health professional. Each recording was divided into segments of two minutes each,
which were subsequently analyzed independently. Each recording was represented by nine acoustic features
based on pitch and power, which were automatically extracted using tools similar to those that we use in this
work.

Dickey et al. [2012] study prosodic abnormalities in patients with schizoid personality disorder (SPD).
Their experimental results showed that SPD patients speak more slowly, with more frequent pauses, and
exhibited less pitch variability than control participants.

A new algorithm to detect schizophrenia was proposed by He et al. [2021] based on a classifier that uses
three new acoustic prosodic features. On a dataset comprised of 28 schizophrenia patients and 28 healthy
controls, they measured classification accuracy between 89.3% and 94.6%.

Agurto et al. [2020] predict psychosis in youth using various acoustic prosodic features, such as pitch-
related and Mel-frequency cepstral coefficients (MFCC). They analyzed the recorded speech of 34 young
patients who were diagnosed to be at high risk of developing clinical psychosis. Among other things that
they showed, they trained a classifier that can predict the development of psychosis with 90% accuracy,
outperforming classification using clinical variables only.

There has been an increasing number of works that computationally process speech transcriptions
for detecting symptoms of schizophrenia. Specifically, measuring derailment and tangentiality has been
addressed several times. For example, Elvevåg et al. [2007] analyzed transcribed interviews of inpatients
with schizophrenia by calculating the semantic similarity between the response given the participants and the
question that was asked by the interviewer. For similarity they used cosine similarity over the latent semantic
analysis (LSA) vectors [Deerwester et al., 1990] calculated for each word, and summed across a sequence
of words. Similarly, Bedi et al. [2015] use cosine similarity between pairs of consecutive sentences, each
represented by the element-wise average vector of the individual words’ LSA vectors, to measure coherence.
Using this score they automatically predicted transition to psychosis with 100% accuracy. Iter et al. [2018]
showed that removing some functional words from the transcriptions improves the efficiency of using cosine
similarity over LSA vectors for measuring derailment and incoherence.

This direction was developed further by Bar et al. [2019], who used fastText vectors [Bojanowski
et al., 2016] to measure derailment in a study group that included 24 schizophrenia patients and 27 healthy
controls, all native Hebrew speakers. Furthermore, they developed a new metric for measuring some aspects
of incoherence, which compares the adjectives and adverbs that are used by patients to describe some nouns
and verbs, respectively, with the ones used by the control group. As a final step, they used derailment and
incoherence scores as features for training a classifier to separate the two study subgroups. In this work,
we study a similar group of Hebrew-speaking male schizophrenia patients and healthy controls; therefore,
we use some of the same linguistic features suggested in that prior work to measure their contribution when
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combined with acoustic features.
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Chapter 3

Methodology

3.1 Participants and Data Collection

We interviewed 49 men, aged 18–60, divided into control and patient groups, all speaking Hebrew as their
first language. The patient group includes 23 inpatients from the Be’er Ya’akov–Ness Ziona Mental Health
Center in Israel who were admitted following a diagnosis of schizophrenia. Diagnoses were made by a
hospital psychiatrist according to the DSM5 criteria (American Psychiatric Association, 2013) and a full
psychiatric interview. Each participant was rewarded with approximately US$8. The control group includes
26 men, mainly recruited via an advertisement that we placed on social media. Exclusion criteria for all
participants were as follows: (1) participants whose mother tongue is not Hebrew; (2) having a history of
dependence on drugs or alcohol over the past year; (3) having a past or present neurological illness; and (4)
using fewer than 500 words in total in their transcribed interview. Additionally, the control group had to
score below the threshold for subclinical diagnosis of depression and post-traumatic stress disorder (PTSD).
Most of the control participants scored below the threshold for anxiety. Most of the patients scored above
the threshold for borderline or mild psychosis symptoms on a standard measure.∗ See Section 3.2 for more
information about the measures we use in this study.

The demographic characteristics of the two groups are given in Table 3.1.
The patients were interviewed in a quiet room at the department where they are hospitalized by one of

our professional team members, and the control participants were interviewed in a similar room outside the
hospital. Each interview lasted approximately 60 minutes. The interviews were recorded and later manually
transcribed by a native Hebrew speaking student from our lab. All participants were assured of anonymity,
and told that they are free to end the interview at any time. Our research was approved by the Helsinki
Ethical Review Board (IRB) of the Be’er Ya’akov-Ness Ziona Mental Health Center.

After signing a written consent, each participant was asked to describe 14 black and white images picked
from the Thematic Appreciation Test (TAT) collection. We used the TAT images identifiedwith the following

∗Our patient group is composed of inpatients who are being treated through medications; therefore, higher scores were not
expected.
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Table 3.1: Demographic characteristics by group. *p<.05; **p<.005.

Control Patients Statistics
Subjects (N) 25 23
Age mean (SD) 33.15 (9.98) 25.46 (6.39) t = 3.24**
Years of education mean (SD) 11.96 (0.20) 11.21 (1.12) t = 3.41**
Place of residence (frequencies) χ2(3, 49) = 8.29*
Southern Israel 1 7
Central Israel 21 16
Northern Israel 2 0
Jerusalem 1 0

Marital status (frequencies) χ2(1, 47) = 0.08, p = .77
Single 4 3
Married 21 20

PANSS positive subscale 8.96 ± 3.85
PANSS negative subscale 8.38 ± 3.91
PANSS total subscale 17.34 ± 6.29

serial numbers: 1, 2, 3BM, 4, 5, 6BM, 7GF, 8BM, 9BM, 12M, 13MF, 13B, 14, and 3GF. These include
a mixture of men and women, children, and adults. The images were presented one by one. Each picture
stands by itself, was presented alone, and bears no relation to the other pictures. Participants were asked to
tell a brief story about each image based on four open questions:

(i) What led up to the event shown in the picture?
(ii) What is happening in the picture at this moment?
(iii) What are the characters thinking and feeling?
(iv) What is the outcome of the story?

The interviewer remained silent during the respondent’s narration and offered no prompts or additional
questions.

After describing the images, the participant was also asked to answer four open-ended questions, one by
one:

(1) Please tell me as much as you can about your bar mitzvah.†

(2) What do you like to do, mostly?
(3) What are the things that annoy you the most?
(4) What would you like to do in the future?

As before, the interviewer remained silent during the respondent’s narration and offered no prompts or
questions.

Once all 18 components (14 image descriptions and 4 open questions) were answered, each participant
was requested to fill in a demographic questionnaire as well as some additional questionnaires for assessing
mental-health symptoms, which we describe in the following subsection.

†The Jewish confirmation ceremony for boys upon reaching the age of 13.
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3.2 Symptom Assessment Measures

3.2.1 Control group

The control participants were assessed for symptoms of depression, PTSD, and anxiety.

Depression. Symptoms of depression were assessed using Beck’s Depression Inventory-II (BDI-II) [Beck
et al., 1996]. The BDI-II is a 21-item inventory rated on a 4-point Likert-type scale (0 = “not at all” to 3
= “extremely”), with summary scores ranging between 0 and 63. Beck et al. [1996] suggest a preliminary
cutoff value of 14 as an indicator for mild depression, as well as a threshold of 19 as an indicator for moderate
depression. BDI-II has been found to demonstrate high reliability [Gallagher et al., 1982]. We used a Hebrew
version [Hasenson-Atzmon and Hermesh, 2016].

PTSD. Symptoms of PTSD were assessed using the PTSD checklist of the DSM-5 (PCL-5) [Weathers
et al., 2013]. The questionnaire contains twenty items that can be divided into four subscales, corresponding
to the clusters B-E in DSM-5: intrusion (five items), avoidance (two items), negative alterations in cognition
and mood (seven items), and alterations in arousal and reactivity (six items). The items are rated on a 5-point
Likert-type scale (0 = “not at all” to 4 = “extremely”). The total score ranges between 0 and 80, provided
along with a preliminary cutoff score of 38 as an indicator for PTSD. PCL-5 has been found to demonstrate
high reliability [Blevins et al., 2015]. We used a Hebrew translation of PCL-5 [Bensimon et al., 2013].

Anxiety. Symptoms of anxietywere assessed through the State Trait Anxiety Inventory (STAI) [Spielberger
et al., 1970]. The STAI questionnaire consists of two sets of twenty self-reporting measures. The STAI
measure of state anxiety (S-anxiety) assesses how respondents feel “right now, at this moment” (e.g., “I feel
at ease”; “I feel upset”), and the STAI measure of trait anxiety (T-anxiety) targets how respondents “generally
feel” (e.g., “I am a steady person”; “I lack self-confidence”). For each item, respondents are asked to rate
themselves on a 4-point Likert scale, ranging from 1 = “not at all” to 4 = “very much so” for S-anxiety, and
from 1 = “almost never” to 4 = “almost always” for T-anxiety. Total scores range from 20 to 80, with a
preliminary cutoff score of 40 recommended as indicating clinically significant symptoms for the T-Anxiety
scale [Knight et al., 1983]. STAI has been found to have high reliability [Barnes et al., 2002]. We used a
Hebrew translation [Saka and Gati, 2007].

3.2.2 Patients

Psychosis symptoms were assessed by the 6-item Positive And Negative Syndrome Scale (PANSS-6) [Øster-
gaard et al., 2016]. The original 30-item PANSS (PANSS-30) is the most widely used rating scale in
schizophrenia, but it is relatively long for use in clinical settings. The items in PANSS-6 are rated on a
7-point scale (0 = “not at all” to 6 = “extremely”). The total score ranges from 0 to 36, with a score of
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14 representing the threshold for mild schizophrenia, and a score between 10 and 14 defined as borderline
disease or as remission. PANSS-30 has been found to demonstrate high reliability [Lin et al., 2018], while
Østergaard et al. [2016] reported a high correlation between PANSS-6 and PANSS-30 (Spearman correlation
coefficient = 0.86). We used the Hebrew version of PANSS-6 produced by Katz et al. [2012]. The range of
positive and negative symptoms are presented in Table 1.

3.3 Data Analysis

We analyse the data using two modalities, audio and text. All the interviews were recorded with a voice
recorder, which was placed on the table next to the participant. The responses of the participants for each
of the 18 interview components were recorded separately, and stored as individual files in Waveform Audio
File Format (WAV). Each response was manually transcribed. We extracted prosodic features from the audio
signal, as well as linguistic features from the corresponding transcriptions.

3.3.1 Prosodic Acoustic Features

Weprocessed eachWAVfilewith PRAAT [Boersma, 2011], a computer software package for speech analysis,
in order to extract pitch and intensity per 10ms frame. We distinguish between speech and non-speech frames
by automatically annotating as speech those frames with a detected fundamental-frequency (F0) value below
250 Hz.

EachWAV file, corresponding to a response to a single image/question, is now represented by a sequence
of speech frames, each represented by a pair of pitch and intensity values. We extract nine feature types from
each response; to avoid overfitting, we filter out responses representing less than 10 seconds worth of speech.
Therefore, we work with a dataset containing 449 responses given by controls and 409 responses given by
patients. Following previous work on computational prosodic analysis [Kliper et al., 2015], we extracted the
following set of features:

Mean Utterance Duration (MUD). Every segment of at least 500ms of continuous speech is defined as
an utterance. MUD is the mean duration (in milliseconds) of all the utterances in a given response.

Mean Gap Duration (MGD). A gap is defined as a time interval containing no speech. MGD is the mean
length (in milliseconds) of all gaps in a given response.

Mean Spoken Ratio (MSR). The sum of all utterances’ duration divided by the total response duration.

Mean Spoken Ratio Samples (MSRS). The number of frames that are classified as speech, divided by
the total number of frames in the response.
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Table 3.2: Mean (SD) values of all prosodic features. *p < .05; ***p < .001.

Feature Control mean (SD) Patient mean (SD) t-test p
MUD 0.798 (0.101) 0.629 (0.162) 4.143 < 0.001***
MGD 0.240 (0.066) 0.954 (0.990) −3.602 < 0.001***
MSR 0.289 (0.118) 0.124 (0.087) 5.496 < 0.001***
MSRS 0.563 (0.100) 0.311 (0.138) 7.254 < 0.001***
MP 129.202 (22.113) 125.422 (21.274) 0.602 0.550
PR 1.148 (0.153) 0.906 (0.196) 4.809 < 0.001***
PS 21.579 (5.517) 19.411 (7.370) 1.160 0.252
MWC 0.581 (0.096) 0.483 (0.147) 2.750 0.009*
J 0.008 (0.002) 0.007 (0.002) 2.066 0.044*

Mean Pitch (MP). The mean pitch values (in Hz) of all frames recognized as speech in a given response.

Pitch Range (PR). The maximum value of pitch of all frames recognized as speech, minus their minimum
value, and divided by MP for normalization. It is measured in Hz.

Pitch Std (PS). The standard deviation of pitch values (in Hz) of all frames recognized as speech in a given
file.

Mean Waveform Correlation (MWC). The Pearson correlation between a sequence of pitch values of
speech frames and a sequence of pitch values of their consecutive frames.

Jitter (J). The local deviation from stationarity of the pitch. Formally, let R be the number of speech
frames, and let p(v) be the pitch value of the vth frame. We define J as follows:

J B
1

R − K

R−K−1
2 −1∑

v=K−1
2

p(v) − 1
K

∑K−1
2

k=−K−1
2

p(v + k)∑K−1
2

k=−K−1
2

p(v + k)

K is a locality parameter; it was set to 5 in all our experiments.
We did not extract features that are based on intensity, sincewe noticed some differences in the background

noise between the recordings of the control participants and the patients, probably due to differences in room
settings and recording equipment.

We verified that all our features are distributed normally, as expected, and performed t-tests to measure
the difference in feature expression between patients and controls. The results are summarized in Table 3.2.
As can be seen, most features are distributed significantly differently for patients and controls. However, the
mean and standard deviation of the pitch values seem to be similar in the two groups.
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3.3.2 Linguistic Features

We extract the same linguistic features that have been used by Bar et al. [2019] on a similar dataset.
Essentially, they designed two types of features for capturing specific symptoms of thought disorder.

Derailment. The first type is designed to capture derailment, which is a symptom of thought disorder when
the speaker digresses from the main topic. Technically speaking, we represent words using static embeddings
provided by fastText [Grave et al., 2018] for Hebrew. For each response, we retrieve the fastText
vector vi for every word Ri, i = 0..n, in the response. Then, for each word, we calculate a score defined
as the average pairwise cosine similarity between this word and the k following words, with k a variable
parameter. The score of a response is the average of all the individual cosine-similarity scores. To filter
out functional words that do not contribute to the topical mutation assessment, we follow [Bar et al., 2019]
by pre-processing each response with a Hebrew part-of-speech tagger [Adler, 2007] and keep only content
words, which we take to be nouns, verbs, adjectives, and adverbs.

We calculate derailments for k = 1..6, thereby extracting six derailment features per response.

Incoherence. One of the most informative features reported in [Bar et al., 2019] was designed to capture
some aspects of discourse related to incoherence. Specifically, this feature examines the way patients use
adjectives to describe specific nouns. The goal is to measure the difference between adjectives used by
patients and the ones used by controls when describing the same nouns. Technically speaking, we process
each response with YAP [More and Tsarfaty, 2016], a dependency parser for Modern Hebrew, to find all
noun-adjective pairs (indicated by the amod relation). To measure the difference between adjectives that
are used by patients and controls, we compare them to the adjectives that are commonly used to describe
the same nouns and verbs. To do that, following the above-mentioned work, we use an external corpus of
health-related documents and forums, all written in Hebrew, containing nearly 680K words.‡ We process
each document in exactly the same way to find all noun-adjective pairs. Given a list of noun-adjective pairs
from one response, we calculate the similarity score between every adjective that describes a specific noun
and the set of adjectives describing exactly the same noun across the entire external corpus. Hebrew enjoys
a rich morphology; therefore, we work on the lemma (base-form) level. The lemmata are provided by YAP.
We take the fastText vectors of the adjectives that were extracted from the external corpus and average
them, element wise, into a single vector by assigning weights to each individual vector. The weights are
the inverse-document-frequency (idf) score of each adjective, to account more heavily for adjectives that
describe the noun more uniquely. Then, we take the cosine similarity between each adjective from the
response and the aggregated vector of the adjectives from the external corpus. For each response, we take
the average of the individual adjective cosine-similarity scores as the overall response incoherence score.

As before, we verified that all our features are distributed normally and performed t-tests to measure
the difference in feature expression between patients and controls. The results are summarized in Table 3.3.

‡We use exactly the same sources used in [Bar et al., 2019].
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Table 3.3: Mean (SD) values of the linguistic features.

Feature Control mean (SD) Patient mean (SD) t-test p
Derailment 1 0.247 (0.011) 0.239 (0.017) 1.797 0.080
Derailment 2 0.237 (0.015) 0.236 (0.013) 0.102 0.918
Derailment 3 0.233 (0.015) 0.231 (0.017) 0.297 0.768
Derailment 4 0.229 (0.015) 0.226 (0.021) 0.522 0.605
Derailment 5 0.227 (0.016) 0.226 (0.016) 0.331 0.742
Derailment 6 0.225 (0.016) 0.225 (0.016) 0.006 0.995
Incoherence 0.520 (0.062) 0.502 (0.070) 0.931 0.357

In contrast with the outcomes in [Bar et al., 2019], we see no evidence for different distributions of each
individual linguistic feature between the two groups.

3.4 Classification

We train a two-way machine-learning classifier to distinguish between responses that were generated by
patients and controls. Each response is used as a classification instance, assigned either a patient or control
label depending on the group to which the subject who generated the response belongs. Overall we have
449 responses generated by controls and 409 responses by patients. We ran three sets of experiments: (1)
using only the acoustic features (Acoustic); (2) using only the linguistic features (Linguistic); and, (3) using
both feature sets (Combined). Consequently, each response is represented by a nine-dimensional vector in
the first set of experiments, a seven-dimensional vector in the second set, and a 16-dimensional vector in the
third set of experiments.

For classification, we used three traditional machine-learning algorithms: XGBoost [Chen and Guestrin,
2016], Random Forest [Liaw et al., 2002], and Linear SVM [Cortes and Vapnik, 1995].
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Chapter 4

Results

We measured the classification results using accuracy and the F1 score of the patient label. For each
classifier, we ran five evaluations, each time taking a five-fold cross-validation approach. Every evaluation
had a different random seed, which was kept similar across all classifiers. The five results were calculated
as the average over the five evaluation runs. The results, divided into the three feature sets, are presented in
Table 4.1.

Overall XGBoost delivers the best classification results. It reaches the highest accuracy and F1 scorewhen
using the set of acoustic features. When using only the linguistic features, all the classifiers perform more
poorly. Furthermore, combining the linguistic features with the acoustic ones did not result in performance
improvement, suggesting that the contribution of the linguistic features to the classification performance on
our dataset is limited and redundant when pitch-based acoustic features are used for detecting symptoms of
schizophrenia. The lesser success with linguistic features may in part be due to the inherent difficulty of
accurately measuring semantic features like derailment and incoherence computationally.

Our best accuracy for the two-way classification task is around 90%, which is higher than the best

Table 4.1: Classification results.

Feature Set Classifier Accuracy (SD) Precision (SD) Recall (SD) F1 (SD)
Acoustic Random Forest 86.8 (4.2) 82.6 (5.3) 85.0 (5.4) 82.2 (4.7)
Acoustic XGBoost 91.4 (0.7) 97.0 (0.4) 86.0 (2.7) 88.9 (1.4)
Acoustic Linear SVM 88.1 (3.0) 91.1 (2.9) 83.0 (4.5) 84.8 (3.5)
Linguistic Random Forest 65.0 (4.7) 66.5 (5.6) 45.9 (4.2) 51.4 (4.6)
Linguistic XGBoost 63.1 (4.8) 64.3 (5.7) 60.6 (4.8) 59.5 (5.4)
Linguistic Linear SVM 73.4 (2.7) 74.0 (5.0) 65.3 (4.9) 66.3 (3.6)
Combined Random Forest 90.7 (2.0) 94.5 (1.6) 89.6 (2.8) 90.0 (1.8)
Combined XGBoost 88.5 (1.0) 92.9 (3.5) 82.6 (3.4) 84.9 (2.5)
Combined Linear SVM 88.4 (2.0) 87.9 (4.6) 82.0 (3.7) 83.4 (3.8)

13



D
er
.1

D
er
.2

D
er
.3

D
er
.4

D
er
.5

D
er
.6

In
co
.

M
U
D

M
G
D

M
SR

M
SR

S

M
P PR PS

M
W
C J

80

85

90

82.9 83.3 83.6 83.3
84.3

84.9 85.3
86.04

82.7

87.4

80.6

85.2
84.3

86.8 86.4
85.7

Figure 4.1: Ablation study: F1 (y axis) scores of the Combined XGBoost classifier by removing one feature
from the data at a time, as indicated by the x axis. Der. = Derailment; Inco. = Incoherence.

accuracy of about 76% reported by Kliper et al. [2015] using a similar set of acoustic features for the same
two-way classification task with an English-speaking population.

To measure the correlation between all the individual features, we calculate Pearson ρ values, and show
the as a heat map in Figure 4.2. Unsurprisingly, we see a strong correlation between all the linguistic
derailment features, which make them somewhat redundant for classification. Among the acoustic features,
we see a stronger correlation between the standard deviation of the pitch and the mean waveform correlation.
Generally speaking, both represent the dynamics of the pitch in speech frames. Similarly, and unsurprisingly,
mean spoken ratio is strongly correlated with mean spoke ratio samples; both represent the ratio between
the time in which actual speaking is taking place, and the overall time of the response. Naturally, mean gap
duration has a negative correlation with all the features that measure speaking duration. However, we do not
see any significant correlation between the acoustic features and the linguistic ones. Nonetheless, as seen in
Table 4.1, the linguistic features did not contribute new information for classification not already covered by
the acoustic features.
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Figure 4.2: Pearson ρ between all individual features, presented as a heat map.

15



Chapter 5

Conclusion

We have extracted features from two modalities of Hebrew speech produced by schizophrenia patients during
interviews and compared it with those of controls. Specifically, we extracted acoustic, prosodic features from
the audio signal, as well as linguistic features of transcriptions of the interview that measure derailment and
incoherence. Our main goal was to measure the contribution of each modality to classification performance,
when used in combination. Generally speaking, we find that a traditional classification algorithm can nicely
separate between the two groups, schizophrenia patients and healthy controls, with best accuracy of about
90%, which is better than the results that have been previously reported. The results also show that the
linguistic features do not add much to classification performance when they are combined with the acoustic
features that measure aspects of prosody.
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 תקציר:
אנחנו מראים איך מאפיינים פרוזודיים, כגון גובה טון ואורך הברה בדיבור, יכולים לעזור למחשב 

 לזהות סימפטומים של סכיזופרניה מתגובה של אדם בודד.

 אנחנו משווים את התרומה של מודלי דיבור וטקסט על הזיהוי האם לאדם נתון יש סכיזופרניה.

פיינים פרוזודיים שובים יותר מידע מאשר מאפיינים התוצאות שלנו מראות בצורה מובהקת שמא

 הקשורים לתוכן של הדיבור)מאפיינים שפתיים(.

אנחנו מוצאים שכאשר משווים למאפיינים פרוזודיים, המאפיינים השפתיים תורמים רק במעט לזיהוי 

 סכיזופרניה.
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