
Formal Methods / Nachum Dershowitz

Lecture 11

Automata and their Interaction

Notes by : David Porat

6/6/2000

1 Introduction

In this lecture we present the concepts of interacting automata and
continuous-time automaton.

Interacting Automata :

We examine a system of interacting automata, and describe the general
properties of the system as composed of the properties of its individual
components.

We distinguish between the synchronous and asynchronous models.

Continuous Time Automaton :

Our principal objective is to adapt basic concepts of automata theory
from discrete to continuous(real) time.

An obvious transition from discrete to continuous time is as follows :
instead of signals de�ned over a discrete sequence of time instants, consider
signals de�ned over the non-negative reals.

We recall the notion of a discrete-time deterministic automaton.

De�nition 1 A discrete-time deterministic automaton M is de�ned

by:

X - a set of states

U - an action alphabet

and a map nextstate : X � U �! X

1



The terminal transition map 	 : X � ~U �! X extends the map

nextstate from singleton action u�U to action sequence ~u = u1 � � � ul.

The associated full transition map ~	 : X� ~U �! ~X , when applied to

a state x�X and an action sequence ~u, returns the state-sequence of length
l + 1, that starts with x and leads to the terminal state x0 = 	(x; ~u)

2 Interacting Automata

We de�ne an automata M as the interaction of automata Mi . We show how
to de�ne the nextstate, terminal transition and full transition maps
of M , as a composition of its components Mi .

2.1 Synchrony

In the synchronous model, execution is partitioned into rounds, and in each
round, every automaton Mi receives an action as input and computes its
nextstatei.

In this model, the output of the composed automata, depends on the
output of every individual automata.

Consider Mi with state-space Xi �X0 and action-space Ui � U0, where
X0 is a shared register and U0 a shared port.

De�nition 2 M is the Synchronous composition of automata M1 and

M2.We write M = M1 �M2 . The state-space of M is X1 �X0 �X2 , the

action-space is U1 � U0 � U2.
The transitions are de�ned as follows :

M(x1x0x2; u1u0u2; x
0

1x
0

0x
0

2)
def
= M1(x1x0; u1u0; x

0

1x
0

0) &M2(x2x0; u2u0; x
0

2x
0

0)

We de�ne the nextstate map as follows :

nextstate(x1x0x2; u1u0u2) = x0

1x
0

0x
0

2 i�
nextstate1(x1x0; u1u0) = x0

1
x0

0
& nextstate2(x2x0; u2u0) = x0

2
x0

0

We cannot extend the nextstate map to a terminal transition map

of the form
	(x1x0x2; ~u1~u0~u2) = x0

1x
0

0x
0

2 i�
	1(x1x0; ~u1~u0) = x0

1x
0

0 & 	2(x2x0; ~u2~u0) = x0

2x
0

0

The reason is that for given ~u1~u0~u2 the Mi are required only to reach
the same terminal value x0

0, which would guarantee that 	(x1x0x2; ~u1~u0~u2)
is de�ned. However, we require also de�nedness for all pre�xes of ~u1~u0~u2 .

2



We can solve this problem by using full transitions instead of terminal
ones.

De�nition 3 Full transition map
~	(x1x0x2; ~u1~u0~u2) = ~x1 ~x0 ~x2 i�
~	1(x1x0; ~u1~u0) = ~x1~x0 & ~	2(x2x0; ~u2~u0) = ~x2~x0

We de�ne terminal transitions in the case when the componentsMi don't
share registers.

De�nition 4 Terminal transition map

	(x1x2; ~u1~u0~u2) = x0

1x
0

2 i�

	1(x1; ~u1~u0) = x0

1 & 	2(x2; ~u2~u0) = x0

2

2.2 Asynchrony

In the asynchronous model,there is no �xed upper bound on the time it
takes for an automaton to compute its nextstate.

Unlike the synchronous model, we cannot rely on the output of every
individual automata on every round. in this case we require that at least
one individual automata computes its output, for the composed automata
to do so.

Consider Mi with state-space Xi �X0 and action-space Ui � U0.

De�nition 5 M is the Asynchronous composition of automata M1 and

M2.We write M = M1kM2 . The state-space of M is X1 �X0 �X2 , the

action-space is U1

L
U0

L
U2.

We de�ne the nextstate map as follows :

nextstate(x1x0x2; ui) = x0

1x
0

0x
0

2

holds in one of the following cases :
nextstate1(x1x0; ui) = x0

1x
0

0 & x0

2 = x2 if i = 1
nextstate2(x2x0; ui) = x0

2x
0

0 & x0

1 = x1 if i = 2
nextstate1(x1x0; ui) = x0

1x
0

0 & nextstate2(x2x0; ui) = x0

2x
0

0 if i = 0

As in the synchronous case, we cannot easily extend the nextstate map
to terminal transition and full transition maps. We deal with this
problem by assuming either that there are no shared ports or no shared
registers:

3



De�nition 6 (No shared ports).

Assume Mi with state-space Xi �X0 and action-space Ui. Then M has

state-space X1 �X0 �X2, action-space U1 � U2.

	(x1x0x2; ~ui) = x0

1x
0

0x
0

2

holds in one of the following cases :

	1(x1x0; ~ui) = x0

1x
0

0 & x0

2 = x2 if i = 1
	2(x2x0; ~ui) = x0

2x
0

0 & x0

1 = x1 if i = 2

De�nition 7 (No shared registers).

Assume Mi with state-space Xi and action-space Ui � U0.

	(x1x2; ~ui) = x0

1x
0

2

holds in one of the following cases :
	1(x1; ~ui) = x0

1
& x0

2
= x2 if i = 1

	2(x2; ~ui) = x0

2 & x0

1 = x1 if i = 2
	1(x1; ~ui) = x0

1 & 	2(x2; ~ui) = x0

2 if i = 0

3 Nets & Webs

In both the synchronous and asynchronous models we faced diÆculties in
trying to de�ne transition maps for components with shared ports and reg-
isters.

We look at communication mechanisms where components are not al-
lowed to share both ports and registers.

Nets : Communication, if any, is via shared ports (shared memory); all
registers of a component are private.

Nets : Communication, if any, is via shared registers (message passing);
all ports of a component are private.

The di�erent architectures are :

synchronous asynchronous

private synchronous asynchronous
registers net net

private synchronous asynchronous
ports web web

4



4 Petri Nets

We shall �rst give the basic de�nition of a Petri net and then adapt it to
our speci�c needs.

De�nition 8 A Petri net is a �nite directed graph with two types of nodes,

referred to as places and transitions.

Every arrow in a Petri net goes either from a place to a transition or

from a transition to a place.

Consider a transition a. Every place p such that there is an arrow from

p to a is referred to as an input. Every place q such that there is an arrow

from a to q is referred to as an output. The same place can be both an

input and an output place of a.

A marking of a Petri net is a mapping m of the set of places into the
set of non-negative integers. We say that there are k tokens in the place p

if m(p) = k.

We now de�ne the operation of a Petri net. A transition is enabled

(at a marking) i� all of its input places have at least one token. An enabled

transition may �re by removing one token from each of its input places and

adding one token to each of its output places.

Our goal is to analyze a Petri net as a system of interacting components.
Applying the de�nition of a Petri net to Nets & Webs, we design the
Petri net G to be composed of ports (as circles) and registers (as boxes),
instead of places and transitions respectively. As de�ned before, every arrow
in the net goes either from a port to a register, or from a register to a port.

We say that G is an atomic net if it consists of a single circle with its
neighboring boxes. G is an atomic web if it consists of a single box with
its neighboring circles.

Hence if our net G is composed of k circles andm boxes, we can decom-
pose the net into k atomic subnets (each one with a single circle) or into
m atomic subwebs (each one with a single box).

5



5 Deterministic Continuous-Time Automata

We examine basic concepts of classical automata theory and adapt them
from discrete to continuous time.

Time

Discrete Time : Every natural number represents a time moment. The
number zero represents the beginning of time.

We replace discrete time by:
Continuous Time : Time is continuous, every time is represented by a

non-negative real. The number zero represents the beginning of time.

We wish to expand the discrete-time terminal transition map

	 : X � ~U �! X,to a continuous-time map with ~u de�ned as a �nite path
of U within certain time limits t and t0 .

If state x occurs at time t, then ~u with life-time [t; t+ Æ] produces state
x0 at time t+ Æ. A �nite path ~u is admissible for x i� 	(x; ~u) is de�ned.

An in�nite path ~u is admissible for x if all its �nite pre�xes are admissible
for x.

Axioms 1

	(x; �) = x

	(x; ~u~v) = 	(	(x; ~u); ~v)

Extending the terminal transition map to the full transition map

is straightforward in this case.

De�nition 9 Full transition map of M .
~	(x; ~u) = ~x i� 8t�[0; Æ):	(x; ~ujt) = ~x(t)

We want to maintain the following behaviour on the transition from
discrete to continuous time.

Input-Output Behaviour

Deterministic Behaviour : The output signals are completely determined
by the input signals.

6



Retrospective Behaviour : The output at a moment t does not depend
on the inputs at later time.

F is retrospective if for any x; y and t, the following condition holds :
If x and y coincide in the interval [0; t] then Fx and Fy coincide in the

interval [0; t].
or

Strong Retrospective Behaviour : The output at a moment t does not
depend on the inputs at moment t and at later time.

F is strongly retrospective if for any x; y and t, the following condition
holds :

If x and y coincide in the interval [0; t) then Fx and Fy coincide in the
interval [0; t].

The full transition map ~	 is deterministic and strongly retrospective.

7


