Optimal Replication in MultiRegion Peer-to-peer Systems

Yuval Rochman
Computer
Science
Tel-Aviv Univ.

Hanoch Levy
Computer
Science
Tel-Aviv Univ

Eli Brosh
Computer
Science
Columbia Univ

System and Problem

- Players: End-User Terminals + a Central Video Server.
- Function: Provide Video-on-Demand (VoD).
- Objective: Central server is bottleneck \rightarrow need to reduce its load.
- Solution: Use user terminals to store movies and upload to other terminals (Peer-to-Peer).
- All controlled by central system (e.g. HOT).

Single- and Multi-Region

Single Region System.

s
S

Model and Assumptions

- Decompose terminals to server + client.
- Each server can store one movie.
- Server can upload one movie.
- Client can download one movie.
- Collection of movies.
- Servers content is managed by the central system.

Problem and Profit (single region)

- Given: movie demand expected by the clients.
- Need to:
- Place movies at the servers .
- Assign clients requests to the servers.
- Profit: \# of requests granted by peer-servers.
- In figure: profit = 2 .
- Objective: maximize the profit.
- Eliminate nullrequests

Related Work

- Tewari \& Kleinrock [2006]

Proposed the Proportional Mean Replication.

- Difference: A peer-server serves unbounded clients.
- Zhou, Fu \& Chiu [2011]

Proposed the RLB Replication.

- Difference: assume that the number of peers>> number of movies.

Demonstration of the approach:
 The Single Region System

Formulation

- A collection of movies $\{1,2, \mathrm{~K}, m\}$,
- Demand for movie $i: N_{i}$, random variable. - Observed value of $N_{i}: n_{i}$.
- The goal: Determine the number of movie i replicas, L_{i} to optimize performance.

Example

$$
\begin{gathered}
m=4 \\
S=4
\end{gathered}
$$

profit $=\min (0,1)+\min (1,0)+\min (1,1)+\min (2,1)=2$
We have to maximize: $E($ profit $)=\hat{\mathrm{A}} E_{N_{i}}\left(\min \left(L_{i}, N_{i}\right)\right)$
Under the condition: ${ }_{n}^{n} L_{L f} S$

Solution(1)

- Tail Formula: For every random nonnegative integer variable:

$$
E(X)=\dot{\hat{\mathrm{A}}} \operatorname{Pr}(X \geq i)
$$

Solution(2)

$$
\operatorname{Max} E(\text { profit })=\hat{A}_{i=1}^{n^{n}} \hat{\mathrm{~A}}_{j=1}^{L_{i}} \operatorname{Pr}\left(N_{i} \geq j\right)
$$

$$
\text { S.t } \quad \hat{i}_{i=1}^{\mu z} L_{i} \in S
$$

- Equivalent to: find S largest elements from $\left\{d_{i}\right\}_{i=1}^{m}$ where $d_{i}=\left(\operatorname{Pr}\left(N_{i} \geq 1\right), \operatorname{Pr}\left(N_{i} \geq 2\right), \operatorname{Pr}\left(N_{i} \geq 3\right), \mathrm{K}\right)$
- Solution: Max-percentile algorithm in $O(s \log s+m)$.

Max-percentile

$$
\operatorname{Pr}\left(N_{i} \geq 1\right) \operatorname{Pr}\left(N_{i} \geq 2\right) \operatorname{Pr}\left(N_{i} \geq 3\right) \operatorname{Pr}\left(N_{i} \geq 4\right)
$$

Movie 1
d_{1} (1), $\left.0.8,0.7,0.1\right)$

Blue-candidates Red-selected
Movie 2 $d_{2}(0.9,0.6,0.5,0.4)$ $d_{3}(0.8,0.3,0.2,0.1)$

Movie 4 $d_{4}(0.35,0.1,0,0)$

Choose the 6 largest elements

Max-percentile

$$
\operatorname{Pr}\left(N_{i} \geq 1\right) \operatorname{Pr}\left(N_{i} \geq 2\right) \operatorname{Pr}\left(N_{i} \geq 3\right) \operatorname{Pr}\left(N_{i} \geq 4\right)
$$

Movie 1
d_{1} (1), (0.8) $0.7,0.1$)
Blue-candidates Red-selected
Movie 2 $d_{2}(0.9,0.6,0.5,0.4)$ $d_{3}(0.8,0.3,0.2,0.1)$

Movie 4 $d_{4}(0.35,0.1,0,0)$

Choose the 6 largest elements

Max-percentile

$$
\operatorname{Pr}\left(N_{i} \geq 1\right) \operatorname{Pr}\left(N_{i} \geq 2\right) \operatorname{Pr}\left(N_{i} \geq 3\right) \operatorname{Pr}\left(N_{i} \geq 4\right)
$$

Movie 1
d_{1} (1), 0.8) $0.7,0.1$)
Blue-candidates Red-selected
Movie 2 d_{2} (0.9), 0.6, $0.5,0.4$)

Movie 3 $d_{3}(0.8,0.3,0.2,0.1)$

Movie 4

$$
d_{4}(0.35,0.1,0,0)
$$

Choose the 6 largest elements

Max-percentile

$$
\operatorname{Pr}\left(N_{i} \geq 1\right) \operatorname{Pr}\left(N_{i} \geq 2\right) \operatorname{Pr}\left(N_{i} \geq 3\right) \operatorname{Pr}\left(N_{i} \geq 4\right)
$$

Movie 1
d_{1} (1), 0.8, $0.7,0.1$)
Blue-candidates Red-selected
Movie 2 d_{2} (0.9), 0.6, $0.5,0.4$)

Movie 3 $d_{3}(0.8,0.3,0.2,0.1)$

Movie 4

$$
d_{4} \quad(0.35,0.1,0,0)
$$

Choose the 6 largest elements

Max-percentile

$$
\operatorname{Pr}\left(N_{i} \geq 1\right) \operatorname{Pr}\left(N_{i} \geq 2\right) \operatorname{Pr}\left(N_{i} \geq 3\right) \operatorname{Pr}\left(N_{i} \geq 4\right)
$$

Movie 1
d_{1} (1), 0.8, (0.7), 0.1)
Blue-candidates Red-selected
Movie 2 $d_{2}(0.9,0.6,0.5,0.4)$

Movie 3 $d_{3}(0.8,0.3,0.2,0.1)$

Movie 4

$$
d_{4}(0.35,0.1,0,0)
$$

Choose the 6 largest elements

Max-percentile

$$
\operatorname{Pr}\left(N_{i} \geq 1\right) \operatorname{Pr}\left(N_{i} \geq 2\right) \operatorname{Pr}\left(N_{i} \geq 3\right) \operatorname{Pr}\left(N_{i} \geq 4\right)
$$

Movie 1

Blue-candidates Red-selected Movie 2 d_{2} (0.9), 0.6, $0.5,0.4$)

Movie 3 $d_{3}(0.8,0.3,0.2,0.1)$

Movie 4

$$
d_{4} \quad(0.35,0.1,0,0)
$$

Choose the 6 largest elements

Max-percentile

$$
\operatorname{Pr}\left(N_{i} \geq 1\right) \operatorname{Pr}\left(N_{i} \geq 2\right) \operatorname{Pr}\left(N_{i} \geq 3\right) \operatorname{Pr}\left(N_{i} \geq 4\right)
$$

Movie 1

Blue-candidates Red-selected
Movie 2 d_{2} (0.9),0.6, 0.5), 0.4)

Movie 3 $d_{3}(0.8,0.3,0.2,0.1)$

Movie 4

$$
d_{4} \quad(0.35,0.1,0,0)
$$

Choose the 6 largest elements

Multi-region System

The Multi-Regional problem

- Assume: k regions
- A demand is satisfied by:
- Local region
- Remote region
- Central server.
- Added profit per granted demand:
- Local: $\quad R_{\text {loc }}$
- Remote: $\quad R_{\text {rem }}$
- Server: $R_{s e r}$
- Assume: $R_{s e r} £ R_{r e m} £ R_{\text {loc }}$
- Example:

$$
1 \Delta R_{s e r}+1 \Delta R_{r e m}+3 \Delta R_{\text {loc }}
$$

- Profit in general case:

$$
R=g_{s e r} R_{s e r}+g_{r e m} R_{r e m}+g_{l o c} R_{l o c}
$$

The Multi-Regional problems(1)

- Matching Problem:
- Given deterministic demand, movie replicas.
- Match between demand and servers
- Maximize the profit

The Multi-Regional problems(2)

- Given arbitrary stochastic demand.
- Symmetrically-Server Allocation (SSA) Problem:
$-S / k$ servers in every region.
- Place movie replicas in servers.
- Maximize the expected profit
- Under maximal matching

The Multi-Regional problems(3)

- Given arbitrary stochastic demand.
- Free-Server Allocation(FSA) Problem:
- S servers.
- Free to place servers.
- Place movies in servers.
- Maximize the expected profit
- Under maximal matchina

The Multi-Regional problems(3)

- Theorem:

SSA solution=FSA solution - MurMap algorithm finds it.

Analysis: Key Principles

- Solve the Matching Problem

- Optimal allocation must be "balanced" \rightarrow reduce size of candidate set

Questions

Thank you

