
Representations

Models of Computation
• Thue systems

– Post systems

• Lambda calculi
• Partial recursion
• Turing machines
• Markov normal

algorithms
• Minsky counter

machines
• Type 0 languages

• Kolmogorov-Uspenskii
machines

• Neuring machines
• Wang machines
• Random access machines
• Quantum computers
• Billiard ball computers
• Fortran, Algol, Lisp, C, Pascal,

Logo, Ada, Java, ...

Today
• Multihead, multitape, multidimension Turing machines

• Counter machines

• 1, 2, 3, many

• Recursive functions

• Primitive recursion

• Minimization

Everyone says...

 “The remarkable result about these varied
models is that all of them define exactly
the same class of computable functions:
whatever one model can compute, all the
others can too!”

— Bernard Moret

Numbers as Strings

• Decimal

• Binary

• Unary (tally)

• 4 bits per decimal digit

Strings as Numbers

• Base |Σ|

• Gödel number

• List of numbers

Counter Machine
• Worry beads

• Rosaries

• Brolni [Russia]

• Komboloi (κομπολογια) [Greece]

• Mala [India]

• Jyuzu [Japan]

• מחרוזות תפילה

• מסבחה

R--

L++
H!

R=0

YN

L=0

NY

L++

L--

R++

b

a

e

c f

d
g

h

Counter Machines
• Restrict (multitape) TM

• Alphabet: 0 1 _

• Tape always: 01*_*

• Reading/writing at end

• Change first _ (blank) to 1

• Change last 1 to _

• Test for 0

Counter Machine
• 1 counter: very weak (exercise)

• 2 counters: medium

• Can’t compute square or exponential

• Can compute everything

• if n is represented by 2n 1’s

• 3 or more: Everything

Primitive Recursion
• 0

• successor +1

• projections

• composition

• f(x,n) := if n=0 then g(x) else h(f(x,n-1),x,n-1)

Ackermann’s Function

• A(0,n) = n+1

• A(m+1,0) = A(m,1)

• A(m+1,n+1) = A(m,A(m+1,n))

Lemma: A(m,n) > m+n

• Induction on (m,n)

• A(0,n) = n+1 > n

• A(m+1,0) = A(m,1) > m+1

• A(m+1,n+1) = A(m,A(m+1,n)) > m+A(m+1,n) ≥
m+n+2

Lemma: x>y ⇒ A(m,x) > A(m,y)
• Induction on (m,x)

• Assume x>y

• A(0,x) = x+1 > y+1 = A(0,y)

• Is A(m+1,x+1) > A(m+1,y+1) ?

• By induction, A(m+1,x) > A(m+1,y)

• A(m+1,x+1) = A(m,A(m+1,x)) > A(m,A(m+1,y)) =
A(m+1,y+1)

Lemma: x>y ⇒ A(x,n) > A(y,n)

• Induction on (x,n)

• Assume x>y

• A(x+1,0) = A(x,1) > A(y,1) = A(y+1,0)

• A(x,n) > x+n ≥ n+1 = A(0,n)

• A(x+1,n+1) = A(x,A(x+1,n)) > A(y,A(x+1,n)) >
A(y,A(y+1,n)) = A(y+1,n+1)

Lemma: A(m+n+2,x) > A(m,A(n,x))

• Induction (m+n,x)

• A(n+2,x) > A(n+1,x) ≥ A(n,x)+1 = A(0,A(n,x))

• A(m+n+2,0) = A(m+n+1,1) > A(m,A(n-1,1)) =
A(m,A(n,0))

• A(m+n+2,x+1) = A(m+n+1,A(n+m+2,x)) >
A(m,A(n,A(m,x))) > A(m,A(n,x+m)) ≥
A(m,A(n,x+1))

A isn’t Primitive Recursive
• Denote x = x1,...,xk and xm = max xj

• Say Ai > g [majorize] if A(i,xm) > g(x) for all x

• Easy: A0 > 0; A1 > +1; A0 > proji

• Suppose f(x) = h(g1x,...,gkx), As > g1,...,gk,h

• A2s+2 > f: A(2s+2,x) > A(s,A(s,x)) > A(s,max{gjx})
> h(g1x,...,gkx)

A isn’t Primitive Recursive
• Suppose As > g,h and

f(x,n)=if n=0 then g(x) else h(f(x,n-1),x,n-1)

• A(r,n+xm) > f(x,n), r = 2s+1, by induction on n:

• f(x,0) = g(x) < A(s,xm) < A(r,0+xm)

• f(x,n+1) = h(f(x,n),x,n) < A(s,max{f(x,n),n,xm}) <
A(s,A(r,n+xm)) < A(2s,A(r,n+xm)) = A(r,n+1+xm)

• f(x,n) < A(r,n+xm) < A(r,2N+3)= A(r,A(2,N))< A(r+4,N)
where N = max{n,xm}

General Recursion

• Also minimization

• f(x) := min n s.t. h(x,n)=0

• where h is (primitive) recursive

• Can loop

Questions
• In what sense are

Turing machines =
Lambda calculus =

Recursive functions ?

• In what sense are
Analogue computers >

Turing machines >
Primitive recursion ?

Alonzo Church
 The fact... that two such widely

different (and in the opinion of
the author) equally natural
definitions of effective
calculability turn out to be
equivalent adds to the strength
of the reasons adduced below
for believing that they
constitute as general a
characterization of this notion
as is consistent with the usual
intuitive understanding of it.

Princeton Course

• “The definition of a Turing
machine is very robust.”

– Multiple heads
– Multiple tapes
– Multiple states
– Multiple directions
– Multiple dimensions
– Multiple worlds

Equivalence of Models

• TM2 ∝ TM [1 tape; 2 channels]

• CM2 ∝ TM2 [111...1BBB...]

• CMn ∝ CM2 [2i3j5k7l...]

• RAM ∝ CMn [2x(2y+1)]
• Scheme ∝ RAM [Abelson & Sussman]
• TM ∝ Scheme [Interpreter]

Goal

 Determine when one model is as powerful
as another.

▪ Intensional (ignore complexity)
▪ Models operating over different domains

Subrecursive Models
• Primitive recursion

– Multiple recursion
• Typed lambda calculi
• Finite state automata

– Nondeterministic FSA
• Pushdown automata

– Deterministic PDA
• Nerve nets

• Linear-bounded automata
• Single-counter machines
• BLooP
• Univac, Burroughs, IBM

1130, PDP-11, Mac,
Pentium IV, Connection
Machine, ...

Super-recursive Models

• Oracle machines
• Trial and error predicates

– Limit recursive functions
• Real recursive functions
• Inductive Turing machines
• Abstract state machines
• Analog recurrent neural networks

Containment
for every f ∈ A there is a
g ∈ B s.t. g =f, and vice-
versa

B >C A if B ⊃ A

for every f ∈ A there is
a g ∈ B s.t. g =f, but not
vice-versa

B ≈C A if B = A

Examples: Containment
• Primitive recursion is weaker than general

recursion.

• Recursion is stronger than iteration.

• To show that [Inductive Turing machines] are more
powerful [than ordinary TMs], we need to find a
problem solvable by an ITM and insolvable by a
TM …. —Mark Burgin

Hartley Rogers Jr.

 “Given a class of
nonnumerical inputs
and outputs, choose
some fixed one-one
mapping from this
class into the integers.
Such a standard
mapping is called a
coding.”

Rogers
• The use of codings raises an immediate

question of invariance.

• Once a coding is chosen, will the formal concept
partial recursive function on code numbers
correspond to the informal notion algorithmic
mapping on the uncoded expressions? ...
Church’s thesis provides an affirmative answer.

Simulation

B ≥S A if
there’s an injective mapping
ρ: dom A → dom B
s.t. for every f ∈ A
there’s a g ∈ B
for which g(ρ(x)) = ρ(f(x)) for all x

Simulations

f’ simulates f via injection ρ

D D
f

D' D'
f '

ρ ρ

Examples: Simulation

• TM ≈S Rec ≈S λ

– ρ: N → {1,B}* [Tally numbers]
– ρ: N → Λ [Church numerals]
– ρ: Λ → N [Gödel numbering]

Problems…

1. Information can be hidden in a mapping
• even uncomputable information

2. Different mappings can have opposite effects

3. The three methods are incompatible

Strictly Stronger

• ≥S is a quasi-ordering

 (reflexive & transitive)

• A >S B if A ≥ρ B, via injection ρ,

 but B ≥τ A via any τ/

The Coding
• Let s be successor

 and s’ simulate it: s’ρ = ρs

• ρ is recursive is s’ is:
– ρ (0) = constant
– ρ (n +1) = ρ (s(n)) = s’ (ρ (n))

– If s is primitive recursive, so is ρ

Rec >S Prim
• Suppose Prim ≥

ρ
 Rec

– ρ ∈ Prim

• Consider h (n) = ρ (mini { ρ(i) > ack(n,n)})

– ρ
-1 h ∈ Rec

– ρ ρ
-1

 h = k ρ for some k ∈ Prim

– h = k ρ ∈ Prim

• But it isn’t

Rec is Maximal
• Suppose s’ is recursive

• Then ρ-1 is partial-recursive (it is not always
defined)

• For any f ∈M
– Since f = ρ-1gρ , f ∈ Part-Rec
– rng gρ = rng ρf ⊆ rng ρ

• Hence f ∈ Rec

