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Abstract. We study variants of regular infinite games where the strict
alternation of moves between the two players is subject to modifications.
The second player may postpone a move for a finite number of steps,
or, in other words, exploit in his strategy some lookahead on the moves
of the opponent. This captures situations in distributed systems, e.g.
when buffers are present in communication or when signal transmission
between components is deferred. We distinguish strategies with different
degrees of lookahead, among them being the continuous and the bounded
lookahead strategies. In the first case the lookahead is of finite possibly
unbounded size, whereas in the second case it is of bounded size. We show
that for regular infinite games the solvability by continuous strategies
is decidable, and that a continuous strategy can always be reduced to
one of bounded lookahead. Moreover, this lookahead is at most doubly
exponential in the size of the parity automaton recognizing the winning
condition. We also show that the result fails for non-regular games where
the winning condition is given by a context-free ω-language.

1 Introduction

The algorithmic theory of infinite games is a powerful and flexible framework for
the design of reactive systems (see e.g. [1]). It is well known that, for instance, the
construction of a controller acting indefinitely within its environment amounts
to the computation of a winning strategy in an infinite game. For the case of
regular games, algorithmic solutions of this synthesis problem have been devel-
oped, providing methods for automatic construction of controllers. The basis of
this approach is the Büchi-Landweber Theorem, which says that in a regular
infinite game, i.e. a game over a finite arena with a winning condition given
by an ω-regular language, a finite-state winning strategy for the winner can be
constructed [2]. Much work in the past two decades has been devoted to gener-
alizations of this fundamental result. The game-theoretic setting is built on two
components, a game arena or game graph, representing the transition structure
of a system, and a winning condition, usually given by a logic formula or an au-
tomata theoretic condition. Most generalizations address an extension of either
of the two, or both. A rapidly growing literature is thus concerned with the case
of infinite game graphs and non-regular winning conditions [3, 4, 5].
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In the present paper we investigate a different kind of generalization of the
basic setting, regarding the possibility to get a lookahead on the moves of the
opponent. To explain this aspect it is convenient to refer to the simplest format
of infinite games, also called Gale-Stewart games [6]. In such a game we abstract
from arenas but just let the two players choose letters from a finite alphabet
in turn. (For notational convenience let us only consider the typical case of the
Boolean alphabet B := {0, 1}.) A play is built up as a sequence a0b0a1b1 · · ·
where ai is chosen by one player and bi by the other. A natural view is to
consider the sequence α = a0a1 · · · as input stream and β = b0b1 · · · as output
stream. Accordingly, the players are called Player Input and Player Output,
or short Player I and Player O. The play is won by Player O if the ω-word
α∧β :=

(

a0

b0

)(

a1

b1

)(

a2

b2

)

· · · ∈ (B2)ω satisfies the winning condition, i.e. if it belongs
to a given ω-regular language L. In the classical setting, a strategy for Player O
is a function f that maps a finite input prefix a0 · · ·ai to the bit bi that is to be
chosen by Player O. Such a strategy induces an operator λ : B

ω → B
ω from input

streams to output streams. In this work we study more generalized operators that
correspond to strategies where the choice of bi depends on a0 · · · aj , for j 6= i.
We show results on the existence of such strategies for different conditions on
the relation between i and j.

There are two motivations for the study of such a generalization, a practical
and a theoretical one. In many scenarios, the occurrence of delays (say between
input and output) is realistic, either as a modeling assumption or as a feature
of strategies. For example, the design of a controller may involve a buffer that
allows to store a sequence of input bits of some fixed length d such that the bit
bi of the output sequence is to be delivered with lookahead d, i.e. on the basis of
the input sequence a0 · · · ai+d. Conversely, in the context of networked control
(i.e. systems with components in different locations), there may be a delay d in
the transmission of data, which means that the delivery of bi is due at a point
where only the input bits a0 · · ·ai−d are available. It is clear that the occurrence
of lookaheads and delays influences the existence of solutions. In the first case,
we obtain for increasing d an increasing advantage for the output player, whereas
in the second case we obtain an increasing disadvantage. Observe that the cases
are symmetric and thus mutually reducible.

A more theoretical motivation is to explore more comprehensively and sys-
tematically the solution concepts for infinite games. The classical concept of a
strategy gives a very special kind of operator, and there are very natural options
of higher generality, well-known already from background fields like descriptive
set theory and topology [6]. Let us mention four fundamental levels of opera-
tors, corresponding to different levels of obligation for Player O to move. The
most general ones are the continuous operators (see e.g. [7, 8]). An operator λ
is continuous (in the Cantor space of infinite sequences over B) if in the output
sequence β = λ(α) the bit bi is determined by a finite prefix of α. Referring only
to the length of prefixes, we call an operator uniformly continuous if for some
function g : N → N we have that bi is determined by a0 · · · ai+g(i). For fixed
g we then speak of g-delay operators. On a further level of specialization, we
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are dealing with operators of bounded delay; these are g-delay operators for a
constant function g. Finally, the constant 0 supplies the operators induced by
standard strategies. The aforementioned levels naturally correspond to different
types of games; for example, a continuous strategy involves the values “wait”
and “output b” after each move of the opponent.

Our main result connects the aforementioned levels of operators in the con-
text of regular games. We show that in a Gale-Stewart game with regular win-
ning condition, one can decide whether there is a continuous winning strategy
for Player O, and in this case a strategy of bounded delay can be constructed.
Moreover, one can compute a suitable bound d for the delay. Thus, in the first
aforementioned application scenario, if a standard controller for satisfying a reg-
ular specification does not exist then one can decide whether some finite buffer
will help, and determine the needed size of that buffer. We also show that the
result fails when passing to non-regular specifications. However, which functions
may be appropriate for uniformly continuous strategies in the non-regular case
is left open. It seems that for infinite-state (or non-regular) games our result can
serve as an entry into a much wider field of study.

As indicated above, the idea of generalized concepts of strategies is far from
new. An early contribution is found in the (not well-known) paper of Hosch
and Landweber [9]. It deals with bounded delay strategies in regular games and
exploits a result of Even and Meyer from Boolean circuit theory to establish a
bound for delays [10]. We obtain this result here as a corollary of the main theo-
rem. The extension of our result over [9] covers three dimensions: the connection
with strategies of unbounded delay, a considerably simplified and transparent
proof of the Hosch-Landweber-Theorem (the construction in [9] is highly com-
plex), and finally better complexity bounds for suitable delays.

This paper is organized as follows. In the next section we introduce nota-
tion. In Section 3 we present several kinds of functions and the operators they
induce. We also bridge from continuous operators to delay operators and intro-
duce games with delay. In Sections 4–6 we prove our main result via a twostage
reduction: In Section 4 we do the first step, switching over to block games. In
Section 5 we deal with notions related to semigroups and define a semigroup
game. This framework is finally used in Section 6 to establish the second step
of the reduction, i.e. the connection between block games and the semigroup
game. Sections 7 and 8 provide evidence that our results cannot be generalized
to ω-context-free specifications and give an outlook on future investigations.

2 Preliminaries

Let Σ be a finite alphabet. By Σ∗ and Σω we denote the sets of finite and
infinite words over Σ. Usually, finite words are denoted u, v, . . . whereas α, β, . . .
are infinite words. By |u| we denote the length of u and Σn := {u | |u| = n} is
the set of words of length n. N is the set of natural numbers and N+ := N \ {0}.
Given n1, n2 ∈ N with n1 < n2 we write Σ[n1,n2] for

⋃

n1≤n≤n2
Σn.
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A (deterministic) finite automaton, DFA for short, over Σ is a tuple A =
(Q, q0, δ, F ) where Q is a (non-empty) finite set of states, q0 ∈ Q is the initial
state, δ : Q × Σ → Q is a transition function, and F ⊆ Q is a set of final states.
The run ρu of A on u := u0 · · ·un−1 is the finite sequence ρu(0) · · · ρu(n) with
ρu(0) = q0 and ρu(i+1) = δ(ρu(i), ui) for i = 0, . . . , n−1. We define A to accept
u if and only if ρu(n) ∈ F . The set of all words accepted by A is called the
∗-language of A and denoted L∗(A). Later in our work we need the following
basic property of deterministic finite automata.

Lemma 1. Let A be a DFA with n states and |L∗(A)| = ∞. Then, for all i ∈ N,
A accepts a word ui of length i ≤ |ui| ≤ i + n.

A (deterministic) parity automaton, DPA for short, over Σ is similar to a
DFA, but instead of the set F of final states it has a coloring, i.e. a function
c : Q → {0, . . . , m}. A run of a DPA is the natural extension of a run of a DFA
to infinite words. For α ∈ Σω, the set Inf(ρα) is the set of states visited infinitely
often in run ρα. We define the parity automaton A to accept α if and only if
max(Inf(c(ρα))) is even, i.e. the maximal color seen infinitely often in the run
on α is even. Accordingly, the acceptance condition of A is called a max-parity
acceptance condition. The set of all words accepted by A is called the ω-language
of A and denoted Lω(A).

In the sequel, we write L(A) instead of L∗(A) or Lω(A), if it is clear from the
context whether A is a DFA or DPA. It is well-known that the class of languages
accepted by DPA is exactly the class of ω-regular languages (see e.g. [1]).

A parity game Γ = (V, VI , VO, E, c) is played by two players, Player I and
Player O, on a directed graph G = (V, E):

– V = VI ·∪ VO is a partition of V into positions of Player I and Player O,
– E ⊆ V × V is the set of allowed moves, and
– c : V → {0, . . . , m} is a coloring of V (w.l.o.g. m ∈ 2N).

We assume that for each v ∈ V there is a valid move from v, i.e. vE := {w |
(v, w) ∈ E} 6= ∅. A play is an infinite path through G. A (standard) strategy for
Player O is a function f : V ∗VO → V defining, for each position of Player O and
each history v0 · · · vk of the play, her next move. Thus, for each v0 · · · vk (with
(vi, vi+1) ∈ E for all i = 0, . . . , k − 1) and vk ∈ VO, the function f is defined
such that (vk, f(v0 · · · vk)) ∈ E. A play v0v1 · · · is consistent with the strategy
f if for each vi ∈ VO the next position is given by f , i.e. vi+1 = f(v0 · · · vi).

The parity winning condition is again defined so that a play v0v1 · · · is win-
ning for Player O if and only if the maximal color occurring infinitely often in
{c(vi) | i ∈ N} is even. In the other case the play is winning for Player I. The
function f is called a winning strategy for Player O from v0 if each play start-
ing in v0 that is consistent with f is winning for Player O, and analogously for
Player I. Parity games, even on infinite graphs, are determined, i.e. for each v
either Player I or Player O has a winning strategy from v (see e.g. [1]).

For the rest of this paper, let us fix {0, 1} as input and output alphabet, i.e.
let ΣI = ΣO := B. All the definitions and results are analogous for other finite
alphabets of size at least two.
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3 Operators and Games with Delay

In this section we introduce different kinds of functions and operators, and show
how they induce games with different degrees of lookahead. In the sequel, we
mostly use the term “delay” in place of “lookahead”, following e.g. [9].

3.1 Delay Operators

Let λ denote a function from B
ω to B

ω , also called an operator. We distinguish
the following classes of operators, starting form the most general ones.

(1) continuous operators
(2) uniformly continuous operators
(3) f -delay operators for a fixed f : N → N

(4) bounded delay operators
(5) d-delay operators for a fixed d ∈ N

An operator λ is continuous if in the output sequence β = λ(α) each bit is
determined by a finite prefix of α. This definition is equivalent to the topological
one, i.e. λ is continuous if the preimage λ−1(U) of every open set U ⊆ B

ω is
open in B

ω . Open sets in B
ω are defined using the standard Cantor topology,

i.e. U ⊆ B
ω is open if there exists W ⊆ B

∗ such that U = {wB
ω | w ∈ W}. To

formally capture the constraint that each output bit is determined by a finite
prefix of the input, we define continuity using labelings of the full binary tree
with {0, 1} and ⊥, where ⊥ should be understood as “wait for next bit”.

Definition 1. An operator λ : B
ω → B

ω is continuous if there exists l : B
∗ →

{0, 1,⊥} such that for all α ∈ B
ω the word l(α) := l(α0)l(α0α1)l(α0α1α2) · · ·

satisfies the following:

(1) l(α) does not end with ⊥ω, and
(2) λ(α) = strip(l(α)) where strip(l(α)) is the word l(α) with all ⊥ removed.

Let us now define f -delay and uniformly continuous operators. Let f : N → N

be a strictly monotone function. We say that λ is an f -delay operator if, for each
α ∈ B

ω, the bit λ(α)i depends only on α0 · · ·αf(i). An operator λ is uniformly
continuous if there exists an f such that λ is an f -delay operator.

Observe that each uniformly continuous operator is indeed continuous. To see
this, simply label the first f(0)−1 levels of the binary tree with ⊥ and then each
node α0 · · ·αf(0) on level f(0) with the appropriate first bit of λ(α0 · · ·αf(0)β).
Note that, for any β, this bit only depends on α0 · · ·αf(0). Then label levels
f(0) + 1 to f(1) − 1 with ⊥ and level f(1) with the second bits, and so on.

For the space B
ω it is known that the converse also holds. This is a conse-

quence of König’s Lemma, or equivalently of the fact that continuous functions
on a closed bounded space are uniformly continuous.

Lemma 2. For every continuous operator λ : B
ω → B

ω there exists a strictly
monotone function f : N → N such that λ is an f -delay operator.
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By the above lemma, the classes of continuous operators B
ω → B

ω and
uniformly continuous operators B

ω → B
ω are exactly the same. We distinguish

them because our results rely in fact on uniform continuity. For example, consider
the following operator λ1 : B

ω \ {0ω} → B
ω:

λ1(α) :=

{

0ω if α = 0∗10β for some β ∈ B
ω

1ω otherwise

Intuitively, the operator λ1 checks if there is a 0 or a 1 after the first 1 in the
input. One can verify that λ1 is a continuous function from B

ω \ {0ω} to B
ω ,

but it is not uniformly continuous and can not be extended to any continuous
function from B

ω to B
ω . Our results do not hold for such operators: Already λ1

is a counterexample, since it is continuous but not of bounded delay.
Among the uniformly continuous operators, we distinguish an even more

restricted class of bounded delay operators. A function f : N → N is said to be
of bounded delay if there exist i0, d ∈ N such that f(i) = i+d for all i ≥ i0, and it
is said to be a d-delay function (or a function of constant delay d) if f(i) = i+d
for all i ∈ N. The induced operators are named accordingly.

In all definitions above, we assume that the delay functions f : N → N are
strictly monotone. For such a function f it is often comfortable to consider f∆,
denoting the number of bits Player I has to choose in each round:

f∆(i) :=

{

f(0) + 1 if i = 0

f(i) − f(i − 1) if i > 0

For strictly monotone f : N → N we obtain a unique f∆ : N → N+, and vice
versa. For technical convenience, from now on we work only with the functions
f∆ : N → N+ (but we omit the superscript ∆ in our notation). Moreover, we
use a special notation for constant delay functions: 〈d〉 denotes the function g
such that g(0) = d + 1 and g(i) = 1 for i > 0.

3.2 Regular Games with Delay

In this section we introduce the regular infinite game Γf (L) (or Γf (A)). It is
induced by an ω-language L (or a DPA A) over B

2 and a function f : N → N+.
(Since we focus on the impact of the function f , we omit L (or A) if it is clear
from the context and write Γf .) The function f imposes a delay (or lookahead)
on the moves of Player O. This means that in round i Player I has to choose
f(i) many bits, and Player O chooses one bit, afterwards. This way the players
build up two infinite sequences; Player I builds up α and Player O builds up β,
respectively. The corresponding play is winning for Player O if and only if the
word α∧β :=

(

a0

b0

)(

a1

b1

)(

a2

b2

)

· · · is accepted by A. For a DPA A, we say that L(A)
is solvable with finite delay if and only if there exists f : N → N+ such that
Player O wins Γf (L(A)) (analogously for restricted classes of functions).

Observe that the possible strategies for Player O in Γf correspond precisely
to f -delay operators, since Player O must output her ith bit after receiving
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the next f(i) bits of input. Thus, the question whether there exists an f -delay
operator λ such that {

(

α
λ(α)

)

| α ∈ B
ω} ⊆ L(A) is equivalent to the question

whether there exists a winning strategy for Player O in Γf .
A basic observation is that winning with delay is a monotone property. For

two functions f, g : N → N+ we write f ⊑ g if and only if f(i) ≤ g(i) for all i ∈ N.

Remark 1. If Player O wins Γf0
then she also wins Γf for each f ⊒ f0. Analo-

gously, if Player I wins Γg0
then he also wins Γg, for each g ⊑ g0.

Example 1. Let L ⊆ (B2)ω be given by the ω-regular expression

(

0 a

a ∗

)

Σω +

(

1 ∗ ∗ b

b ∗ ∗ ∗

)

Σω

where a, b ∈ B and ∗ denotes any bit. If Player I chooses 0 as his first bit then
Player O needs to know a, so she needs delay one in this situation. Contrary, if
Player I chooses 1 as his first bit then Player O needs delay three to obtain b.
Thus, she wins the game with delay three, but neither with delay two nor one.

In the next sections we prove the following main result: Let A be a DPA
with n states and m colors, and let n′ := 2(mn)2n

. Then, there is a continuous
operator λ with

(

α
λ(α)

)

∈ L(A) (for all α ∈ B
ω) if and only if there is a (2n′−1)-

delay operator with the same property. To obtain this result we show that L(A)
is solvable with finite delay if and only if L(A) is solvable with delay 2n′ − 1.

4 The Block Game

In this section we make the first step in the proof of our main result, which is
to relax the number of bits Player I can choose in each move. For this reason we
introduce a new game Γ ′

f , called the block game.
The game Γ ′

f differs from Γf in two ways. Firstly, the lengths of the words
to be chosen by the players are decided by Player I, within certain intervals
determined by f . Secondly, Player I is one move ahead compared to Γf .

A play in Γ ′
f is built up as follows: Player I chooses u0 ∈ B

[f(0),2f(0)] and

u1 ∈ B
[f(1),2f(1)], then Player O chooses v0 ∈ B

|u0|. In each round thereafter, i.e.
for i ≥ 2, Player I chooses ui ∈ B

[f(i),2f(i)] and Player O responds by a word
vi−1 ∈ B

|ui−1|. The winning condition is defined as before.
We show that Player I wins the game Γf for all functions f if and only if he

wins the block game Γ ′
f for all functions f . To this end, for f : N → N+, let f ′

be defined by f ′(0) := f(0) + f(1), and f ′(i) := f(i + 1) for i > 0.

Proposition 1. Let f : N → N+. If Player I wins Γf ′ then he also wins Γ ′
f .

Proof. Assume Player I has a winning strategy in Γf ′ . For i ∈ N, let ui be the
words chosen by Player I in Γf ′ and u′

i the words chosen by Player I in Γ ′
f ,

and analogously vi, v
′
i for Player O. The winning strategy yields u0 ∈ B

f ′(0) as
Player I’s first move. Since f(0) + f(1) = f ′(0) we can choose u′

0u
′
1 = u0 as
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Player I’s first move in Γ ′
f . Player O answers by v′0 ∈ B

|u′

0|. We can use v′0 to
simulate the moves v0, . . . , v|v′

0
|−1 of Player O in Γf ′ , each of which consists of one

bit. Player I answers by u1, . . . , u|v′

0
| of lengths f ′(1), . . . , f ′(|v′0|). Since |v′0| ≥ 1,

the sum f ′(1)+· · ·+f ′(|v′0|) is non-empty and at least f ′(1) = f(2). Accordingly,
the word u1 · · ·u|v′

0
| is long enough to give u′

2 with f(2) ≤ |u′
2| ≤ 2f(2). We

choose u′
2 as the prefix of u1 · · ·u|v′

0
| of length f(2). Player O answers in Γ ′

f

by v′1 of length |u′
1|, and we can use it to simulate another |v′1| rounds in Γf ′ .

Thereby, we obtain enough bits to give u′
3, and so on. This way, we build up the

same plays in Γf ′ and Γ ′
f . Since the first one is winning for Player I, the latter

one is as well. ⊓⊔

For f : N → N+, let f ′′ be inductively defined by f ′′(0) := f(0) and

f ′′(i + 1) :=

2(f ′′(0)+...+f ′′(i))
∑

j=0

f(j).

Proposition 2. Let f : N → N+. If Player I wins Γ ′
f ′′ then he also wins Γf .

Proof. Assume Player I has a winning strategy in Γ ′
f ′′ . For i ∈ N, let u′

i be
the words chosen by Player I in Γ ′

f ′′ and ui the words chosen by Player I in
Γf , and analogously v′i, vi for Player O. Player I’s winning strategy yields u′

0 ∈

B
[f ′′(0),2f ′′(0)] and u′

1 ∈ B
[f ′′(1),2f ′′(1)] as his first move in Γ ′

f ′′ . For i ∈ N, let d′i
be the length of u′

i. Since

d′0 + d′1 ≥ f ′′(0) + f ′′(1) = f(0) +

2f ′′(0)
∑

j=0

f(j),

we can give the moves u0, . . . , ud′

0
of Player I in Γf . This yields Player O’s answers

v0, . . . , vd′

0
−1, i.e. d′0 bits. We can use them to simulate v′0, i.e. Player O’s first

move in Γ ′
f ′′ . Player I’s winning strategy yields u′

2 of length f ′′(2) ≤ d′2 ≤ 2f ′′(2).
We need to give another d′1 moves of Player I in Γf to obtain Player O’s answers
vd′

0
, . . . , vd′

0
+d′

1
−1. For that we need f(d′0 + 1) + . . . + f(d′0 + d′1) bits. With u′

2 in
our hands we can give these moves, because

d′2 ≥ f ′′(2) = f(0) + . . . + f(2f ′′(0) + 2f ′′(1))
≥ f(0) + . . . + f(d′0 + d′1)
≥ f(d′0 + 1) + . . . + f(d′0 + d′1).

Iterating this we obtain the same plays built up in Γ ′
f ′′ and Γf . Since Player I

wins Γ ′
f ′′ , he also wins Γf . ⊓⊔

The following corollary of Propositions 1 and 2 is the first step in our proof.

Corollary 1. Let A be a DPA. Then the following are equivalent:

(1) For all f : N → N+ Player I wins Γf (A).
(2) For all f : N → N+ Player I wins Γ ′

f (A).

8



5 The Semigroup Game

In this section we introduce a game which is independent of any particular delay.
To define it, we extract from a DPA A two equivalence relations, one for each
player, such that the moves of the players are classes of these relations. The first
one (for Player O) is denoted ∼ and induces a finite semigroup on the set (B2)∗.
The second one (for Player I) is denoted ≈ and ranges over B

∗. Roughly speaking,
two (pairs of) words are equivalent if they effect the same behavior on A.

Our approach to transform parity automata into finite semigroups is simi-
lar to the constructions presented in [11, 12]. Let A = (Q, q0, δ, c) be a parity
automaton over B

2. We use the semiring S := ({−∞} ∪ c(Q), +, ·) in which ad-
dition is defined as maximum, i.e. x + y := max(x, y) with −∞ being the least
element, and multiplication is defined as follows:

x · y :=

{

max(x, y) if x 6= −∞ and y 6= −∞

−∞ otherwise

Note that the set Leq := (B2)∗, i.e. the set of pairs of words of equal length, is
a regular language. With each pair

(

u
v

)

∈ Leq we associate a matrix µ
(

u
v

)

of size

|Q|2 with entries in S, i.e. µ
(

u
v

)

∈ SQ×Q, defined as follows:

µ

(

u

v

)

p,q

:=







−∞ if δ∗
(

p,
(

u
v

))

6= q

max{c(π)} if δ∗
(

p,
(

u
v

))

= q and π is the associated path

Observe that SQ×Q induces a finite semigroup and µ
(

u
v

)

·µ
(

u′

v′

)

= µ
(

uu′

vv′

)

. Let ∼ be

the equivalence relation on Leq defined by:
(

u
v

)

∼
(

u′

v′

)

if and only if µ
(

u
v

)

= µ
(

u′

v′

)

.

For each
(

u
v

)

, the equivalence class
[(

u
v

)]

is identified by a matrix µ ∈ SQ×Q.
Since S and Q are finite, SQ×Q is finite as well, and so the relation ∼ has finite
index, i.e. it has finitely many equivalence classes. We denote the index of ∼
by index(∼). Note that Leq/∼ induces a finite semigroup, and µ is a semigroup
morphism from (Leq/∼, ·) to (SQ×Q, ·).

Lemma 3. Let
(

u
v

)

∈ Leq. Then, the set
[(

u
v

)]

is a regular ∗-language over B
2.

Proof. We construct an automaton recognizing
[(

u
v

)]

as follows: First, we con-
struct for all p, q ∈ Q, k ∈ c(Q) the automaton Ap,q,k recognizing the set of
all words that induce a path from p to q in A where k is the highest color
seen on that path. The idea for this construction is to simulate the behavior
of A while memorizing the highest color seen. To this end, define Ap,q,k :=
(c(Q) × Q, B2, (c(p), p), δ′, {(k, q)}) where

δ′
(

(k′, p′),
(x

y

))

:=
(

max
{

k′, c
(

δ
(

p′,
(x

y

)))}

, δ
(

p′,
(x

y

)))

for all k′ ∈ c(Q), p′ ∈ Q, x, y ∈ B. The automaton starts in the state (c(p), p)
and simulates the behavior of A on its input. If it stops in state (k, q) then it
accepts. The automaton A[(u

v)] is then obtained as the intersection of all Ap,q,k

for p, q, k such that µ
(

u
v

)

p,q
= k. ⊓⊔
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Since ∼ has finite index, we can find automata for all equivalence classes of
∼ in the following way. For r ∈ N, let A1, . . . ,Ar be the automata already con-
structed. Then ∼ has index r if and only if

⋃

i=1,...,r L(Ai) = Leq. This equality
can be effectively checked, and if this test fails, we repeat the construction with
a word contained in Leq \

⋃

i=1,...,r L(Ai).
Let ≈ be the equivalence relation on B

∗ defined by

u ≈ u′ : ⇐⇒ ∀
[(u0

v0

)]

:
(

∃v :
(u

v

)

∈
[(u0

v0

)]

⇐⇒ ∃v′ :
(u′

v′

)

∈
[(u0

v0

)])

.

For u ∈ B
∗, the ≈-equivalence class of u, denoted [u], can be identified with a

subset of all ∼-classes. Since ∼ has finite index, we get that ≈ has finite index
as well; more precisely it holds that index(≈) ≤ 2index(∼).

Lemma 4. Let u ∈ B
∗. Then, the set [u] is a regular ∗-language over B.

Proof. We construct an automaton recognizing the language [u] as follows: First,
we have to check for which ∼-classes

[(

u0

v0

)]

there exists v ∈ B
|u| such that

(

u
v

)

∈
[(

u0

v0

)]

. Let B be a DFA recognizing
[(

u0

v0

)]

. We take the projection on the
first component (deleting the second component from the transitions of B) and
test whether the resulting automaton, say B′, accepts u. If we do the same for
all ∼-classes, then we obtain r automata B′

1, . . . ,B
′
r accepting u, and s automata

B′
r+1, . . . ,B

′
r+s not accepting u, where r + s = index(∼). From these automata

we can effectively construct an automaton for [u], because

[u] =
⋂

i=1,...,r

L(B′
i) ∩

⋂

j=r+1,...,r+s

L(B′
j).

⊓⊔

We now define the game Γ SG (induced by a DPA A over B
2) where the moves

of the players are classes from B
∗/≈ and Leq/∼, respectively. Accordingly, we

call Γ SG the semigroup game of A.
The game Γ SG is defined similar to the block game Γ ′. The difference is

that the players do not choose concrete words but the respective classes from
the relations ∼ and ≈. A play is built up as follows. Player I chooses infinite
classes [u0], [u1] ∈ B

∗/≈, then Player O chooses a class
[(

u0

v0

)]

∈ Leq/∼. In each
round thereafter, i.e. for i ≥ 2, Player I chooses an infinite class [ui] ∈ B

∗/≈ and
Player O chooses a class

[(

ui−1

vi−1

)]

∈ Leq/∼. A play is winning for Player O if and

only if
(

u0

v0

)(

u1

v1

)(

u2

v2

)

· · · is accepted by A.
Note that B

∗/≈ contains at least one infinite class and that for each class [u]
there exists at least one class in Leq/∼ associated with [u] (by the definition of ≈).
Hence, both players can always move. Furthermore, the winning condition of
Γ SG is well-defined because acceptance of A is independent of representatives: If
[(

ui

vi

)]

=
[(

u′

i

v′

i

)]

for all i ∈ N, then
(

u0

v0

)(

u1

v1

)

· · · ∈ L(A) ⇐⇒
(

u′

0

v′

0

)(

u′

1

v′

1

)

· · · ∈ L(A).

Γ SG can be modeled by a parity game on a finite graph. (Thus, the winner of
Γ SG is computable, using standard results on parity games [1].) In the vertices
we keep track of the current state of A and the ≈-classes chosen by Player I.
The vertex reached by a move

[(

u
v

)]

of Player O is colored by µ
(

u
v

)

q,q′
, where

q, q′ are the states reached in A before and after reading
(

u
v

)

.
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6 Connecting the Block and the Semigroup Game

In this section we show that Player I wins the block game Γ ′
f for all functions

f : N → N+ if and only if he wins the semigroup game Γ SG. This completes the
reduction and also yields the proof of our main result.

The basic idea of the proof of Theorem 1 (see below) is, for arbitrary f , to
simulate the players’ moves in Γ ′

f by the corresponding classes of the relations
∼ and ≈, respectively, and vice versa. For the direction from left to right, one
has the problem whether a class [ui] contains an appropriate representative, i.e.
one of length between f(i) and 2f(i). We use Lemma 1 to show that there exists
a particular f such that each function g with g ⊒ f indeed has this property.
Then, the following lemma completes the proof.

Lemma 5. Player I wins Γ ′
f for all functions f : N → N+ if and only if there

exists a function f0 : N → N+ such that Player I wins Γ ′
g for all g ⊒ f0.

Proof. The direction from left to right is immediate. Conversely, assume there
exists f0 such that Player I does not win Γ ′

f0
. Determinacy yields that Player O

wins Γ ′
f0

. By Proposition 1 Player O wins Γf ′

0
, and from Remark 1 it follows that

she also wins Γf for all f ⊒ f ′
0. Proposition 2 yields that Player O wins Γ ′

f ′′ , for
all f ⊒ f ′

0. Towards a contradiction, let f+ be a function such that Player I wins
Γ ′

g for all g ⊒ f+, and let f∗ be the maximum of f+ and f ′
0, i.e. for all i ∈ N

f∗(i) := max{f+(i), f ′
0(i)}.

Since f∗ ⊒ f ′
0 it holds that Player O wins Γ ′

f ′′

∗

. However, since f ′′
∗ ⊒ f∗ ⊒ f+

Player I must win Γ ′
f ′′

∗

, by assumption. This yields a contradiction which means
that f+ cannot exist. ⊓⊔

Lemma 5 and the next theorem establish the second step of our reduction.

Theorem 1. Player I wins Γ SG if and only if there is a function f : N → N+

such that Player I wins Γ ′
g for all g ⊒ f .

Proof. We start with the direction from right to left. Let f : N → N+ be a
function such that Player I wins Γ ′

g for all g ⊒ f . We define a function g such
that g ⊒ f and each word of length g(i) is contained in an infinite ≈-class, for all
i ∈ N. To this end, let d′ be the length of a longest word in all finite ≈-classes3

and define, for all i ∈ N, g(i) := max{f(i), d′ + 1}.
Player I wins Γ ′

g by assumption, and a winning strategy yields his first two

moves u0, u1. Both [u0] and [u1] are infinite, and so he can choose them in Γ SG.
We simulate Player O’s answer

[(

u0

v0

)]

by choosing v0 in Γ ′
g, and obtain u2 with

[u2] being infinite. Choosing [u2] in Γ SG we obtain Player O’s next move
[(

u1

v1

)]

,
and so on.

We argue that the plays built up have the same maximal color occurring
infinitely often. It suffices to show that in both plays a move of Player O leads

3 If ≈ has no finite equivalence class, then we define d′ := 0.
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A to the same state, via paths with equal maximal color. Then, the rest follows
by induction. Let qi be the current state of A and ui, ui+1 be the words chosen
by Player I. If Player O chooses

[(

ui

vi

)]

in Γ SG, then we reach the state qi+1 :=

δ∗
(

qi,
(

ui

vi

))

via the maximal color µ
(

ui

vi

)

qi,qi+1

. The state qi+1 is well-defined

because from qi every
(

u′

i

v′

i

)

∈
[(

ui

vi

)]

leads A to the same state, though via different

paths, but with the same maximal color. In Γ ′
g Player O chooses vi. As in Γ SG,

we reach the state qi+1 via the maximal color µ
(

ui

vi

)

qi,qi+1

.

Conversely, assume that Player I wins Γ SG. Let A1, . . . ,Ar be automata
recognizing all the ≈-classes, and n′ the maximal number of states among these
automata, i.e. n′ := max{n1, . . . , nr}, where nj is the number of states of Aj

(j = 1, . . . , r). We define the constant function f by f(i) := n′ for all i ∈ N,
and show that Player I wins Γ ′

g for all g with g ⊒ f . Player I’s winning strategy

in Γ SG yields [u0], [u1]. Since [u0], [u1] are infinite, we can apply Lemma 1.
Accordingly, each Aj accepts a word of length between f and f + nj and hence
between f and 2f because nj ≤ n′ ≤ f .4 Hence, we can assume w.l.o.g. that
f ≤ |u0|, |u1| ≤ 2f . Player I chooses u0, u1 in Γ ′

f and Player O answers by a

word v0 with |v0| = |u0|. We simulate this move by
[(

u0

v0

)]

in Γ SG and obtain
Player I’s answer [u2], so the next move of Player I in Γ ′

f is u2 (for appropriate
u2). Player O chooses v1 with |v1| = |u1|, and so on.

The plays built up this way have the same maximal color occurring infinitely
often, using the same inductive argument as above. Starting at qi, Player O’s
move vi in Γ ′

f has the same effect as the corresponding move
[(

ui

vi

)]

in Γ SG, i.e.

we reach the state qi+1 := δ∗
(

qi,
(

ui

vi

))

via the maximal color µ
(

ui

vi

)

qi,qi+1

.

What remains to be shown is that Player I wins Γ ′
g for all g ⊒ f . Let |[a, b]| :=

b − a be the size of the interval [a, b]. If g ⊒ f then, since |[f, 2f ]| = n′, it holds
that |[g(i), 2g(i)]| ≥ n′ for all i ∈ N. Hence, to win Γ ′

g Player I simply chooses
longer representatives of the ≈-classes than in Γ ′

f . ⊓⊔

A thorough analysis of the constructions of the ∼-classes and ≈-classes, re-
spectively, yields an upper bound for n′. Let n be the number of states of A and
m the number of colors. Let u, v ∈ B

∗ with |u| = |v|. Since A is deterministic,
there is exactly one entry distinct from −∞ in each of the n rows of µ

(

u
v

)

, and
Ap,q,k has at most mn states. Hence, each A[(u

v)] has at most (mn)n states, i.e.

as many as the product of n (deterministic) automata of size mn. To obtain an
automaton for a class [u] we have to intersect index(∼) languages (cf. page 10).
By the same argument as above, there are at most (mn)n possible matrices
identifying all the ∼-classes. Since our construction includes determinization, we
obtain each A[u] having at most k states, where

k ≤ (2(mn)n

)(mn)n

= 2(mn)2n

.

Next, we obtain our main result showing that in regular games constant delay
is sufficient for Player O to win, if she can win with delay at all.

4 To simplify matters we write f instead of f(i).
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Lemma 6. Let n′ be as in the proof of Theorem 1. Then, Player O wins Γ SG

if and only if Player O wins Γ〈2n′−1〉.

Proof. Define f(i) := n′ for all i ∈ N and let w of length d′ be a longest word
in all finite ≈-classes. Moreover, let L(A′) = [w], where A′ has n states. Then,
we have d′ < n. Otherwise, the run of A′ on w would have a loop, which is a
contradiction to the finiteness of L(A′). Since n ≤ n′ we get d′ < n′ and so
d′ + 1 ≤ n′. Thus, each ≈-class containing a word of length at least f is infinite.

Assume that Player O wins Γ SG. We first show that Player O wins Γ ′
f . Let

u0, u1 with n′ ≤ |u0|, |u1| ≤ 2n′ be the first move of Player I in Γ ′
f . By the above

remarks [u0], [u1] are infinite, and we can simulate [u0], [u1] in Γ SG. Player O’s
winning strategy in Γ SG yields

[(

u0

v0

)]

for some suitable v0. Let him choose v0

in Γ ′
f . Then Player I chooses u2 and we simulate [u2] in Γ SG, and so on.
As in the proof of Theorem 1, we obtain plays with the same maximal color

occurring infinitely often, and so Player O wins Γ ′
f . Simulating a winning strategy

for Γ ′
f she also wins Γ〈2n′−1〉. The factor 2 comes from the fact that we need at

least 2n′ bits when simulating Player I’s first move in Γ ′
f .

Conversely, let Player O win Γ〈2n′−1〉 and g(i) := 2n′, for all i ∈ N. Since
g ⊒ 〈2n′−1〉, Player O wins Γg. Then, by Proposition 2, Player O also wins Γ ′

g′′ .

Given a winning strategy for Player O in Γ ′
g′′ we can specify one for her in Γ SG as

follows: A move [ui] of Player I is simulated by ui in Γ ′
g′′ , for g′′(i) ≤ |ui| ≤ 2g′′(i).

(By Lemma 1, an appropriate representative ui must exist because g′′ ⊒ g, and
so |[g′′(i), 2g′′(i)]| ≥ n′ for all i ∈ N.) We use Player O’s answer vi−1 to choose
[(

ui−1

vi−1

)]

in Γ SG. This yields a play winning for Player O in Γ SG. ⊓⊔

Theorem 2. Let A be a DPA over B
2. Then, L(A) is solvable with finite delay

if and only if L(A) is solvable with delay 2n′−1. There is a continuous operator
λ such that {

(

α
λ(α)

)

| α ∈ B
ω} ⊆ L(A) if and only if there is a (2n′ − 1)-delay

operator with the same property.

In a game of constant delay d the number of different bit sequences Player I
can move ahead is globally bounded. The game Γ〈d〉(A) can be modeled by a

parity game on a finite graph of size at most 2d+1·|A|. By standard techniques [1],
such games can be solved in time O((2d+1 · n)m).

Corollary 2. Let A be a DPA over B
2. The problem whether L(A) is solvable

with finite delay and the problem whether there is a continuous operator λ with
{
(

α
λ(α)

)

| α ∈ B
ω} ⊆ L(A) are in 3ExpTime.

7 Lookahead in Non-Regular Games

In this section we show that the above results do not hold for context-free ω-
languages (CFLω, for an introduction see e.g. [13]). Let us first recall that it is
undecidable whether a context-free ω-language L ⊆ B

ω is universal, i.e. whether
L = B

ω holds.

13



Theorem 3 (see also [14]). Let L ⊆ (B2)ω be a context-free ω-language. Then,
it is undecidable whether there exists f such that Player O wins Γf (L).

Proof. We make a reduction from the universality problem for context-free ω-
languages. Let LI ∈ CFLω and L :=

{(

α
β

)

| α ∈ LI , β ∈ B
ω
}

. If LI is universal
then L is universal as well, and Player O wins with any f . Conversely, if LI is
not universal, then Player I wins by playing a word α /∈ LI . There is no response
β such that

(

α
β

)

∈ L, therefore Player O looses with each f . Altogether, LI is

universal if and only if there exists f such that Player O wins Γf (L). ⊓⊔

The situation is different for deterministic ω-context-free specifications: in this
case at least the winner of the standard game Γ〈0〉 is decidable [3].

In addition to undecidability for the general case, we show that there exist
context-free specifications which are solvable with finite delay, but not with
constant delay.

Example 2. Let L ⊆ (B2)ω be defined such that if Player I chooses an ω-word
of the form α = 12m00n012m10n1 · · · , for mi, ni ∈ N+, then Player O wins if and
only if he answers by β = 1m00m0+n01m10m1+n1 · · · . This means Player O’s ith
block of 1s must have exactly half the length of Player I’s ith block of 1s, and
both blocks must start at the same position. If α is not of the above form, then
Player O wins as well.

The language L is recognized by a deterministic ω-pushdown automaton. As
long as the input is

(

1
1

)

, we push a symbol on the stack. If we read the first
(

1
0

)

after
(

1
1

)

, we start to pop symbols from the stack. If we reach the initial stack

symbol at the same time as we read the first
(

0
0

)

after
(

1
0

)

then we are satisfied
and visit a final state.

Observe that Player O wins Γf (L), if f(i) := 2 for all i ∈ N. When she has
to give her ith bit βi she already knows Player I’s (2i)th bit α2i, and that is
enough to decide whether to play 0 or 1.

Let us show that L is not solvable with constant delay. Towards a contra-
diction, assume Player O wins Γ〈d〉 for some d ∈ N. We construct a winning

strategy for Player I in Γ〈d〉 as follows: Player I chooses 1d+1 as initial move and
afterwards d further 1s. Player O must answer by choosing (d+1) 1s. Afterwards,
Player I has to choose another 1 to complete his block of 1s to even length. (After
this move, Player I has chosen exactly twice as many 1s as Player O.) Whatever
Player O answers, say b, Player I wins by choosing 1− b next. This is due to the
fact that the block of 1s chosen by Player O gets either too short or too long.

8 Conclusion

In this paper we introduced and compared strategies with different kinds of
lookahead in regular infinite games. We showed that continuous strategies can
be reduced to uniformly continuous strategies of a special form, namely strategies
with bounded lookahead. This result is a first step into a wider – and it seems
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rather unexplored – topic. Let us mention some aspects. First, it is straightfor-
ward to present the results in a set-up that is symmetric in the two players. We
also skipped here a lower bound proof for the double exponential size in The-
orem 2. It is also possible to think of “infinite lookahead” where, for instance,
the second player may use information about the first player’s sequence up to a
partition of the space of sequences into regular sets.

We showed that bounded lookahead is not enough for continuous strategies
in non-regular games. It is open which functions may be appropriate for uni-
formly continuous operators in such games. An appropriate framework is given
by the deterministic context-free ω-languages, as the class of all context-free
ω-languages is too wide for effective results. One could conjecture that in de-
terministic context-free games, polynomial functions are sufficient as bounds for
uniformly continuous strategies. Also, it is open whether solvability with contin-
uous or uniformly continuous strategies is decidable for such games.
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