Degree of Lookahead in Regular Infinite Games

Michael Holtmann, Lukasz Kaiser, and Wolfgang Thomas

Infinite games

- Two players INPUT, OUTPUT
- Set of ω words over $\sum x \sum$ (specification)
- In each round
 - Player INPUT chooses $a \in \Sigma$
 - Player OUTPUT responds with b $\in \Sigma$
- Play forms ω word $(\alpha,\beta) \in (\sum x \sum)^{\omega}$
- OUTPUT wins iff $(\alpha,\beta) \in$ Specification.

Specification formats

- ω regular language
 - $-\omega$ regular expression.
- $\begin{array}{lll} 1. \ \forall t(\alpha(t)=1 & \rightarrow & \beta(t)=1) \\ 2. \ \neg \exists t \ \beta(t)=\beta(t+1)=0 \\ 3. \ \exists^{\omega}t \ \alpha(t)=0 & \rightarrow & \exists^{\omega}t \ \beta(t)=0 \end{array}$
- Deterministic Parity Automaton.
- MLO formula
- Context free ω language
- Others
 - Not in this lecture

Regular language ω

- Language L is ω regular if
 - $-L = U(V)^{\omega}$
 - And U, V are regular languages.
 - $-L = L_1 U L_2$
 - And L1, L2 are ω regular languages.

Parity Automaton

- DPA = (Q,q0, δ,c)
- c is coloring function c:Q \rightarrow {0,...,m}
- A run of DPA:

- $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- For infinite word $\alpha,$ the set Inf($\rho\alpha$) is the states of states visited infinitely often in run $\rho\alpha$
- We define DPA to accept α iff max{Inf(c($\rho\alpha$))} if even.
- Every Non deterministic parity automaton has an equivalent DPA.

ω Context free languages

• Same idea as DPA only with non deterministic push-down automata.

Game without delay

- Player INPUT chose $a \in \Sigma$
- Player OUTPUT immediately responds with $b \in \Sigma$
 - OUTPUT response depends only in previous INPUT moves.
- Büchi-Landweber Thm:
 - For a game with regular winning condition:
 - it is decidable to find the winner.
 - If there exists a winning strategy for OUTPUT it is computable by FSM.

Games with delay

- Assume ∑={0,1}
- In each round
 - Player INPUT choose one bit.
 - Player OUTPUT can respond with either 0,1 or \perp which represents wait for next bit.
- Our goal is to decide if there exists an operator λ which is a winning strategy for OUTPUT
 - Formally: ∃λ s.t
 - $\lambda: \Sigma^{\omega} \rightarrow \Sigma^{\omega}$
 - $\forall \alpha \in \Sigma^{\omega}$, (α , $\lambda(\alpha)$) \in L(A)

Types of operators

- Continues operators.
 - Each output bit of $\lambda(\alpha)$ is determined by a finite prefix of α .
 - There exists function I:
 - I:{finite bit strings}→ $\{0,1,\bot\}$.
 - $-\lambda(\alpha)=I(\alpha_0)I(\alpha_0\alpha_1)I(\alpha_0\alpha_1\alpha_2)...- \perp$ are omitted
 - $I(\alpha_0)I(\alpha_0\alpha_1)I(\alpha_0\alpha_1\alpha_2)$ does not end with infinite \perp
- f delay operators.
 - − There exists function $f:N \rightarrow N$
 - The bit $\lambda(\alpha)$ i depends only in $\alpha_{0\alpha_{1}...\alpha_{f(i)}}$
 - For $\lambda: \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ equivalent to continuous operator.
 - König's Lemma
 - Every continuous operator over bounded close space is uniformly continous
- d delay operators.
 - Same for f(i) = i + d

Context free games with delay

- Can we decide if OUTPUT wins the game with fdelay?
 - No, since it is not decidable if $L \in CFL\omega$ is universal.
- If OUTPUT can win with f-delay, can it always win with d-delay?
 - No. For specification:
 - INPUT= $1^{2m_0}0^{n_0}1^{2m_1}0^{n_1}...$ for mi,ni $\in N$
 - OUTPUT = $1^{m_0}0^{m_0+n_0}1^{m_1}0^{m_1+n_1}...$

Regular games with delay

- Theorem:
 - Let A be a DPA over $\{0,1\}^2$
 - There is a continuous operator λ s.t OUTPUT wins with λ-delay iff there exists d∈N s.t OUTPUT wins with d-delay.
- Corollary:
 - It is decidable to know if OUTPUT can win with a continuous operator delay.
 - Reduction to parity game
 - 3EXP TIME complexity

Proof plan

- Notations
- Reduction to Block Game
- Reduction to Semi Group Game

Notations

 From now on f(i) stands for the number of bits that player OUTPUT can wait (output ⊥) before responding with the ith bit.

- Formally $f(i) = old_f(i) - old_f(i-1)$

- We assume that the DPA A is fixed.
- For a given function f, we mark the game as Γ_f In this game OUTPUT may wait f(i) bits

The Block Game (f)

- Instead of choosing bit in every round, each player chooses word.
- First round:
 - Player INPUT chooses two words uo and u1.
 - $f(0) \le |u_0| \le 2f(0), f(1) \le |u_1| \le 2f(1)$
 - Player OUTPUT responds with vo.
 - |v0|=|u0|
- Other rounds:
 - INPUT chooses $u_i \text{ s.t } f(i) \le |u_i| \le 2f(i)$
 - OUTPUT responds with vi-1 s.t |vi-1|=|ui-1|

The block game – example

- Assume f = {2, 5, 9, 2...}
- Round 0:
 - INPUT : 01011011
 - OUTPUT : 110
- Round 1:
 - INPUT : 010110111110001011
 - OUTPUT : 11010010
- Round 2:
 - INPUT : 010110111110001011101
 - OUTPUT : 11010010100000001

•

$\Gamma \Rightarrow$ Block Game

- Proposition:
 - ∀f, ∃g s.t if INPUT wins on Γg he wins on Block game(f)
- Corollary:
 - If INPUT wins in Γ (i.e for every f) then INPUT wins in Block Game (for every f).

$\Gamma \Rightarrow$ Block Game: Proof

 $\forall f, \exists g \text{ if INPUT wins on } \Gamma_g \text{ he wins on Block game}(f)$

- Proof:
 - First move:
 - Need to find two words, with length at least f(0), f(1), as player INPUT first move in Block game(f).
 - Solution: Set g(0) = f(0) + f(1), and follow INPUT first move in Γ_{g} .
 - OUTPUT responds with f(0) bits.
 - Next move:
 - In Γg player OUTPUT choose at least one bit, so we can simulate INPUT next move. Let g(1) = f(2). And in general g (i)=f(i+1). If OUTPUT choose more than one bit, then INPUT can choose even more than g(i) bits, but we can choose only the g(i) prefix.

$\Gamma \Rightarrow$ Block Game: simulation

- g(0) = f(0) + f(1), g(i) = f(i+1). Assume $f=\{2,5,3,...\}$
- Round 0: g(0) = 7, f(0)=2, f(1) = 5
 - Гд
 - INPUT : 1011011
 - OUTPUT : 1
 - Block game
 - INPUT : 1011011 <
 - OUPUT : 10
- Round 1: g(1) = 3, f(2)=3
 - Гд
 - INPUT : 1011011 + 011
 - OUTPUT : 10
 - Block game
 - INPUT : 1011011011011
 - OUPUT : 1001110001

Block game $\Rightarrow \Gamma$

- Proposition:
 - $\forall f, \exists g \ s.t \ if \ INPUT \ wins \ on \ Block \ game(g) \ he wins \ on \ \Gamma_f$
- Corollary:
 - If INPUT wins in Block game (i.e for every f) then INPUT wins in Γ (for every f).

Block game $\Rightarrow \Gamma$: Proof

 $\forall f, \exists g \text{ s.t if INPUT wins on Block game(g) he wins on <math>\Gamma_f$

- Proof:
 - First move:
 - Set g(0) = f(0), and set g(1) to be long enough for OUTPUT to respond 2f(0) times.
 - We set INPUT move in Γ to be the first two chosen words in the block game.
 - OUTPUT must respond in Γ with a word with length 2f(0). So we can simulate that move in block game.
 - Next move:
 - We set g(i) to be long enough so OUTPUT must respond with 2f(i-1) bits in the Γ game, and simulate its response in the block game,

Block game $\Rightarrow \Gamma$: Simulation

- Assume f={2,2,2,2,....}
- Round 0: f(0) = 2, g(0)=2, g(1) = 8
 - Block game(g)
 - INPUT : 0111110111001
 - OUTPUT : 001
 - f
 - INPUT : 011111
 - OUPUT : 001
- Round 1: f(1) = 2, g(1)=8, g(2) = 32
 - Block game(g)
 - INPUT : 01111101110010000001110111000...
 - OUTPUT : 00100010
 - Γf
 - INPUT : 0111110111001000
 - OUPUT : 00100010

• ...

Semi Group Game

- For a given DPA A:
 - Every two strings u,v (|u|=|v|), forms matrix µ
 (u,v) with size |Q|x|Q|:
 - For every states p,q the p,q cell is:
 - -∞ if δ^{*}(p,(u,v)) ≠ q
 - Maximal color in the associated path from p to q

Semi Group Game – ~ equivalent class

- $(u,v) \sim (w,x) \iff \mu(u,v) = \mu(w,x)$
- Note:
 - Since Q and c are finite there is a finite number of equivalent classes [(u,v)]
 - Therefore at least one equivalent class has infinite size.
 - It is possible to recognize [(u,v)] via finite automaton
 - Simulate behavior of DPA on finite strings
 - One can compute all equivalent classes [u,v]

Semi Group Game – ≈ equivalent class

- u≈w ⇔ If (u,v)∈[(a,b)] for some v, then ∃x
 s.t (w,x)∈[(a,b)], for every a,b.
 - Intuitively:
 - OUPUT can choose same ~ equivalent class for u and w.
- Note:
 - Number of equivalent class is finite.
 - Possible to recognize [u] via finite automaton.
 - One can compute all equivalent classes.

Semi Group Game

- First round:
 - INPUT choose two infinite size classes [uo], [u1].
 - OUTPUT responds with $[(u_0,v_0)]$ with infinite size.
- Next rounds:
 - INPUT chooses [ui]
 - OUTPUT responds with $[(u_{i-1}, v_{i-1})]$ with infinite size.
- Winning condition:

 $-(u_0,v_0),(u_1,v_1),\ldots\in L(A)$

Block Game \Rightarrow Semi Group Game

INPUT wins block game(g) ⇒
 INPUT wins semi group game.

Lemma:

- INPUT wins block game \Leftrightarrow
- $\exists f \text{ s.t } \forall g \subseteq f$, INPUT wins block game(g)
- Proof
 - Let d' be the longest word in all finite classes [u], define g(i) = max{ f(i), d' }.
 - INPUT wins block game(g)
 - Apply same strategy on semi group game

Semi Group Game ⇒ Block Game

- INPUT wins semi group game ⇒ ∃f s.t ∀g ⊆ f, INPUT wins block game(g).
- Proof
 - Assume INPUT chooses [u] in the semi group game.
 - Let A_[u] be automata recognize [u].
 - Let n' be the maximal number of states among these automata for every $u{\in}\Sigma^{*}$
 - Set f(i) = n'
 - Since [u] is infinite, $\exists w \in [u], f \le |w| \le f + |A_{[u]}|$
 - − Therefore $f \le |w| \le 2f$
 - It is possible to choose $w \in [u]$ in block game(f)
 - Same arguments holds for $g \subseteq f$

Semi Group Game ⇔ Γ<2n'-1>

- Theorem:
 - OUTPUT wins semi group game iff it wins Γ with constant delay of 2n'-1.
 - $\Gamma \Rightarrow$ Block Game \Rightarrow Semi Group Game
 - Semi Group Game \Rightarrow Block Game(n') $\Rightarrow \Gamma_{<2n'-1>}$
- Corollary:
 - OUTPUT wins Γ with finite delay iff it wins Γ with 2n'-1 delay.
- n' ≤ 2^{(mn)²ⁿ}

Open questions

- Infinite delay
 - OUTPUT may request information on infinite number of INPUT bits (for example – all even bits)
- ω context free languages too wide
 - Deterministic ω context free specifications
 - Decidable?
 - Conjecture:
 - Polynomial delay is enough. i.e f(i) = poly(i)