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m The class of mean-payott expressions
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Program

m Finite state machine
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Property

m The OS never crashes

g, is never reached




Property

m Property 1s a set of infinite runs

m P = "State q, is never reached”
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Language of a Property

m Property + Program = Language
m P = “State g, is never reached”
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Model-Checking

Program Property
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Satisfaction Property + Program = L
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Why is it not enough?

m Property: every website is loaded eventually

m Which implementation is better?



Why is it not enough?

m Property: ‘1" is always eventually outputted

m Which implementation 1s better?




Quantitative Model-Checking
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Quantitative Property

m Property : runs — R
m Property + Program = Quantitative Language

m L : infinite words —> R



Example

®m P(run) = - (maximal number of consecutive states that do not
output ‘1)

m For every input: L,(input) < L, (input)



Program Refinement

m Given property P and programs A, A,

m A, refines A, if for every input:
8 (P + A)(input) < (P + Ay)(inpug




The quantitative language inclusion
problem

m For two quantitative languages L., and L,
m is [, (w) < L,(w) for every word w?

m A class of languages 1s decidable if the inclusion
problem is decidable



Closure Operations

m For quantitative languages 1., and L,
a min(l,, 1)(w) = min(L,(w), L,(w)
= max(L, L)(w) = max(L,(w), Ly(W))
= (-L)w) =1-1L(w)
msum(L,, L,) (w) =L; (w) + L,(w)
m A class of languages is robust if it closed under
the above operations



Generalization of Boolean languages

m Boolean language L. : infinite word — {0,1}
81, "L, =min{, 1)
[, UL, =max(l, L,

IAJC:—

sl cl, oL, <L,



Goal

m ind a robust and decidable class ot quantitative
languages



Weighted Automata

B Automaton : word —> v, V{ V, ...




Weighted Automata

B Automaton : word —> v, V{ V, ...

® Max automaton: A(w) = max{v,,v,,v,-... |




Weighted Automata

B Automaton : word —> v, V{ V, ...
re—1
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# LimAvg automaton: A(w) = liminf ~-3




Weighted Automata

B Automaton : word —> v, V{ V, ...
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The Class of LimAvg Automata

m Decidable
m Not robust



Mean-payoft expressions

m Chatterjee, Doyen, Edelsbrunner, Henzinger

and Rannou 2010:
= [ := LimAvg(A) | min(E,E) | max(E,E) [sum(EE) | -E

= FExample:
m min(LimAvg(A,), LimAvg(A,)) + max(LimAvg(A,), -LimAvg(A,))

m This class 1s robust
m [s it decidable?



Mean-payoft expressions

m Chatterjee, Doyen, Edelsbrunner, Henzinger
and Rannou 2010:

m The class of mean-payoff expressions i1s decidable
® The inclusion problem € 4EXPTIME (2222@{”})



Mean-payoft expressions

m Chatterjee, Doyen, Edelsbrunner, Henzinger
and Rannou 2010:

m The class of mean-payoff expressions i1s decidable
,2Poly(n)

® The inclusion problem € 4EXPTIME (22 )

B Our contribution:

® The inclusion problem is PSPACE complete






