Distributed Model:

Petri Nets



Introduction

* Introduced by Carl
Adam Petri in
1962.

* A diagrammatic
tool to model
concurrency and
synchronization in
distributed
systems.




Example: EFTPOS FSA

(Electronic Fund Transfer Point of Sale)
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Example: EFTPOS Petri net
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EFTPOS System

* Scenario 1: Normal
— Enters all 4 digits and press OK.

* Scenario 2: Exceptional
— Enters only 3 digits and press OK.



Example: EFTPOS System (Token Games)
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A Petri Net Specification ...

e consists of: places (circles), transitions
(rectangles) and arcs (arrows):

— Places represent possible states of the system.

— Transitions are events or actions which cause the
change of state.

— Every arc simply connects a place with a transition
or a transition with a place.



A Change of State ...

* is denoted by a movement of token(s)
(black dots) from place(s) to place(s); and is
caused by the firing of a transition.

* The firing represents an occurrence of the
event or an action taken.

* The firing is subject to the input conditions,
denoted by token availability.



A Change of State

* Atransition is firable or enabled when there
are sufficient tokens in its input places.

e After firing, tokens will be transferred from
the input places (old state) to the output
places, denoting the new state.

* Note that the EFTPOS example is a Petri net
representation of a finite state machine
(FSM).



Example: Vending Machine

* The machine dispenses two kinds of snack
bars — 20c and 15c.

* Only two types of coins can be used
— 10c coins and 5c coins.

* The machine does not return any change.



Example: Vending Machine (STD of an FSM)
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Example: Vending Machine (A Petri net)
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Example: Vending Machine (3 Scenarios)

e Scenario 1:

— Deposit 5c¢, deposit 5¢, deposit 5¢, deposit 5c, take
20c snack bar.

* Scenario 2:
— Deposit 10c, deposit 5c¢, take 15¢ snack bar.
* Scenario 3:

— Deposit 5c¢, deposit 10c, deposit 5c¢, take 20c snack
bar.



Example: Vending Machine (Token Games)
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Multiple Local States

* In the real world, events happen at the same
time.

* A system may have many local states to form
a global state.

* There is a need to model concurrency and
synchronization.



Example: In a Restaurant (A Petri Net)
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Example: In a Restaurant (Two Scenarios)

e Scenario 1:

— Waiter takes order from customer 1; serves
customer 1; takes order from customer 2; serves
customer 2.

e Scenario 2:

— Waiter takes order from customer 1; takes order
from customer 2; serves customer 2; serves
customer 1.



Example: In a Restaurant (Scenario 1)
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Example: In a Restaurant (Scenario 2)
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Transition (firing) rule
* Atransitiontis enabled if each input place p
has at least w(p,t) tokens
* An enabled transition may or may not fire

* A firing on an enabled transition t removes
w(p,t) from each input place p, and adds
w(t,p') to each output place p'



Firing example
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Firing example
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Some definitions

source transition: no inputs

sink transition: no outputs

self-loop: a pair (p,t) s.t. p is both an input and an output of t
pure PN: no self-loops

ordinary PN: all arc weights are 1's

infinite capacity net: places can accommodate an unlimited number of
tokens

finite capacity net: each place p has a maximum capacity K(p)

strict transition rule: after firing, each output place can't have more than
K(p) tokens

Theorem: every pure finite-capacity net can be transformed into an
equivalent infinite-capacity net



Modeling FSMs

vend 15¢ candy
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Modeling FSMs
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Modeling FSMs
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Net Structures

* A sequence of events/actions:

el e2 e3

* Concurrent executions:




Net Structures

* Non-deterministic events - conflict, choice or
decision: A choice of eitherel, e2 ... ore3, e4 ...
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Net Structures

* Synchronization

el



Net Structures

* Synchronization and Concurrency




Modeling concurrency

marked graph:
each place has
exactly one
incoming arc
and one
outgoing

arc.



Modeling concurrency
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Modeling dataflow computation

x = (a+b)/(a-b)




Modeling communication protocols
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Modeling synchronization control

I k
‘ writing ° ‘ reading



Another Example

e A producer-consumer system, consist of one
producer, two consumers and one storage buffer
with the following conditions:

e The storage buffer may contain at most 5 items.
e The producer sends 3 items in each production.

e At most one consumer is able to access the storage
buffer at one time.

e Each consumer removes two items when accessing the
storage buffer.



A Producer-Consumer System
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A Producer-Consumer Example

e |In this Petri net, every place has a capacity
and every arc has a weight.

e This allows multiple tokens to reside in a place
to model more complex behaviour.



Behavioural Properties

e Reachability

e “Can we reach one particular state from
another?”

e Boundedness

« “Will a storage place overflow?”

e Liveness

* “Will the system die in a particular state?”



Recalling the Vending Machine (Token Game)
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A marking is a state ...
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Reachability
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Reachability

A firing or occurrence sequence:

tl t3 t5 t8 t2 t6
MO—— M1 — >M2 — > M3 — *MO— ~ M2 — > M4

e “M2 is reachable from M1 and M4 is
reachable from MO.”

e In fact, in the vending machine example, all

markings are reachable from every
marking.



Boundedness

e A Petri net is said to be k-bounded or simply
bounded if the number of tokens in each place
does not exceed a finite number k for any
marking reachable from MO.

e The Petri net for vending machine is 1-
bounded.

e A 1-bounded Petri net is also safe.



Liveness

e A Petri net with initial marking MO is live if, no
matter what marking has been reached from
MO, it is possible to ultimately fire any
transition by progressing through some
further firing sequence.

e Alive Petri net guarantees deadlock-free
operation, no matter what firing sequence is
chosen.



Liveness

e The vending machine is live and the producer-
consumer system is also live.

e A transition is dead if it can never be fired in
any firing sequence.



MO = (1,0,0,1)
M1 = (0,1,0,1)
M2 = (0,0,1,0)
M3 = (0,0,0,1)

An Example

A bounded but non-live Petri net



Another Example

MO = (1, 0, 0, 0, 0)
M1 =(0, 1, 1,0,0)
M2 =(0,0,0,1,1)
M3 =(1,1,0,0,0)
M4 = (0,2, 1,0,0)

t4

An unbounded but live Petri net



Analysis Methods

e Reachability Analysis:
e Reachability or coverability tree.
e State explosion problem.

e Incidence Matrix and State Equations.
e Structural Analysis

e Based on net structures.



Behavioral properties (1)

* Properties that depend on the initial marking
* Reachability

— Mn is reachable from MO if exists a sequence of firings
that transform MO into Mn

— reachability is decidable, but exponential

e Boundedness

— a PN is bounded if the number of tokens in each place
doesn't exceed a finite number k for any marking
reachable from MO

— a PN is safe ifitis 1-bounded



Behavioral properties (2)

e Liveness

— a PNis live if, no matter what marking has been reached, it
is possible to fire any transition with an appropriate firing
sequence

— equivalent to deadlock-free
— strong property, different levels of liveness are defined
(LO=dead, L1, L2, L3 and L4=live)
* Reversibility

— a PNis reversible if, for each marking M reachable from MO,
MO is reachable from M

— relaxed condition: a marking M' is a home state if, for each
marking M reachable from MO, M' is reachable from M



Behavioral properties (3)

* Coverability
— a marking is coverable if exists M' reachable from MO s.t.
M'(p)>=M(p) for all places p
* Persistence

— a PN is persistent if, for any two enabled transitions, the
firing of one of them will not disable the other

— then, once a transition is enabled, it remains enabled until
it's fired
— all marked graphs are persistent

— a safe persistent PN can be transformed into a marked
graph



Analysis methods (1)

* Coverability tree

— tree representation of all possible markings
* root=MO
* nodes = markings reachable from MO
 arcs = transition firings
— if net is unbounded, then tree is kept finite by introducing
the symbol ®

— Properties
* a PN is bounded iff m doesn't appear in any node
* a PN is safe iff only O's and 1's appear in nodes
* atransition is dead iff it doesn't appear in any arc
* if M is reachable form MO, then exists a node M' that covers M
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Coverability tree example

MO0=(100)
t1 t3

M1=(001) M3=(100)
“dead end”




Coverability tree example
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Coverability tree example
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“Old”




Coverability tree example
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Coverability tree example
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Subclasses of Petri Nets (1)
* Ordinary PNs

— all arc weights are 1's

— same modeling power as general PN, more convenient for
analysis but less efficient

e State machine

— each transition has exactly one input place and exactly one
output place

* Marked graph

— each place has exactly one input transition and exactly one
output transition



Subclasses of Petri Nets (2)

* Free-choice

— every outgoing arc from a place is either unique or is a
unique incoming arc to a transition

e Extended free-choice

— if two places have some common output transition, then
they have all their output transitions in common

 Asymmetric choice (or simple)

— if two places have some common output transition, then
one of them has all the output transitions of the other
(and possibly more)



Extensions

e High-level nets

e Tokens have “colors”, holding (complex)
information.

e Timed nets

e Time delays associated with transitions and/or
places.

e Fixed delays or interval delays.

e Stochastic Petri nets: exponentially distributed
random variables as delays.



Thanks

e Chris Ling

e Gabriel Eirea



