Quantitative Model-Checking and Mean-Payoff Expressions Yaron Velner, Tel Aviv University

Quantitative Model-Checking and Mean-Payoff Expressions

Talk outline

- Background on model-checking
- From Boolean model-checking to quantitative model-checking
- Quantitative languages
- Weighted automata
- The class of mean-payoff expressions
 Our contribution

Model-Checking

Program

Program

Output

Program

Finite state machine

Property

The OS never crashes

q₂ is never reached

Property

Property is a set of infinite runs
 P = "State q₂ is never reached"
 q₀ q₁ q₀ (q₀ q₁) (q₀ q₁) (q₀ q₁)... ∈ P
 q₀ q₁ q₂ q₃ (q₃) (q₃) (q₃)... ∉ P

Language of a Property

Property + Program = Language
 P = "State q₂ is never reached"
 aaaaa... ∈L

∎ abaaa… ∉L

Model-Checking

Why is it not enough?

Property: every website is loaded eventually

Which implementation is better?

Why is it not enough?

Property: '1' is always eventually outputted

Which implementation is better?

Quantitative Model-Checking

Quantitative Property

Property : runs → R
 Property + Program = Quantitative Language
 L : infinite words → R

Example

P(run) = - (maximal number of consecutive states that do not output '1')

■ For every input: $L_2(input) \le L_1(input)$

Program Refinement

Given property P and programs A₁, A₂
 ■ A₂ refines A₁ if for every input:
 ■ (P + A₁)(input) ≤ (P + A₂)(input)

The quantitative language inclusion problem

For two quantitative languages L₁ and L₂
is L₁(w) ≤ L₂(w) for every word w?
A class of languages is decidable if the inclusion problem is decidable

Closure Operations

 \blacksquare For quantitative languages L_1 and L_2 \square min(L₁, L₂)(w) = min(L₁(w), L₂(w)) $\square \max(L_1, L_2)(w) = \max(L_1(w), L_2(w))$ $-L_1(w) = 1 - L_1(w)$ \blacksquare sum(L₁, L₂) (w) = L₁ (w) + L₂(w) A class of languages is robust if it closed under the above operations

Generalization of Boolean languages

Boolean language L : infinite word → {0,1}
L₁ ∩ L₂ = min(L₁, L₂)
L₁ ∪ L₂ = max(L₁, L₂)
L^c = -L
L₁ ⊆ L₂ ⇔ L₁ ≤ L₂

Goal

Find a robust and decidable class of quantitative languages

■ Automaton : word \rightarrow v₀ v₁ v₂ ...

■ Automaton : word \rightarrow v₀ v₁ v₂ ... ■ Max automaton: A(w) = max{v₀,v₁,v₂...}

■ Automaton : word → $v_0 v_1 v_2 \dots$ ■ LimAvg automaton: $A(w) = \liminf_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} v_i$

Automaton : word $\rightarrow v_0 v_1 v_2 \dots$ LimAvg automaton: $A(w) = \liminf_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} v_i$

The Class of LimAvg Automata

DecidableNot robust

Mean-payoff expressions

- Chatterjee, Doyen, Edelsbrunner, Henzinger and Rannou 2010:
 - $\blacksquare E := LimAvg(A) \mid min(E,E) \mid max(E,E) \mid sum(E,E) \mid -E$
 - Example:

 $\blacksquare \min(\text{LimAvg}(A_1), \text{LimAvg}(A_2)) + \max(\text{LimAvg}(A_3), -\text{LimAvg}(A_4))$

- This class is robust
- Is it decidable?

Mean-payoff expressions

- Chatterjee, Doyen, Edelsbrunner, Henzinger and Rannou 2010:
 - The class of mean-payoff expressions is decidable
 The inclusion problem ∈ 4EXPTIME (2^{2^{2^{2poly(n)}}})

Mean-payoff expressions

- Chatterjee, Doyen, Edelsbrunner, Henzinger and Rannou 2010:
 - The class of mean-payoff expressions is decidable
 The inclusion problem ∈ 4EXPTIME (2^{2^{2^{poly(n)}}})
- Our contribution:
 - The inclusion problem is PSPACE complete

Thanks