
Formal Methods

1. Rewriting

Nachum Dershowitz

February 2000

Consider the following program to re-arrange a list of natural numbers in
non-increasing order by inserting elements one-by-one into position:

max (0; x) ! x

max (x; 0) ! x

max (s(x); s(y)) ! s(max (x; y))
min(0; x) ! 0
min(x; 0) ! 0

min(s(x); s(y)) ! s(min(x; y))
sort(") ! "

sort(x : y) ! insert(x; sort(y))
insert(x; ") ! x : "

insert (x; y : z) ! max (x; y) : insert(min(x; y); z))

Lists are represented in \cons" notation (with : and ", as constructors) and
numbers in successor (unary) notation. Each (rewrite) rule is an ordered
pair of terms, used replace instances of l by corresponding instances of r.
For example, sort(max (0; s(0)) : ") rewrites to sort(s(0) : "). We would like
to know that every term constructed from sort, :, ", s, and 0 leads (in zero
or more rewrites) to a unique term not containing sort, nor the auxiliary
symbols, insert , max , and min.

Rewrite systems (sets of rewrite rules) can be used to \interpret" other
programming languages: The state of an all-powerful two-counter machine
can be represented as a pair hx; yi. The semantics of its instruction set can
be de�ned by the following rules for an interpreter:

1

eval (zap0 ; hx; yi) ! h0; yi
eval (zap1 ; hx; yi) ! hx; 0i
eval (inc0; hx; yi) ! hs(x); yi
eval (inc1; hx; yi) ! hx; s(y)i
eval (dec0; h0; yi) ! h0; yi

eval (dec0; hs(x); yi) ! hx; yi
eval (dec1; hx; 0i) ! hx; 0i

eval (dec1; hx; s(y)i) ! hx; yi
eval (ifpos0 p; h0; yi) ! h0; yi

eval (ifpos0 p; hs(x); yi) ! eval (p; hs(x); yi)
eval (ifpos1 p; hx; 0i) ! hx; 0i

eval (ifpos1 p; hx; s(y)i) ! eval (p; hx; s(y)i)
whilepos0 p ! ifpos0 (p; whilepos0 p)
whilepos1 p ! ifpos1 (p; whilepos1 p)
eval ((p; q); u) ! eval (q; eval(p; u))

The penultimate rule, for example, can clearly be applied ad in�nitum.
A speci�c strategy of rule application is needed to guarantee that a normal
form is obtained whenever one exists.

In general, rules are usually applied nondeterministically, since, in gen-
eral, more than one rule can be applied, and any one rule may apply at more
than one position within a term.

For any binary relation !, we use s $ t to mean s ! t or t ! s. We
say s derives t and write s !� t if s ! � � � ! t in zero or more steps. We
say that s and t are convertible, symbolized s $� t, if s $ � � � $ t in zero
or more steps, and that s and t are joinable, if s and t derive the same term.
A normal form is an element s for which there is no t such that s ! t. We
write s!! t if s derives the normal form t.

De�nition 1 (Church-Rosser Property) A binary relation is Church-
Rosser if elements are joinable whenever they are convertible.

De�nition 2 (Con
uence) A binary relation is con
uent if elements are
joinable whenever they are derivable from the same term.

Lemma 1 The Church-Rosser and con
uence properties are equivalent.

Proof The proof is by induction on the number of \peaks" in the conver-
sion. 2

2

De�nition 3 A binary relation is locally con
uent (weakly con
uent) if for
all elements r, s, and t, if r ! s and r ! t then s # t.

De�nition 4 (Termination) A binary relation is terminating if there are
no in�nite derivations t1 ! t2 ! � � �.

Termination is an undecidable property of rewrite systems.

Theorem 1 (Newman's Lemma) If a binary relation is locally con
uent
and terminating, then it is con
uent.

Proof The proof is by well-founded induction. 2
The normalizability relation !! for uniquely-normalizing systems de�nes

a function.

De�nition 5 (Orthogonality) A rewrite system is orthogonal if

� no variable appears on the right side of a rule but not on the left;

� no variable appears more than once on any left side;

� no left side uni�es with a (renamed) non-variable subterm of any other
left-hand side or with a (renamed) proper subterm of itself.

Combinatory Logic is a prime example of a (nonterminating) orthogonal
system:

I Æ x ! x

(K Æ x) Æ y ! x

((S Æ x) Æ y) Æ z ! (x Æ z) Æ (y Æ z)

This system can be used to implement any recursive function. The combi-
nators K and S were dubbed \kestrel" and \starling" by Smullyan; I is the
identity combinator; Æ is composition.

An example of a non-orthogonal non-con
uent (non-terminating) system
is:

f(x; x) ! 0
f(x; s(x)) ! 1

a ! s(a)

De�nition 6 A binary relation is strongly con
uent if for all elements r, s,
and t, if r ! s and r ! t then either s and t are identical or s ! t or t! s

or there is a term u such that s ! u and t ! u.

Lemma 2 Every strongly con
uent binary relation is con
uent.

3

Proof Straightforward. 2
The importance of orthogonal systems stems from the following:

Theorem 2 Every orthogonal system is con
uent.

In particular, the two-counter interpreter is con
uent.

Proof The idea is to show that a parallel rewriting relation associated with
the system R is strongly con
uent. Parallel rewriting is rewriting at one or
more disjoint positions at the same time. We need to consider parallel rewrit-
ing, because if s rewrites to t1 and s rewrites to t2, then a subterm of s may
appear many times in t1 or t2, and all of these occurrences may have to be
rewritten in parallel to �nd a t to which both t1 and t2 rewrite in one (par-
allel) step. For example, if s is f(a) and R is fa! b; f(x)! g(f(x); f(x))g
then f(a) rewrites to both f(b) and g(f(a); f(a)). Both of these terms par-
allel rewrite to g(f(b); f(b)), and this requires parallel rewriting of the two
occurrences of a in g(f(a); f(a)). 2

De�nition 7 (Outermost Rewriting) A rewriting step s ! t is outer-
most if no rule applies at a symbol closer to the root symbol (in the tree
representation of terms).

Theorem 3 For any orthogonal system, if no outermost step is perpetually
ignored, the normal form|if there is one|will be reached.

Outermost rewriting is used to compute normal forms in Combinatory
Logic.

In this way, orthogonal systems provide a simple, pattern-directed (�rst-
order) functional programming language, in which the orthogonal conditional
operator

if (true; x; y) ! x

if (false; x; y) ! y

can also conveniently be incorporated.

4

