
Formal Methods / Nachum Dershowitz
Lecture 7, 2-05-2000

Notes by: Iddo Tzameret

Fixpoints

Introduction

We present here the concept of �xpoints, which is a method for proving
properties of recursive programs. In discussing recursive problems the key
problem is: what is the partial function f de�ned by a recursive program
P ? Let's look at the following recursive program, for example:

f := �x; y: if x = y then y + 1 else f(x; f(x� 1; y + 1)) (1)

The question is what does it really mean?
This function, as well as many other computations may, in general, give

results for some inputs, and may run inde�nitely for other inputs. Thus, it
de�nes a partial function. In order to be able to deal with total functions

we use ? to denote an unde�ned value (which represents a non-terminating
run). For any set S not containing ? let S? denote S [f?g.

Consider the partial function f : D ! R to be a total function f : D !
R?. However, since we shall consider composition of functions, an output
of a function can be used also as an input. Hence, we should add ? to the
domain as well: f : D? ! R?.

For example:

f(0; y)! 1
f(�1; y)! f(�1; y)
f(1; y)! f(0; f(�1; :::))

Although the second term of f(1; y) is ? (that is, f(�1; :::)), we could
return the answer 1, since f(0; y) yields 1 independently of y.

A �xpoint of such a de�nition as in (1) is a partial function that satis�es
the equation. For example, the following are three �xpoints of (1):

f1 = �x; y: if x = y then y + 1 else x+ 1

f2 = �x; y: if x � y then y � 1 else x+ 1

1

Formal Methods - Lecture 7 2

f3 = �x; y: if x � y ^ 2j(x� y) then x+ 1 else ?

Among those three �xpoints, f3 has a special property: for every x and
y in its domain f3 gives the same value as f1 and f2, and it can be shown
that this happens for every other �xpoint of (1). In this case we say that f3
is the least �xpoint of (1), that is, it is less de�ned than or equal to all other
�xpoints of (1).

The �xpoint approach is one way to tackle the problem concerning the
meaning of a recursive problem. This approach states that the function f ,
that is, the 'real meaning' of f , is the least �xpoint, denoted by f1. This is
a reasonable approach since in practice many implementation of recursive
programs indeed lead to the least �xpoint.

considering di�erent types of �xpoints

In de�ning a function as above we are giving a formal de�nition which
has no apparent operational meaning, that is, we do not know the way
this function should actually be computed. What we certainly do know
is that we should compute a �xpoint, since anything else would contradict
the de�nition. However, we can consider many types of �xpoints, so the
question arises: which one of them is the 'right' �xpoint?

Some of the �xpoint are not computable at all. It seems reasonable to
compute the least �xpoint. We will see that given some reasonable condi-
tions on the function de�nition, the least �xpoint exists and is unique and
computable.

Besides the least �xpoint, there is another interesting �xpoint: the op-

timal �xpoint, which is a �xpoint function that has the maximal agreement
with all the other �xpoints. That is, it returns ? for any input value for
which other �xpoints return di�erent values (or for the case they all return
?); for every input value for which those �xpoints that are de�ned for it
return the same value, the optimal �xpoint returns this value.

Most program languages compute something that is less than the least
�xpoint (and never greater). ALGOL and HASKELL, for instance, compute
the least �xpoint while LISP, SCHEME and C compute something which
is less than the least �xpoint, that is, they have more points for which
their result is unde�ned. Figure 1 shows the relations of di�erent types of
�xpoints; as we go upward from the central point (where the least �xpoint
resides) the domain for which the �xpoints return a de�ned value is getting
larger. Conversely, as we go downward from the least �xpoint, the unde�ned
domain is getting larger, until we arrive at the least de�ned function
 which
is never de�ned.

Formal Methods - Lecture 7 3

J

J
J
J
J
J
J
J
J
J
J
J
J
J
JJ

c

c

cccc

c

optimal fixpoint

least fixpoint

maximal fixpoints

(x):=?

Figure 1: The relative place of di�erent types of �xpoints. The upper part represents

the �xpoints functions as their domains get larger (i.e., more input values in which the

functions have a value other then ?). Conversely, the lower part denotes the functions

which are not �xpoints, and are less then the least fixpoint (according to the v order,

introduced in the next section).

The Order of Functions

Partial ordering on D?

In order to de�ne the measure of de�nedness of a function (that is, the
domain for which it has a value di�erent from ?), we �rst introduce the v
order as a partial order on domain elements including ?:

for all x 2 D?,
? v x

x v x.
Notice that distinct elements of D are unrelated by v.
for (D?)n, we de�ne
< x1; :::; xn >v< y1; :::; yn >() xi v yi, for all i. We are now ready to

de�ne the v order as an order on functions:

f v g () 8x 2 D?:f(x) v g(x):

The v partial ordering is intended to correspond to the notion of is less

de�ned than or equal to. This means that f is 'less than' g if f is not
de�ned in some points where g is de�ned, and in the other points, both f

and g are de�ned and have equal values. The v order also yields an equality

Formal Methods - Lecture 7 4

relation between functions: a function f is equal to g if f and g are de�ned
for the same points and have the same values there, i.e, f v g and g v f .

We denote the (n-ary) 'always unde�ned function' by

(�x) := ?, for every �x 2 (D?)n.

Note that for any n-ary function f , we have
 v f .

Monotonic functions

de�nition: An n-ary function f from (D?)n to R? is monotonic if for all

�x; �y 2 (D?)n:
�x v �y =) f(�x) v f(�y):

This de�nition means intuitively that in order to be monotonic, we re-
quire from a function that if the input �x is less de�ned than �y, then the
output f(�x) is also less de�ned than f(�y).

Composition of monotonic functions is also monotonic, since if f and
g are monotonic, then x v y implies f(x) v f(y), which in turn implies
g(f(x)) v g(f(y)).

Strict Functions

A function f : (D?)n ! (R?) is strict when
f(x1; :::; xn) = ? if xi = ? for some 1 � i � n.

Lemma: Every strict function is monotonic.

Exercise: Prove the lemma. (Hint: by contradiction, assume that
f(x1; :::; xn) is strict but not monotonic.)

The v order enables us to de�ne the least �xpoint more formally: the
least �xpoint of some de�nition of a function is the smallest �xpoint in the
partial order of v. It should be noted that the least �xpoint is computable
in contrast to the optimal �xpoint. We shall see next a way to compute
the least �xpoint, and we'll prove that given a continuous function(al), this
computation indeed yields the unique least �xpoint.

Examples:

1. Constants: Every 0-ary function, i.e., a constant, is monotonic.

Formal Methods - Lecture 7 5

2. if � then� else is monotonic. We assume the following:

if T then A else ... 7! A

if F then ... else A 7! A

if ? then ... else ... 7! ?

Exercise: Show that this de�nition of the if-then-else function is
monotonic although it is not strict (consider the three cases where
the premise is true, false and ?).

3. We also assume ?+ n 7! ? for all natural n, as well as ? = ? 7! ?.

4. Identity: The identity n-ary function mapping �x into itself, is mono-
tonic.

5.
:
(x) := ? is monotonic.

The First Recursion Theorem (Kleene)

Let us turn back to our �rst example of a function de�nition: f := �x; y:

if x = y then y + 1 else f(x; f(x � 1; y + 1)). It is possible to see that
this de�nition is of the form: f := B[f; f]. Hence, the function(al) B, is
a function that maps the set of functions of D? � D? ! R? into itself ;
that is, B takes a function f of the form D? �D? ! R?, and returns the
function B[f; f], which is of the same form, i.e., D? �D? ! R?.

In order to compute the least �xpoint of the de�nition we will build a
chain of functions such that:

f0 v f1 v f2 v :::

Where f0 is the minimal function of v, i.e.,
. f1 = B[f0; f0], f2 = B[f1; f1],
and so on. The least �xpoint will be the limit of this chain, which is actually
the least upper bound of the chain. But let us turn �rst to more formal
de�nitions.

Least upper bound

We denote an arbitrary sequence f0; f1; f2; ::: by ffig. The sequence ffig is
called a chain only if f0 v f1 v f2 v ::: . We say that f is the upper bound

of ffig, if fi v f for all fi. If in addition f v g for every upper bound
g, then we say that f is the least upper bound of ffig. We also denote the
least upper bound of ffig by limi!1 fi.

Formal Methods - Lecture 7 6

Lemma: Every chain ffig has a least upper bound.

proof.
Consider the following function:

f(x) =

(
? 8i:fi(x) = ?;
a 9i:fi(x) = a 6= ?:

We shall show that f is the least upper bound of the chain ffig. �rst,
we show that f is an upper bound of ffig. For this purpose we need to show
that for all i fi v f ; indeed, for all i and for all x there are two choices:

(1) fi(x) = ? then clearly, fi(x) v f(x).
(2) fi(x) = a , for some a, and from the de�nition of f we also have that

f(x) = a. Hence, fi(x) v f(x).
From (1) and (2) we conclude that for all i fi v f .

Second, we show that f is the least upper bound of ffig. Let g be an
upper bound of ffig; we need to show that for all x f(x) v g(x). Since g
is an upper bound we have that for all i fi(x) v g(x). If f(x) = ? then
f(x) v g(x). Otherwise, f(x) = a, where, from the de�nition of f we know
that a = fi(x) for some i. Since, fi(x) v g(x) for all i, we have also that
f(x) v g(x). Therefore f v g.

Q.E.D.

Monotonicity and continuity

We now turn to describe two interesting properties of function(als), mono-
tonicity and continuity.

monotonicity

A function(al), B[f], is said to be monotonic if f v g implies that B[f] v
B[g].

continuity

A monotonic function(al), B[f], is said to be continuous if for any chain of

functions ffig, we have

lim
i!1

B[fi] = B[lim
i!1

fi]

Note that ffig is a chain and thus have a least upper bound, according to the
last lemma. Hence, the term limi!1 fi which denotes the least upper bound
of the chain ffig, is legitimate here. Furthermore, since B is monotonic we
have f0 v f1 v f2 v ::: =) B[f0] v B[f1] v B[f2] v ::: . Therefore, fB[fi]g

Formal Methods - Lecture 7 7

is also a chain and its limit, limi!1B[fi], that is, its least upper bound,
really exists. Hence, the continuity property can be written also as:

lubfB[fi]g = B[lubffig]

Where lub denotes the least upper bound.

Examples:

1. ? � 0 = 0, 0 � ? = 0 is not strict but continuous.

2. Composition of if-then-else, constants, monotonic base functions, f as
a function variable, is always continuous.

In general we have the following rule:

Proposition (without a proof 1): any function(al) B de�ned by com-

position of monotonic functions and a function variable f , is continu-

ous.

We see next that the two properties we just described, monotonicity and
continuity, are the conditions that allow us to deduce that the limit of a
chain ffig, i.e., its lub, is indeed the least �xpoint we are seeking.

de�nition: Given a function(al) B, we say that f is a �xpoint of B if

B[f] = f , that is, if B maps the function f into itself. If for any other
�xpoint of B, g, we have that f v g, then we say that f is the least �xpoint

of B.

Notice that a function(al) B have at most one least �xpoint, f , since
if both f and g are least �xpoints of B, then f v g and g v f and thus,
f � g.

Theorem 1 (First Recursion Theorem (Kleene)) Every continuous

function(al) B[f] has a unique least �xpoint, limi!1Bi[
].

proof :

1. Since B is continuous it is also monotonic and therefore we have for
all i

fi v B[fi]

, thus we have f0 =
 v f1 = B[
] v f2 = B2[
] v ::: .

1See \Mathematical Theory of Computation", by Zohar Manna, chap. 5, for a proof.

Formal Methods - Lecture 7 8

2. Denote limi!1Bi[
] by f1. We will prove that f1 is a �xpoint of B.

f1 = lim
i!1

Bi[
] = lim
i!1

Bi+1[
] = lim
i!1

B[Bi[
]] (1)

from continuity of B we have

lim
i!1

B[Bi[
]] = B[lim
i!1

Bi[
]] = B[f1] : (2)

Hence, from (1) and (2) we have that f1 = B[f1].

3. Let g be a �xpoint of B, we'll show that for all i fi v g. By induction
on i: f0 =
 v g, since
 is the minimal function of v. Assume
that fi v g. Then, fi+1 = B[fi] v B[g], from monotonicity of B and
induction hypothesis. Because g is a �xpoint g = B[g], and thus we
have fi+1 v g.

This implies that g is an upper bound of the chain fBi[
]g (we already
proved in (1) that it is a chain). Since fBi[
]g is a chain it has a least
upper bound, which we denoted earlier by f1, and thus we conclude
that f1 v g for any �xpoint g: Q.E.D.

Exercise:
Consider the following functional:

B[f](x) := if x = 0 then 1 else f(x+ 1)

Where, x is over the naturals including ?.
1) What are the �xpoints of B?
2) What is the least �xpoint among those �xpoints?

Computation Rules

What determines the operational semantics of di�erent programming lan-
guages and distinguish in general the nature of a language from that of other
languages, is its rewriting strategy. That is, the order by which terms are
being replaced by other terms according to a rewrite rule.

A popular rewriting order, i.e., a computation rule, is \call-by-value":

innermost-leftmost. That is, compute �rst the innermost and left-most sub-
term that has a rule. This, computation rule is adopted by C, PASCAL,
SCHEME and LISP, for instance. However, this method leads to something
less than the least �xpoint.

Another computation rule is the \call by name": outermost-leftmost.
This rule gives the least �xpoint for a continuous function(al). HASKELL

Formal Methods - Lecture 7 9

and ALGOL use this rule. It is implemented by rewriting the outermost
subterm, every step.

Also, another computation rule is the \outermost-fair", which is similar
to the \call by name" rule, but takes care that no subterms which are
positioned right to the leftmost term will be neglected forever.

Example:
Consider the term: F(F(1), 0) + F(F(2),F(3)). If we use innermost-

leftmost comutation rule, we shall �rst replace the term F(1). If, however,
we use outermost-leftmost rule, we shall �rst replace the term F(F(1), 0),
and then the outermost term would be F(1), and so on.

