Formal Methods Fixpoints

Nachum Dershowitz

May 2000

We use \perp to denote an undefined value. For any set S not containing \perp, let $S^{\perp}=S \cup\{\perp\}$.

Consider a partial function $f: D \rightarrow R$ to be a total function $f: D \rightarrow R^{\perp}$. Define equality of partial functions over the same domain as follows:

$$
f=g \quad \Leftrightarrow \quad \forall x \in D . f(x)=g(x)
$$

We always extend the domain and range of partial functions $f: D \rightarrow R$ so that it is a total function $f: D^{\perp} \rightarrow R^{\perp}$. We assume the following:

$$
\begin{array}{rlll}
\text { if } T \text { then } A \text { else } \ldots & \mapsto & A \\
\text { if } F \text { then } \ldots \text { else } B & \mapsto & \mapsto \\
\text { if } \perp \text { then } \ldots \text { else } \ldots & \mapsto & \perp
\end{array}
$$

We also assume $\perp+1 \mapsto \perp$, etc., as well as $\perp=\perp \mapsto \perp$.
Consider the function definition:

$$
f \stackrel{!}{=} \quad \lambda x, y . \text { if } x=y \text { then } y+1 \text { else } f(x, f(x-1, y+1))
$$

A fixpoint of such a definition is a partial function that satisfies the equation. Examples of fixpoints of the above include

$$
\begin{aligned}
& f_{1}=\lambda x, y . \text { if } x=y \text { then } y+1 \text { else } x+1 \\
& f_{2}=\lambda x, y \text {.if } x<y \text { then } y-1 \text { else } x+1 \\
& f_{3}=\lambda x, y . \text { if } x \geq y \wedge 2 \mid(x-y) \text { then } x+1 \text { else } \perp
\end{aligned}
$$

The definedness of fixpoints (and functions in general) can be compared, as follows:

$$
f \sqsubseteq g \quad \Leftrightarrow \quad \forall x \in D^{\perp} . f(x) \sqsubseteq g(x)
$$

where the partial ordering \sqsubseteq on domain elements is defined as $\perp \sqsubseteq x$ and $\perp \sqsubseteq x$ for all $x \in D^{\perp}$. The least fixpoint of a function definition is the smallest fixpoint in this ordering.

The always undefined function is

$$
\Omega(\bar{x}) \stackrel{!}{=} \quad \perp
$$

For any function f, we have $\Omega \sqsubseteq f$.
A function f is monotonic if

$$
x \sqsubseteq y \quad \Rightarrow \quad f(\ldots x \ldots) \sqsubseteq f(\ldots y \ldots)
$$

Constants are monotonic zero-ary functions. if-then-else is monotonic. A function f is strict if $f(\ldots \perp \ldots)$ always yields \perp. Strict functions are monotonic.

The limit (least upper bound) $\lim _{i \rightarrow \infty} f_{i}$ of a chain $f_{0} \sqsubseteq f_{1} \sqsubseteq \cdots$ of functions is the smallest function g such that $f_{i} \sqsubseteq g$, for all i. It need not exist.

A monotonic function(al) B is continuous if

$$
\lim _{i \rightarrow \infty} B\left[f_{i}\right]=B\left[\lim _{i \rightarrow \infty} f_{i}\right]
$$

for any chain $\left\{f_{i}\right\}$. The composition of monotonic functions is continuous.
Theorem 1 (First Recursion Theorem (Kleene)) Every continuous function $B[f]$ has a unique least fixpoint, $\lim _{i \rightarrow \infty} B^{i}[\Omega]$.

A computation rule for recursive programs is a function that chooses a subset of redexes in a term for replacement. Examples include call-by-value (leftmost-innermost); call-by-name (leftmost-outermost); parallel-outermost (all outermost redexes); and outermost-fair (no outermost redex ignored forever).

