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Algebraic Semantics

Introduction

We can de�ne the requirements from a program that computes a function,
with a set of axioms of equality. For example, we can specify the
requirements from a program that computes addition of natural numbers
using the following set of axioms, which will be denoted Ea:

8x x+ 0 = x

8x; y x+ s(y) = s(x+ y)

These axioms can also be used as directional rewrite rules to actually
compute the result of addition:

8x x+ 0 ! x

8x; y x+ s(y) ! s(x+ y)

Although Ea correctly computes addition, not all equalities concerning
addition that hold over the natural numbers can be derived from Ea. For
example: using Ea we can prove by induction that sm0 + sn0 = sn0 + sm0,
but the general law of commutativity: x+ y = y + x cannot be derived
from these axioms: Ea 0 x+ y = y + x. This is because there are models of
Ea where this law does not hold: Ea 2 x+ y = y + x.
An example of such a model is one that contains two types of objects: red
numbers and blue numbers. The red numbers are the successors of 0red, and
the blue numbers are the successors of 0blue. Addition is de�ned such that
xred + yblue = (x+ y)red and xblue + yred = (x+ y)blue. This non-standard
model of numbers satis�es both axioms (mapping 0 to either 0red or 0blue
and S to the successor function), but not the law of commutativity.
Another example of an equality that holds for natural numbers but not for
all the models of Ea is 0 + x = x.
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Suppose we wanted to verify that a certain program for computing addition
does, in fact comply with our requirements. Then, if we used only the
axioms in Ea, an implementation that uses the equality 0 + x = x would be
regarded false, because it does not comply with al the models of Ea. This is
contrary to the fact that when we de�ned Ea we had in mind a speci�c
model in which this equality is valid, and therefore, should be allowed.

Formal De�nitions

We discuss inference systems over the equality relation, with the following
inference rules:

x = y ! y = x

x = y ^ y = z ! x = z

x = y ! fx = fy

Let T be all terms constructed from function symbols F and variables X ,
and let E be a set of equalities over T . We have the following theorem:

Theorem 1 (Completeness) For any set of equations E and terms s and

t in T ,Mod(E) j= s = t i� E ` s = t.

In other words, all equalities that are true for all the models of E can be
proven and all equalities that can be proven are true. The models we are
interested in are algebras: an algebra is a pair hA;F i where A is a set of
objects and F is a set of functions such that for any function f 2 F with
arity n, f : An ! A.
A class of algebras is a variety if it consists of the models of some (�nite or
in�nite) set of equations. Varieties were characterized by Birkho� in the
following algebraic way: A class of algebras is a variety i� it is closed under
Cartesian products, subalgebras, and homomorphic images. That is, a class
K of algebras is a variety if (a) for any A1, : : : , An in K (n � 0), their
product A1 � � � � �An is also in K, where
fA1�����An(: : : ha1; : : : ; ani : : : ) = hfA1

(: : : a1 : : : ); : : : ; fAn(: : : an : : : )i; (b)
for any subset B of A for algebra A in K, the subalgebra obtained by
restricting fA to B for each f in F is also in K; and (c) for any
homomorphism � : A! B between universes, if A is in K, then so is the
algebra B wherein fB(: : : ai� : : : ) = fA(: : : ai : : : )�.
If E is terminating and conuent, we have the following equivalences:
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� Mod(E) j= s = t, E ` s = t according to the completeness theorem

� E ` s = t, s
�
$
E

t. Proving equality with the axioms in E is

equivalent to the congruence of the two terms using the rewrite
version of E.
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t where e is a normal form, because of the

termination of E

Therefore the semantic notion of =E is equivalent to the syntactic notion of
�
$
E

. In other words, two terms are equal i� they have the same normal form.

This equivalence can be used to show that it is not the case that
x+ y = y + x in our system of addition, because both x+ y and y + x are
normal forms, and therefore x+ y

�
=
E

y + x.

Models of E

Some of the models of E are of special interest.
The trivial model is the model that contains only one object, with all
functions mapping onto this object. In this model all equalities hold,
because all the terms map to the same object. In this respect, the trivial
model can be considered maximal.
The quotient term algebra: There exists, for every set of axioms E, a
minimal model as well. This is the model in which exactly those equalities
which are true in all models of E hold:
9ME a model, such that E j= s = t,ME j= s = t
The construction ofME is as follows: Take T and divide it into
equivalence classes using the equivalence relation

�
$
E

. An example for such

an equivalence class for our addition axioms, Ea, is
[s0 + ssz]E = [s(s0 + sz)]E = [ss(s0 + z)]E = [s0 + s(sz + 0)]E = : : : .
The objects ofME are these equivalence classes, denoted: ME = T =E.
For each functions in F , we de�ne the following interpretation:
fME

([x1]E; : : : ; [xn]E) � [f(x1; : : : ; xn)]E.

Since s = t, s
�
$
E

t, we get T =E j= s = t,Mod(E) j= s = t.
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The Initial algebra: Let us consider the set G of terms over F only. The
terms in G are called ground terms, or variable-free terms. If we divide G
into equivalence classes over

�
$
E

, we get the initial algebra of E denoted:

IE = G=E. For example, for our addition axioms, Ea, the equivalence class
[ss(s0 + s0)]E = [sss0]E = : : : is an object in the initial algebra. Many
equalities hold in the initial algebra that do not hold in the minimal model,
T =E. For example, G=Ea j= x+ y = y + x. The initial algebra of Ea is
exactly the standard model of natural numbers.
As was shown before, since E is Church-Rosser and terminating,

Mod(E) j= s = t, 9e; s
!
!
E

e
!
 
E

t. Therefore, all the terms in a speci�c

equivalence class have the same normal form. The normal form can be used
as a 'natural' representative of the equivalence class. We can de�ne the
modelsME and IE as NF (T ) and NF (G), respectively, where
NF (X) = ft 2 Xj:9z; z ! tg. This de�nition is isomorphic to our
previous de�nition with equivalence classes.

Functions and Constructors

When we de�ne a set of axioms that describe the requirements from a
program, we usually consider some symbols as functions, having a value for
each set of arguments, while other symbols de�ne the objects that we are
referring to. For example, in Ea, we had the symbols s; 0;+. The symbol +
represents a function and we wouldn't want it to be a part of an object's
name, and the symbols s; 0 de�ne all the objects in NF (G) which is, in our
case, the model of natural numbers. We therefore de�ne a division of F ,
the set of functions over which E is constructed, into two sets: C is the set
of constructors, and D is the set of de�ned functions. The constructors are
the symbols that objects are constructed from, while the de�ned functions
are functions we want to be computed. In our example, C = fs; 0g and
D = f+g.
We would like, for each de�ned function, to have a value for any set of
arguments, that is constructed only of constructors. We will denote the set
of ground-constructor-terms GC.

De�nition 1 (Su�ciently Complete) A function f 2 D of arity n is

su�ciently complete for E if:

8s1; : : : ; sn 2 GC; 9g 2 GC; f(s1; : : : ; sn) =E g.
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If, for example, we would have left out the rule x+ 0! x when de�ning E,
the term 0 + 0 would have been a normal form, and therefore would have
been an object seperate from 0 in NF (G). Therefore, + would not be
su�ciently complete.

Using axioms to test program correctness

We have seen that on many cases, when we de�ne a program's requirements
with a set of axioms, what we actually want, is not compliance with the
most general model (the quotient term algebra) but compliance with the
initial algebra. For example, we would like to allow a programmer to add a
rule such as 0 + x! x (e.g. for the purpose of optimizing computation
speed) to Ea. This rule is not valid in all models of Ea, but it is valid in the
standard model of natural numbers.
Unfortunately, it is not possible in general to prove that a certain rule is
valid in the initial algebra, in contrast with the completeness theorem we
have for the quotient term algebra.
Many properties of the initial algebra can be proven using induction over
some well founded order over the terms. When E is Church-Rosser and
terminating, the relaton

�
!
E

is well founded, and therefore can be used as a

natural order for induction proofs. The structure of such a proof would be:
To prove 8x; P (x),

prove 8x; ((8y
�
!
E

x; P (y))) P (x)).


