Formal Methods Fixpoints

Nachum Dershowitz

May 2000

We use \perp to denote an *undefined* value. For any set S not containing \perp , let $S^{\perp} = S \cup \{\perp\}$.

Consider a partial function $f: D \to R$ to be a total function $f: D \to R^{\perp}$. Define equality of partial functions over the same domain as follows:

$$f=g \quad \Leftrightarrow \quad orall x \in D.f(x)=g(x)$$

We always extend the domain and range of partial functions $f: D \to R$ so that it is a total function $f: D^{\perp} \to R^{\perp}$. We assume the following:

if T then A else \ldots	\mapsto	Α
if F then else B	\mapsto	B
if \perp then else	\mapsto	\bot

We also assume $\bot + 1 \mapsto \bot$, etc., as well as $\bot = \bot \mapsto \bot$.

Consider the function definition:

ī.

$$f \hspace{0.1in} \doteq \hspace{0.1in} \lambda x,y. ext{ if } \hspace{0.1in} x=y ext{ then } y+1 ext{ else } f(x,f(x-1,y+1))$$

A *fixpoint* of such a definition is a partial function that satisfies the equation. Examples of fixpoints of the above include

$$egin{array}{rcl} f_1&=&\lambda x,y. ext{ if } x=y ext{ then } y+1 ext{ else } x+1\ f_2&=&\lambda x,y. ext{ if } x$$

The definedness of fixpoints (and functions in general) can be compared, as follows:

$$f \sqsubseteq g \quad \Leftrightarrow \quad orall x \in D^\perp.f(x) \sqsubseteq g(x)$$

where the partial ordering \sqsubseteq on domain elements is defined as $\bot \sqsubseteq x$ and $\bot \sqsubseteq x$ for all $x \in D^{\bot}$. The *least fixpoint* of a function definition is the smallest fixpoint in this ordering.

The always undefined function is

$$\Omega(ar{x}) \stackrel{!}{=} oldsymbol{\perp}$$

For any function f, we have $\Omega \sqsubseteq f$.

A function f is monotonic if

$$x \sqsubseteq y \quad \Rightarrow \quad f(\dots x \dots) \sqsubseteq f(\dots y \dots)$$

Constants are monotonic zero-ary functions. if-then-else is monotonic. A function f is *strict* if $f(\ldots \perp \ldots)$ always yields \perp . Strict functions are monotonic.

The limit (least upper bound) $\lim_{i\to\infty} f_i$ of a chain $f_0 \sqsubseteq f_1 \sqsubseteq \cdots$ of functions is the smallest function g such that $f_i \sqsubseteq g$, for all i. It need not exist.

A monotonic function(al) B is continuous if

$$\lim_{i\to\infty} B[f_i] = B[\lim_{i\to\infty} f_i]$$

for any chain $\{f_i\}$. The composition of monotonic functions is continuous.

Theorem 1 (First Recursion Theorem (Kleene)) Every continuous function B[f] has a unique least fixpoint, $\lim_{i\to\infty} B^i[\Omega]$.

A computation rule for recursive programs is a function that chooses a subset of redexes in a term for replacement. Examples include call-by-value (leftmost-innermost); call-by-name (leftmost-outermost); parallel-outermost (all outermost redexes); and outermost-fair (no outermost redex ignored forever).