
Automata and Their Interaction

Boris A. Trakhtenbrot

June 2000

1 Automata

a) Notational provisos
Z is a space (alphabet), T is the time-domain, i.e. the set N of nonnegative integers, or the set R�0 of
nonnegative reals. A Z-path, is a function ~z from T into Z, whose domain is a left-closed (possibly in�nite)
interval [t; t+ Æ) or [t; t+ Æ]. ~Z is the set of z-paths. The interval is said to be the life-time of ~z ; its length Æ
is said to be the duration j~zj of ~z. A path is standard if t = 0. The standard shift of ~z is the standard path
whose value at time � coincides with ~z(t + �). In many respects we do not distinguish between paths with
the same standard shift, and we preserve for them the same notation.

Unless stated otherwise, we con�ne ourselves to paths whose life-times are semi-intervals; their concate-
nation ~z1:~z2 is de�ned in the usual way.

b) A reminder
A discrete-time deterministic automatonM is given by a (state- alphabet) X, an (action-alphabet) U and a
map nextstate : X � U �! X. The associated terminal transition map 	 of type X � ~U �! X obviously
extends nextstate from singleton action u to action sequence ~u = u1:::ul. Finally, ~	 : X � ~U �! ~X
is the associated full transition map. When applied to state x and an action sequence ~u it returns the
state-sequence of length l + 1, that starts with x and leads to the terminal state x0 = 	(x; ~u).

Comments: In general, there are no restrictions on the cardinalities of U;X. For example, let X be the
Euclidean space Rn, and let U consists of (names of) appropriate matrices. Then, nextstate may perform the
corresponding linear transforms of Rn. But algebraic assumptions about X;U are not part of the model. The
terminal and full transition maps are uniquely determined as soon as nextstate is given. But for continuous
time domain R�0, nextstate does not make sense; hence, the need for a direct de�nition of terminal/full
transitions.

2 Deterministic Automata

a) Basics
Even though the forthcoming formulations are general (hence, applicable for discrete time as well), they are
intended mainly for the less routine continuous time-domain. (In [S1] these are also called Dynamic Systems
or Machines).

An automaton M is given by a state- space X, an action-space U and a partial
terminal transition map 	 : X � ~U ! X:

The intended semantics is: if state x occurs at time t, then ~u with life-time [t; t+ Æ) produces state x0 at
time t+ Æ.

A �nite path ~u is admissible for x i� 	(x; ~u) is de�ned.
An in�nite path ~u is admissible for x if all its �nite pre�xes are admissible for x.
Below, ~u1; ~u2 2 ~U are �nite paths, ~u1:~u2 designates their concatenation, and � is the empty action path.

Axioms

1

(i) Non-triviality. For each state x there is a non-empty action path ~u, which is admissible for x.

(ii) Semi-group.
	(x; �) = x

[(x; ~u1) = x0 & 	(x0; ~u2) = x00]! 	(x; ~u1:~u2) = x00

(iii) Restriction (Density). Assume that 	(x; ~u) = x00. If ~u = ~u1:~u2 then there exists x
0 such that 	(x; ~u1) =

x0 & 	(x0; ~u2) = x00.

Semi-group closure. An automaton M may be de�ned as follows:

(i) Consider 	 for some set
 of admissible paths, and check the non-triviality and restriction axioms;

(ii) Extend 	 (and preserve this notation!) via concatenations of paths from
.

Full transition map of M . This is a function ~	 : X � ~U �! ~X, which returns a path ~x with the same
life-time [0; Æ) as that of ~u. Namely,

~	(x; ~u) = ~x iff 8t 2 [0; Æ):	(x; ~ujt) = ~x(t)

It follows from the axioms, that for (deterministic!) M , the de�nition is correct, i.e. ~	 is indeed a function.
The pair (~u; ~x) is a �nite trajectory of M , and ~x is a �nite state-path
Note, that unlike 	, the extension of ~	 (hence also of state-paths and of trajectories) to in�nite duration

is straightforward.

b) Flows

De�nition 1 A
ow on the state-space X is a function f : X�T �! X, that meets the following conditions:
(i) f(x; 0) = x; (ii) if f(x; t) is de�ned, so is f(x; t0) for each 0 < t0 < t and
(iii) additivity:

f(x; t1) = x0 &f(x0; t2) = x00 �! f(x; t1 + t2) = x00

Notation. nil is the (polymorphic) trivial
ow: 8t[nil(x; t) = x]

Example 1 f(x; t)
def
= x+ t.

Clearly, a
ow is nothing but the transition map 	 of an automatonM , whose action-space is a singleton.
F low is a pure semantical notion, without any commitment to speci�c syntax. Note, however, that in Control
Theory the favorite way to describe
ows is via di�erential equations.

Example 2 Consider a �nite-dimensional di�erential equation

_x = F (x); (1)

where x is an n-dimensional vector. Assume the existence of unique solutions of this equation for arbitrary
initial conditions and for arbitrary time intervals. (This can be guaranteed under appropriate technical
assumptions, which are not relevant here.) The associated
ow f is de�ned as follows:

Given a time interval [t0; t] and an initial state x(t0) = x0, consider the corresponding solution x of

equation (1) on that interval. Then, f(x0; t)
def
= x(t).

c) Structured spaces (alphabets)
AssumeW = V �Z, so that each path ~w is uniquely de�ned by the pair f~v; ~zg of its projections into V and Z;
we do not distinguish between path ~w and that pair, for which we use notation ~v~z. Speci�c delimiters and/or
ordering restrictions may be used for additional information. For example ~v=~z or ~v �! ~z may characterize
~v as an argument value, and ~z as the corresponding function value.

In the sequel, the state-space X will be structured only as the Cartesian product of a set of compo-
nents X1; X2; : : : ; Xm. On the other hand, the action space U may be structured via a set of components
U1; U2; : : : ; Uk in two di�erent formats:

2

a) Multiplicative (Cartesian) format: U = U1 � U2 : : :� Uk

b) Additive (disjoint sum) format: U = U1 + U2 : : :+ Uk

Respectively, two formats of admissible action paths will be considered.

(i) In the multiplicative format such a path belongs to ~U .

(ii) In the additive format an additional assumption is needed:

Interleaving structure. Each admissible action-path is the concatenation of \straight" paths ~ui 2 ~Ui.
Hence (by semigroup closure), it suÆces to de�ne transitions only for straight paths.

Clearly, for discrete (but not for continuous) time the interleaving structure is guaranteed for all paths
that belong to ~U .

3 Behavior of Initialized Automata

a) Retrospection

Notation. �j� is the pre�x of path � restricted to life-time [0; �).

De�nition 2 f is a retrospective operator (shorthand: retrooperator) of type ~U ! ~Y if it is de�ned on a
pre�x-closed subset of ~U and satis�es the condition:

If ~y = f(~u); then ~yj� = f(~uj�) :

In other words, for each t the value ~y(t) depends only on the values of ~u on the right closed interval [0; t].
When ~y(t) does not depend on ~u(t), the operator f is said to be strongly retrospective.

Clearly, for each initial state x0 2 X, the full transition map ~	 induces a strong retrospective operator
X, which is called the input/state behavior (i/o behavior) of the initialized automaton < M;x0 >.

b) Accepted sets
The behavior of < M;x0 > can also be characterized by a set (language) which consists of all (or of an
appropriate part of) the action paths (of the trajectories or the state-paths, respectively) admissible at x0.
This is the action (respectively, trajectory or state) set, accepted by < M;x0 >. Most important is in�nite
behavior that obeys some reasonable fairness conditions. Fairness is beyond our subject, so, when referring
to in�nite paths, all admissible in�nite paths are assumed.

If the action-space is structured as U � V � ::: then the accepted set is presented naturally by a charac-
teristic relation L(~u; ~v; :::), called relational behavior of the automaton.

It may happen that for some partition of the arguments in L, the relational behavior is the graph of a
function, so one could refer to the corresponding functional behavior. Note that for a given L there may
happen to be di�erent \functional" partitions of this kind.

c) Transducers

Implicit transducers. Consider, for example, a retrooperator F of type � = ~U � ~A �! ~B. Let
< M;xinit > be an initialized automaton with state-space X and action alphabet U � A�B.

De�nition 3 < M;xinit > is a implicit transducer of type � with input/output behavior (i/o behavior) F
i� it accepts the graph of F (hence 	M (xinit; ~u~a~b) is de�ned i� ~b = F (~u~a)).

Remark 1 In the case above it might be convenient to use the mnemonic notation
	M (xinit; ~u~a = ~b) which points out the type of the intended behavior. Note, that an automaton M may happen
to be typable in di�erent ways as an implicit transducer.

3

Explicit transducers: strong and weak readouts. Let M be an automaton with spaces X;U . Consider
in addition: (i) a space Y of output (or measurement) values, and (ii) a map h : X �! Y . The pair
< M;h > is said to be an explicit transducer with underlying automatonM and strong readout map h. Let
G : ~U �! ~X be the i=s behavior of the underlying automatonM . Then, the i=o-behavior of the transducer
< M;h > is the retrooperator F : ~U �! ~Y , de�ned as follows:

Assume ~x = G(~u); then F (~u) returns ~y such that

8t � j~uj: ~y(t) = h(~x(t)) (2)

Clearly, like G, the retrooperator F is also strongly retrospective.
A weak readout map h (not considered in [S1]!) is of type X �U �! Y . The de�nition of i/o-behavior

in (2) should be modi�ed, namely, ~y(t) = h(~x(t)) is replaced by ~y(t) = h(~x(t); ~u(t)). The i/o behavior is
still retrospective, but strong retrospection is no longer guaranteed.

d) Comparing transducers and operators

Implicit transforms. Consider an explicit transducer < M;h > with i/o behavior F : ~U � ~A �! ~B:
Assume that < M;h > is speci�ed by 	 : Q � ~U � ~A �! Q and (for simplicity) by a strong readout

h : Q �! B.

De�nition 4 Let M 0 be the automaton with transition map 	0 : Q� ~U � ~A�B �! Q, de�ned below (Æ is
the common length of the paths):

	0(q; ~u~a=~b; Æ) = q0 i� ~	(q; ~u~a; Æ) = ~q & q0 = ~q(Æ) & 8 t < Æ: ~b(t) = h(~q(t)):

Say that M 0 is the implicit transform of < M;h >, and < M;h > is the explicit transform of M 0.

It is easy to see that M 0 is an implicit transducer with i/o behavior F (the same as that of < M;h >).
Clearly, an implicit transducer is not necessarily the implicit transform of an explicit transducer.
Consider three properties of an operator F :

(i) F is a retrospective operator,

(ii) F is the i/o-behavior of an implicit transducer,

(iii) F is the i/o-behavior of an explicit transducer.

Proposition 1 These properties are equivalent.

That (ii) and (iii) imply (i) is trivial. The implication (iii) �! (ii) is due to implicit transforms. The
other directions are not trivial.

4 Interaction

Interacting agents are (possibly in�nite) automata with structured spaces (alphabets).
For discrete-time automata the binary interaction combinators are de�ned in a routine way, via deriva-

tion of the nextstate-map (nextstate-relation) for the composition M from the nextstate-maps (nextstate-
relations) of the components Mi. However, one should be careful with continuous time, when one needs
to deal directly with terminal, or even with full transition maps. For these reasons we start with nextstate
for discrete time, and then provide motivated de�nitions for terminal and full transition maps, which cover
both discrete and continuous time.

Note that in all cases below, if the components are deterministic, so is their composition. Finally, the
combinators are commutative and associative; hence, compositions may be considered for arbitrary sets
fM1;M2;M3; : : :g of components.

4

5 Synchrony vs. Asynchrony

a) Synchrony
For simplicity consider Mi with state-space Xi �X0 and action-space Ui �U0. Call the Xi { ports, and the
Ui { registers. Note, that the components are allowed to share registers (here - X0) and ports (here - U0).

De�nition 5 (Synchronous composition: M = M1 �M2). The state-space of M is X1 � X0 � X2, the
action-space is U1 � U0 � U2, and the transitions are as follows:

M (x1x0x2; u1u0u2; x
0
1
x0
0
x0
2
)
def
= M1(x1x0; u1u0; x

0
1
x0
0
) & M2(x2x0; u2u0; x

0
2
x0
0
) (3)

In particular, for deterministic Mi

nextstate(x1x0x2; u1u0u2) = x0
1
x0
0
x0
2

i�

nextstate1(x1x0; u1u0) = x0
1
x0
0
& nextstate2(x2x0; u2u0) = x0

2
x0
0

(4)

Warning. Note, that (4) cannot be extended to terminal transition maps in the form

	(x1x0x2; ~u1~u0~u2) = x0
1
x0
0
x0
2

i� 	1(x1x0; ~u1~u0) = x0
1
x0
0
& 	2(x2x0; ~u2~u0) = x0

2
x0
0

(5)

The reason is that in (5), for given ~u1~u0~u2, the Mi are required only to reach the same terminal (!) value
x0
0
, which would guarantee that 	(x1x0x2; ~u1~u0~u2) is de�ned. However, the Restriction Axiom for Automata

requires more, namely, de�nedness for all pre�xes of ~u1~u0~u2.
One possible remedy might be to use full transitions instead of terminal ones.

De�nition 6 (For both discrete or continuous time).

~	(x1x0x2; ~u1~u0~u2) = ~x1~x0~x2 i� ~	1(x1x0; ~u1~u0) = ~x1~x0 & ~	2(x2x0; ~u2~u0) = ~x2~x0 (6)

The way to handle terminal transitions is as follows:

De�nition 7 (For both discrete and continuous time). If the components Mi don't share registers, then

	(x1x2; ~u1~u0~u2) = x0
1
x0
2

i� 	1(x1; ~u1~u0) = x0
1
& 	2(x2; ~u2~u0) = x0

2
(7)

Let act(M) denote the action set accepted by M .

Proposition 2 (Restorability of act(M)). Assume that the Mi don't share registers.
Let Li(~ui; ~u0) be the characteristic predicate of act(Mi). Then

L(~u1; ~u0; ~u2) = L1(~u1; ~u0) & L2(~u2; ~u0)

is the characteristic predicate of act(M)

b) Asynchrony
This interaction combinator is considered for automata with interleaving structure (see Sec. 2.2c).

Consider �rst discrete time.

De�nition 8 (Asynchronous composition: M = M1kM2). Assume M1 with spaces X1�X0; U1+U0, and
M2 with spaces X2�X0; U2+U0. ThenM has spaces X1�X0�X2; U1+U0+U2 and nextstate(x1x0x2; ui) =
x0
1
x0
0
x0
2
holds in one of the cases:

nextstate1(x1x0; ui) = x0
1
x0
0
& x0

2
= x2 if i = 1 (a)

nextstate2(x2x0; ui) = x0
2
x0
0
& x0

1
= x1 if i = 2 (b)

nextstate1(x1x0; ui) = x0
1
x0
0
& nextstate2(x2x0; ui) = x0

2
x0
0

if i = 0 (c)

5

Again, one should be careful about the extension from nextstate to terminal and full transition maps 	
and ~	.

The way to deal with terminal transitions, is as follows:

De�nition 9 (No shared ports). Assume M1 with spaces X1�X0; U1, and M2 with spaces X2�X0; U2.
Then M has spaces X1�X0�X2; U1+U2, and (up to semi-group closure) the following terminal transition
map: 	(x1x0x2; ~ui) = x0

1
x0
0
x0
2
holds in one of the cases:

	1(x1x0; ~ui) = x0
1
x0
0
& x0

2
= x2 if i = 1 (a)

	2(x2x0; ~ui) = x0
2
x0
0
& x0

1
= x1 if i = 2 (b)

De�nition 10 (No shared registers). AssumeM1 with spaces X1; U1+U0 and M2 with spaces X2; U2+U0.
Then 	(x1x2; ui) = x0

1
x0
2
holds in one of the cases:

	1(x1; ~ui) = x0
1
& x0

2
= x2 if i = 1 (a)

	2(x2; ~ui) = x0
2
& x0

1
= x1 if i = 2 (b)

	1(x1; ~ui) = x0
1
& 	2(x2; ~ui) = x0

2
if i = 0 (c)

6 Nets vs. Webs

a) Basic architectures
This dichotomy re
ects available communication mechanisms:

Nets: communication, if any, is via shared ports; all registers of a component are private.

Webs: communication, if any, is via shared registers; all ports of a component are private.

Note that for nets, because of the privacy of registers, it can be assumed (without loss of generality)
that components have unique registers. Similarly for ports in a web. The two dichotomies induce four
\architectures":

� k

private synchronous asynchronous
registers net net

private synchronous asynchronous
ports web web

Remark 2 Terminal transition maps do not �t directly with architecture 3 (synchronous webs). In this case
the formulation would require �rst the consideration of full transitions (see Warning in Sect. 3.1a).

b) Petri graphs
This is a bipartite graph G (possibly directed) with k circle-nodes and m box-nodes. G is an atomic net if
it consists of a single circle with its neighboring boxes; it is an atomic web if it consists of an unique box
with its neighboring circles. Hence, two dual decompositions of G: into k atomic subnets or into m atomic
subwebs. G is said to be a net or a web if it is equipped with the corresponding decomposition.

Figure 1 shows an atomic net with circle labeled Q and an atomic web with box labeled A.

6

A2 Q A3 Q3 A Q2

Q1A1

Figure 1: Nets versus Webs.

A2Q3

Q1 A1 Q2

Figure 2: A Petri graph.

Q1 A1

A2

A1

A2

Q2A1

Q3

Figure 3: Decomposition into three atomic nets.

Q2

Q3 Q3

A1Q1 Q2

A2

Figure 4: Decomposition into two atomic webs.

Example 3 Consider the Petri graph shown in Figure 2. It has two dual decompositions. Figure 3 shows
the decomposition into three atomic nets which \communicate" via shared boxes. Figure 4 shows the decom-
position into two atomic webs which \communicate" via shared circles.

c) Nets and webs of automata
Appropriately labeled nets or webs o�er a suggestive graphical syntax for paradigms which involve sharing
and/or communication.

A net of automata N (M1; :::;Mk) is an entity given by:

(i) A net N with numbered circles: ci : i = 1; 2; :::; k.

(ii) A map env which correctly assigns to each ci an automaton Mi; this means that the ports of Mi are

7

in 1 � 1 correspondence with the neighboring boxes of N . It is assumed that each Mi has a single
register, which is its private register.

Semantics: if M1 � :::�Mk = M , then say that M is decomposed as (speci�ed by) the synchronous net
N (M1; :::;Mk). Similarly, for asynchrony.

Webs of automata W (M1; :::;Mm) are handled in the dual way. In particular:

(i) b1; :::; bm is an enumeration of the boxes in W .

(ii) Each of the automata has an unique (private!) port, and env correctly assigns automata to boxes.

Remark 3 Synchronous nets are commonly used in hardware speci�cation, where ports correspond to `pins'
of the physical component devices ([G]). The relational behavior of a device may be speci�ed by de�ning a
predicate Dev(a1; :::), which holds i� a1; :::: are allowable values on the corresponding lines (ports). Note that
the values on the lines can be modelled with in�nite paths. The constraint imposed by the whole system (the
relational behavior of the system) is obtained by:

(i) conjoining the constraints (predicates) imposed by the components (compare with Proposition 2), and

(ii) existentially quantifying the variables corresponding to the internal lines. (As mentioned earlier, hiding
issues are omitted in this paper.)

Recall that in the Petri Net community circles are called places, and boxes are called transitions. However,
having in mind the env maps above, we will refer occasionally to the circles (boxes) of a Petri graph as
registers (ports).

d) Mutual modeling of asynchronous nets and webs
Look at the Petri graph of Figure 2 and assume it pictures a net N over three components. See (easy!) that,
dually, it pictures also an appropriate web W , such that N and W specify the same automaton. However,
modeling webs as nets is much harder, and a more sophisticated approach is needed. The moral: webs are
in some sense more expressive than nets. However, nets may be preferred for compositionality reasons [Ma].

e) Directed Petri-graphs
Assume that the edges in G are oriented (directed). A box b is an output-box of circle c, if there is a
directed edge (channel) from c to b. Similarly, for input boxes of c. Hence, for given c we have the partition
< in(c); out(c) > into its input and output boxes. If b is an output-box of some c 2 G, then it is said to be
an output box of G; otherwise it is an input-box of G. Hence, we also have a partition of all boxes of G into
in(G) and out(G). We call this partition the port-type of G, and use for it the notation in(G) �! out(G).
Similarly, is de�ned the register type of G. In the sequel we focus on directed nets of automata, whose ports
are partitioned into input and output ports, and require that env respects the status of these ports (i.e.
input ports correspond to neighboring input boxes etc.).

Orientation of the edges may be used for additional information about the components of the net or of
the web. But note that it does not a�ect the semantics of synchrony and asynchrony.

8

