Formal Methods
1. Rewriting

Nachum Dershowitz

February 2000

Consider the following program to re-arrange a list of natural numbers in
non-increasing order by inserting elements one-by-one into position:

maz(0,z) — =z
maz(z,0) — =z
maz(s(z),s(y)) — s(maz(z,y))
min(0,z) — 0
min(z,0) — 0
min(s(z),s(y)) — s(min(z,y))
sort(e) — €
sort(z :y) — insert(z, sort(y))
insert(z,e) — @w:e€
insert(m,y : z) — maz(m,y) : insert(min(m,y),z))

Lists are represented in “cons” notation (with : and €, as constructors) and
numbers in successor (unary) notation. Each (rewrite) rule is an ordered
pair of terms, used replace instances of [by corresponding instances of r.
For example, sort(maz(0,s(0)) : €) rewrites to sort(s(0) : €). We would like
to know that every term constructed from sort, :, €, s, and 0 leads (in zero
or more rewrites) to a unique term not containing sort, nor the auxiliary
symbols, insert, maz, and min.

Rewrite systems (sets of rewrite rules) can be used to “interpret” other
programming languages: The state of an all-powerful two-counter machine
can be represented as a pair (z, y). The semantics of its instruction set can
be defined by the following rules for an interpreter:

eval(zapO0 , (z, y
eval(zapl ,(z, y

o
S
~ S~

n
P I
8

n —_— O

e e e e N o

8

eval(incO0, (z, y

<
~

<
~——
~

B

eval(decO, (0, y 0, y
eval(decO, (s(z), y z, y
eval(decl, (z, 0 z, 0

eval(decl, (z, s
eval(ifpos0 p, (0, y
eval(ifpos0 p, (s(z), y
eval(ifposl p, (z, 0
eval(ifposl p, (z, s(y)
whileposO p

P s B et Rt Tt T et et Rt iy
8 @ ©8
AN

———

)

—

8

p—

=

e

p—

eval(p, (z, s(y)))
ifpos0 (p; whilepos0 p)
whileposl p ifposl (p; whileposl1 p)
eval((p; q),u) eval(g, eval(p, u))
The penultimate rule, for example, can clearly be applied ad infinitum.
A specific strategy of rule application is needed to guarantee that a normal
form is obtained whenever one exists.

A r aa A A

In general, rules are usually applied nondeterministically, since, in gen-
eral, more than one rule can be applied, and any one rule may apply at more
than one position within a term.

For any binary relation —, we use s <> ¢ to mean s — tor t — s. We
say s deriwes t and write s —* t if s — --- — ¢ in zero or more steps. We
say that s and ¢t are convertible, symbolized s <»* ¢, if s <> --- <> L in zero
or more steps, and that s and ¢ are joinable, if s and ¢ derive the same term.
A normal form is an element s for which there is no ¢ such that s — ¢. We
write s —' ¢ if s derives the normal form ¢.

Definition 1 (Church-Rosser Property) A binary relation is Church-
Rosser if elements are joinable whenever they are convertible.

Definition 2 (Confluence) A binary relation is confluent if elements are
joinable whenever they are derivable from the same term.

Lemma 1 The Church-Rosser and confluence properties are equivalent.

Proof The proof is by induction on the number of “peaks” in the conver-
sion. O

Definition 3 A binary relation is locally confluent (weakly confluent) if for
all elements r, s, and t, if r - s andr — t then s | ¢.

Definition 4 (Termination) A binary relation is terminating if there are
no wnfinite dertvations t; — ty — - -.

Termination is an undecidable property of rewrite systems.

Theorem 1 (Newman’s Lemma) If a binary relation is locally confluent
and terminating, then it s confluent.

Proof The proof is by well-founded induction. O
The normalizability relation —' for uniquely-normalizing systems defines
a function.

Definition 5 (Orthogonality) A rewrite system is orthogonal if

e no variable appears on the right side of a rule but not on the left;
e no variable appears more than once on any left side;

e no left side unifies with a (renamed) non-variable subterm of any other
left-hand side or with a (renamed) proper subterm of itself.

Combinatory Logic is a prime example of a (nonterminating) orthogonal
system:
Toz — =
(Koz)oy — =z
(§ez)oy)oz — (zoz)o(yoz)
This system can be used to implement any recursive function. The combi-
nators K and S were dubbed “kestrel” and “starling” by Smullyan; I is the
identity combinator; o is composition.
An example of a non-orthogonal non-confluent (non-terminating) system
1s:
flz,z) — 0
flz,s(z)) — 1

a — s(a)

Definition 6 A binary relation is strongly confluent if for all elements r, s,
andt, if r — s and r — t then either s and t are wdentical or s —t ort — s
or there is a term u such that s — v and t — u.

Lemma 2 FEvery strongly confluent binary relation is confluent.

Proof Straightforward. O
The importance of orthogonal systems stems from the following:

Theorem 2 Fvery orthogonal system s confluent.

In particular, the two-counter interpreter is confluent.

Proof The idea is to show that a parallel rewriting relation associated with
the system R is strongly confluent. Parallel rewriting is rewriting at one or
more disjoint positions at the same time. We need to consider parallel rewrit-
ing, because if s rewrites to ¢; and s rewrites to £5, then a subterm of s may
appear many times in ¢; or ts, and all of these occurrences may have to be
rewritten in parallel to find a ¢t to which both ¢; and ¢, rewrite in one (par-
allel) step. For example, if s is f(a) and R is {a — b, f(z) — g(f(z), f(z))}
then f(a) rewrites to both f(b) and g(f(a), f(a)). Both of these terms par-
allel rewrite to g(f(b), f(b)), and this requires parallel rewriting of the two
occurrences of a in g(f(a), f(a)). O

Definition 7 (Outermost Rewriting) A rewriting step s — t is outer-
most if no rule applies at a symbol closer to the root symbol (in the tree
representation of terms).

Theorem 3 For any orthogonal system, if no outermost step is perpetually
ignored, the normal form—if there is one—will be reached.

Outermost rewriting is used to compute normal forms in Combinatory
Logic.

In this way, orthogonal systems provide a simple, pattern-directed (first-
order) functional programming language, in which the orthogonal conditional
operator

if (true,z,y) —
if (false,z,y) — vy

can also conveniently be incorporated.

