Types

## Lambda Terms

- Variables: x y z...
- Abstractions (function creation):  $\lambda x.M$ 
  - $\lambda x.M: x \mapsto M[x]$
  - parameter x; body M
- Applications: MN
  - meaning M(N)

# Currying

- Unary functions suffice
- Instead of M(X,Y) use M(X)(Y)
  - Applying M to X and then applying result to Y
  - Often written as MXY
  - Understood as (MX)Y
  - +13 means (+1)3, where +1 increments any number

### Beta

Apply an abstraction to a term

- $(\lambda x.M[x,x,...,x])N \Rightarrow M[N,N,...,N]$ 
  - replace all free occurrences of x in M with N

#### Combinatory Logic

$$Sxyz = (xz)(yz)$$

$$Kxy = x$$

 $|\mathbf{X}| = \mathbf{X}$ 

#### Combinatory Rewriting

#### $Sxyz \Rightarrow (xz)(yz)$

Kxy ➡ x



#### I Combinator

Kxy ➡ x

- $(SKK)x \Rightarrow (Kx)(Kx) \Rightarrow x$
- Let I = SKK

#### Y Combinator

Yz = z(Yz)

 $\mathsf{S}(\mathsf{K}(\mathsf{SII}))(\mathsf{S}(\mathsf{S}(\mathsf{KS})\mathsf{K})(\mathsf{K}(\mathsf{SII})))$ 

Lemma: SIIx = xx

S (K(SII)) (S(S(KS)K)(K(SII))) z (K(SII))z (S (S(KS)K) (K(SII)) z) SII (S(KS)Kz (K(SII) z) SII ((KS)z(Kz) (SII)) SII (S(Kz)(SII))

. . .

## Base Types

- Integers
- Booleans
- Characters
- Floating point

## Polymorphic Types

- Lists (of anything)
- Stacks
- Trees
- •

## Function Types

- Program  $N \rightarrow N$
- Interpreter  $(N \rightarrow N) \times N \rightarrow N$
- Compiler  $(N \rightarrow N) \rightarrow (A \rightarrow A)$

## Arrow Types

- Notation
  - $t: \tau$  (term t has type  $\tau$ )
- Suppose x :  $\sigma$  and t :  $\tau$ 
  - $\lambda x.t: \sigma \rightarrow \tau$
- Suppose s :  $\tau \rightarrow \sigma$  and t :  $\tau$ 
  - st : σ

#### Nontermination

#### $(\lambda x.xx)(\lambda x.xx)$ rewrites to itself

•  $(\lambda X.XX)(\lambda X.XX) \Rightarrow (\lambda X.XX)(\lambda X.XX)$ 

#### Nontermination

What kind of function may be applied to itself?

- interpreter
- partial evaluator
- compiler
- compiler-compiler
- compiler-compiler-compiler

# Well-Typed Terms

- Lambda terms
  - \
- Some terms can be typed
  - \
- Some cannot



# Well-Typed Terms

- Have normal forms
  - Easy (Turing)
- Have no immortal (nonterminating) reductions
  - Hard (Tait)

## **Termination Properties**

- s is terminating iff all t, such s > t, are terminating
- If (st) is terminating, then s and t are
- If t is terminating, then (xt) is
- If s and t[s] are terminating, then  $(\lambda x.t)$ s is

## Computability

- A term of <u>base</u> type is computable iff it is terminating.
- A term of <u>arrow</u> type is computable if applying it to a computable term always gives a computable term.

### Lemmata

- 1: If t is computable, then it is terminating.
- 2: If s[t] is computable and t is terminating, then (λx.s)t is computable.
- 3: If substitution  $\alpha$  is computable, then so is sa.

## Theorem

• Every (typeable) term is computable, hence, terminating.

• Proof: Empty α.

## Lemmata

- 1: If t is computable, then it is terminating.
  - By induction on type structure.
- 2: If s[t] is computable ..., then  $(\lambda x.s)t$  is.
  - By induction on type structure.
- 3: If substitution  $\alpha$  is computable, then so is sa.
  - By induction on term structure.

- a: If s,...,t are terminating, then w=xs...t is computable.
- b: If w is computable, then it is terminating.

## Lemma 1: Base

- a: If s,...,t are terminating, then w=xs...t is computable.
- b: If w is computable, then it is terminating.
- w : base type
  - a: xs...t is terminating, hence computable
  - b: by definition

## Lemma 1: Arrow

- a: If s,...,t are terminating, then w=xs...t is computable.
- b: If w is computable, then it is terminating.
- W:  $\sigma \rightarrow \tau$ 
  - a: xs...tu :  $\tau$  is computable by induction
  - b: By def. wv : τ is computable for computable v : σ. By ind. wv terminating; so w is.

 If s[t] is computable and t is terminating, then (λx.s[x])t is computable.

- Given: s[t] is computable, t terminating.
  - By L1b, s[t] is terminating.
  - Hence s[x] is also terminating.

- Consider any computable u<sub>1</sub>,...,u<sub>n</sub> (of appropriate type) such that (λx.s[x])tu<sub>1</sub>...u<sub>n</sub> is basic (n≥0).
- We need to show (λx.s[x])tu<sub>1</sub>...u<sub>n</sub> terminating, hence computable (by def.).
- Computability of each prefix (λx.s[x])tu<sub>1</sub>...u<sub>i</sub> will follow.

- We need to show  $(\lambda x.s[x])tu_1...u_n$  terminating.
- s[t] is computable; so s[t]u<sub>1</sub>...u<sub>n</sub> is also (by def.) computable and terminating.
- (λx.s[x])tu<sub>1</sub>...u<sub>n</sub> ⇒ ... ⇒ (λx.s'[x])t'u'<sub>1</sub>...u'<sub>n</sub> ⇒
  s'[t']u'<sub>1</sub>...u'<sub>n</sub> which is terminating, since s[t]u<sub>1</sub>...
  u<sub>n</sub> is.

 If substitution a is computable (all the terms to which variables map are computable), then so is sa.

- If  $\alpha$  is computable, then so is sa.
  - xα is either the variable x or a computable term t
  - (uv)α = (ua)(va) both parts of which are computable by induction, and so (ua)(va) is by def.
  - Let s=(λx.t). Then sa=(λx.ta'), where a' is a without any substitution for x. Consider any computable u. By ind. ta'[x→u] is computable. By L2, (sa)u=(λx.ta')u is computable. So, by def. sa is.

## Two Dimensions



## Two Dimensions



## Two Dimensions

