
Representations



Models of Computation
• Thue systems 

– Post systems 

• Lambda calculi 
• Partial recursion 
• Turing machines 
• Markov normal 

algorithms 
• Minsky counter 

machines 
• Type 0 languages

• Kolmogorov-Uspenskii 
machines 

• Neuring machines 
• Wang machines 
• Random access machines 
• Quantum computers 
• Billiard ball computers 
• Fortran, Algol, Lisp, C, Pascal, 

Logo, Ada, Java, ...



Today
• Multihead, multitape, multidimension Turing machines 

• Counter machines 

• 1, 2, 3, many 

• Recursive functions 

• Primitive recursion 

• Minimization



Everyone says...

 “The remarkable result about these varied 
models is that all of them define exactly 
the same class of computable functions: 
whatever one model can compute, all the 
others can too!” 

— Bernard Moret



Numbers as Strings

• Decimal 

• Binary 

• Unary (tally) 

• 4 bits per decimal digit



Strings as Numbers

• Base |Σ| 

• Gödel number 

• List of numbers



Counter Machine
• Worry beads 

• Rosaries 

• Brolni [Russia] 

• Komboloi (κομπολογια) [Greece] 

• Mala [India] 

• Jyuzu [Japan] 

•  מחרוזות תפילה

• מסבחה
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Counter Machines
• Restrict (multitape) TM 

• Alphabet: 0 1 _ 

• Tape always: 01*_* 

• Reading/writing at end 

• Change first _ (blank) to 1 

• Change last 1 to _ 

• Test for 0



Counter Machine
• 1 counter: very weak (exercise) 

• 2 counters: medium 

• Can’t compute square or exponential 

• Can compute everything 

• if n is represented by 2n 1’s 

• 3 or more: Everything



Primitive Recursion
• 0 

• successor +1 

• projections 

• composition 

• f(x,n) := if n=0 then g(x) else h(f(x,n-1),x,n-1)



Ackermann’s Function

• A(0,n) = n+1 

• A(m+1,0) = A(m,1) 

• A(m+1,n+1) = A(m,A(m+1,n)) 



Lemma: A(m,n) > m+n 

• Induction on (m,n) 

• A(0,n) = n+1 > n 

• A(m+1,0) = A(m,1) > m+1 

• A(m+1,n+1) = A(m,A(m+1,n)) > m+A(m+1,n) ≥ 
m+n+2



Lemma: x>y ⇒ A(m,x) > A(m,y)
• Induction on (m,x) 

• Assume x>y 

• A(0,x) = x+1 > y+1 = A(0,y) 

• Is A(m+1,x+1) > A(m+1,y+1) ? 

• By induction, A(m+1,x) > A(m+1,y) 

• A(m+1,x+1) = A(m,A(m+1,x)) > A(m,A(m+1,y)) = 
A(m+1,y+1)



Lemma: x>y ⇒ A(x,n) > A(y,n)

• Induction on (x,n) 

• Assume x>y 

• A(x+1,0) = A(x,1) > A(y,1) = A(y+1,0) 

• A(x,n) > x+n ≥ n+1 = A(0,n) 

• A(x+1,n+1) = A(x,A(x+1,n)) > A(y,A(x+1,n)) > 
A(y,A(y+1,n)) = A(y+1,n+1)



Lemma: A(m+n+2,x) > A(m,A(n,x))

• Induction (m+n,x) 

• A(n+2,x) > A(n+1,x) ≥ A(n,x)+1 = A(0,A(n,x)) 

• A(m+n+2,0) = A(m+n+1,1) > A(m,A(n-1,1)) = 
A(m,A(n,0)) 

• A(m+n+2,x+1) = A(m+n+1,A(n+m+2,x)) > 
A(m,A(n,A(m,x))) > A(m,A(n,x+m)) ≥ 
A(m,A(n,x+1))



A isn’t Primitive Recursive
• Denote x = x1,...,xk and xm = max xj 

• Say Ai  > g  [majorize] if A(i,xm) > g(x) for all x 

• Easy: A0 > 0; A1 > +1; A0 > proji 

• Suppose f(x) = h(g1x,...,gkx), As > g1,...,gk,h 

• A2s+2 > f: A(2s+2,x) > A(s,A(s,x)) > A(s,max{gjx}) 
> h(g1x,...,gkx)



A isn’t Primitive Recursive
• Suppose As > g,h and                                                      

f(x,n)=if n=0 then g(x) else h(f(x,n-1),x,n-1) 

• A(r,n+xm) > f(x,n), r = 2s+1, by induction on n: 

• f(x,0) = g(x) < A(s,xm) < A(r,0+xm) 

• f(x,n+1) = h(f(x,n),x,n) < A(s,max{f(x,n),n,xm}) < 
A(s,A(r,n+xm)) < A(2s,A(r,n+xm)) = A(r,n+1+xm) 

• f(x,n) < A(r,n+xm) < A(r,2N+3)= A(r,A(2,N))< A(r+4,N)       
where N = max{n,xm}



General Recursion

• Also minimization 

• f(x) := min n s.t. h(x,n)=0 

• where h is (primitive) recursive 

• Can loop



Questions
• In what sense are 

Turing machines = 
Lambda calculus = 

Recursive functions ? 

• In what sense are 
Analogue computers > 

Turing machines > 
Primitive recursion ?



Alonzo Church
 The fact... that two such widely 

different (and in the opinion of 
the author) equally natural 
definitions of effective 
calculability turn out to be 
equivalent adds to the strength 
of the reasons adduced below 
for believing that they 
constitute as general a 
characterization of this notion 
as is consistent with the usual 
intuitive understanding of it.



Princeton Course

• “The definition of a Turing 
machine is very robust.” 

– Multiple heads 
– Multiple tapes 
– Multiple states 
– Multiple directions 
– Multiple dimensions 
– Multiple worlds



Equivalence of Models

• TM2 ∝ TM   [ 1 tape; 2 channels ] 

• CM2 ∝ TM2   [ 111...1BBB... ] 

• CMn ∝ CM2   [ 2i3j5k7l... ] 

• RAM ∝ CMn   [ 2x(2y+1) ] 
• Scheme ∝ RAM  [ Abelson & Sussman ] 
• TM ∝ Scheme  [ Interpreter ]



Goal

 Determine when one model is as powerful 
as another.

▪ Intensional (ignore complexity) 
▪ Models operating over different domains



Subrecursive Models
• Primitive recursion

– Multiple recursion
• Typed lambda calculi
• Finite state automata

– Nondeterministic FSA
• Pushdown automata

– Deterministic PDA
• Nerve nets

• Linear-bounded automata
• Single-counter machines
• BLooP
• Univac, Burroughs, IBM 

1130,  PDP-11, Mac, 
Pentium IV, Connection 
Machine, ...



Super-recursive Models

• Oracle machines 
• Trial and error predicates 

– Limit recursive functions 
• Real recursive functions 
• Inductive Turing machines 
• Abstract state machines 
• Analog recurrent neural networks 



Containment
for every f ∈ A there is a   
g ∈ B s.t. g =f, and vice-
versa

B  >C A    if   B  ⊃ A

for every f ∈ A there is 
a g ∈ B s.t. g =f, but not 
vice-versa

B  ≈C A    if   B  = A



Examples: Containment
• Primitive recursion is weaker than general 

recursion. 

• Recursion is stronger than iteration. 

• To show that [Inductive Turing machines] are more 
powerful [than ordinary TMs], we need to find a 
problem solvable by an ITM and insolvable by a 
TM ….        —Mark Burgin



Hartley Rogers Jr.

 “Given a class of 
nonnumerical inputs 
and outputs, choose 
some fixed one-one 
mapping from this 
class into the integers. 
Such a standard 
mapping is called a 
coding.”



Rogers
• The use of codings raises an immediate 

question of invariance.  

• Once a coding is chosen, will the formal concept 
partial recursive function on code numbers 
correspond to the informal notion algorithmic 
mapping on the uncoded expressions? ... 
Church’s thesis provides an affirmative answer.



Simulation

B  ≥S A    if
there’s an injective mapping 
ρ: dom A → dom B   
s.t. for every f ∈ A  
there’s a g ∈ B  
for which g(ρ(x)) = ρ(f(x)) for all x  



Simulations

f’  simulates f  via injection ρ

D D
f

D' D'
f '

ρ ρ



Examples: Simulation

• TM ≈S Rec ≈S λ  

– ρ: N → {1,B}* [Tally numbers] 
– ρ: N → Λ   [Church numerals] 
– ρ: Λ → N   [Gödel numbering]



Problems…

1. Information can be hidden in a mapping 
• even uncomputable information 

2. Different mappings can have opposite effects 

3. The three methods are incompatible



Strictly Stronger

• ≥S is a quasi-ordering 

   (reflexive & transitive) 

• A >S B  if A ≥ρ B, via injection ρ,  

                  but B ≥τ A via any τ/



The Coding
• Let s  be successor 

 and s’ simulate it: s’ρ = ρs 

• ρ is recursive is s’ is: 
– ρ (0) = constant 
– ρ (n +1) = ρ (s(n)) = s’ (ρ (n)) 

– If s is primitive recursive, so is ρ



Rec >S Prim
• Suppose Prim ≥

ρ
 Rec 

– ρ ∈ Prim 

• Consider h (n) = ρ (mini { ρ(i ) > ack(n,n)}) 

– ρ
-1 h  ∈ Rec 

– ρ ρ
-1

 h = k ρ  for some k ∈ Prim 

– h = k ρ ∈ Prim 

• But it isn’t



Rec is Maximal
• Suppose s’ is recursive 

• Then ρ-1 is partial-recursive (it is not always 
defined) 

• For any f ∈M 
– Since f = ρ-1gρ , f ∈ Part-Rec 
– rng gρ = rng ρf  ⊆ rng ρ  

• Hence f ∈ Rec


