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Where are We? 

Ignoramus et  

ignorabimus 

 

We do not know 

We shall not know 

 

Wir mussen wissen  

Wir werden wissen 

 

We must know 

We will know 

The right side is where we wish to be, but 
sometimes we are on the left side.  



Entscheidungsproblem 
(“Decision Problem”) 

The Entscheidungsproblem asks for 
an algorithm that takes as input a statement of 
a first-order-logic (possibly with a finite number 
of axioms beyond the usual axioms of first-order 
logic) and answers "Yes" or "No" according to 
whether the statement is universally valid. 

 

Turing will later show this problem is undecidable. 



Some Definitions 

• Σ - is a finite set of symbols 

• “First Kind Symbols” – 1/0 

• “Second Kind Symbols”- special symbols (#,*,@,% etc.) 

• M(x) – a machine a.k.a “turing-machine”. (x) is the 
machine input 

• a-machine - “automatic-machine” is a deterministic 
turing-machine. For the scope of this lecture any 
‘machine’ is an a-machine. 

• c-machine - “choice-machine” is a non-deterministic 
turing-machine 

 



More Definitions 

• “Circle-free machine”- prints an infinite number 
of symbols of the first kind 

• “Circular machine”- prints a finite number of 
symbols of the first kind 

• We shall assume a machine prints only a finite 
number of symbols of the second kind therefore 
a machine halts iff its circular. 

• “Computable sequence” – the sequence of 1/0s 
written by the machine. Can be either finite or 
infinite. It represents a “Computable number”. 



S.D and D.N 

• S.D is the “standard description” of a machine. Basically 
it is a shortened version of the table that represents the 
machine’s transition function. 

• D.N  is the “description number” of a machine. It is a 
natural number that can be obtained directly from the 
machine S.D. 

• The mapping between a machine  to it’s S.D to it’s D.N is 
both one to one and onto. Therefore the set of all 
machines is enumerable. 

• <M> - a notation for the D.N of M where M is a machine. 



The Universal Machine 

• We use the notation U(<M>,x) to represent 
the “Universal  Machine”.  

• Basically its an a-machine that, given <M> and 
an input x, can simulate the run of M on x. 

• U obtains a full description M from its D.N and  
performs the required actions to run M on x 
as described. 

• One can think of U as a ‘computer’ that can 
run any ‘computer program’ M on any input x. 



The Set of Computable Sequences 
is Enumerable 

For each computable sequence 𝛼 we can match 𝑆𝛼 a non-
empty set of the D.Ns of the machines that compute 𝛼.  

We know that 𝑆𝛼 is not empty because 𝛼 is a computable 
sequence and therefore there is at least one machine that 
computes 𝛼.  

Moreover for each 𝛼1 ≠ 𝛼1: 𝑆𝛼1
∩ 𝑆𝛼2

=  ∅. This is 
because a deterministic machine cannot compute more 
then one sequence.  

We already showed that the set of all machines is 
enumerable. Therefore the set of all computable 
functions is enumerable. 



HALT is Undecidable 
 “Proof in Two Minutes”  

• Using common, university course, notations. 

• Assume for the sake of obtaining a 
contradiction that there is a machine 
H(<M>,x) that outputs 1 iff M halts on x. 

• We define a machine D(x) that  given any 
input x runs H(<D>,x). If H(<D>,x)=1, D goes 
into an infinite loop. Otherwise D halts. 

• What will D(<D>) do? Will it halt? 



HALT is Undecidable (cont. I) 

• We will prove that determining whether a 
machine is circular or circle-free is undecidable. 

• Previously we showed that the set of computable 
sequences is enumerable. It can be easily shown 
that set of infinite computable sequences (i.e. the 
set of sequences computed by circle free 
machines) is also enumerable. Let 𝜑𝑛 𝑛 be such 
enumeration whereas 𝜑𝑛 is the n-th  sequence.  



HALT is Undecidable (cont. II) 

• We show that the diagonal of this enumeration 𝛽 
is not computable. 

•  Otherwise for every 𝑛 ∈ 𝑁 we could have 
obtained 𝛽′ 𝑛 = 1 − 𝛽 𝑛 . Clearly 𝛽′ is 
computable from 𝛽 and therefore there must be 
𝑘 ∈ 𝑁 s.t 𝜑𝑘 =  𝛽′ 

• But then of course 𝜑𝑘 (𝑘) ≠  𝛽′ 𝑘  thus 
obtaining a contradiction to the enumerability of 
the set of computable sequences. Therefore 𝛽 
isn’t computable sequence. 



HALT is Undecidable (cont. III) 

• Assuming the existence of a machine ‘H’ that can 
decide given the D.N of another machine ‘M’ 
whether ‘M’ is circle-free or circular we will show 
a machine ‘D’ that computes 𝛽 thus obtaining a 
contradiction. 

• D will run in sections 1…N… each time computing 
R(N) which is the number of D.Ns describing a 
circle-free machine in the range 1…N. In section N 
D will consult with H whether N is the D.N of a 
circular or a circle-free machine.  



HALT is Undecidable (cont. IV) 

• If M(N) is circular R(N)=R(N-1) and D will continue 
to the N+1 section. 

• Otherwise R(N)=R(N-1)+1 and D computes the 
R(N) digit of the sequence computed by M(N) and 
writes it on the tape. 

• Now it is clear that D computes 𝛽 on it’s tape. 
Therefore ‘D’ cannot exist and so also ‘H’.  

• We showed that there can be no machine that 
decides whether some other machine is circular 
or circle-free. 

 

 



Why talk about ‘Computability’? 

• The definition captures the essence of 
computation. This is arguable yet convincing. 

• Many things are computable according to our 
definition. For example 𝜋,e are computable, and 
so are the roots of any polynom with rational 
coefficients  - “algebraic numbers”. 

• It was shown that other computational models 
(for example λ-calculus and definable sequences) 
are equivalent  in power to a turing-machine . 

 



‘Definable’ is also ‘Computable’ 

• We introduce another definition for computability 
using concepts of mathematical logic.  

• Let α be a sequence of 0/1s. Let 𝜎  be a signature . 
𝜎 includes  ‘F’- the successor function, ‘u’- a constant 
symbol and 𝐺𝛼 𝑡  - a predicate that evaluates to TRUE 
iff the ν[𝑡] digit of α  is 1 (assuming our domain is N). 
We will say that α is ‘definable’ if there exists some 
provable formula ‘U’ over 𝜎 s.t for every 𝑛 ∈ 𝑁  exactly 
one of the following two formulae is provable: 

𝐴𝑛 ≔ 𝑈&𝐹 𝑛 → 𝐺𝛼(𝑢 𝑛 ) 

   𝐵𝑛 ≔ 𝑈&𝐹 𝑛 → −𝐺𝛼(𝑢 𝑛 ) 

 



‘Definable’ is also ‘Computable’  
(cont. I) 

• Now we want to show that any ‘definable’ 
sequence α is also ‘computable’.  

• A sketch of the proof. Let α be a definable 
sequence. Let ‘n’ be an arbitrary positive integer. 
We wish to compute α (n), the n-th digit of α.  

• In order to do so we need to prove  either 𝐴𝑛 or 
𝐵𝑛. We know that exactly one of them is provable 
(by definition of computable sequence). We set 
about to find its proof.  

• Finding the proof is straight forward. We 
enumerate over all the proofs of W.F.F over 𝜎 .  
 



‘Definable’ is also ‘Computable’  
(cont. II) 

• First we obtain proofs of length 1. These are 
simply the axioms. Then we obtain proofs of 
length 2 by trying to apply all the derivation rules 
on each of the axioms. And so on. 

• We already know that either 𝐴𝑛 or 𝐵𝑛 is provable 
by a proof sequence of some length K. Sooner or 
later we will find all the proofs of length K. One of 
them will be the proof of either 𝐴𝑛 or 𝐵𝑛. 

• It can be easily shown (from the definition of 𝐺𝛼) 
that α (n)==1 iff 𝐴𝑛 is provable. 

 



Back to Entscheidungsproblem 

• In the last section of the article Turing shows 
that the “Decision Problem” is undecidable. 

• It is shown that E. P ≥ 𝐻𝐴𝐿𝑇. This is called 
‘reduction’ and it is used extensively 
throughout the article. 

• “If E.P is decidable then so is HALT. We know 
that HALT is undecidable and therefore E.P is 
also undecidable. “ 



Relation to Incompleteness Theorem  

• Godel Incompleteness Theorem states that: 
“Any effectively generated theory capable of 
expressing elementary arithmetic cannot be 
both consistent and complete.” 

• It was later shown by Stephen Kleene that the 
existence of a complete effective theory of 
arithmetic with certain consistency properties 
would force the halting problem to be 
decidable, a contradiction. 

 


