
Methods and Formal Models/ Nachum Dershowitz

Lecture 8, 16-5-2000

Notes by: Eden Chlamtac

Recursive Programs

Introduction

In lecture 7, we defined fixpoints, and proved the following result, which is due to
Kleene:

Theorem 1Every continuous functional B[f] on a complete partial order has a unique
least fixpoint

f! = lubfBi[
]g

We also briefly discussedcomputation rules, which determine the operational seman-
tics of a program by establishing a certain rewriting strategy.

Here we shall discuss the relation between computation rules and least fixpoints.
We shall see that any computation rule applied to arecursive program(a recursive
function definition defined by a functionalB as in the theorem above) yields a function
which is less defined than, or equal to the functional’s least fixpoint. We shall also
define a class of computation rules which always yield the least fixpoint of a functional.

Recursive Programs and Computation Rules

By a recursive definition, or recursive program, we mean a programP of the form

P : f(x)(B[f](x)

where B is a continuous functional composed of monotonic base functions and pred-
icates (e.g.if, *) and the function variablef which are applied to the variablesx =<
x1; x2; :::; xn >.

Naturally, we would like a good computation rule to compute a fixpoint ofB[f]
when applied to the computation off. However, we must first examine what we mean
by a computation of a recursively defined function.

We shall examine two different types of rewriting rules,substitution, andsimplifi-
cation. Given some expression� containing occurrences off(x), substitutionreplaces
some occurrences off(x) in � with B[f](x), whereassimplificationrepeatedly ap-
plies the rewriting systemS, which defines the base functions and predicates, until the

1

expression can no longer be simplified. Assume the rewriting systemS is such that
simplifications can always be made when the value of some sub-expression can be
determined (e.g.0 � x ! 0).

Given a programP as above over a domainD, and an input valued 2 (D+)n, we
define thecomputation off(d) to be a sequence of expressions{ti} derived recursively
as follows:

1. t0 = f(d)

2. For eachi � 0, an intermediate expressiont0i is obtained fromti by applying
substitution according to a computation rule,C. Thenti+1 is derived fromt0i by
simplification.

A computation rule Cdetermines which occurences off(x) are to be replaced in each
substitution step. We takeCP , the function determined by applying a computation rule
C to the computation off, to be a mapping as follows: Given inputd 2 (D+)n, if the
sequence{ti}, defined as above, is finite (i.e. it ends in sometk 2 D+) then we define
CP = tk. Otherwise,CP = !.

In lecture 7, we encountered the computation rulesleftmost-innermost (“call-by-
value”) and leftmost-outermost (“call-by-name”). The functions computed by these
rules are denotedfLI (orLIP) andfLO (orLOP), respectively. Here are a few exam-
ples of other important computation rules:

1. Parallel-innermost: Replace all the innermost occurrences of f simultaneosly.
The function computed is denotedfPI .

2. Parallel-outermost: Replace all the outermost occurrences of f simultaneosly.
The function computed is denotedfPO.

3. Full-substitution: Replace all occurrences of f simultaneosly. The function com-
puted is denotedfF .

� Exercise: Consider the following recursive program:

P1 : f(x; y)(if x = 0 then 2 else f(x� 1; f(x+ y; y))

What is the least fixpoint off ? What are the functionsfLI andfLO?

Computation Paths

We will now investigate an alternative method of computation which, as we shall see, is
a generalization of the computation sequence method discussed in the previous section.

Given a programP defined as before, acomputation pathis a sequence of expres-
sionsfCig whereC0 = f , and for eachi � 0, Ci+1[f](x) is derived fromCi[f](x)
by simultaneously replacing certain occurrences off(x) with B[f](x). In contrast
to computation sequences, no simplification is performed in computation paths, and
neither is there necessarily a fixed computation rule for all substitutions.

� Exercise: Show thatfCi[
]g is a chain of functions.

2

Before examining the relation between computation sequences and computation paths,
let us first show the following result, which is an important property of the substitution
and simplification rewriting system:

Lemma 1: Let �[f] be any monotonic functional, andC be some rewriting rule. Let
d 2 (D+)n be an input value for�[f], and let be the expression obtained from
�[f](d) by first applying simplification, then substitution according toC, and
then applying simplification again. Then there exists a rewriting ruleC’ such
that applying substitution usingC’, followed by simplification, yields. That is,

�[f](d)�������!
S

�[f](d)

C 0 # # C

�0[f](d) �0[f](d)

S & . S

Proof: Let us suppose�[f] containsm occurrences off.

Then we may think of� as an m-ary functional, and�[f1; :::; fm] as an equivalent ex-
pression if we substitutef for all f j . Clearly, after applying simplification, we arrive at
some expression�[f1; :::; fm]. We may also orderf j so that applying substitution us-
ing computation ruleC we get�[f1; :::; fm](d)�������!

C
�[B[f1]; ::; B[f i]; f i+1; :::; fm](d).

Let C’ be the computation rule which choosesf1; :::; f i when applying substitution
to �[f1; :::; fm]. Let R be the rewriting system which, for all1 � j � i, has the
rule f j(x) ! B[f](x) (indeed, on the right side we now havef and notf j). Recall
thatS is the rewriting system for simplification. Then clearlyR [S is an orthogonal
system, and therefore has the Church-Rosser property. Note that�0[f1; :::; fm](d) =
�[B[f]; :::; B[f]; f i+1; :::; fm](d) and�0[f1; :::; fm](d) = �[B[f]; :::; B[f]; f i+1; :::; fm](d)
are both obtained from�[f1; :::; fm] by applying the rewriting rules inR [S. Also
note that since neither expression contains anyf j , for 1 � j � i, applying theS
rules (simplification) repeatedly to either expression eventually yields a normal form
for R [S. Since the system is C-R, we have that it is the same normal form for both
expressions, namely,. To complete the proof it is sufficient to note that substituting
f for all f1; :::; fm, and applying simplification and substitution usingC andC’, as
described above, will yield the same results.

Q.E.D.

It is now easy to show a direct correlation between computation sequences and
certain computation paths. The following lemma states that for every computation se-
quence, there is functionally similar computation path. The proof is left as an exercise.

Lemma 2: For any recursive programP : f(x) (B[f](x), elementd and com-
putation ruleC, there corresponds a computation pathfCig (of finite or infinite
length equal to that of{ti}) such that

1. Ci[f](d)����!S
ti and

2. lubfCi[
]g(d) � CP (d)

3

Exercises:

1. Prove Lemma 2. (Hint: for part (1), use induction and Lemma 1)

2. Consider the following program which computes2x:

P2 : f(x)(if x = 0 then 1 else f(x� 1) + f(x� 1)

What is the computation off(2) by the leftmost-outermost rule, and what is the
corresponding computation path?

Fixpoint Computation Rules

As we mentioned earlier, we are interested in computation rules which always compute
a fixpoint of any given recursive definition. We call thesefixpoint computation rules.
We will now show that all computation rules yield functions which are no more defined
than the least fixpoint, which from now on will be denoted byf!. Later we will define
a class of computational rules for which the computed function is alwaysf!.

Theorem 2 (Cadiou): For any computational ruleC, the computed functionCP is
less defined than or equal tof!; that is,CP v f!.

Proof: Letd 2 (D+)n be any input forf. LetfCig be a computation path as in Lemma
2. Note that for eachi, Bi[
] can be obtained fromCi[
] by replacing certain
occurences of
. SinceB is monotonic, and from theorem 1, we have

8i � 0: Ci[
] v Bi[
] v lubfBi[
]g = f!

Thusf! is an upper bound offCi[
]g. Therefore, combining this result with
Lemma 2, we get

CP (d) = lubfCi[
]g v f!(d)

Q.E.D.

The above theorem implies that if a computation rule always yields a fixpoint of
a certain recursive definition, then it necessarily yieldsthe least fixpointof that defi-
nition. Thus, we could have equivalently defined a fixpoint computation rule to be a
computation rule which for any recursive definition yields the least fixpoint. We now
define a general class of computation rules which are all fixpoint computation rules.

Definition: Let �[f1; :::; fm] be any monotonic functional. LetC be a computational
rule which substitutes forf1; :::; f i when we takef j = f for all 1 � j � m.
This application ofC is called asafe substitutionif when substitutingf j =
 for
1 � j � i andf j = f! for i+ 1 � j � m, we get�[
; :::;
; f!; :::; f!] �
.
A computation rule is said to besafeif it uses only safe substitutions.

4

Theorem 3 (Vuillemin): Any safe computation rule is a fixpoint computation rule.

Proof: By contradiction.

Let us assume, by way of contradiction, that there existsC, a computation rule which
is safe but not a fixpoint computation rule. LetP be a recursive program, as before,
such thatCP 6= f!. From theorem 2 we haveCP v f!, therefore, there must be some
d 2 (D+)n such thatCP (d) = ! and(lubfBi[
]g(d) =)f!(d) 6= !. Thus we have
Bn[
](d) 6= ! for somen � 0.

Let fCig be the computation path forf(d) as in lemma 2. We haveCP (d) = !, so
clearlyfCig cannot be finite. Otherwise, substitutingf! for every occurence off in
Ci[f], we get (sincef! is a fixpoint)! 6= f!(d) = C0[f

!](d) = ::: = Ck[f
!](d) =

lubfCi[f!]g(d) = Cp(d) = ! wherek is the length of the path.
Therefore the pathfCig must be infinite. Let us briefly introduce the notion of

depth of occurrences off in elements of a computation path. For example, ifB[f]
contains two occurrences off, then in the expressionB[f1; B[B[f2; f3]; f4]] we say
thatf1has depth 1,f2 has depth 3,f4 has depth 2, etc. Recall thatBn[
](d) 6= ! for
somen. Since there can be only finitely many substitutions at depth� n, there must
exist someN � 0 such thatCN+1[f] is derived fromCN [f] by substitutions of depth
>n.

Denote the occurrences off inCN [f] byf1; :::; fm, such thatCN [f] = CN [f1; :::; fm]
andCN+1[f] = CN [B[f1]; :::; B[f i]; f i+1; :::; fm]. Note that the depths off1; :::; f i

in CN [f] are all>n. Consider the termCN [
; :::;
; Bn[
]; :::; Bn[
]] obtained by
substituting
 for all f1; :::; f i andBn[
] for all f i+1; :::; fm. All occurrences of

here are of depth>n. Therefore, this expression can be derived fromBn[
] by substi-
tuting for certain
’s. B[f] is monotonic, therefore

Bn[
] v CN [
; :::;
; Bn[
]; :::; Bn[
]]

CN [f] is also monotonic, and so

CN [
; :::;
; Bn[
]; :::; Bn[
]] v CN [
; :::;
; f!; :::; f!]

From these two inequations, and sinceC is safe, we get

Bn[
] v CN [
; :::;
; f!; :::; f!] = !

which immediately impliesBn[
] = !, contradicting our assumption.
Q.E.D.

Corollary: The parallel-outermost, full-substitution, and leftmost-outermost1 rules are
safe rules and therefore are fixpoint computation rules.

1When the program consists only of strict functions, and if expressions.

5

Exercises:

1. Why is the leftmost-innermost rule not safe? Illustrate this fact by considering
the programP1 in the first exercise.

P1 : f(x; y)(if x = 0 then 2 else f(x� 1; f(x+ y; y))

2. The proof of theorem 3 is not very straightforward. Illustrate the direct nature of
the relation between safety and fixpoint computation rules by transforming the
proof by contradiction to a direct proof.

6

