The Logic of Random Graphs

Peleg Michaeli
Tel-Aviv University
April 13, 2011
Lecture material by Joel Spencer

Motivation

Problems

- Large graphs are very hard to analyze.

Motivation

Problems

- Large graphs are very hard to analyze.
- Analyzing a large graph "manually" is rather primitive.

Motivation

Problems

- Large graphs are very hard to analyze.
- Analyzing a large graph "manually" is rather primitive.
- Large graphs are everywhere: social networks, actors playing together in movies, biology, etc.

Random Graphs

Motivation

Problems

- Large graphs are very hard to analyze.
- Analyzing a large graph "manually" is rather primitive.
- Large graphs are everywhere: social networks, actors playing together in movies, biology, etc.

A Possible Solution

Analyzing the typical behaviour of a graph with "similar properties". There are several known models for doing this.

The Erdős—Rényi Models

Definition

$G \in G(n, p)$ if G has n vertices, and every edge is included in the graph with probability p.

The Erdős—Rényi Models

Definition

$G \in G(n, p)$ if G has n vertices, and every edge is included in the graph with probability p.

Definition

$G \in G(n, m)$ if G has n vertices and m edges, chosen uniformly from all $\binom{n}{2}$ possible edges.

Random Graphs

The Erdős—Rényi Models

Definition

$G \in G(n, p)$ if G has n vertices, and every edge is included in the graph with probability p.

Definition

$G \in G(n, m)$ if G has n vertices and m edges, chosen uniformly from all $\binom{n}{2}$ possible edges.

Example

Let $G \in G(n, p)$. Then $\lim _{n \rightarrow \infty} \mathbb{P}(G$ has an edge $)=1$.

Random Graphs

The Ehrenfeucht Game

Example Application

Theorem

Let R_{k} be the k 'th diagonal Ramsey number. Then: $R_{k}>2^{k / 2}$.

Random Graphs

Example Application

Theorem

Let R_{k} be the k 'th diagonal Ramsey number. Then: $R_{k}>2^{k / 2}$.

Proof.

Let $G \in G\left(n, \frac{1}{2}\right), n \leq 2^{k / 2}$. We calculate:

$$
\begin{aligned}
\mathbb{P}(\omega(G) \geq k) & \leq\binom{ n}{k} 2^{-\binom{k}{2}} \leq\left(\frac{n}{2 \cdot 2^{-(k-1) / 2}}\right)^{k} \\
& \leq\left(\frac{\sqrt{2}}{2}\right)^{k}<\frac{1}{2}
\end{aligned}
$$

Random Graphs

The Graph Language

First-Order Logic: Our Language

- variables: x_{1}, x_{2}, \ldots

Random Graphs

The Graph Language

First-Order Logic: Our Language

- variables: x_{1}, x_{2}, \ldots
- two binary relations: $=$ and \sim

Random Graphs

The Graph Language

First-Order Logic: Our Language

- variables: x_{1}, x_{2}, \ldots
- two binary relations: $=$ and \sim
- quantifiers: \forall and \exists

Random Graphs

The Graph Language

First-Order Logic: Our Language

- variables: x_{1}, x_{2}, \ldots
- two binary relations: $=$ and \sim
- quantifiers: \forall and \exists
- connectives: $\vee, \wedge, \rightarrow$, ᄀ

Random Graphs

The Graph Language

First-Order Logic: Our Language

- variables: x_{1}, x_{2}, \ldots
- two binary relations: $=$ and \sim
- quantifiers: \forall and \exists
- connectives: $\vee, \wedge, \rightarrow$, ᄀ

Note

We will assume the following two axioms:

Random Graphs

The Graph Language

First-Order Logic: Our Language

- variables: x_{1}, x_{2}, \ldots
- two binary relations: $=$ and \sim
- quantifiers: \forall and \exists
- connectives: $\vee, \wedge, \rightarrow$, ᄀ

Note

We will assume the following two axioms:

- $\forall x \neg x \sim x$

Random Graphs

The Graph Language

First-Order Logic: Our Language

- variables: x_{1}, x_{2}, \ldots
- two binary relations: $=$ and \sim
- quantifiers: \forall and \exists
- connectives: $\vee, \wedge, \rightarrow$, ᄀ

Note

We will assume the following two axioms:

- $\forall x \neg x \sim x$
- $\forall x \forall y x \sim y \rightarrow y \sim x$

Random Graphs

Example

Example

Let $A=" \exists x \exists y \exists z(x \sim y) \wedge(y \sim z) \wedge(z \sim x)^{\prime \prime}$. In that case, $G \models A$ if and only if G (thought of as a graph) contains a triangle.

Random Graphs

Example

Example

Let $A=" \exists x \exists y \exists z(x \sim y) \wedge(y \sim z) \wedge(z \sim x)^{\prime \prime}$. In that case, $G \models A$ if and only if G (thought of as a graph) contains a triangle.

Proposition

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G\left(n, \frac{1}{2}\right) \models A\right)=1
$$

Random Graphs

Example

Example

Let $A=" \exists x \exists y \exists z(x \sim y) \wedge(y \sim z) \wedge(z \sim x)^{\prime \prime}$. In that case, $G \models A$ if and only if G (thought of as a graph) contains a triangle.

Proposition

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G\left(n, \frac{1}{2}\right) \models A\right)=1
$$

Proof.

Partition the vertices of G into sets of 3 . Each set contains a triangle with probability $1 / 8$, hence the probability that G does not contain a triangle is no higher than $\left(\frac{7}{8}\right)^{n / 3}$.

Random Graphs

Almost Sure Theories

Definition

An almost sure theory is the set of all sentences A holding almost surely (with respect to some $p=p(n)$).

Random Graphs

Almost Sure Theories

Definition

An almost sure theory is the set of all sentences A holding almost surely (with respect to some $p=p(n)$).

Theorem

An almost sure theory is a theory.

Random Graphs

Almost Sure Theories

Definition

An almost sure theory is the set of all sentences A holding almost surely (with respect to some $p=p(n)$).

Theorem

An almost sure theory is a theory.

Proof.

Suppose B is deduced from an almost sure theory T; hence, it can be deduced from a finite subset of T, A_{1}, \ldots, A_{k}. $\mathbb{P}\left(G(n, p) \mid=\neg A_{1} \wedge \ldots \wedge \neg A_{k}\right) \leq \sum_{i=1}^{k} \mathbb{P}\left(G(n, p) \models \neg A_{i}\right)$

Random Graphs

Almost Sure Theories

Theorem
An almost sure theory T is consistent.

Random Graphs

Almost Sure Theories

Theorem
An almost sure theory T is consistent.

Proof.

The sentence "False" does not hold almost surely, hence it is not in T.

Random Graphs

Completeness

Theorem

Let T be a theory with no finite models. Then T is complete iff all of its infinite models are elementarily equivalent.

Random Graphs

Completeness

Proof.

- Suppose T is complete. Let A be a first-order sentence. Either $T \models A$ or $T \models \neg A$, hence all infinite models G of T satisfy either A or $\neg A$, respectively.

Random Graphs

Completeness

Proof.

- Suppose T is complete. Let A be a first-order sentence. Either $T \models A$ or $T \models \neg A$, hence all infinite models G of T satisfy either A or $\neg A$, respectively.
- Suppose T is incomplete. Let B be a first-order sentence for which neither $T \models B$ nor $T \models \neg B$. Let T^{+}be the theory given by adding B to T, and let T^{-}be the theory given by adding $\neg B$. Both are consistent, hence by Gödel both have models, G^{+}and G^{-}, which are models of T, but are not elementarily equivalent, since they disagree on B.

Random Graphs

The Zero-One Law

Definition

We say that $p=p(n)$ satisfies the Zero-One Law if for every first-order sentence A, the following holds:
$\lim _{n \rightarrow \infty} \mathbb{P}(G(n, p(n)) \models A) \in\{0,1\}$.

Random Graphs

The Zero-One Law

Definition

We say that $p=p(n)$ satisfies the Zero-One Law if for every first-order sentence A, the following holds:
$\lim _{n \rightarrow \infty} \mathbb{P}(G(n, p(n)) \models A) \in\{0,1\}$.

Theorem (Fagin)

The constant function $p(n) \equiv \frac{1}{2}$ satisfies the Zero-One Law.

Random Graphs

The Zero-One Law

Definition

We say that $p=p(n)$ satisfies the Zero-One Law if for every first-order sentence A, the following holds:
$\lim _{n \rightarrow \infty} \mathbb{P}(G(n, p(n)) \models A) \in\{0,1\}$.

Theorem (Fagin)

The constant function $p(n) \equiv \frac{1}{2}$ satisfies the Zero-One Law. Note: This can be generalised to any constant $p(n) \equiv p$.

Random Graphs

Alice's Restaurant Property

Definition

For any non-negative integers r, s, let $A_{r, s}$ be the following statement: "For any distinct x_{1}, \ldots, x_{r} and y_{1}, \ldots, y_{s} there exists a vertex z such that $z \sim x_{i}$ for all i and $\neg z \sim y_{i}$ for all i."

Random Graphs

Alice's Restaurant Property

Definition

For any non-negative integers r, s, let $A_{r, s}$ be the following statement: "For any distinct x_{1}, \ldots, x_{r} and y_{1}, \ldots, y_{s} there exists a vertex z such that $z \sim x_{i}$ for all i and $\neg z \sim y_{i}$ for all i."
Note: This is a first-order sentence.

Random Graphs

Language Almost Sure Theories Completeness
The Zero-One Law

Alice's Restaurant Property

Proposition

$\forall r, s \geq 0, A_{r, s}$ holds almost surely.

Random Graphs

Alice's Restaurant Property

Proposition

$\forall r, s \geq 0, A_{r, s}$ holds almost surely.

Proof.

For given r, s and $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$, let Noz be the event "there is no z satisfying ...". It is easy to see that $\mathbb{P}(\mathrm{Noz})=\left(1-2^{-r-s}\right)^{n-r-s}$.

Random Graphs

Alice's Restaurant Property

Proposition

$$
\forall r, s \geq 0, A_{r, s} \text { holds almost surely. }
$$

Proof.

For given r, s and $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$, let Noz be the event "there is no z satisfying ...". It is easy to see that $\mathbb{P}(\mathrm{Noz})=\left(1-2^{-r-s}\right)^{n-r-s}$. The union bound gives the following:

$$
\mathbb{P}\left(\neg A_{r, s}\right) \leq\binom{ n}{r}\binom{n-r}{s}\left(1-2^{-r-s}\right)^{n-r-s} \rightarrow 0
$$

Random Graphs

Alice's Restaurant Property

Definition

A graph is said to have the Alice's Restaurant Property if it satisfies $A_{r, s}$ for all $r, s \geq 0$.

Random Graphs

Alice's Restaurant Property

Definition

A graph is said to have the Alice's Restaurant Property if it satisfies $A_{r, s}$ for all $r, s \geq 0$.

Theorem

There is a unique graph G (up to isomorphism) for which $G \models A R P$.

Random Graphs

Alice's Restaurant Property

Proof of existence.

The theory generated by $A_{r, s}$ is partial to the almost sure theory, so it is consistent. Hence, by Gödel's completeness theorem it has a countable or finite model (in our case, countable).

Alice's Restaurant Property

Proof of existence.
The theory generated by $A_{r, s}$ is partial to the almost sure theory, so it is consistent. Hence, by Gödel's completeness theorem it has a countable or finite model (in our case, countable).

Proof of uniqueness.
On the board!

Random Graphs

Proof of Fagin's Theorem

Proof.

Consider the theory T generated by $A_{r, s}$ for all $r, s \geq 0$. We have shown that this theory has a unique countable model. Hence, by a previous theorem T is complete. Let B be a first-order sentence. Suppose $T \models B$. By compactness we can derive B from a finite subset of T, say $X_{i}, i \in[m]$.

Random Graphs

Proof of Fagin's Theorem

Proof.

Consider the theory T generated by $A_{r, s}$ for all $r, s \geq 0$. We have shown that this theory has a unique countable model. Hence, by a previous theorem T is complete. Let B be a first-order sentence. Suppose $T \models B$. By compactness we can derive B from a finite subset of T, say $X_{i}, i \in[m]$. But:

$$
\lim _{n \rightarrow \infty} \mathbb{P}(\neg B) \leq \lim _{n \rightarrow \infty} \sum_{i=1}^{m} \mathbb{P}\left(\neg X_{i}\right)=\sum_{i=1}^{m} \lim _{n \rightarrow \infty} \mathbb{P}\left(\neg X_{i}\right)=0
$$

Random Graphs

Proof of Fagin's Theorem

Proof.

Consider the theory T generated by $A_{r, s}$ for all $r, s \geq 0$. We have shown that this theory has a unique countable model. Hence, by a previous theorem T is complete. Let B be a first-order sentence. Suppose $T \models B$. By compactness we can derive B from a finite subset of T, say $X_{i}, i \in[m]$. But:

$$
\lim _{n \rightarrow \infty} \mathbb{P}(\neg B) \leq \lim _{n \rightarrow \infty} \sum_{i=1}^{m} \mathbb{P}\left(\neg X_{i}\right)=\sum_{i=1}^{m} \lim _{n \rightarrow \infty} \mathbb{P}\left(\neg X_{i}\right)=0
$$

Otherwise $T \models \neg B$; switching the roles of B and $\neg B$ yields the desired result.

Random Graphs

Rules
Equivalence Classes
Connection to Logic

Rules

Settings

- Two players: Spoiler and Duplicator

Rules

Settings

- Two players: Spoiler and Duplicator
- A known natural number k which states the length of the game in rounds

Rules

Settings

- Two players: Spoiler and Duplicator
- A known natural number k which states the length of the game in rounds
- A board consists of two distinct graphs G_{1} and G_{2}

Rules

Settings

- Two players: Spoiler and Duplicator
- A known natural number k which states the length of the game in rounds
- A board consists of two distinct graphs G_{1} and G_{2}
- We shall call this game $\operatorname{EHR}\left(G_{1}, G_{2} ; k\right)$

Random Graphs

Rules

How the i 'th round looks like. .

- Consists of two moves: Spoiler's move followed by Duplicator's move

Rules

How the i 'th round looks like. . .

- Consists of two moves: Spoiler's move followed by Duplicator's move
- Spoiler selects a vertex in any of the graphs, marking it i

Rules

How the i 'th round looks like. . .

- Consists of two moves: Spoiler's move followed by Duplicator's move
- Spoiler selects a vertex in any of the graphs, marking it i
- Duplicator selects a vertex in the other graph, marking it i

Rules

Who wins?

- Let x_{i}, y_{i} be the marked vertices of G_{1}, G_{2} respectively, indexed according to their marking order.

Rules

Who wins?

- Let x_{i}, y_{i} be the marked vertices of G_{1}, G_{2} respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in[k], x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j}$.

Rules

Who wins?

- Let x_{i}, y_{i} be the marked vertices of G_{1}, G_{2} respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in[k], x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j}$.
- Otherwise Spoiler wins.

Rules

Who wins?

- Let x_{i}, y_{i} be the marked vertices of G_{1}, G_{2} respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in[k], x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j}$.
- Otherwise Spoiler wins.
- We say that $\operatorname{EHR}\left(G_{1}, G_{2} ; k\right)$ is a win for Duplicator if with a perfect play she wins.

Random Graphs

Rules

Who wins?

- Let x_{i}, y_{i} be the marked vertices of G_{1}, G_{2} respectively, indexed according to their marking order.
- Duplicator wins if for all $i, j \in[k], x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j}$.
- Otherwise Spoiler wins.
- We say that $\operatorname{EHR}\left(G_{1}, G_{2} ; k\right)$ is a win for Duplicator if with a perfect play she wins.

Observation

If G_{1}, G_{2} satisfy Alice's Restaurant Property, Duplicator wins $\operatorname{EHR}\left(G_{1}, G_{2} ; k\right)$ for any k.

Random Graphs

Equivalence Classes

Definition

Given G_{1}, G_{2} and a non-negative integer k, we say $\left(G_{1} ; x_{1}, \ldots, x_{s}\right) \equiv_{k}\left(G_{2} ; y_{1}, \ldots, y_{s}\right)$ whenver Duplicator has a winning strategy on the Ehrenfeucht game played on G_{1}, G_{2}, assuming the first s moves out of k done, having marked x_{i}, y_{i}.

Random Graphs

Equivalence Classes

Observation 1
If $s=k$ the game is over, and Duplicator wins exactly if $x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j}$.

Equivalence Classes

Observation 1

If $s=k$ the game is over, and Duplicator wins exactly if $x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j}$.

Observation 2

If $s=0$ we obtain our original game. We write: $G_{1} \equiv G_{2}$ if it is a win for Duplicator.

Random Graphs
 The Ehrenfeucht Game

Equivalence Classes

Proposition

For each k, \equiv_{k} is an equivalence relation.

Equivalence Classes

Proposition

For each k, \equiv_{k} is an equivalence relation.

Proof of reflexivity.

Indeed, by duplicating Spoiler's moves, Duplicator wins.

Equivalence Classes

Proposition

For each k, \equiv_{k} is an equivalence relation.
Proof of reflexivity.
Indeed, by duplicating Spoiler's moves, Duplicator wins.

Proof of symmetricity.
The order of the graphs plays no role in the game.

Equivalence Classes

Proof of transitivity.

By reverse induction on s. If $s=k$ from earlier observation we conclude that $x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j} \Longleftrightarrow z_{i} \sim z_{j}$.

Equivalence Classes

Proof of transitivity.

By reverse induction on s. If $s=k$ from earlier observation we conclude that $x_{i} \sim x_{j} \Longleftrightarrow y_{i} \sim y_{j} \Longleftrightarrow z_{i} \sim z_{j}$. Assume the result for $s+1$, and consider the game on G_{1}, G_{3} where $\left(G_{1} ; x_{1}, \ldots, x_{s}\right) \equiv_{k}\left(G_{2} ; y_{1}, \ldots, y_{s}\right) \equiv_{k}\left(G_{3} ; z_{1}, \ldots, z_{s}\right)$. It is now Spoiler's move, and he marks x_{s+1}. Duplicator has a winning reply in G_{2}, say y_{s+1}, so $\left(G_{1} ; x_{1}, \ldots, x_{s+1}\right) \equiv k\left(G_{2} ; y_{1}, \ldots, y_{s+1}\right)$. Had Spoiler chosen y_{s+1} in the game G_{2}, G_{3}, Duplicator would have had a winning reply in G_{3}, say z_{s+1}. Hence
$\left(G_{2} ; y_{1}, \ldots, y_{s+1}\right) \equiv_{k}\left(G_{3} ; z_{1}, \ldots, z_{s+1}\right)$. Duplicator replies to Spoiler's x_{s+1} by marking z_{s+1}, and wins by induction.

Combinatorialists like games. Logicians like truth. Fortunately, there is a connection.

The Logic Behind the Game

Theorem

(1) $G_{1} \equiv{ }_{k} G_{2}$ iff G_{1}, G_{2} agree on all first-order sentences of quantifier depth k.
(2) For each equivalence class $[G]_{\equiv_{k}}$ there exists a first-order sentence A of quantifier depth k for which $[G]_{\equiv_{k}}=\left\{G^{\prime}\left|G^{\prime}\right|=A\right\}$.

The Logic Behind the Game

Theorem (stronger)

For each $k \geq 1$ and $0 \leq s \leq k$
(1) $\left(G_{1} ; x_{1}, \ldots, x_{s}\right) \equiv_{k}\left(G_{2} ; y_{1}, \ldots, y_{s}\right)$ iff G_{1}, G_{2} agree on all first-order predicates of quantifier depth $k-s$ with s free variables, when we assign x_{1}, \ldots, x_{s} or y_{1}, \ldots, y_{s} to these variables.
(2) For each equivalence class $\left[\left(G ; x_{1}, \ldots, x_{s}\right)\right]_{\equiv_{k}}$ there exists a first-order predicate A of quantifier depth $k-s$ with s free variables, for which
$\left[\left(G ; x_{1}, \ldots, x_{s}\right)\right]_{\equiv_{k}}=\left\{\left(G^{\prime} ; y_{1}, \ldots, y_{s}\right) \mid G^{\prime} \models A\left(y_{1}, \ldots, y_{s}\right)\right\}$.

Random Graphs

The Logic Behind the Game

Proof of the case $s=k$.

We note that $\left(G_{1} ; x_{1}, \ldots, x_{k}\right) \equiv_{k}\left(G_{2} ; y_{1}, \ldots, y_{k}\right)$ iff the induced subgraphs of G_{1}, G_{2} on their designated vertices are the same. Any predicate of quantifier depth $k-s=0$ is a boolean combination of $x_{i} \sim x_{j}$ and $x_{i}=x_{j}$, hence the equivalence implies agreement with regard to such a predicate, while inequivalence implies disagreement with regard to one such predicate.

The Logic Behind the Game

Proof of the case $s=k$.

We note that $\left(G_{1} ; x_{1}, \ldots, x_{k}\right) \equiv_{k}\left(G_{2} ; y_{1}, \ldots, y_{k}\right)$ iff the induced subgraphs of G_{1}, G_{2} on their designated vertices are the same. Any predicate of quantifier depth $k-s=0$ is a boolean combination of $x_{i} \sim x_{j}$ and $x_{i}=x_{j}$, hence the equivalence implies agreement with regard to such a predicate, while inequivalence implies disagreement with regard to one such predicate.
The predicate A that lists the adjacencies and nonadjacencies amongst the x_{i} 's will be the one to define $\left[\left(G_{1} ; x_{1}, \ldots, x_{k}\right)\right]_{\equiv_{k}}$.

The Logic Behind the Game

Proof of the case $s<k$, assuming correctness for $s+1$
From induction, each β of the form $\left[\left(G^{\prime} ; y_{1}, \ldots, y_{s}, y_{s+1}\right)\right]_{\equiv_{k}}$ is defined by a predicate A_{β} of quantifier depth $k-s-1$, having $s+1$ free variables. Let $\alpha=\left[\left(G ; x_{1}, \ldots, x_{s}\right)\right]_{\equiv_{k}}$ and let $\bar{\alpha}$ be the representative $\left(G ; x_{1}, \ldots, x_{s}\right)$. Define $\varphi(\beta)=\exists x A_{\beta}\left(x_{1}, \ldots, x_{s}, x\right)$. Define also Yes $[\bar{\alpha}]=\{\beta \mid \bar{\alpha} \models \varphi(\beta)\}$ and No $[\bar{\alpha}]=\{\beta \mid \bar{\alpha} \models \neg \varphi(\beta)\}$. We will later show that these sets do not depend on the representative $\bar{\alpha}$, hence we can mark them Yes $[\alpha]$ and No $[\alpha]$. We define
$A_{\alpha}=\bigwedge_{\beta \in \mathrm{Yes}[\alpha]} \varphi(\beta) \wedge \bigwedge_{\beta \in \operatorname{No}[\alpha]} \neg \varphi(\beta)$.

Random Graphs

The Logic Behind the Game

Proof (cont.) — why A_{α} works?

First we note that A_{α} is of quantifier depth $k-s$ and with s free variables, as wanted. Clearly, $\alpha \models A_{\alpha}$. Suppose $\bar{\gamma} \models A_{\alpha}$. The set of equivalence classes generated by $\bar{\gamma}$ with an additional designated x is exactly Yes $[\alpha]$, hence $\bar{\gamma} \in \alpha$.

The Logic Behind the Game

Proof (cont.) - why the representative does not matter?

Suppose $\alpha_{1}, \alpha_{2} \in \alpha$, two representatives. Assume $\beta \in \operatorname{Yes}\left[\alpha_{1}\right]$. Hence $\alpha_{1} \models \exists x A_{\beta}\left(x_{1}, \ldots, x_{s}, x\right)$. We want to show that $\alpha_{2} \vDash \exists x A_{\beta}\left(y_{1}, \ldots, y_{s}, x\right)$. Indeed, $\left(G_{1} ; x_{1}, \ldots, x_{s}\right) \equiv_{k}\left(G_{2} ; y_{1}, \ldots, y_{s}\right)$, hence $\left(G_{1} ; x_{1}, \ldots, x_{s}, z\right)$ models A_{β} form some z. Let z^{\prime} be the winning reply of Duplicator to z on the $\operatorname{EHR}\left(G_{1}, G_{2} ; k\right)$ game. Hence
$\left(G_{1} ; x_{1}, \ldots, x_{s}, z\right) \equiv_{k}\left(G_{2} ; y_{1}, \ldots, y_{s}, z^{\prime}\right)$, hence by induction $\left(G_{2} ; y_{1}, \ldots, y_{s}, z^{\prime}\right)$ models A_{β}, hence $\alpha_{2} \models \exists x A_{\beta}\left(y_{1}, \ldots, y_{s}, x\right)$, as wanted.

Random Graphs

The Logic Behind the Game

Proof (cont.) — proving the first part of the theorem.
Suppose G_{1}, G_{2} (with designated vertices) agree on first-order prediacates of quantifier depth $k-s$ with s free variables. Hence, they agree on the same predicate that defines the equivalence class of G_{1}, hence they are equivalent.

The Logic Behind the Game

Proof (cont.) - proving the first part of the theorem.
Suppose G_{1}, G_{2} (with designated vertices) agree on first-order prediacates of quantifier depth $k-s$ with s free variables. Hence, they agree on the same predicate that defines the equivalence class of G_{1}, hence they are equivalent.
Conversely, let G_{1}, G_{2} (with designated vertices) be k-equivalent, and let P be some predicate of quantifier depth $k-s$ and s free variables. We can express P is a boolean combination of phrases of the form $\exists x Q$ where Q is of quantifier depth $k-s-1$ and $s+1$ free variables. By induction, the value of Q is determined by the equivalence class of $\left(G ; x_{1}, \ldots, x_{s}, x\right)$ for every x, hence the value of P is determined by the equivalence class of $\left(G ; x_{1}, \ldots, x_{s}\right)$, hence G_{1}, G_{2} agree on P.

Random Graphs

Rules
Equivalence Classes
Connection to Logic

Examples

Theorem

Connectivity is not first-order expressible.

Examples

Theorem

Connectivity is not first-order expressible.

Proof sketch.

We let G_{1} be a cycle of length n and G_{2} be two such cycles, with n at least 2^{k}. With s moves remaining in the game, Duplicator calls any two vertices of distance at most 2^{s} "close enough", and do her best to reply in a way that the corresponding points will be of the same distance apart and the same orientation on the other graph.

Examples

Theorem

Connectivity is not first-order expressible.

Proof sketch.

We let G_{1} be a cycle of length n and G_{2} be two such cycles, with n at least 2^{k}. With s moves remaining in the game, Duplicator calls any two vertices of distance at most 2^{s} "close enough", and do her best to reply in a way that the corresponding points will be of the same distance apart and the same orientation on the other graph. When Spoiler tries to take advantage of G_{2} 's nonconnectivity, Duplicator replies with marking vertices so far apart, so that Spoiler will not have time to spoil.

Random Graphs

Rules
Equivalence Classes
Connection to Logic

Examples

Theorem
 2-colourability is not first-order expressible.

Examples

Theorem

2-colourability is not first-order expressible.

Proof sketch.

We take G_{1} to be a cycle of length $2 n$ and G_{2} to be a cycle of length $2 n+1$, for large enough n, and use a similar argument.

Thank You!

©

