Types

Lambda Terms

- Variables: x y z...
- Abstractions (function creation): $\lambda x . \mathrm{M}$
- $\lambda x . M: x \mapsto M[x]$
- parameter x; body M
- Applications: MN
- meaning $\mathrm{M}(\mathrm{N})$

Currying

- Unary functions suffice
- Instead of $M(X, Y)$ use $M(X)(Y)$
- Applying M to X and then applying result to Y
- Often written as MXY
- Understood as (MX)Y
- +13 means (+1)3, where +1 increments any number

Beta

Apply an abstraction to a term

- $(\lambda x . M[x, x, \ldots, x]) N \Rightarrow M[N, N, \ldots, N]$
- replace all free occurrences of x in M with N

Combinatory Logic

$$
\begin{gathered}
\text { Sxyz }=(x z)(y z) \\
K x y=x \\
1 x=x
\end{gathered}
$$

Combinatory Rewriting

$$
\begin{gathered}
S x y z \Rightarrow(x z)(y z) \\
K x y \Rightarrow x \\
x-x
\end{gathered}
$$

I Combinator

$$
\begin{gathered}
S x y z \Rightarrow(x z)(y z) \\
K x y \Rightarrow x
\end{gathered}
$$

- $(S K K) x \Rightarrow(K x)(K x) \Rightarrow x$
- Let I = SKK

Y Combinator

$Y Z=z(Y z)$
S(K(SII))(S(S(KS)K)(K(SII)))
Lemma: SIIx = xx
S (K(SII)) (S(S(KS)K)(K(SII))) z
(K(SII))z (S (S(KS)K) (K(SII)) z)
SII (S(KS)Kz (K(SII) z)
SII ((KS)z(Kz) (SII))
SII (S(Kz)(SII))

Base Types

- Integers
- Booleans
- Characters
- Floating point

Polymorphic Types

- Lists (of anything)
- Stacks
- Trees

Function Types

- Program $N \rightarrow \mathrm{~N}$
- Interpreter $(\mathrm{N} \rightarrow \mathrm{N}) \times \mathrm{N} \rightarrow \mathrm{N}$
- Compiler $(\mathrm{N} \rightarrow \mathrm{N}) \rightarrow(\mathrm{A} \rightarrow \mathrm{A})$

Arrow Types

- Notation
- $\mathrm{t}: \tau$ (term t has type τ)
- Suppose x: σ and $\mathrm{t}: \tau$
- $\lambda x . \mathrm{t}: \sigma \rightarrow \tau$
- Suppose s: $\tau \rightarrow \sigma$ and $\mathrm{t}: \tau$
- st : σ

Nontermination

$(\lambda x . x x)(\lambda x . x x)$ rewrites to itself

- $(\lambda x . x x)(\lambda x . x x) \Rightarrow(\lambda x . x x)(\lambda x . x x)$

Nontermination

What kind of function may be applied to itself?

- interpreter
- partial evaluator
- compiler
- compiler-compiler
- compiler-compiler-compiler

Well-Typed Terms

- Lambda terms
- ^
- Some terms can be typed
- \wedge
- Some cannot
λX. XX

Well-Typed Terms

- Have normal forms
- Easy (Turing)
- Have no immortal (nonterminating) reductions
- Hard (Tait)

Termination Properties

- s is terminating iff all t, such $s \Rightarrow t$, are terminating
- If (st) is terminating, then s and t are
- If t is terminating, then (xt) is
- If s and $t[s]$ are terminating, then ($\lambda x . t) s$ is

Computability

- A term of base type is computable iff it is terminating.
- A term of arrow type is computable if applying it to a computable term always gives a computable term.

Lemmata

- 1: If t is computable, then it is terminating.
- 2: If $\mathrm{s}[\mathrm{t}]$ is computable and t is terminating, then ($\lambda \times$.s)t is computable.
- 3: If substitution a is computable, then so is sa.

Theorem

- Every (typeable) term is computable, hence, terminating.
- Proof: Empty a.

Lemmata

- 1: If t is computable, then it is terminating.
- By induction on type structure.
- 2: If $s[t]$ is computable... , then ($\lambda x . s) t$ is.
- By induction on type structure.
- 3: If substitution a is computable, then so is sa.
- By induction on term structure.

Lemma 1

- a: If s, \ldots, t are terminating, then $w=x s \ldots$. is computable.
- b: If w is computable, then it is terminating.

Lemma 1: Base

- a: If $\mathrm{s}, \ldots, \mathrm{t}$ are terminating, then $\mathrm{w}=\mathrm{xs} . . . \mathrm{t}$ is computable.
- b: If w is computable, then it is terminating.
- w : base type
- a: xs...t is terminating, hence computable
- b: by definition

Lemma 1: Arrow

- a: If s, \ldots, t are terminating, then $w=x s . . . t$ is computable.
- b: If w is computable, then it is terminating.
- $\mathrm{W}: \sigma \rightarrow \tau$
- a: xs...tu : τ is computable by induction
- b: By def. wv : τ is computable for computable $v: \sigma$. By ind. wv terminating; so wis.

Lemma 2

- If $s[t]$ is computable and t is terminating, then ($\lambda \times . s[x])$ t is computable.

Lemma 2

- Given: $s[t]$ is computable, t terminating.
- By L1b, s[t] is terminating.
- Hence $s[x]$ is also terminating.

Lemma 2

- Consider any computable u_{1}, \ldots, u_{n} (of appropriate type) such that ($\lambda \times . s[x]) t u_{1} \ldots u_{n}$ is basic ($n \geq 0$).
- We need to show ($\lambda x . s[x]) t u_{1} \ldots u_{n}$ terminating, hence computable (by def.).
- Computability of each prefix ($\lambda x . s[x]) t u_{1} \ldots u_{i}$ will follow.

Lemma 2

- We need to show ($\lambda x . s[x]) t u_{1} \ldots u_{n}$ terminating.
- $s[t]$ is computable; so $s[t] u_{1} \ldots u_{n}$ is also (by def.) computable and terminating.
- ($\lambda x . s[x]) t u_{1} \ldots u_{n} \Rightarrow \ldots \Rightarrow\left(\lambda x . s^{\prime}[x]\right) t^{\prime} u^{\prime}{ }_{1} \ldots u_{n}^{\prime} \Rightarrow$ $s^{\prime}\left[t^{\prime}\right] u^{\prime}{ }_{1} \ldots u_{n}$ which is terminating, since $s[t] u_{1} \ldots$ u_{n} is.

Lemma 3

- If substitution a is computable (all the terms to which variables map are computable), then so is sa.

Lemma 3

- If a is computable, then so is sa.
- $x a$ is either the variable x or a computable term t
- $(u v) a=(u a)(v a)$ both parts of which are computable by induction, and so (ua)(va) is by def.
- Let $\mathrm{s}=(\lambda \times . \mathrm{t})$. Then $\mathrm{sa}=(\lambda \times . \operatorname{ta})$, where a^{\prime} is a without any substitution for x. Consider any computable u. By ind. $\mathrm{ta}^{\prime}[\mathrm{X} \mapsto \mathrm{u}]$ is computable. By L2, (sa) $u=\left(\lambda x . t a^{\prime}\right) u$ is computable. So, by def. sa is.

Two Dimensions

Two Dimensions

	X	XX	LX	L XX	X LX	XXX	LX X
0							
0-0							
0-(0-0)							
(0-0)-0							

Two Dimensions

	X	XX	LX	L XX	X LX	XXX	LX X
0							
0-0							
--(0-0)							
(0-0)-0							

