
Types



Lambda Terms
• Variables: x y z… 

• Abstractions (function creation): λx.M 

• λx.M: x ↦ M[x] 

• parameter x; body M 

• Applications: MN 

• meaning M(N)



Currying
• Unary functions suffice 

• Instead of M(X,Y) use M(X)(Y) 

• Applying M to X and then applying result to Y  

• Often written as MXY 

• Understood as (MX)Y 

• +13 means (+1)3, where +1 increments any 
number



Beta

Apply an abstraction to a term 

• (λx.M[x,x,…,x])N ➨ M[N,N,…,N] 

• replace all free occurrences of x in M with N



Combinatory Logic 

Sxyz = (xz)(yz) 

Kxy = x 

Ix = x



Combinatory Rewriting 

Sxyz ➨ (xz)(yz) 

Kxy ➨ x 

Ix ➨ x



I Combinator 

Sxyz ➨ (xz)(yz) 

Kxy ➨ x 

• (SKK)x ➨ (Kx)(Kx) ➨ x 

• Let I = SKK



Y Combinator 

Yz = z(Yz) 

S(K(SII))(S(S(KS)K)(K(SII))) 

Lemma: SIIx = xx 

S (K(SII)) (S(S(KS)K)(K(SII))) z 

(K(SII))z (S (S(KS)K) (K(SII)) z) 

SII (S(KS)Kz (K(SII) z) 

SII ((KS)z(Kz) (SII)) 

SII (S(Kz)(SII)) 

…



Base Types

• Integers 

• Booleans 

• Characters 

• Floating point



Polymorphic Types

• Lists (of anything) 

• Stacks 

• Trees 

• ….



Function Types

• Program N → N 

• Interpreter (N→N) x N → N 

• Compiler (N→N) → (A→A)



Arrow Types
• Notation 

• t : 𝜏     (term t has type 𝜏) 

• Suppose x : 𝜎 and t : 𝜏 

• λx.t : 𝜎→𝜏 

• Suppose s : 𝜏→𝜎 and t : 𝜏 

• st : 𝜎



Nontermination

 (λx.xx)(λx.xx) rewrites to itself 

• (λx.xx)(λx.xx) ➨ (λx.xx)(λx.xx) 



Nontermination

What kind of function may be applied to itself? 

• interpreter 
• partial evaluator 
• compiler 
• compiler-compiler 
• compiler-compiler-compiler 



Well-Typed Terms
• Lambda terms 

• Λ 

• Some terms can be typed 

• Λ 

• Some cannot 
λx.xx



Well-Typed Terms

• Have normal forms 

• Easy (Turing) 

• Have no immortal (nonterminating) reductions 

• Hard (Tait)



Termination Properties

• s is terminating iff all t, such s ➨ t, are 
terminating 

• If (st) is terminating, then s and t are 

• If t is terminating, then (xt) is 

• If s and t[s] are terminating, then (λx.t)s is



Computability

• A term of base type is computable iff it is 
terminating. 

• A term of arrow type is computable if applying it to 
a computable term always gives a computable 
term.



Lemmata

• 1: If t is computable, then it is terminating. 

• 2: If s[t] is computable and t is terminating,            
then (λx.s)t is computable. 

• 3: If substitution α is computable, then so is sα.



Theorem

• Every (typeable) term is computable, hence, 
terminating. 

• Proof: Empty α.



Lemmata
• 1: If t is computable, then it is terminating. 

• By induction on type structure. 

• 2: If s[t] is computable …, then (λx.s)t is. 

• By induction on type structure. 

• 3: If substitution α is computable, then so is sα. 

• By induction on term structure.



Lemma 1

• a: If s,…,t are terminating, then w=xs…t is 
computable. 

• b: If w is computable, then it is terminating.



Lemma 1: Base
• a: If s,…,t are terminating, then w=xs…t is 

computable. 

• b: If w is computable, then it is terminating. 

• w : base type 

• a: xs…t is terminating, hence computable 

• b: by definition



Lemma 1: Arrow
• a: If s,…,t are terminating, then w=xs…t is 

computable. 

• b: If w is computable, then it is terminating. 

• w : 𝜎→𝜏 

• a: xs…tu : 𝜏 is computable by induction 

• b: By def. wv : 𝜏 is computable for computable 
v : 𝜎.  By ind. wv terminating; so w is.



Lemma 2

• If s[t] is computable and t is terminating, then 
(λx.s[x])t is computable.



Lemma 2

• Given: s[t] is computable, t terminating. 

• By L1b, s[t] is terminating.  

• Hence s[x] is also terminating.



Lemma 2
• Consider any computable u1,…,un (of 

appropriate type) such that (λx.s[x])tu1…un is 
basic (n≥0).  

• We need to show (λx.s[x])tu1…un terminating, 
hence computable (by def.). 

• Computability of each prefix (λx.s[x])tu1…ui will 
follow.



Lemma 2

• We need to show (λx.s[x])tu1…un terminating. 

• s[t] is computable; so s[t]u1…un is also (by def.) 
computable and terminating. 

• (λx.s[x])tu1…un  ➨… ➨  (λx.s’[x])t’u’1…u’n  ➨ 
s’[t’]u’1…u’n    which is terminating, since s[t]u1…
un is.



Lemma 3

• If substitution α is computable (all the terms to 
which variables map are computable), then so is 
sα.



Lemma 3
• If α is computable, then so is sα. 

• xα is either the variable x or a computable term t 

• (uv)α = (uα)(vα) both parts of which are 
computable by induction, and so (uα)(vα) is by def. 

• Let s=(λx.t). Then sα=(λx.tα’), where α’ is α without 
any substitution for x. Consider any computable u. 
By ind. tα’[x↦u] is computable. By L2, 
(sα)u=(λx.tα’)u is computable. So, by def. sα is.



Two Dimensions
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