
Random Graphs
Logic

The Ehrenfeucht Game

The Logic of Random Graphs

Peleg Michaeli

Tel-Aviv University

April 13, 2011

Lecture material by Joel Spencer

Peleg Michaeli The Logic of Random Graphs



Random Graphs
Logic

The Ehrenfeucht Game

Motivation
The Erdős—Rényi Models

Motivation

Problems
Large graphs are very hard to analyze.

Analyzing a large graph “manually” is rather primitive.
Large graphs are everywhere: social networks, actors playing
together in movies, biology, etc.

A Possible Solution
Analyzing the typical behaviour of a graph with “similar properties”.
There are several known models for doing this.
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The Erdős—Rényi Models

Definition
G ∈ G (n, p) if G has n vertices, and every edge is included in the
graph with probability p.

Definition
G ∈ G (n,m) if G has n vertices and m edges, chosen uniformly
from all

(n
2

)
possible edges.

Example

Let G ∈ G (n, p). Then limn→∞ P (G has an edge) = 1.
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Example Application

Theorem

Let Rk be the k’th diagonal Ramsey number. Then: Rk > 2k/2.

Proof.

Let G ∈ G (n, 1
2), n ≤ 2k/2. We calculate:

P (ω(G ) ≥ k) ≤
(
n
k

)
2−(

k
2) ≤

( n
2 · 2−(k−1)/2

)k

≤

(√
2
2

)k

<
1
2
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The Graph Language

First-Order Logic: Our Language
variables: x1, x2, . . .

two binary relations: = and ∼
quantifiers: ∀ and ∃
connectives: ∨,∧,→,¬

Note
We will assume the following two axioms:

∀x ¬x ∼ x
∀x∀y x ∼ y → y ∼ x
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Example

Let A = “∃x∃y∃z(x ∼ y) ∧ (y ∼ z) ∧ (z ∼ x)′′. In that case,
G |= A if and only if G (thought of as a graph) contains a triangle.

Proposition

limn→∞ P
(
G (n, 1

2) |= A
)
= 1.

Proof.
Partition the vertices of G into sets of 3. Each set contains a
triangle with probability 1/8, hence the probability that G does not
contain a triangle is no higher than

(7
8

)n/3.
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Almost Sure Theories

Definition
An almost sure theory is the set of all sentences A holding almost
surely (with respect to some p = p(n)).

Theorem
An almost sure theory is a theory.

Proof.
Suppose B is deduced from an almost sure theory T ; hence, it can
be deduced from a finite subset of T , A1, . . . ,Ak .
P (G (n, p) |= ¬A1 ∧ . . . ∧ ¬Ak) ≤

∑k
i=1 P (G (n, p) |= ¬Ai )
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Almost Sure Theories

Theorem
An almost sure theory T is consistent.

Proof.
The sentence “False” does not hold almost surely, hence it is not in
T .
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Completeness

Theorem
Let T be a theory with no finite models. Then T is complete iff all
of its infinite models are elementarily equivalent.
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Completeness

Proof.
Suppose T is complete. Let A be a first-order sentence. Either
T |= A or T |= ¬A, hence all infinite models G of T satisfy
either A or ¬A, respectively.

Suppose T is incomplete. Let B be a first-order sentence for
which neither T |= B nor T |= ¬B . Let T+ be the theory
given by adding B to T , and let T− be the theory given by
adding ¬B . Both are consistent, hence by Gödel both have
models, G+ and G−, which are models of T , but are not
elementarily equivalent, since they disagree on B .
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The Zero-One Law

Definition
We say that p = p(n) satisfies the Zero-One Law if for every
first-order sentence A, the following holds:
limn→∞ P (G (n, p(n)) |= A) ∈ {0, 1}.

Theorem (Fagin)

The constant function p(n) ≡ 1
2 satisfies the Zero-One Law.

Note: This can be generalised to any constant p(n) ≡ p.
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Alice’s Restaurant Property

Definition
For any non-negative integers r , s, let Ar ,s be the following
statement: “For any distinct x1, . . . , xr and y1, . . . , ys there exists a
vertex z such that z ∼ xi for all i and ¬z ∼ yi for all i .”

Note: This is a first-order sentence.
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Alice’s Restaurant Property

Proposition
∀r , s ≥ 0, Ar ,s holds almost surely.

Proof.
For given r , s and x1, . . . , xr , y1, . . . , ys , let Noz be the event “there
is no z satisfying . . . ”. It is easy to see that
P (Noz) = (1− 2−r−s)

n−r−s . The union bound gives the following:

P (¬Ar ,s) ≤
(
n
r

)(
n − r
s

)(
1− 2−r−s)n−r−s → 0
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Alice’s Restaurant Property

Definition
A graph is said to have the Alice’s Restaurant Property if it satisfies
Ar ,s for all r , s ≥ 0.

Theorem
There is a unique graph G (up to isomorphism) for which
G |= ARP.
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Alice’s Restaurant Property

Proof of existence.
The theory generated by Ar ,s is partial to the almost sure theory, so
it is consistent. Hence, by Gödel’s completeness theorem it has a
countable or finite model (in our case, countable).

Proof of uniqueness.
On the board!
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Proof of Fagin’s Theorem

Proof.
Consider the theory T generated by Ar ,s for all r , s ≥ 0. We have
shown that this theory has a unique countable model. Hence, by a
previous theorem T is complete. Let B be a first-order sentence.
Suppose T |= B . By compactness we can derive B from a finite
subset of T , say Xi , i ∈ [m].

But:

lim
n→∞

P (¬B) ≤ lim
n→∞

m∑
i=1

P (¬Xi ) =
m∑

i=1

lim
n→∞

P (¬Xi ) = 0

Otherwise T |= ¬B ; switching the roles of B and ¬B yields the
desired result.
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Settings
Two players: Spoiler and Duplicator

A known natural number k which states the length of the
game in rounds
A board consists of two distinct graphs G1 and G2

We shall call this game EHR(G1,G2; k)
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Connection to Logic

Rules

How the i ’th round looks like. . .
Consists of two moves: Spoiler’s move followed by Duplicator’s
move

Spoiler selects a vertex in any of the graphs, marking it i
Duplicator selects a vertex in the other graph, marking it i
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The Ehrenfeucht Game

Rules
Equivalence Classes
Connection to Logic

Rules

Who wins?
Let xi , yi be the marked vertices of G1,G2 respectively, indexed
according to their marking order.

Duplicator wins if for all i , j ∈ [k], xi ∼ xj ⇐⇒ yi ∼ yj .
Otherwise Spoiler wins.
We say that EHR(G1,G2; k) is a win for Duplicator if with a
perfect play she wins.

Observation
If G1,G2 satisfy Alice’s Restaurant Property, Duplicator wins
EHR(G1,G2; k) for any k .
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Let xi , yi be the marked vertices of G1,G2 respectively, indexed
according to their marking order.
Duplicator wins if for all i , j ∈ [k], xi ∼ xj ⇐⇒ yi ∼ yj .
Otherwise Spoiler wins.
We say that EHR(G1,G2; k) is a win for Duplicator if with a
perfect play she wins.

Observation
If G1,G2 satisfy Alice’s Restaurant Property, Duplicator wins
EHR(G1,G2; k) for any k .
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Equivalence Classes

Definition
Given G1,G2 and a non-negative integer k , we say
(G1; x1, . . . , xs) ≡k (G2; y1, . . . , ys) whenver Duplicator has a
winning strategy on the Ehrenfeucht game played on G1,G2,
assuming the first s moves out of k done, having marked xi , yi .
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Observation 1
If s = k the game is over, and Duplicator wins exactly if
xi ∼ xj ⇐⇒ yi ∼ yj .

Observation 2
If s = 0 we obtain our original game. We write: G1 ≡ G2 if it is a
win for Duplicator.
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Observation 1
If s = k the game is over, and Duplicator wins exactly if
xi ∼ xj ⇐⇒ yi ∼ yj .

Observation 2
If s = 0 we obtain our original game. We write: G1 ≡ G2 if it is a
win for Duplicator.
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Proposition
For each k, ≡k is an equivalence relation.

Proof of reflexivity.
Indeed, by duplicating Spoiler’s moves, Duplicator wins.

Proof of symmetricity.
The order of the graphs plays no role in the game.
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Proof of transitivity.
By reverse induction on s. If s = k from earlier observation we
conclude that xi ∼ xj ⇐⇒ yi ∼ yj ⇐⇒ zi ∼ zj .

Assume the
result for s + 1, and consider the game on G1,G3 where
(G1; x1, . . . , xs) ≡k (G2; y1, . . . , ys) ≡k (G3; z1, . . . , zs). It is now
Spoiler’s move, and he marks xs+1. Duplicator has a winning reply
in G2, say ys+1, so (G1; x1, . . . , xs+1) ≡k (G2; y1, . . . , ys+1). Had
Spoiler chosen ys+1 in the game G2,G3, Duplicator would have had
a winning reply in G3, say zs+1. Hence
(G2; y1, . . . , ys+1) ≡k (G3; z1, . . . , zs+1). Duplicator replies to
Spoiler’s xs+1 by marking zs+1, and wins by induction.
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Combinatorialists like games. Logicians like truth.
Fortunately, there is a connection.

-Joel Spencer
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The Logic Behind the Game

Theorem
1 G1 ≡k G2 iff G1,G2 agree on all first-order sentences of

quantifier depth k.
2 For each equivalence class [G ]≡k

there exists a first-order
sentence A of quantifier depth k for which
[G ]≡k

= {G ′ | G ′ |= A}.
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Theorem (stronger)

For each k ≥ 1 and 0 ≤ s ≤ k
1 (G1; x1, . . . , xs) ≡k (G2; y1, . . . , ys) iff G1,G2 agree on all

first-order predicates of quantifier depth k − s with s free
variables, when we assign x1, . . . , xs or y1, . . . , ys to these
variables.

2 For each equivalence class [(G ; x1, . . . , xs)]≡k
there exists a

first-order predicate A of quantifier depth k − s with s free
variables, for which
[(G ; x1, . . . , xs)]≡k

= {(G ′; y1, . . . , ys) | G ′ |= A (y1, . . . , ys)}.
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Proof of the case s = k .
We note that (G1; x1, . . . , xk) ≡k (G2; y1, . . . , yk) iff the induced
subgraphs of G1,G2 on their designated vertices are the same. Any
predicate of quantifier depth k − s = 0 is a boolean combination of
xi ∼ xj and xi = xj , hence the equivalence implies agreement with
regard to such a predicate, while inequivalence implies disagreement
with regard to one such predicate.

The predicate A that lists the adjacencies and nonadjacencies
amongst the xi ’s will be the one to define [(G1; x1, . . . , xk)]≡k

.
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predicate of quantifier depth k − s = 0 is a boolean combination of
xi ∼ xj and xi = xj , hence the equivalence implies agreement with
regard to such a predicate, while inequivalence implies disagreement
with regard to one such predicate.
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Proof of the case s < k , assuming correctness for s + 1

From induction, each β of the form [(G ′; y1, . . . , ys , ys+1)]≡k
is

defined by a predicate Aβ of quantifier depth k − s − 1, having
s + 1 free variables. Let α = [(G ; x1, . . . , xs)]≡k

and let α be the
representative (G ; x1, . . . , xs). Define ϕ (β) = ∃xAβ (x1, . . . , xs , x).
Define also Yes [α] = {β | α |= ϕ (β)} and
No [α] = {β | α |= ¬ϕ (β)}. We will later show that these sets do
not depend on the representative α, hence we can mark them
Yes [α] and No [α]. We define
Aα =

∧
β∈Yes[α] ϕ (β) ∧

∧
β∈No[α] ¬ϕ (β).
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Proof (cont.) — why Aα works?

First we note that Aα is of quantifier depth k − s and with s free
variables, as wanted. Clearly, α |= Aα. Suppose γ |= Aα. The set
of equivalence classes generated by γ with an additional designated
x is exactly Yes [α], hence γ ∈ α.
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Proof (cont.) — why the representative does not matter?

Suppose α1, α2 ∈ α, two representatives. Assume β ∈ Yes [α1].
Hence α1 |= ∃xAβ (x1, . . . , xs , x). We want to show that
α2 |= ∃xAβ (y1, . . . , ys , x). Indeed,
(G1; x1, . . . , xs) ≡k (G2; y1, . . . , ys), hence (G1; x1, . . . , xs , z)
models Aβ form some z . Let z ′ be the winning reply of Duplicator
to z on the EHR(G1,G2; k) game. Hence
(G1; x1, . . . , xs , z) ≡k (G2; y1, . . . , ys , z ′), hence by induction
(G2; y1, . . . , ys , z ′) models Aβ , hence α2 |= ∃xAβ (y1, . . . , ys , x), as
wanted.
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Proof (cont.) — proving the first part of the theorem.

Suppose G1,G2 (with designated vertices) agree on first-order
prediacates of quantifier depth k − s with s free variables. Hence,
they agree on the same predicate that defines the equivalence class
of G1, hence they are equivalent.

Conversely, let G1,G2 (with designated vertices) be k-equivalent,
and let P be some predicate of quantifier depth k − s and s free
variables. We can express P is a boolean combination of phrases of
the form ∃xQ where Q is of quantifier depth k − s − 1 and s + 1
free variables. By induction, the value of Q is determined by the
equivalence class of (G ; x1, . . . , xs , x) for every x , hence the value
of P is determined by the equivalence class of (G ; x1, . . . , xs),
hence G1,G2 agree on P .
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Examples

Theorem
Connectivity is not first-order expressible.

Proof sketch.
We let G1 be a cycle of length n and G2 be two such cycles, with n
at least 2k . With s moves remaining in the game, Duplicator calls
any two vertices of distance at most 2s “close enough”, and do her
best to reply in a way that the corresponding points will be of the
same distance apart and the same orientation on the other graph.
When Spoiler tries to take advantage of G2’s nonconnectivity,
Duplicator replies with marking vertices so far apart, so that Spoiler
will not have time to spoil.
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Examples

Theorem
2-colourability is not first-order expressible.

Proof sketch.
We take G1 to be a cycle of length 2n and G2 to be a cycle of
length 2n + 1, for large enough n, and use a similar argument.
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Thank You!

,
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