Distributed Model:

Petri Nets

Introduction

- Introduced by Carl Adam Petri in 1962.
- A diagrammatic tool to model concurrency and synchronization in distributed systems.

Example: EFTPOS FSA

(Electronic Fund Transfer Point of Sale)

Example: EFTPOS Petri net

EFTPOS System

- Scenario 1: Normal
 - Enters all 4 digits and press OK.
- Scenario 2: Exceptional
 - Enters only 3 digits and press OK.

Example: EFTPOS System (Token Games)

A Petri Net Specification ...

- consists of: *places* (circles), *transitions* (rectangles) and *arcs* (arrows):
 - Places represent possible states of the system.
 - Transitions are events or actions which cause the change of state.
 - Every arc simply connects a place with a transition or a transition with a place.

A Change of State ...

- is denoted by a movement of *token(s)* (black dots) from place(s) to place(s); and is caused by the *firing* of a transition.
- The firing represents an occurrence of the event or an action taken.
- The firing is subject to the input conditions, denoted by token availability.

A Change of State

- A transition is firable or enabled when there are sufficient tokens in its input places.
- After firing, tokens will be transferred from the input places (old state) to the output places, denoting the new state.
- Note that the EFTPOS example is a Petri net representation of a finite state machine (FSM).

Example: Vending Machine

- The machine dispenses two kinds of snack bars – 20c and 15c.
- Only two types of coins can be used
 - 10c coins and 5c coins.
- The machine does not return any change.

Example: Vending Machine (STD of an FSM)

Example: Vending Machine (A Petri net)

Example: Vending Machine (3 Scenarios)

Scenario 1:

Deposit 5c, deposit 5c, deposit 5c, deposit 5c, take
20c snack bar.

Scenario 2:

Deposit 10c, deposit 5c, take 15c snack bar.

Scenario 3:

 Deposit 5c, deposit 10c, deposit 5c, take 20c snack bar.

Example: Vending Machine (Token Games)

Multiple Local States

- In the real world, events happen at the same time.
- A system may have many local states to form a global state.
- There is a need to model concurrency and synchronization.

Example: In a Restaurant (A Petri Net)

Example: In a Restaurant (Two Scenarios)

Scenario 1:

 Waiter takes order from customer 1; serves customer 1; takes order from customer 2; serves customer 2.

Scenario 2:

 Waiter takes order from customer 1; takes order from customer 2; serves customer 2; serves customer 1.

Example: In a Restaurant (Scenario 1)

Example: In a Restaurant (Scenario 2)

Transition (firing) rule

- A transition t is enabled if each input place p has at least w(p,t) tokens
- An enabled transition may or may not fire
- A firing on an enabled transition t removes w(p,t) from each input place p, and adds w(t,p') to each output place p'

Firing example

$$2H_2 + O_2 \rightarrow 2H_2O$$

Firing example

$$2H_2 + O_2 \rightarrow 2H_2O$$

Some definitions

- **source transition**: no inputs
- sink transition: no outputs
- **self-loop**: a pair (p,t) s.t. p is both an input and an output of t
- pure PN: no self-loops
- ordinary PN: all arc weights are 1's
- infinite capacity net: places can accommodate an unlimited number of tokens
- finite capacity net: each place p has a maximum capacity K(p)
- strict transition rule: after firing, each output place can't have more than K(p) tokens
- Theorem: every pure finite-capacity net can be transformed into an equivalent infinite-capacity net

Modeling FSMs

Modeling FSMs

state machines: each transition has exactly one input and one output

Modeling FSMs

A sequence of events/actions:

Concurrent executions:

 Non-deterministic events - conflict, choice or decision: A choice of either e1, e2 ... or e3, e4 ...

Synchronization

Synchronization and Concurrency

Modeling concurrency

marked graph: each place has exactly one incoming arc and one outgoing arc.

Modeling concurrency

Modeling dataflow computation

$$x = (a+b)/(a-b)$$

Modeling communication protocols

Modeling synchronization control

Another Example

- A producer-consumer system, consist of one producer, two consumers and one storage buffer with the following conditions:
 - The storage buffer may contain at most 5 items.
 - The producer sends 3 items in each production.
 - At most one consumer is able to access the storage buffer at one time.
 - Each consumer removes two items when accessing the storage buffer.

A Producer-Consumer System

Producer

Consumers

A Producer-Consumer Example

- In this Petri net, every place has a capacity and every arc has a weight.
- This allows multiple tokens to reside in a place to model more complex behaviour.

Behavioural Properties

- Reachability
 - "Can we reach one particular state from another?"
- Boundedness
 - "Will a storage place overflow?"
- Liveness
 - "Will the system die in a particular state?"

Recalling the Vending Machine (Token Game)

A marking is a state ...

Reachability

Reachability

A firing or occurrence sequence:

$$M0 \xrightarrow{t1} M1 \xrightarrow{t3} M2 \xrightarrow{t5} M3 \xrightarrow{t8} M0 \xrightarrow{t2} M2 \xrightarrow{t6} M4$$

- "M2 is *reachable* from M1 and M4 is *reachable* from M0."
- In fact, in the vending machine example, all markings are reachable from every marking.

Boundedness

- A Petri net is said to be k-bounded or simply bounded if the number of tokens in each place does not exceed a finite number k for any marking reachable from M0.
- The Petri net for vending machine is 1bounded.
- A 1-bounded Petri net is also safe.

Liveness

- A Petri net with initial marking M0 is *live* if, no matter what marking has been reached from M0, it is possible to ultimately fire *any* transition by progressing through some further firing sequence.
- A live Petri net guarantees deadlock-free operation, no matter what firing sequence is chosen.

Liveness

- The vending machine is live and the producerconsumer system is also live.
- A transition is dead if it can never be fired in any firing sequence.

An Example

$$M0 = (1,0,0,1)$$

$$M1 = (0,1,0,1)$$

$$M2 = (0,0,1,0)$$

$$M3 = (0,0,0,1)$$

A bounded but non-live Petri net

Another Example

$$M0 = (1, 0, 0, 0, 0)$$

$$M1 = (0, 1, 1, 0, 0)$$

$$M2 = (0, 0, 0, 1, 1)$$

$$M3 = (1, 1, 0, 0, 0)$$

$$M4 = (0, 2, 1, 0, 0)$$

An unbounded but live Petri net

Analysis Methods

- Reachability Analysis:
 - Reachability or coverability tree.
 - State explosion problem.
- Incidence Matrix and State Equations.
- Structural Analysis
 - Based on net structures.

Behavioral properties (1)

- Properties that depend on the initial marking
- Reachability
 - Mn is reachable from M0 if exists a sequence of firings that transform M0 into Mn
 - reachability is decidable, but exponential
- Boundedness
 - a PN is bounded if the number of tokens in each place doesn't exceed a finite number k for any marking reachable from M0
 - a PN is safe if it is 1-bounded

Behavioral properties (2)

Liveness

- a PN is live if, no matter what marking has been reached, it is possible to fire any transition with an appropriate firing sequence
- equivalent to deadlock-free
- strong property, different levels of liveness are defined (L0=dead, L1, L2, L3 and L4=live)

Reversibility

- a PN is reversible if, for each marking M reachable from M0,
 M0 is reachable from M
- relaxed condition: a marking M' is a home state if, for each marking M reachable from M0, M' is reachable from M

Behavioral properties (3)

Coverability

a marking is coverable if exists M' reachable from M0 s.t.
 M'(p)>=M(p) for all places p

Persistence

- a PN is persistent if, for any two enabled transitions, the firing of one of them will not disable the other
- then, once a transition is enabled, it remains enabled until it's fired
- all marked graphs are persistent
- a safe persistent PN can be transformed into a marked graph

Analysis methods (1)

- Coverability tree
 - tree representation of all possible markings
 - root = M0
 - nodes = markings reachable from M0
 - arcs = transition firings
 - if net is unbounded, then tree is kept finite by introducing the symbol $\boldsymbol{\omega}$
 - Properties
 - a PN is bounded iff ω doesn't appear in any node
 - a PN is safe iff only 0's and 1's appear in nodes
 - a transition is dead iff it doesn't appear in any arc
 - if M is reachable form M0, then exists a node M' that covers M

M0=(100)

coverability graph

coverability tree

Subclasses of Petri Nets (1)

Ordinary PNs

- all arc weights are 1's
- same modeling power as general PN, more convenient for analysis but less efficient

State machine

each transition has exactly one input place and exactly one output place

Marked graph

each place has exactly one input transition and exactly one output transition

Subclasses of Petri Nets (2)

- Free-choice
 - every outgoing arc from a place is either unique or is a unique incoming arc to a transition
- Extended free-choice
 - if two places have some common output transition, then they have all their output transitions in common
- Asymmetric choice (or simple)
 - if two places have some common output transition, then one of them has all the output transitions of the other (and possibly more)

Extensions

- High-level nets
 - Tokens have "colors", holding (complex) information.
- Timed nets
 - Time delays associated with transitions and/or places.
 - Fixed delays or interval delays.
 - Stochastic Petri nets: exponentially distributed random variables as delays.

Thanks

- Chris Ling
- Gabriel Eirea