The Logic of Random Graphs

Peleg Michaeli

Tel-Aviv University

April 13, 2011

Lecture material by Joel Spencer

(ロ) (部) (注) (注)

Motivation The Erdős—Rényi Models

Motivation

Problems

• Large graphs are very hard to analyze.

Peleg Michaeli The Logic of Random Graphs

E

Motivation The Erdős—Rényi Models

Motivation

Problems

- Large graphs are very hard to analyze.
- Analyzing a large graph "manually" is rather primitive.

・ロト ・日子・ ・ヨト ・ヨト

E

Motivation The Erdős—Rényi Models

Motivation

Problems

- Large graphs are very hard to analyze.
- Analyzing a large graph "manually" is rather primitive.
- Large graphs are everywhere: social networks, actors playing together in movies, biology, etc.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation The Erdős—Rényi Models

Motivation

Problems

- Large graphs are very hard to analyze.
- Analyzing a large graph "manually" is rather primitive.
- Large graphs are everywhere: social networks, actors playing together in movies, biology, etc.

A Possible Solution

Analyzing the typical behaviour of a graph with "similar properties". There are several known models for doing this.

Motivation The Erdős—Rényi Models

The Erdős-Rényi Models

Definition

 $G \in G(n, p)$ if G has n vertices, and every edge is included in the graph with probability p.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Motivation The Erdős—Rényi Models

The Erdős—Rényi Models

Definition

 $G \in G(n, p)$ if G has n vertices, and every edge is included in the graph with probability p.

Definition

 $G \in G(n, m)$ if G has n vertices and m edges, chosen uniformly from all $\binom{n}{2}$ possible edges.

< 日 > (四 > (四 > (三 > (三 >))))

Motivation The Erdős—Rényi Models

The Erdős—Rényi Models

Definition

 $G \in G(n, p)$ if G has n vertices, and every edge is included in the graph with probability p.

Definition

 $G \in G(n, m)$ if G has n vertices and m edges, chosen uniformly from all $\binom{n}{2}$ possible edges.

Example

Let $G \in G(n, p)$. Then $\lim_{n\to\infty} \mathbb{P}(G \text{ has an edge}) = 1$.

< 日 > (四 > (四 > (三 > (三 >))))

Motivation The Erdős—Rényi Models

Example Application

Theorem

Let R_k be the k'th diagonal Ramsey number. Then: $R_k > 2^{k/2}$.

Peleg Michaeli The Logic of Random Graphs

・ロト ・部ト ・ヨト ・ヨト

Motivation The Erdős—Rényi Models

Example Application

Theorem

Let R_k be the k'th diagonal Ramsey number. Then: $R_k > 2^{k/2}$.

Proof.

Let $G \in G(n, \frac{1}{2})$, $n \leq 2^{k/2}$. We calculate:

$$\mathbb{P}\left(\omega(G) \ge k
ight) \le {n \choose k} 2^{-{k \choose 2}} \le \left(rac{n}{2 \cdot 2^{-(k-1)/2}}
ight)^k \ \le \left(rac{\sqrt{2}}{2}
ight)^k < rac{1}{2}$$

(日) (四) (三) (三)

Language Almost Sure Theories Completeness The Zero-One Law

The Graph Language

First-Order Logic: Our Language

• variables: *x*₁, *x*₂, ...

Peleg Michaeli The Logic of Random Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E

Language Almost Sure Theories Completeness The Zero-One Law

The Graph Language

First-Order Logic: Our Language

- variables: *x*₁, *x*₂, . . .
- $\, \bullet \,$ two binary relations: = and $\sim \,$

・ロト ・日本・・ヨト ・ヨト

Language Almost Sure Theories Completeness The Zero-One Law

The Graph Language

First-Order Logic: Our Language

- variables: x_1, x_2, \ldots
- $\, \bullet \,$ two binary relations: = and $\sim \,$
- \bullet quantifiers: \forall and \exists

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Language Almost Sure Theories Completeness The Zero-One Law

The Graph Language

First-Order Logic: Our Language

- variables: x_1, x_2, \ldots
- $\, \bullet \,$ two binary relations: = and $\sim \,$
- \bullet quantifiers: \forall and \exists
- connectives: $\lor, \land, \rightarrow, \neg$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Language Almost Sure Theories Completeness The Zero-One Law

The Graph Language

First-Order Logic: Our Language

- variables: *x*₁, *x*₂, ...
- ${\, \bullet \,}$ two binary relations: = and \sim
- \bullet quantifiers: \forall and \exists
- connectives: $\lor, \land, \rightarrow, \neg$

Note

We will assume the following two axioms:

・ロン ・四と ・ヨン ・ヨン

Language Almost Sure Theories Completeness The Zero-One Law

The Graph Language

First-Order Logic: Our Language

- variables: *x*₁, *x*₂, . . .
- ullet two binary relations: = and \sim
- \bullet quantifiers: \forall and \exists
- connectives: $\lor, \land, \rightarrow, \neg$

Note

We will assume the following two axioms:

•
$$\forall x \neg x \sim x$$

・ロト ・日下・ ・ヨト・ ・ヨト・

Language Almost Sure Theories Completeness The Zero-One Law

The Graph Language

First-Order Logic: Our Language

- variables: *x*₁, *x*₂, . . .
- ullet two binary relations: = and \sim
- \bullet quantifiers: \forall and \exists
- connectives: $\lor, \land, \rightarrow, \neg$

Note

We will assume the following two axioms:

•
$$\forall x \neg x \sim x$$

•
$$\forall x \forall y \ x \sim y \rightarrow y \sim x$$

・ロト ・日下・ ・ヨト・ ・ヨト・

Language Almost Sure Theories Completeness The Zero-One Law

Example

Example

Let $A = "\exists x \exists y \exists z (x \sim y) \land (y \sim z) \land (z \sim x)"$. In that case,

 $G \models A$ if and only if G (thought of as a graph) contains a triangle.

Peleg Michaeli The Logic of Random Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Language Almost Sure Theories Completeness The Zero-One Law

Example

Example

Let $A = "\exists x \exists y \exists z (x \sim y) \land (y \sim z) \land (z \sim x)''$. In that case, $G \models A$ if and only if G (thought of as a graph) contains a triangle.

Proposition

$$\lim_{n\to\infty}\mathbb{P}\left(G(n,\frac{1}{2})\models A\right)=1.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Language Almost Sure Theories Completeness The Zero-One Law

Example

Example

Let $A = "\exists x \exists y \exists z (x \sim y) \land (y \sim z) \land (z \sim x)"$. In that case, $G \models A$ if and only if G (thought of as a graph) contains a triangle.

Proposition

$$\lim_{n\to\infty}\mathbb{P}\left(G(n,\frac{1}{2})\models A\right)=1.$$

Proof.

Partition the vertices of *G* into sets of 3. Each set contains a triangle with probability 1/8, hence the probability that *G* does not contain a triangle is no higher than $\left(\frac{7}{8}\right)^{n/3}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Language Almost Sure Theories Completeness The Zero-One Law

Almost Sure Theories

Definition

An almost sure theory is the set of all sentences A holding almost surely (with respect to some p = p(n)).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Language Almost Sure Theories Completeness The Zero-One Law

Almost Sure Theories

Definition

An almost sure theory is the set of all sentences A holding almost surely (with respect to some p = p(n)).

Theorem

An almost sure theory is a theory.

イロト イヨト イヨト イヨト

Language Almost Sure Theories Completeness The Zero-One Law

Almost Sure Theories

Definition

An almost sure theory is the set of all sentences A holding almost surely (with respect to some p = p(n)).

Theorem

An almost sure theory is a theory.

Proof.

Suppose *B* is deduced from an almost sure theory *T*; hence, it can be deduced from a finite subset of *T*, A_1, \ldots, A_k . $\mathbb{P}(G(n, p) \models \neg A_1 \land \ldots \land \neg A_k) \leq \sum_{i=1}^k \mathbb{P}(G(n, p) \models \neg A_i)$

(ロ) (四) (三) (三)

Language Almost Sure Theories Completeness The Zero-One Law

Almost Sure Theories

Theorem

An almost sure theory T is consistent.

Peleg Michaeli The Logic of Random Graphs

・ロト ・日ト ・ヨト ・ヨト

E

Language Almost Sure Theories Completeness The Zero-One Law

Almost Sure Theories

Theorem

An almost sure theory T is consistent.

Proof.

The sentence "False" does not hold almost surely, hence it is not in ${\cal T}$. $\hfill \square$

・ロト ・日本・・ヨト ・ヨト

Language Almost Sure Theories **Completeness** The Zero-One Law

Completeness

Theorem

Let T be a theory with no finite models. Then T is complete iff all of its infinite models are elementarily equivalent.

Peleg Michaeli The Logic of Random Graphs

・ロト ・日本・・ヨト ・ヨト

Э

Language Almost Sure Theories Completeness The Zero-One Law

Completeness

Proof.

Suppose T is complete. Let A be a first-order sentence. Either T ⊨ A or T ⊨ ¬A, hence all infinite models G of T satisfy either A or ¬A, respectively.

(ロ) (四) (三) (三)

Language Almost Sure Theories Completeness The Zero-One Law

Completeness

Proof.

- Suppose T is complete. Let A be a first-order sentence. Either T ⊨ A or T ⊨ ¬A, hence all infinite models G of T satisfy either A or ¬A, respectively.
- Suppose T is incomplete. Let B be a first-order sentence for which neither T ⊨ B nor T ⊨ ¬B. Let T⁺ be the theory given by adding B to T, and let T⁻ be the theory given by adding ¬B. Both are consistent, hence by Gödel both have models, G⁺ and G⁻, which are models of T, but are not elementarily equivalent, since they disagree on B.

Language Almost Sure Theories Completeness The Zero-One Law

The Zero-One Law

Definition

We say that p = p(n) satisfies the Zero-One Law if for every first-order sentence A, the following holds: $\lim_{n\to\infty} \mathbb{P}(G(n, p(n)) \models A) \in \{0, 1\}.$

Peleg Michaeli The Logic of Random Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Language Almost Sure Theories Completeness The Zero-One Law

The Zero-One Law

Definition

We say that p = p(n) satisfies the Zero-One Law if for every first-order sentence A, the following holds: $\lim_{n\to\infty} \mathbb{P}(G(n, p(n)) \models A) \in \{0, 1\}.$

Theorem (Fagin)

The constant function $p(n) \equiv \frac{1}{2}$ satisfies the Zero-One Law.

・ロト ・日本 ・モート ・モート

Language Almost Sure Theories Completeness The Zero-One Law

The Zero-One Law

Definition

We say that p = p(n) satisfies the Zero-One Law if for every first-order sentence A, the following holds: $\lim_{n\to\infty} \mathbb{P}(G(n, p(n)) \models A) \in \{0, 1\}.$

Theorem (Fagin)

The constant function $p(n) \equiv \frac{1}{2}$ satisfies the Zero-One Law. Note: This can be generalised to any constant $p(n) \equiv p$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Definition

For any non-negative integers r, s, let $A_{r,s}$ be the following statement: "For any distinct x_1, \ldots, x_r and y_1, \ldots, y_s there exists a vertex z such that $z \sim x_i$ for all i and $\neg z \sim y_i$ for all i."

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Definition

For any non-negative integers r, s, let $A_{r,s}$ be the following statement: "For any distinct x_1, \ldots, x_r and y_1, \ldots, y_s there exists a vertex z such that $z \sim x_i$ for all i and $\neg z \sim y_i$ for all i." Note: This is a first-order sentence.

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Proposition

 $\forall r, s \geq 0$, $A_{r,s}$ holds almost surely.

・ロト ・日本・・ヨト ・ヨト

E

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Proposition

 $\forall r, s \geq 0$, $A_{r,s}$ holds almost surely.

Proof.

For given r, s and $x_1, \ldots, x_r, y_1, \ldots, y_s$, let Noz be the event "there is no z satisfying \ldots ". It is easy to see that $\mathbb{P}(Noz) = (1 - 2^{-r-s})^{n-r-s}$.

イロト イヨト イヨト イヨト

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Proposition

 $\forall r, s \geq 0$, $A_{r,s}$ holds almost surely.

Proof.

For given r, s and $x_1, \ldots, x_r, y_1, \ldots, y_s$, let Noz be the event "there is no z satisfying \ldots ". It is easy to see that $\mathbb{P}(Noz) = (1 - 2^{-r-s})^{n-r-s}$. The union bound gives the following:

$$\mathbb{P}\left(\neg A_{r,s}\right) \leq \binom{n}{r}\binom{n-r}{s}\left(1-2^{-r-s}\right)^{n-r-s} \to 0$$

・ロト ・日下・ ・ ヨト・

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Definition

A graph is said to have the Alice's Restaurant Property if it satisfies $A_{r,s}$ for all $r, s \ge 0$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Definition

A graph is said to have the Alice's Restaurant Property if it satisfies $A_{r,s}$ for all $r, s \ge 0$.

Theorem

There is a unique graph G (up to isomorphism) for which $G \models ARP$.

・ロト ・日本 ・モート ・モート

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Proof of existence.

The theory generated by $A_{r,s}$ is partial to the almost sure theory, so it is consistent. Hence, by Gödel's completeness theorem it has a countable or finite model (in our case, countable).

Language Almost Sure Theories Completeness The Zero-One Law

Alice's Restaurant Property

Proof of existence.

The theory generated by $A_{r,s}$ is partial to the almost sure theory, so it is consistent. Hence, by Gödel's completeness theorem it has a countable or finite model (in our case, countable).

Proof of uniqueness.

On the board!

Peleg Michaeli The Logic of Random Graphs

(日) (四) (三) (三)

Language Almost Sure Theories Completeness The Zero-One Law

Proof of Fagin's Theorem

Proof.

Consider the theory T generated by $A_{r,s}$ for all $r, s \ge 0$. We have shown that this theory has a unique countable model. Hence, by a previous theorem T is complete. Let B be a first-order sentence. Suppose $T \models B$. By compactness we can derive B from a finite subset of T, say X_i , $i \in [m]$.

・ロン ・四と ・ヨン ・ヨン

Language Almost Sure Theories Completeness The Zero-One Law

Proof of Fagin's Theorem

Proof.

Consider the theory T generated by $A_{r,s}$ for all $r, s \ge 0$. We have shown that this theory has a unique countable model. Hence, by a previous theorem T is complete. Let B be a first-order sentence. Suppose $T \models B$. By compactness we can derive B from a finite subset of T, say X_i , $i \in [m]$. But:

$$\lim_{n\to\infty}\mathbb{P}\left(\neg B\right)\leq\lim_{n\to\infty}\sum_{i=1}^{m}\mathbb{P}\left(\neg X_{i}\right)=\sum_{i=1}^{m}\lim_{n\to\infty}\mathbb{P}\left(\neg X_{i}\right)=0$$

Peleg Michaeli The Logic of Random Graphs

・ロン ・四と ・ヨン ・ヨン

Language Almost Sure Theories Completeness The Zero-One Law

Proof of Fagin's Theorem

Proof.

Consider the theory T generated by $A_{r,s}$ for all $r, s \ge 0$. We have shown that this theory has a unique countable model. Hence, by a previous theorem T is complete. Let B be a first-order sentence. Suppose $T \models B$. By compactness we can derive B from a finite subset of T, say X_i , $i \in [m]$. But:

$$\lim_{n\to\infty}\mathbb{P}(\neg B)\leq\lim_{n\to\infty}\sum_{i=1}^{m}\mathbb{P}(\neg X_i)=\sum_{i=1}^{m}\lim_{n\to\infty}\mathbb{P}(\neg X_i)=0$$

Otherwise $T \models \neg B$; switching the roles of *B* and $\neg B$ yields the desired result.

・ロト ・四ト ・ヨト ・ヨト

Rules Equivalence Classes Connection to Logic

Rules

Settings

• Two players: Spoiler and Duplicator

Peleg Michaeli The Logic of Random Graphs

・ロト ・部ト ・ヨト ・ヨト

Rules Equivalence Classes Connection to Logic

Rules

Settings

- Two players: Spoiler and Duplicator
- A known natural number k which states the length of the game in rounds

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Rules Equivalence Classes Connection to Logic

Rules

Settings

- Two players: Spoiler and Duplicator
- A known natural number k which states the length of the game in rounds
- A board consists of two distinct graphs G_1 and G_2

・ロト ・日本 ・モート ・モート

Rules Equivalence Classes Connection to Logic

Rules

Settings

- Two players: Spoiler and Duplicator
- A known natural number k which states the length of the game in rounds
- A board consists of two distinct graphs G_1 and G_2
- We shall call this game $EHR(G_1, G_2; k)$

・ロト ・日本 ・モート ・モート

Rules Equivalence Classes Connection to Logic

How the *i*'th round looks like...

Consists of two moves: Spoiler's move followed by Duplicator's move

Peleg Michaeli The Logic of Random Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Rules Equivalence Classes Connection to Logic

How the *i*'th round looks like...

- Consists of two moves: Spoiler's move followed by Duplicator's move
- Spoiler selects a vertex in *any of the graphs*, marking it *i*

Peleg Michaeli The Logic of Random Graphs

(日) (四) (三) (三)

Rules Equivalence Classes Connection to Logic

How the *i*'th round looks like...

- Consists of two moves: Spoiler's move followed by Duplicator's move
- Spoiler selects a vertex in *any of the graphs*, marking it *i*
- Duplicator selects a vertex in the other graph, marking it i

Rules Equivalence Classes Connection to Logic

Rules

Who wins?

• Let x_i, y_i be the marked vertices of G_1, G_2 respectively, indexed according to their marking order.

・ロト ・日本 ・モート ・モート

Э

Rules Equivalence Classes Connection to Logic

Rules

Who wins?

- Let x_i, y_i be the marked vertices of G_1, G_2 respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in [k]$, $x_i \sim x_j \iff y_i \sim y_j$.

・ロト ・日本 ・モート ・モート

Rules Equivalence Classes Connection to Logic

Rules

Who wins?

- Let x_i, y_i be the marked vertices of G_1, G_2 respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in [k]$, $x_i \sim x_j \iff y_i \sim y_j$.
- Otherwise Spoiler wins.

・ロト ・ 同ト ・ ヨト ・ ヨト

Rules Equivalence Classes Connection to Logic

Rules

Who wins?

- Let x_i, y_i be the marked vertices of G_1, G_2 respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in [k]$, $x_i \sim x_j \iff y_i \sim y_j$.
- Otherwise Spoiler wins.
- We say that EHR(G₁, G₂; k) is a win for Duplicator if with a perfect play she wins.

・ロト ・日ト ・ヨト ・ヨト

Rules Equivalence Classes Connection to Logic

Rules

Who wins?

- Let x_i, y_i be the marked vertices of G_1, G_2 respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in [k]$, $x_i \sim x_j \iff y_i \sim y_j$.
- Otherwise Spoiler wins.
- We say that EHR(G₁, G₂; k) is a win for Duplicator if with a perfect play she wins.

Observation

If G_1 , G_2 satisfy Alice's Restaurant Property, Duplicator wins EHR(G_1 , G_2 ; k) for any k.

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Definition

Given G_1, G_2 and a non-negative integer k, we say $(G_1; x_1, \ldots, x_s) \equiv_k (G_2; y_1, \ldots, y_s)$ whenver Duplicator has a winning strategy on the Ehrenfeucht game played on G_1, G_2 , assuming the first s moves out of k done, having marked x_i, y_i .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Observation 1

If s = k the game is over, and Duplicator wins exactly if $x_i \sim x_j \iff y_i \sim y_j$.

イロト イヨト イヨト イヨト

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Observation 1

If s = k the game is over, and Duplicator wins exactly if

 $x_i \sim x_j \iff y_i \sim y_j.$

Observation 2

If s = 0 we obtain our original game. We write: $G_1 \equiv G_2$ if it is a win for Duplicator.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Proposition

For each k, \equiv_k is an equivalence relation.

Peleg Michaeli The Logic of Random Graphs

・ロト ・日子・ ・ヨト ・ヨト

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Proposition

For each k, \equiv_k is an equivalence relation.

Proof of reflexivity.

Indeed, by duplicating Spoiler's moves, Duplicator wins.

イロト イヨト イヨト イヨト

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Proposition

For each k, \equiv_k is an equivalence relation.

Proof of reflexivity.

Indeed, by duplicating Spoiler's moves, Duplicator wins.

Proof of symmetricity.

The order of the graphs plays no role in the game.

(ロ) (部) (注) (注)

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Proof of transitivity.

By reverse induction on *s*. If s = k from earlier observation we conclude that $x_i \sim x_j \iff y_i \sim y_j \iff z_i \sim z_j$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Rules Equivalence Classes Connection to Logic

Equivalence Classes

Proof of transitivity.

By reverse induction on *s*. If s = k from earlier observation we conclude that $x_i \sim x_j \iff y_i \sim y_j \iff z_i \sim z_j$. Assume the result for s + 1, and consider the game on G_1, G_3 where $(G_1; x_1, \ldots, x_s) \equiv_k (G_2; y_1, \ldots, y_s) \equiv_k (G_3; z_1, \ldots, z_s)$. It is now Spoiler's move, and he marks x_{s+1} . Duplicator has a winning reply in G_2 , say y_{s+1} , so $(G_1; x_1, \ldots, x_{s+1}) \equiv_k (G_2; y_1, \ldots, y_{s+1})$. Had Spoiler chosen y_{s+1} in the game G_2, G_3 , Duplicator would have had a winning reply in G_3 , say z_{s+1} . Hence $(G_2; y_1, \ldots, y_{s+1}) \equiv_k (G_3; z_1, \ldots, z_{s+1})$. Duplicator replies to Spoiler's x_{s+1} by marking z_{s+1} , and wins by induction.

(ロ) (部) (E) (E) [E]

Rules Equivalence Classes Connection to Logic

Combinatorialists like games. Logicians like truth. Fortunately, there is a connection.

-Joel Spencer

E

・ロト ・部ト ・ヨト ・ヨト

Peleg Michaeli The Logic of Random Graphs

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Theorem

- G₁ ≡_k G₂ iff G₁, G₂ agree on all first-order sentences of quantifier depth k.
- Por each equivalence class [G]_{≡k} there exists a first-order sentence A of quantifier depth k for which [G]_{≡k} = {G' | G' ⊨ A}.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Theorem (stronger)

For each $k \ge 1$ and $0 \le s \le k$

- (G₁; x₁,..., x_s) ≡_k (G₂; y₁,..., y_s) iff G₁, G₂ agree on all first-order predicates of quantifier depth k − s with s free variables, when we assign x₁,..., x_s or y₁,..., y_s to these variables.
- For each equivalence class [(G; x₁,..., x_s)]_{≡k} there exists a first-order predicate A of quantifier depth k − s with s free variables, for which [(G; x₁,..., x_s)]_{=k} = {(G'; y₁,..., y_s) | G' |= A(y₁,..., y_s)}.

◆□ > ◆□ > ◆□ > ◆□ > ●

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Proof of the case s = k.

We note that $(G_1; x_1, \ldots, x_k) \equiv_k (G_2; y_1, \ldots, y_k)$ iff the induced subgraphs of G_1, G_2 on their designated vertices are the same. Any predicate of quantifier depth k - s = 0 is a boolean combination of $x_i \sim x_j$ and $x_i = x_j$, hence the equivalence implies agreement with regard to such a predicate, while inequivalence implies disagreement with regard to one such predicate.

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Proof of the case s = k.

We note that $(G_1; x_1, \ldots, x_k) \equiv_k (G_2; y_1, \ldots, y_k)$ iff the induced subgraphs of G_1, G_2 on their designated vertices are the same. Any predicate of quantifier depth k - s = 0 is a boolean combination of $x_i \sim x_j$ and $x_i = x_j$, hence the equivalence implies agreement with regard to such a predicate, while inequivalence implies disagreement with regard to one such predicate.

The predicate A that lists the adjacencies and nonadjacencies amongst the x_i 's will be the one to define $[(G_1; x_1, \ldots, x_k)]_{=_i}$.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Proof of the case s < k, assuming correctness for s + 1

From induction, each β of the form $[(G'; y_1, \ldots, y_s, y_{s+1})]_{\equiv_k}$ is defined by a predicate A_β of quantifier depth k - s - 1, having s + 1 free variables. Let $\alpha = [(G; x_1, \ldots, x_s)]_{\equiv_k}$ and let $\overline{\alpha}$ be the representative $(G; x_1, \ldots, x_s)$. Define $\varphi(\beta) = \exists x A_\beta(x_1, \ldots, x_s, x)$. Define also Yes $[\overline{\alpha}] = \{\beta \mid \overline{\alpha} \models \varphi(\beta)\}$ and No $[\overline{\alpha}] = \{\beta \mid \overline{\alpha} \models \neg \varphi(\beta)\}$. We will later show that these sets do not depend on the representative $\overline{\alpha}$, hence we can mark them Yes $[\alpha]$ and No $[\alpha]$. We define $A_\alpha = \bigwedge_{\beta \in \operatorname{Yes}[\alpha]} \varphi(\beta) \land \bigwedge_{\beta \in \operatorname{No}[\alpha]} \neg \varphi(\beta)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Proof (cont.) — why A_{α} works?

First we note that A_{α} is of quantifier depth k - s and with s free variables, as wanted. Clearly, $\alpha \models A_{\alpha}$. Suppose $\overline{\gamma} \models A_{\alpha}$. The set of equivalence classes generated by $\overline{\gamma}$ with an additional designated x is exactly Yes [α], hence $\overline{\gamma} \in \alpha$.

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Proof (cont.) — why the representative does not matter?

Suppose $\alpha_1, \alpha_2 \in \alpha$, two representatives. Assume $\beta \in \text{Yes}[\alpha_1]$. Hence $\alpha_1 \models \exists x A_\beta (x_1, \dots, x_s, x)$. We want to show that $\alpha_2 \models \exists x A_\beta (y_1, \dots, y_s, x)$. Indeed, $(G_1; x_1, \dots, x_s) \equiv_k (G_2; y_1, \dots, y_s)$, hence $(G_1; x_1, \dots, x_s, z)$ models A_β form some z. Let z' be the winning reply of Duplicator to z on the EHR $(G_1, G_2; k)$ game. Hence $(G_1; x_1, \dots, x_s, z) \equiv_k (G_2; y_1, \dots, y_s, z')$, hence by induction $(G_2; y_1, \dots, y_s, z')$ models A_β , hence $\alpha_2 \models \exists x A_\beta (y_1, \dots, y_s, x)$, as wanted.

・ロト ・四ト ・ヨト ・ヨト

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Proof (cont.) — proving the first part of the theorem.

Suppose G_1 , G_2 (with designated vertices) agree on first-order prediacates of quantifier depth k - s with s free variables. Hence, they agree on the same predicate that defines the equivalence class of G_1 , hence they are equivalent.

Rules Equivalence Classes Connection to Logic

The Logic Behind the Game

Proof (cont.) — proving the first part of the theorem.

Suppose G_1 , G_2 (with designated vertices) agree on first-order prediacates of quantifier depth k - s with s free variables. Hence, they agree on the same predicate that defines the equivalence class of G_1 , hence they are equivalent.

Conversely, let G_1 , G_2 (with designated vertices) be *k*-equivalent, and let *P* be some predicate of quantifier depth k - s and *s* free variables. We can express *P* is a boolean combination of phrases of the form $\exists xQ$ where *Q* is of quantifier depth k - s - 1 and s + 1free variables. By induction, the value of *Q* is determined by the equivalence class of $(G; x_1, \ldots, x_s, x)$ for every *x*, hence the value of *P* is determined by the equivalence class of $(G; x_1, \ldots, x_s)$, hence G_1, G_2 agree on *P*.

・ロト ・四ト ・ヨト ・ヨト

Rules Equivalence Classes Connection to Logic

Examples

Theorem

Connectivity is not first-order expressible.

Peleg Michaeli The Logic of Random Graphs

・ロト ・部ト ・ヨト ・ヨト

Rules Equivalence Classes Connection to Logic

Examples

Theorem

Connectivity is not first-order expressible.

Proof sketch.

We let G_1 be a cycle of length n and G_2 be two such cycles, with n at least 2^k . With s moves remaining in the game, Duplicator calls any two vertices of distance at most 2^s "close enough", and do her best to reply in a way that the corresponding points will be of the same distance apart and the same orientation on the other graph.

Rules Equivalence Classes Connection to Logic

Examples

Theorem

Connectivity is not first-order expressible.

Proof sketch.

We let G_1 be a cycle of length n and G_2 be two such cycles, with n at least 2^k . With s moves remaining in the game, Duplicator calls any two vertices of distance at most 2^s "close enough", and do her best to reply in a way that the corresponding points will be of the same distance apart and the same orientation on the other graph. When Spoiler tries to take advantage of G_2 's nonconnectivity, Duplicator replies with marking vertices so far apart, so that Spoiler will not have time to spoil.

(日) (部) (目) (日)

Rules Equivalence Classes Connection to Logic

Examples

Theorem

2-colourability is not first-order expressible.

Peleg Michaeli The Logic of Random Graphs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Rules Equivalence Classes Connection to Logic

Examples

Theorem

2-colourability is not first-order expressible.

Proof sketch.

We take G_1 to be a cycle of length 2n and G_2 to be a cycle of length 2n + 1, for large enough n, and use a similar argument.

Rules Equivalence Classes Connection to Logic

Thank You!

Peleg Michaeli The Logic of Random Graphs

イロト イロト イヨト イヨト 三日